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Abstract. A variety of modelling studies have suggested tree
rooting depth as a key variable to explain evapotranspiration
rates, productivity and the geographical distribution of ever-
green forests in tropical South America. However, none of
those studies have acknowledged resource investment, tim-
ing and physical constraints of tree rooting depth within a
competitive environment, undermining the ecological real-
ism of their results. Here, we present an approach of imple-
menting variable rooting strategies and dynamic root growth
into the LPJmL4.0 (Lund-Potsdam-Jena managed Land) dy-
namic global vegetation model (DGVM) and apply it to trop-
ical and sub-tropical South America under contemporary cli-
mate conditions. We show how competing rooting strate-
gies which underlie the trade-off between above- and below-
ground carbon investment lead to more realistic simulation
of intra-annual productivity and evapotranspiration and con-
sequently of forest cover and spatial biomass distribution.
We find that climate and soil depth determine a spatially het-
erogeneous pattern of mean rooting depth and below-ground

biomass across the study region. Our findings support the hy-
pothesis that the ability of evergreen trees to adjust their root-
ing systems to seasonally dry climates is crucial to explaining
the current dominance, productivity and evapotranspiration
of evergreen forests in tropical South America.

1 Introduction

Tropical evergreen forest is the naturally dominant biome
type in South America over a large climatic range including
regions with a marked dry season (Hirota et al., 2011; Xiao
et al., 2006). To withstand seasonal shortages of precipitation
and sustain productivity, trees with evergreen phenology of-
ten have access to deep soil water via deep roots (Brum et al.,
2019; Canadell et al., 1996; Johnson et al., 2018; Kim et al.,
2012; Markewitz et al., 2010). Consequently, recent studies
have suggested a heterogeneous spatial pattern of maximum
rooting depth across tropical forest biomes in South Amer-
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ica which differs by orders of magnitude depending on lo-
cal groundwater, soil and climate conditions (Canadell et al.,
1996; Fan et al., 2017). So far different modelling approaches
have been presented which have highlighted the crucial role
of rooting depth in the productivity and therefore the distri-
bution of evergreen trees in South America. In a pioneering
study more than 20 years ago, Kleidon and Heimann (1998)
systematically searched for rooting strategies which yield the
highest net primary productivity over South America with a
dynamic global vegetation model (DGVM) to explain intra-
annual rates of evapotranspiration (ET) and vegetation cover.
Follow-up studies have further underlined the importance of
deep roots for the water cycle of South America (Kleidon and
Heimann, 2000). Accordingly, Lee et al. (2005) found that
allowing for deep roots and hydraulic redistribution of wa-
ter in the soil column in a general circulation model (GCM)
improved simulated Amazon forest productivity and ET in
the dry season. Baker et al. (2008) came to similar results
when introducing deep roots in a land surface model. Ichii
et al. (2007) found that constraining rooting depth across the
Amazon based on satellite-derived data of forest productivity
yields similar results in a terrestrial ecosystem model. More
recently, Langan et al. (2017) showed for the same study area
how diverse rooting strategies in a tree individual and a trait-
based DGVM can improve simulated intra-annual productiv-
ity and ET as well as better explain patterns of different tropi-
cal biome types and biomass in fire-prone ecosystems. While
these studies are important steps in acknowledging the diver-
sity of tree rooting depth and its effects on ET and forest pro-
ductivity, some assumptions of the underlying models might
decrease the reliability of their results. These assumptions are
related to (1) resource investment, (2) temporal growth and
(3) physical constraints of rooting depth.

(1) Most global vegetation models so far have not ac-
counted for coarse roots (Warren et al., 2015) even though
such roots can make up the majority of total root biomass
(Xiao et al., 2003). This approach in global vegetation mod-
els may be sufficient when employing shallow tree rooting
strategies only, but with increasing rooting depth, costs for
coarse roots increase substantially. Since the amount of re-
sources trees can allocate to their processes and structures is
finite, a local adaptation of tree rooting depth must follow a
trade-off between above- and below-ground resource invest-
ment (Nikolova et al., 2011). Generally, above-ground invest-
ments in leaf and stem growth can increase light absorption
and CO2 uptake, while below-ground investments can in-
crease the uptake of water and nutrients. Depending on local
environmental and competitive conditions, one or the other
allocation strategy might be more advantageous, eventually
leading to substantial regional variation in the mean ratios be-
tween below-ground and above-ground biomass (Leuschner
et al., 2007; Mokany et al., 2006). Therefore, the simulated
spectrum of tree rooting strategies which can survive and
co-exist should be in accordance with this crucial trade-off.
(2) In contrast to above-ground stem growth, most global

