

Supplement of

The importance of antecedent vegetation and drought conditions as global drivers of burnt area

Alexander Kuhn-Régnier et al.

Correspondence to: Alexander Kuhn-Régnier (alexander.kuhn-regnier14@imperial.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.

	DD	SWI	MaxT	DTR	Light- ning	CROP	POPD	HERB	SHRUB	TREE	AGB	VOD	FAPAR	LAI	SIF
ALL	C & all A	С	С	С	С	С	С	С	С	С	С	C & all A	C & all A	C & all A	C & all A
ALL_NN	C & all A	С	С	С	С	С	С	С	С	С	С	C & C & all A all A C C	C & all A	C & all A	C & all A
CURR	C C 1M	С	С	С	С	С	С	С	С	С	С		С	С	С
BEST15	3M, 6M, 9M		С	С	С	С	С						C, 1M	3M	6M, 9M
TOP15	C, 1M, 3M, 9M		С			С	С					C, 1M, 3M	C, 1M	1M, 3M	C
15VEG_FAPAR	C, 1M, 3M, 6M, 9M		С	С	С	С	С						C, 1M, 3M, 6M, 9M		
15VEG_FAPAR- _MON	C, 1M, 3M, 6M, 9M		С	С		С	С				С		C, 1M, 3M, 6M, 9M		
15VEG_LAI	C, 1M, 3M, 6M, 9M		С	С	С	C	С							C, 1M, 3M, 6M, 9M	
15VEG_SIF	C, 1M, 3M, 6M, 9M		C	С	С	С	C								C, 1M, 3M, 6M, 9M
15VEG_VOD	C, 1M, 3M, 6M, 9M		С	С	С	C	С					C, 1M, 3M, 6M, 9M			
CURRDD_FAPAR	С	С	С	С	С	C		C	С	С	С		C, 1M, 3M, 6M, 9M		
CURRDD_LAI	С	С	C	С	С	С		C	C	C	С			C, 1M, 3M, 6M, 9M	
CURRDD_SIF	С	С	С	С	С	C		C	C	С	С				C, 1M, 3M, 6M, 9M
CURRDD_VOD	С	С	C	С	С	С		С	С	С	С	C, 1M, 3M, 6M, 9M			

Table S1. Variables used in the experiments. 'C' denotes current-month variables, 'all A' represents all antecedent months (1M–24M), and 1M represents one-month antecedent variables, with similar notation for other antecedent months.

	ALL	ALL_NN	TOP15	CURR	15VEG_FAPAR	15VEG_LAI	15VEG_SIF	15VEG_VOD	CURRDD_FAPAR	CURRDD_LAI	CURRDD_SIF	CURRDD_VOD	BEST15
$\begin{matrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 20 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 8 \\ 9 \\ 9 \\ 10 \\ 11 \\ 12 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 23 \\ 33 \\ 34 \\ 4 \\ 45 \\ 44 \\ 45 \\ 44 \\ 45 \\ 6 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50$	DD FAPAR VOD 1M VOD 3M MaxT SIF FAPAR IM CROP DD 1M LAI 3M DD 3M DD 9M POPD DD 9M FAPAR 6M LAI DD 6M VOD 2M LAI DD 6M VOD 9M LAI MD 6M VOD 9M LAI MD 6M VOD 9M LAI MD 6M VOD 9M LAI MD 5HRUB FAPAR 6M LAI 6M SWI FAPAR 3M VOD 6A M VOD 6A M VOD 6A M VOD 6A M SIF 3M LAI 6M SIF 1M SIF 1M SIF 3M LAI 6A SIF 3M SIF 1M SIF 1M SIF 1A SIF 3A SIF 1M SIF 1A SIF 3A SIF 1A SIF 1A	DD FAPAR VOD 3M VOD 1M MaxT SIF VOD FAPAR 1M DD 1M LAI 1M DD 1M LAI 3M CROP POPD DD 9M DD 3M FAPAR 6M SIF 9M DD 6M VOD 9M LAI 0P FAPAR 6M SIF 9M DD Δ12M FAPAR 3M DD Δ12M SIF 1M HERB SIF 6M VOD 6M VOD 612M SIF 3M VOD 612M SIF 3A SIF 3M VOD 612M SIF 3A VOD 612M SIF 3A SIF 3A SIF 3A SIF 3A VOD 612M SIF 3A SIF 3A	FAPAR DD MaxT VOD 3M SIF DD 9M LA1 IM VOD DD 1M FAPAR IM CROP LA13M VOD 1M DD 3M POPD	DD MaxT TREE VOD SWI LAI SIF FAPAR HERB DTR Lightning AGB OROP SHRUB POPD	FAPAR DD FAPAR IM MaxT CROP DD 3M FAPAR 6M FAPAR 3M FAPAR 3M DD 6M DD 9M FOPD DD 9M FOPD DTR	LAI DD LAI 1M LAI 3M MaxT CROP LAI 6M DD 1M DD 3M DD 9M LAI 9M DD 6M POPD Lightning DTR	SIF DD MaxT CROP DD 3M DD 1M DD 3M SIF 9M SIF 1M DD 6M DD 9M DTR DD 9M DTR POPD	VOD 1M DD VOD VOD MaxT VDD 9M DD 9M CROP DD 3M VOD 6M POPD DTR Lightning	FAPAR IM FAPAR DD DD MaxT FAPAR 6M FAPAR 6M FAPAR 9M FAPAR 9M HERB Lightning DTR SWI SHRUB TREE AGB	LAI LAI LAI IM DD LAI 3M MaxT LAI 6M HERB LAI 9M CROP Lightning DT RUB SWI TREE AGB	SIF DD MaxT SIF 3M SIF 6M SIF 1M SIF 9M TREE CROP Lightning DTR SWI SHRUB HERB AGB	VOD 1M VOD 3M DD MaxT VOD 9M VOD 6M AGB DTR Lighning HERB SWI TRE CROP	FAPAR DD FAPAR IM LAI 3M CROP MaxT SIF 9M DD 1M POPD DD 9M DD 6M Lightning SIF 6M DD 3M DTR

Table S2. Ranked importance of variables in the RF experiments according to the composite importance measure introduced in Sect. 2.4.

Figure S1. Transformed variable importance metrics (Gini, PFI, SHAP, and LOCO) for the (a) ALL, (b) ALL_NN, and (c) 15VEG_FAPAR models. The 15 most important variables (with others omitted for clarity) are sorted by their combined importance with the most important on the left. Uncertainties using the standard deviation are indicated using shaded regions. The uncertainty magnitudes differ between the metrics due to the way they are calculated; SHAP values are calculated for every sample, Gini importances are calculated based on splits for individual decision trees, PFI calculations are repeated after permuting the original dataset, and LOCO importances are only calculated once. Therefore, based on the number of samples used for their calculation, the SHAP importances are expected to have the highest variance, followed by the Gini and then PFI importances and lastly the LOCO importances without any quantification of the error.

Figure S2. The fraction of filled samples for FAPAR (January 2008 to April 2015) at a given location for each month, with yellow indicating that all occurrences of a given month at a given location were filled and purple indicating no filling was done. Filling is mostly carried out in winter in northern latitudes.

Figure S3. Sorted variable importance metrics (Gini, SHAP, PFI, and LOCO) for the ALL model, with the highest variable importance according to each metric on the left. The dotted red line indicates the 15th variable. Uncertainties are calculated using the standard deviation and indicated using the shaded regions.

Figure S4. Out-of-sample BA predictions by the ALL model and corresponding observations. Note that logarithmic scales are used throughout except for the lower end of the x-axis, where a linear scale is used.