vegetation models do not simulate gradual root growth (War-
ren et al., 2015). Instead simulated vegetation types are as-
signed a constant relative distribution of fine roots through-
out the soil column at any point in space and time (Best et
al., 2011; Lawrence et al., 2011; Schaphoff et al., 2018a;
Smith et al., 2014). As under the above-mentioned simpli-
fication under (1), this approach may be sufficient when ac-
counting for shallow rooting strategies only, but when the
maximum tree rooting depth is strongly increased, it is ques-
tionable that the time needed to reach this depth is negligible,
especially when accounting for competition of different veg-
etation types. Rooting depth increases rather gradually and
non-linearly over a tree’s lifetime with a velocity driven by
a mix of plastic optimization and allometric determination
(Brum et al., 2019; Brunner et al., 2015; Nikolova et al.,
2011; Poorter et al., 2012; Warren et al., 2015). Even though
smaller-scale models have implemented root optimization
schemes in the past (Schymanski et al., 2008), the knowledge
base for a mechanistic bottom-up modelling approach of
plastic root optimization is very sparse (Jenik, 1978; Poorter
et al., 2012; Warren et al., 2015) and knowledge of certain
allometric rules (Brum et al., 2019; Eshel and Grünzweig,
2013; Mokany et al., 2006) seems enough to be applied in
global vegetation models. (3) Most global vegetation mod-
els so far have not accounted for a location-dependent soil
depth but have applied a constant soil depth across the globe
(Best et al., 2011; Guimberteau et al., 2017; Lawrence et al.,
2011; Ostle et al., 2009; Schaphoff et al., 2018a; Smith et al.,
2014). Again, this approach may be sufficient when account-
ing for shallow rooting strategies only, but allowing for deep
tree rooting strategies should go in parallel with accounting
for their potential physical barriers. Recent data products on
global soil depth now enable the better constraining of root-
ing depth in vegetation models across scales (Pelletier et al.,
2016).

Here we overcome the above-mentioned limitations and
present a new approach of diversifying tree rooting strate-
gies of tropical plant functional types (PFTs) in the DGVM
LPJmL4.0 (Lund-Potsdam-Jena managed Land; Schaphoff
et al., 2018a) which increases the ecological reliability with
the following aspects: (1) a global product of soil depth re-
stricts the maximum tree rooting depth; (2) PFTs are sub-
divided according to a broad spectrum of different possi-
ble tree rooting strategies with a range of maximum rooting
depths between 0.5 and 18 m; (3) all sub-PFTs grow in com-
petition and their individual performance determines dom-
inance; (4) dominance is supported by the best-performing
sub-PFTs increasing their establishment rate; (5) sub-PFTs
have to invest carbon in coarse roots, i.e. acknowledging the
trade-off between growing deeper roots and allocating avail-
able carbon to other compartments (stem and leaf growth);
and (6) sub-PFT roots are growing deeper over time depend-
ing on tree height. Given these new model developments we
here re-evaluate the hypotheses that, with regard to tropical
evergreen forests in South America,

Biogeosciences, 18, 4091–4116, 2021 https://doi.org/10.5194/bg-18-4091-2021



B. Sakschewski et al.: Variable tree rooting strategies in a DGVM 4093

I. climate and soil depth determine dominant tree rooting
strategies,

II. tree rooting depth influences distribution and domi-
nance, and

III. diverse tree rooting strategies are key for explaining
rates of evapotranspiration and productivity.

Therefore, we compare several model versions of LPJmL4.0
differing in the above-mentioned model developments and
evaluate simulated evapotranspiration, productivity, biomass
and spatial distribution of evergreen and deciduous tree PFTs
using different sources of validation data.

2 Materials and methods

2.1 The LPJmL4.0 model

LPJmL4.0 is a process-based dynamic global vegetation
model (DGVM) which simulates the surface energy balance,
water fluxes, fire disturbance, carbon fluxes and stocks of
the global land (Schaphoff et al., 2018a). Plant productiv-
ity is modelled on the basis of leaf-level photosynthesis re-
sponding to climatic and environmental conditions, atmo-
spheric CO2 concentration, canopy conductance, autotrophic
respiration, phenology, and management intensity. Fire dis-
turbance is modelled using the simple fire module Glob-
FIRM (Thonicke et al., 2001), which relates the length of the
fire season to fractional annual area burnt. The model simu-
lates 11 plant functional types (PFTs), 3 bioenergy functional
types (BFTs) and 12 crop functional types (CFTs) to rep-
resent average plants of natural vegetation, bioenergy plan-
tations and agriculture, respectively. Three PFTs represent
the natural vegetation of the tropics and sub-tropics, namely
the “tropical broadleaved evergreen tree” mainly represent-
ing tropical evergreen forest; the “tropical broadleaved de-
ciduous tree” representing tropical dry forest and the woody
component of savanna; and “tropical herbs” representing the
herbaceous layer in grasslands, savanna and forests. The
standard spatial model resolution is a 0.5◦× 0.5◦ longitude–
latitude grid. For each grid cell the fractional coverage of
bioenergy and agricultural BFTs and CFTs follows a pre-
scribed land-use data set, whereas in the remaining grid-cell
area, natural PFTs grow in competition.

2.2 A new tree rooting scheme for LPJmL4.0

All changes made to LPJmL4.0 in order to simulate vari-
able tree rooting strategies resulted in a new sub-version of
LPJmL4.0 which we call LPJmL4.0-VR hereafter (where
VR stands for variable roots). A detailed description of our
modelling approach can be found in Appendix A.

For our purposes we extended the general maximum
soil depth of 3 m in LPJmL4.0 to 20 m in LPJmL4.0-VR

but restrict it to local soil depth information at the spa-
tial model resolution of 0.5◦× 0.5◦; see Sect. 2.3.2. We ap-
plied the same basic scheme for vertical soil layer parti-
tioning from LPJmL4.0 (Schaphoff et al., 2018a) in order
to keep model differences small (Appendix A, Sect. A1.1
and Table A1). We increased the number of rooting strate-
gies for each of the two tropical tree PFTs (broadleaved
evergreen and broadleaved deciduous), by splitting each
PFT into 10 sub-PFTs. Each of those 10 sub-PFTs was
assigned a different maximum vertical distribution of fine
roots throughout the soil column following classical allo-
metric rules applied in LPJmL4.0 (Appendix A, Sect. A1.3
and Fig. A1). Those distributions were chosen in order to
allow the sub-PFTs to reach different maximum rooting
depths in discrete steps between 0.5 and 18 m (Table A2).
We here refer to the depth at which the cumulated fine-
root biomass from the soil surface downwards amounts to
95 % (D95_max; Eq. A3). To account for additional carbon
investments needed to grow deeper rooting systems, we in-
troduced two new carbon pools, namely root sapwood and
root heartwood (Appendix A, Sect. A1.4). Like stem sap-
wood in LPJmL4.0, root sapwood in LPJmL4.0-VR also
needs to satisfy the assumptions of the pipe model (Shi-
nozaki et al., 1964; Waring et al., 1982). This implementa-
tion creates a trade-off between below-ground and above-
ground carbon investment. To allow for dynamic root growth,
we implemented a logistic root growth function, which cal-
culates a general maximum conceivable tree rooting depth
depending on tree height (Appendix A, Sect. A1.5), in an
approximation of the findings of Brum et al. (2019). Con-
sequently, each sub-PFT shows a logistic growth of rooting
depth which is dependent on the sub-PFT height and which
saturates towards its specific D95_max (Fig. A2). Therefore,
limitations of above-ground sub-PFT growth due to below-
ground carbon investment of different tree rooting strategies
(Sect. 2.2.4) are equal in the sapling phase of all sub-PFTs
(starting from bare ground) but diverge with increasing sub-
PFT height. In the case that temporal root depths exceed the
grid-cell specific local soil depth (as prescribed by local soil
depth information; see Sect. 2.3.2), all the respective fine-
root biomass exceeding this soil depth is transferred to the
last soil layer matching this soil depth (see also Fig. 1 and
Supplementary Video 1 for a visualization of new below-
ground carbon pools and root growth in LPJmL4.0-VR avail-
able at http://www.pik-potsdam.de/~borissa/LPJmL4_VR/
Supplementary_Video_1.pptx, last access: 20 March 2020).

To fully investigate the effects of 20 tropical sub-PFTs
growing in competition, we adjusted the original PFT estab-
lishment routine of LPJmL4.0 (Appendix A, Sect. A1.6). The
adjustments lead to a higher establishment rate for productive
sub-PFTs relative to their spatial dominance and vice versa,
without changing the overall establishment rate as originally
set by Prentice et al. (1993). The adjusted establishment rou-
tine has the effect that non-viable sub-PFTs are outcompeted
over time. Furthermore, we increased the universal and con-
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Figure 1. Visualization of below-ground carbon allocation to dif-
ferent carbon pools of a tree PFT in LPJmL4.0-VR with a height
of 40 m and a D95_max of 14 m (sub-PFT no. 8 in Table A2) grow-
ing in a grid cell with a soil depth of 20 m (a) and a soil depth of
7 m (b). As with stem sapwood, root sapwood also needs to sat-
isfy the pipe model. In the first soil layer the root sapwood cross-
sectional area is equal to the stem sapwood cross-sectional area, as
all water taken up by fine roots needs to pass this layer. In each fol-
lowing soil layer, the root sapwood cross-sectional area is reduced
by the sum of the relative amount of fine roots of all soil layers
above, thus adjusting the amount of sapwood needed to satisfy the
pipe model. Please also see Supplementary Video 1 for a visual-
ization of root growth and development of below-ground carbon
pools over time available at http://www.pik-potsdam.de/~borissa/
LPJmL4_VR/Supplementary_Video_1.pptx.

stant maximum background mortality rate of tree PFTs in
LPJmL4.0-VR to 7 % in order to counter-balance increased
survival rates and therefore biomass accumulation under en-
hanced water access (Appendix A, Sect. A1.7).

2.3 Model input data

2.3.1 Climate input data

All versions of LPJmL used in this study (Sect. 2.4) were
forced with four different climate inputs, each delivering the
climate variables air temperature, precipitation, and long-
wave and short-wave downward radiation at daily or monthly
resolution:

1. A combination of the WATCH data set (Weedon et
al., 2011) and the WFDEI data set (Weedon et al.,
2014), as used in the ISIMIP (https://www.isimip.org/
gettingstarted/input-data-bias-correction/details/5/, last
access: 20 June 2019), was used. This input data set is
called WATCH+WFDEI hereafter.

2. The Global Soil Wetness Project Phase 3 (GSWP3) was
used (Dirmeyer et al., 2006; http://hydro.iis.u-tokyo.ac.
jp/GSWP3/index.html, last access: 20 June 2019).