Figure S5. Mean difference between the out-of-sample observed (Ob.) and predicted (Pr.; by the ALL model) BA. The major spatial patterns follow the magnitude of mean BA (see Fig. 2a), with (on average) underprediction most prevalent in regions with large mean BA and vice versa. Note that sharp data availability boundaries (e.g. in western Asia, southern Australia) are introduced by the AGB dataset. Grey shading indicates regions with fire data availability, but where one or more of the other datasets is not available. Light grey indicates regions where mean BA is 0, with dark grey representing regions with non-zero mean BA.

Figure S6. PFI importances for the 15VEG_FAPAR model computed separately on the training and validation sets. The error bars originate from repeated shuffling of the investigated variable.

Figure S7. Variogram of mean GFED4 BA (June 1995 to December 2016) using all 237373 available samples. Semivariance can be seen to increase until \sim 1000 km. Note that a logarithmic scale is used for the sample counts at the top.

Figure S8. R^2 scores for burnt area (BA) prediction on test samples for different exclusion radii around the test samples using the 15VEG_FAPAR model. Each of the 10 lines represents the R^2 score for 400 test samples computed for the shown radii, where each individual test sample is chosen randomly and surrounded by a circular region of ignored data that is not used for training, with varying radii as shown. The disagreement between the lines is indicative of the statistical uncertainty, regional variability, and potentially different degrees of model extrapolation.

Figure S9. Pearson correlations between all variables used in the analysis for the time period from January 2010 to April 2015. Especially large positive correlations exist between variable pairs separated by multiples of 12 months and between FAPAR, LAI, SIF, and VOD. The largest negative correlations are found between SWI and DD (instantaneous, 12 month, 24 month), SWI and DTR, and CROP and TREE.

Figure S10. Spatial distribution of individual peak combinations for SHAP values as in Fig. 7. The sign of the maximum effect on BA at a certain antecedent month is indicated in parentheses after each month. The peak combinations are shown here such that their ordering has no significance (i.e. 0(+)|3(+)|0(+)). Dominant antecedent periods are apparent from Fig. 7. Most clearly, the general limitation of BA by instantaneous DD in tropical and boreal regions is seen in (c), combined with the positive effect of instantaneous DD on burning in the remaining regions. The limitation of BA by instantaneous DD shown in (c) generally agrees with the enhancement of BA by three-month antecedent FAPAR shown in (b), as well as the enhancement by one-month antecedent DD in (d). Note that sharp data availability boundaries (e.g. in western Asia, southern Australia) are introduced by the AGB dataset. Grey shading indicates regions with fire data availability, but where one or more of the other datasets is not available. Light grey indicates regions where mean BA is 0, with dark grey representing regions with non-zero mean BA.

Figure S11. First-order LAI ALEs for different lags (< 1 yr) from all relevant modelling experiments for the relationships between BA and SIF (left hand columns) and VOD (right hand columns). Evenly spaced quantiles were used in the construction of the plots.

Figure S12. First-order ALE plots showing the effect of FAPAR (a, b) and the 3-month antecedent dry-day period (DD 3M; c, d) on burnt area (BA) in the 15VEG_FAPAR model (a, c) and the 15VEG_FAPAR_MON model (b, d) after accounting for all other variables. The shaded regions represent the standard deviation around the mean of 100 ALEs each using 122567 random samples of the training data.

Figure S13. Second-order ALE plot showing the combined zeroth order (mean), first order, and second order modelled effects of FAPAR and FAPAR 1M on BA from the 15VEG_FAPAR model, taking into account all other variables. Grey boxes indicate missing data. The diagonal structure of the sample count matrix demonstrates the correlation between these variables. Evenly spaced quantiles were used in the construction and labelling of the plots.

Figure S14. Second-order ALE plot showing the combined zeroth order (mean), first order, and second order modelled effects of DD and FAPAR on BA from the 15VEG_FAPAR model, taking into account all other variables. The diagonal structure of the sample count matrix demonstrates the anticorrelation between these variables. Evenly spaced quantiles were used in the construction and labelling of the plots.