3. The Noah Global Land Assimilation System version 2.0
was used (GLDAS; Rodell et al., 2004).

4. Climate forcing as in Schaphoff et al. (2018a) was used,
with monthly precipitation provided by the Global Pre-
cipitation Climatology Centre (GPCC Full Data Reanal-
ysis version 7.0; Becker et al., 2013), daily mean tem-
perature from the Climate Research Unit (CRU TS ver-
sion 3.23; Harris et al., 2014), short-wave downward ra-
diation and net downward radiation reanalysis data from
ERA-Interim (Dee et al., 2011), and number of wet days
from New et al. (2000) used to allocate monthly precip-
itation to individual days. This input data set is called
CRU hereafter.

2.3.2 Soil and sediment thickness

For this study, we regridded a global 1× 1 km soil and
sediment thickness product (Pelletier et al., 2016) to the
0.5◦× 0.5◦ spatial resolution of LPJmL4.0-VR, set the
global maximum value to 20 m according to the maximum
soil depth chosen for LPJmL4.0-VR (Sect. 2.2 and Ap-
pendix A, Sect. A1.1), and used the resulting map as grid-
cell-specific model input (Fig. A3). Regridding was per-
formed using the software R (R Core Team, 2019) with the
package “raster” (Hijmans and van Etten, 2016). We used the
aggregate function to calculate the average value of all data
entries of Pelletier et al. (2016) falling into the coarser 0.5◦

grid of LPJmL.

2.4 Model versions and simulation protocol

In order to investigate the impact of simulating variable root-
ing strategies and root growth, we employ three model ver-
sions of LPJmL in this study: (1) LPJmL4.0, (2) LPJmL4.0-
VR and (3) LPJmL4.0-VR-base. LPJmL4.0-VR-base has
the same settings as LPJmL4.0-VR except variable rooting
strategies, i.e. using the two rooting strategy parameteriza-
tions of LPJmL4.0 (Appendix A, Sect. A1.3) for the re-
spective 10 sub-PFTs of the tropical broadleaved evergreen
PFT and the tropical broadleaved deciduous PFT. We regard
LPJmL4.0-VR-base as the baseline model of this study be-
cause comparisons to LPJmL4.0-VR enable the investigation
of differences caused by the presence or absence of variable
tree rooting strategies.

Each simulation was initialized with 5000 simulation
years of spin-up from bare ground without land use by pe-
riodically cycling the first 30 years of the respective climate
data set (1901–1930 for WATCH+WFDEI, GSWP3, and
CRU and 1948–1977 for GLDAS) and using a pre-industrial
atmospheric CO2 level of 278 ppm. The first spin-up ensures
that carbon pools and local distributions of PFTs and sub-
PFTs are in equilibrium with the climate (Schaphoff et al.,
2018a). In a second spin-up phase cycling the same 30 years
of climate data, historical land use and changing levels of
atmospheric CO2 concentration are introduced. The second
spin-up starts in the year 1700 and ends with the first year
available in each climate data set. Land use is updated an-
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nually as described in Schaphoff et al. (2018a). Before the
year 1840 a constant pre-industrial atmospheric CO2 con-
centration of 278 ppm is prescribed. After this year atmo-
spheric CO2 increases annually based on data of Tans and
Keeling (2015) as described in Schaphoff et al. (2018a). Af-
ter the second spin-up, transient simulations start with the
first year available in each climate data set and end in 2010.
Land use and atmospheric CO2 are consistently updated an-
nually while continuing to follow the same data sets as used
in the second spin-up.

At the beginning of the first spin-up, all sub-PFTs
in LPJmL4.0-VR and LPJmL4.0-VR-base have the same
chance to establish; i.e. tree rooting strategies are uniformly
distributed. During the spin-up simulations, local environ-
mental filtering and competition in connection with PFT-
dominance-dependent establishment rates (Sect. 2.2 and Ap-
pendix A, Sect. A1.6) determine which tree rooting strategies
are best suited and which are outcompeted. Therefore, the
transient simulations already start with distinct distributions
of tree rooting strategies.

2.5 Model validation

2.5.1 Validation data

Regional biomass pattern

For evaluation of simulated regional patterns of AGB we
compare the results of the three LPJmL model versions used
in this study to two remote-sensing-based biomass maps
(Avitabile et al., 2016; Saatchi et al., 2011) which were re-
gridded to the spatial resolution of the LPJmL models. Data
of Avitabile et al. (2016) were regridded using the software
R (R Core Team, 2019) with the package raster (Hijmans and
van Etten, 2016). We used the aggregate function to calculate
the average value of all data entries of Avitabile et al. (2016)
falling into the coarser 0.5◦ grid of LPJmL. Regridded data of
Saatchi et al. (2011) were taken from Carvalhais et al. (2014).

Local-scale evapotranspiration and productivity

To evaluate simulated local ET and net ecosystem ex-
change (NEE) of the three LPJmL versions used in this
study, we compare FLUXNET eddy covariance measure-
ments of ET at seven sites and NEE at three sites across the
study region (Bonal et al., 2008; Saleska et al., 2013; Ta-
ble A3) to simulated rates of local ET and NEE. We used
only three sites for NEE comparisons because only those
sites provided continuous data covering more than 2 years.
FLUXNET data were downloaded from https://fluxnet.
fluxdata.org (under https://doi.org/10.18140/FLX/1440032
and https://doi.org/10.18140/FLX/1440165) on 10 Octo-
ber 2017 and from https://daac.ornl.gov/LBA/guides/CD32_
Brazil_Flux_Network.html on 6 November 2019.

Continental-scale gridded evapotranspiration products
and selection of regions

To evaluate the simulated ET over large regions and dur-
ing a long period (1981–2010), we use three global gridded
data sets: Global Land Data Assimilation System version 2
(Rodell et al., 2004), ERA-Interim/Land (ERAI-L; Balsamo
et al., 2015) and Global Land Evaporation Amsterdam Model
v3.2 (GLEAM; Miralles et al., 2011; Martens et al., 2017).

GLDAS and ERAI-L are reanalysis products, meaning
that they are land surface models forced with meteorologi-
cal data that have been corrected with observations to give
better estimates of land surface variables. The selection of
these two products is based on the study of Sörensson and
Ruscica (2018), who found these models perform better over
South America than other reanalysis and satellite-based ET
products. GLDAS uses the land surface model Noah (Ek et
al., 2003) forced by Princeton meteorological data set ver-
sion 2.2 (Sheffield et al., 2006). The soil depth of Noah
is 2 m, and the model uses four soil layers and vegeta-
tion data from the University of Maryland (https://geog.umd.
edu/feature/global-land-cover-facility-(glcf), last access: 30
June 2021). ERAI-L uses the land surface model HTESSEL
(Hydrology-Tiled ECMWF Scheme for Surface Exchanges
over Land; Balsamo et al., 2009) forced by ERA-Interim at-
mospheric data with a GPCP-based correction (Adler et al.,
2003) of monthly precipitation. The soil depth of ERAI-L is
2.89 m; the model uses four soil layers and vegetation data
from ECOCLIMAP (Masson et al., 2003).

GLEAM uses the Priestley–Taylor equation to estimate
the potential ET and a set of algorithms with meteorological
and vegetation satellite data as input to calculate the actual
ET. The version used here, GLEAMv3.2a (Martens et al.,
2017; downloaded from https://www.gleam.eu/#downloads,
last access: 15 June 2019), uses precipitation input from
MSWEP v1.0 (Beck et al., 2017), vegetation cover from the
MODIS product MOD44B and the remotely sensed vegeta-
tion optical index from CCI LPRM (Liu et al., 2013) and
assimilates soil moisture from both remote sensing (ESA
CCI SM v2.3; Liu et al., 2012) and land reanalysis (GLDAS
Noah; Rodell et al., 2004). The original spatio-temporal res-
olution of GLDAS and GLEAM is 0.25◦× 0.25◦, while for
ERAI-L it is 0.75◦× 0.75◦. Monthly time series were calcu-
lated from daily values for the three data sets. Hereafter, we
use the short names GLDAS, ERAI-L and GLEAM for the
described reference data sets.

For the temporal analysis of ET we used five climatolog-
ical regions across the study area: Northern South America
(NSA), Equatorial Amazon West (EQ W), Equatorial Ama-
zon East (EQ E), Southern Amazon (SAMz), and the South
American Monsoon System (SAMS) region (see Fig. 3f).
These regions result from a k-means clustering analysis of
the annual cycles of the main drivers of ET: precipitation and
surface net radiation (for details see Sörensson and Ruscica,
2018). Additionally we divided the large EQ region used
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by Sörensson and Ruscica (2018) into two smaller regions
(EQ W and EQ E) at 60◦W, since this is the approximate
division between regimes that have a maximum cumulative
water deficit (MCWD; Sect. 2.5.3) of around −200 mm a−1

(EQ W) and of around −500 mm a−1 (EQ E).

Spatial distribution of vegetation types

To evaluate the simulated regional distribution of simulated
biome types of the three LPJmL versions, we compare our
results to satellite-derived vegetation composition maps from
ESA Land Cover CCI V2.0.7 (Li et al., 2018), which were re-
classified to the PFTs of LPJmL from Forkel et al. (2014). In
this data set PFT dominance is indicated by foliage projected
cover (FPC) which is also a standard output variable of the
three LPJmL model versions, allowing a direct comparison
to model results.

Spatial pattern of rooting depth

We compare regional patterns of mean rooting depth simu-
lated with LPJmL4.0-VR to a map showing the maximum
depth of root water uptake (Fan et al., 2017), which was re-
gridded to the 0.5◦× 0.5◦ spatial resolution of LPJmL4.0-
VR. This product was inversely modelled by taking the dy-
namically interacting variables of soil water supply and plant
water demand into account. In Fan et al. (2017) supply was
based on climate, soil properties, topography, and demand of
plant transpiration deduced from remotely sensed reanalysis
of atmospheric water fluxes and leaf area index (LAI) data.

2.5.2 Validation metrics

All statistical evaluations of model results were based on
(1) Pearson correlation and (2) normalized mean square error
(NME; Kelley et al., 2013). NME is calculated as

NME=
∑N
i=1|yi − xi |∑N
i=1|xi − x|

, (1)

where yi is the simulated value and xi the reference value in
the grid cell or time step i. x is the mean reference value.
NME takes the value 0 at perfect agreement and 1 when the
model performs as well as the reference mean, and values>2
indicate complete disagreement.

Maximum cumulative water deficit as indicator of
seasonal water stress

To analyse and explain the geographical pattern of rooting
depth, ET and productivity, we use the maximum cumula-
tive water deficit (MCWD) as an independent indicator of
potential seasonal water demand of vegetation. The MCWD
is a widely used indicator for seasonal water stress of tropi-
cal and sub-tropical forests in South America (Aragão et al.,
2007; Lewis et al., 2011; Malhi et al., 2009). The MCWD

captures the seasonal difference in ET and precipitation in a
cumulative way and therefore comprises dry-season strength
and duration. Here we calculate the MCWD on a monthly ba-
sis. Therefore, we first calculate the cumulative water deficit
CWDn of each month n as

CWDn = CWDn−1− PETn+ Pn , (2)

where PET is the potential monthly ET and P is the monthly
sum of precipitation. The CWD is constrained to values ≤ 0
and is set to 0 at the end of each hydrological year, here
the last day of September, as in Lewis et al. (2011). We use
P from climate input used for model forcing (Sect. 2.3.1)
and PET as it is simulated by LPJmL4.0 (Schaphoff et al.,
2018a), which is only dependent on net surface radiation and
air temperature, therefore remaining an explanatory variable
independent of vegetation dynamics. We chose this PET in-
stead of using the commonly used constant ET of 100 mm
per month to calculate the CWD (Aragão et al., 2007; Lewis
et al., 2011; Malhi et al., 2009) because, in this way, the
CWD better corresponds to the actual climatological con-
ditions in the different LPJmL model versions used in this
study (Sect. 2.4). The MCWD is then calculated as

MCWDy =min (CWDOctober, y−1, . . ., CWDSeptember, y), (3)

where y indicates the calendrical year.

3 Results

3.1 Regional pattern of tree rooting strategies

In LPJmL4.0-VR the contribution of each tree rooting strat-
egy to the overall net primary productivity (NPP) appears
highly dependent on local environmental conditions.

Based on the information of how much NPP each sub-
PFT contributes in each grid cell, we derived maps of mean
rooting depth over the whole study region for the time span
2001–2010 for each climate input used in this study (Fig. 2).
Figure 2 shows the mean of the actually achievedD95 of each
sub-PFT (evergreen and deciduous combined) weighted by
the respective relative NPP contribution of each sub-PFT to
total forest NPP (which we call D95, hereafter). Therefore,
the regional pattern of D95 reflects the effects of climate and
soil depth. A general east-to-west gradient of D95 over the
Amazon region follows climatic gradients of precipitation
and the MCWD (Figs. B1–B2), while soil depth (Fig. A3)
constrains D95 especially in the south-eastern Amazon. In
general, areas with higher mean annual rainfall and a weaker
dry season show lower D95 and vice versa (please also see
Fig. B3 for a detailed exemplary comparison of sub-PFT
NPP for two grid cells with contrasting climate conditions).
This pattern holds true under all climate inputs, with some
minor local differences, and is in line with an inversely mod-
elled global gridded product of the maximum depth of root
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Figure 2. Regional NPP-weighted mean rooting depth (D95)
of all sub-PFTs (evergreen and deciduous PFTs combined) for
2001–2010 and different climate inputs simulated with LPJmL4.0-
VR. (a) CRU climate input. (b) GSWP3 climate input. (c)
WATCH+WFDEI climate input. (d) GLDAS climate input. The
colour-scale maximum is set to 10 m.

water uptake (MDRU in Fan et al., 2017). Nevertheless, we
find considerable absolute differences between MDRU and
D95 (Fig. B4), which can easily emerge from different model
settings and assumptions, e.g. related to differences in spatial
model resolution, simulated water percolation and underly-
ing vegetation features.

Focussing on the climatological clusters (Sect. 2.5.1 and
Fig. 3f) under CRU climate input, the western Amazon
(EQ W), with mean annual precipitation (MAP) of 2708 mm
and a mean MCWD of −163 mm, displays an overall mean
D95 of 1.14 m and a maximum of 5.47 m, despite consid-
erably deeper soils present. In this cluster Fan et al. (2017)
find a mean and maximum MDRU of 1.26 and 17.95 m,
respectively. In the northern, western and southern Ama-
zon clusters (NSA, EQ E, SAMz) with lower MAP of
2299, 2190 and 2035 mm and considerably lower MCWDs
of −488, −438 and −497 mm, respectively, mean D95 in-
creases to 2.32, 3.20 and 2.68 m, respectively (mean MDRU
of 1.85, 2.84 and 3.28 m). Here, maximum D95 values reach
11.97, 11.27 and 9.04 m, respectively (maximum MDRU of
14.28, 13.47 m and 16.57 m). In the monsoon-dominated re-
gion (SAMS), displaying the lowest MAP of 1449 mm and
MCWD of −649 mm, mean D95 decreases to 1.37 m (mean
MDRU 2.61 m). The maximum D95 of this region reaches
11.17 m located at the border with SAMz (maximum MDRU
49.37 m).

The regional simulation of D95 also allows us to gen-
eralize which tree rooting strategies occupy which climate
space. Using the MCWD and MAP to define a climate space,
we find a clear adjustment of D95 (Fig. B5). A core region
with deep-rooted forests (meanD95>4 m) is found where the
MCWD ranges between−1300 and−400 and where MAP is
at least 1500 mm (see also maps of the MCWD and MAP in
Figs. B1 and B2). This core region is surrounded by a small
band of medium-rooting-depth forests (mean D95 ∼ 2–4 m).
Rather shallow-rooted forests (mean D95<2 m) are found in

Figure 3. Comparisons of continental-scale gridded ET products
against simulated ET within five regional climatological clusters
(a–e) as defined in Sect. 2.5.1. Shown is the mean annual cycle of
1981–2010 and the mean for the whole cluster area. Corridors de-
note the minimum–maximum range between either the Reference
ET products (Sect. 2.5.1, “Validation data”) or the model outputs
under the different climate forcings used in this study. (f) Geograph-
ical extent of climatological clusters (adapted from Sörensson and
Ruscica, 2018). Statistical measures of the individual comparisons
can be found in Table B3 (comparisons of corridor means).

increasingly drier climates where MAP is less than 1000 mm
and in more seasonal climates where the MCWD is below
−500 mm. Shallow-rooted forests are also simulated in very
wet conditions where the MCWD is greater than −300 mm
and MAP is 1200 mm or higher.

3.2 Evapotranspiration and productivity

The climatological clusters within the Amazon region which
undergo the strongest dry season (EQ E and SAMz)
show the largest differences between simulations with
variable (LPJmL4.0-VR) and constant (LPJmL4.0-VR-base
and LPJmL4.0) tree rooting strategies. In those clusters
LPJmL4.0-VR shows a significantly higher agreement with
validation data (Fig. 3c, d and Table B3). Agreement is
largest for EQ E where NME and r2 show values of 0.62
and 0.91, respectively, whereas constant rooting systems in
the other two models lead to values of NME≥ 1.92 and
r2
≤ 0.21 (Table B3). In NSA and EQ W model differences

are less pronounced as annual precipitation deficits are lower
and deep rooting systems play a lesser role. Still, variable
rooting systems lead to noticeably higher agreement in NSA
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between January and April (Fig. 3a), where monthly pre-
cipitation is lower compared to the rest of the year. In the
monsoon-dominated cluster SAMS outside the Amazon re-
gion (Fig. 3e), model differences are least pronounced, since
shallow-rooting forests dominate this area in LPJmL4.0-VR
(Fig. 2), which are very similar to the forests with constant
tree rooting strategies in the other two model versions.

Results of regional ET are in line with results of site-
specific ET. On the local level, the variable tree rooting
strategies of LPJmL4.0-VR lead to a major improvement
in reproducing measured FLUXNET NEE and ET (Ap-
pendix B, Sect. B1.1 and Fig. B6–B7), increasing the con-
fidence of regional modelling results.

3.3 Distribution of plant functional types

The simulated relative dominance of tropical tree PFTs
across the study area differs substantially between model ver-
sions (Fig. 4). In simulations with LPJmL4.0, more than half
of the grid cells show the evergreen and deciduous PFTs
to be equally dominant (Fig. 4g–h). Only in areas outside
moist tropical climate regions does the model tend towards
dominance of the deciduous PFT, whereas in the Amazon
region, for example, the evergreen and deciduous PFTs co-
exist in almost equal abundance. These patterns strongly
differ from satellite-derived geographical PFT distributions
(Fig. 4a–b) and therefore yield in respective comparisons
the highest NME values among all models (Table B4). In
contrast LPJmL4.0-VR and LPJmL4.0-VR-base show clear
dominance patterns of both tropical tree PFTs across the
study area (Fig. 4c–f). Nevertheless, differences between
LPJmL4.0-VR and LPJmL4.0-VR-base are quite substantial.
In LPJmL4.0-VR-base the tropical evergreen PFT dominates
the north-western Amazon region only, negligibly extending
further than the borders of climatological clusters NSA and
EQ W combined. Beyond these borders the tropical decidu-
ous PFT dominates (Fig. 4e–f). In contrast, in LPJmL4.0-VR
(Fig. 4e–f) the evergreen tree PFT dominates the entire Ama-
zon region including EQ E and SAMz, and the deciduous
PFT is pushed towards drier and more seasonal climates (in-
cluding parts of SAMS). Therefore, LPJmL4.0-VR yields the
lowest NME values in comparison to satellite-derived PFT
distributions (Table B4).

4 Discussion

4.1 Climate and soil depth determine dominant tree
rooting strategies

The geographical patterns of simulated D95 are very simi-
lar under four different climate input data sets (Fig. 2). This
gives confidence in the general robustness of our results and
modelling approach as differences in climate data do not lead
to substantially different model behaviour. This is further

Figure 4. Foliage projective cover (FPC) of evergreen (a, c, e,
g) and deciduous (b, d, f, h) PFTs over the study region. (a–
b) Satellite-derived vegetation composition from ESA Land Cover
CCI V2.0.7 (Li et al., 2018) reclassified to the PFTs of LPJmL as
in Forkel et al. (2014). (b–c) LPJmL4.0-VR. (d–e) LPJmL4.0-VR-
base. (f–g) LPJmL4.0. All LPJmL model versions were forced with
CRU climate input. The FPC shown for all models refers to 2001–
2010. For statistical measures of individual comparisons between
model versions (c–h) and satellite-derived vegetation composition
(a–b), see Table B4.

supported by similar regional rates of ET simulated under
the different climate data inputs (Fig. 3).

Simulated D95 (Fig. 2) clearly follows climate gradients
and soil depth found in the study region (Figs. A3, B2,
B3). Here, MAP and the MCWD can serve as explanatory
variables of simulated D95 (Fig. B5). These findings are in
line with the general ecological expectation and former stud-
ies that seasonal water depletion of upper soil layers, as a
combination of annual precipitation and dry-season length
and strength, is positively correlated with the rooting depth
of tropical evergreen trees (Baker et al., 2009; Ichii et al.,
2007; Kleidon and Heimann, 1998, 1999). We also find lower
thresholds for MAP and the MCWD where D95 strongly de-
creases again (Fig. B5), which can be explained by different
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mechanisms leading to a regime shift from the evergreen to
the deciduous tree PFT as discussed below (see Sect. 4.2).

To evaluate our model results against empirical data, we
checked the data availability on maximum rooting depth
across South America in the TRY database (Kattge et al.,
2020; data downloaded September 2019). As is also shown
in Fan et al. (2017), we found the number of sites within the
TRY database where maximum rooting depth has been mea-
sured in South America to be very low. Moreover, the number
of data entries per site appeared very small, where 33 TRY
sites falling within our study area showed a mean of nine
and a median of six data entries, while 15 sites showed five
or fewer data entries. Therefore, we decided not to include
site-specific comparisons of rooting depth as it is not clear
how representative these measurements are for the local for-
est communities. More research is necessary to increase the
number of observation sites and improve the empirical basis
of field-based rooting depth to allow for site-specific model
evaluation. Nevertheless, as shown in Fan et al. (2017) mea-
sured, site-specific maximum rooting depth across the Ama-
zon region follows the known climatic gradient as expected
(Figs. B1, B2). The same holds true for the inversely mod-
elled MDRU of Fan et al. (2017; shown in Fig. B4), which
gives confidence in our results.

4.2 Rooting depth influences the distribution,
dominance and biomass of tropical plant functional
types

In all three model versions used in this study, the same
land use is applied (Sect. 2.4), which shapes the geograph-
ical extent and maximum dominance of natural vegetation
in our results. This is why FPC maps of all model ver-
sions show the shape of the Amazon region as a distinct pat-
tern (Fig. 4), even though it is less visible for LPJmL4.0-
VR-base and one has to consider both tropical tree PFTs
at the same time (Fig. 4e–f). Within the Amazon region,
LPJmL4.0 simulates similar dominance of the evergreen and
deciduous PFT (Fig. 4g–h) which contradicts evaluation data
(Fig. 4a–b) and indicates similar performance of the two
PFTs or missing mechanisms rewarding better performance
over time. We here find that introducing a performance-
dependent tree establishment rate (Sect. 2.2 and Appendix A,
Sect. A1.6) clearly resolves this issue. This feature produces
clear dominance patterns of both PFTs in LPJmL4.0-VR and
LPJmL4.0-VR-base. Apparently, by rewarding better perfor-
mance, variable tree rooting strategies (LPJmL4.0-VR) be-
come necessary to reproduce the dominance of the evergreen
PFT throughout the Amazon region (Fig. 4e–f). To remain
superior in drier and more seasonal environments in the south
to south-eastern Amazon region, the evergreen PFT needs
to access deep water by adjusting its rooting depth (Fig. 2).
Clearly, this adjustment of rooting depth is only possible
within a certain climatic envelope. Below certain thresh-
olds of MAP (around 1000 mm) and the MCWD (around

−500 mm), mean D95 decreases again (Fig. B5), which co-
incides with a transition from the evergreen to the decid-
uous PFT. Those thresholds are similar to thresholds be-
tween evergreen forests and savanna found by, for example,
Malhi et al. (2009) at annual precipitation of 1500 mm and
at an MCWD of −300 mm. The substantially lower MCWD
value found in our study can be explained by the differences
in calculating the CWD. While Malhi et al. (2009) assume
a constant rate of ET per month of 100 mm, we use the
monthly variable PET (Sect. 2.5.3). Since PET is often sig-
nificantly higher than 100 mm, our monthly CWD and there-
fore MCWD values are lower.

Similarly to Malhi et al. (2009), Staver et al. (2011)
find that the climatic thresholds for evergreen forest are
not very distinct and savanna can simultaneously be found
in a climatic range around the mean threshold. The au-
thors ascribe this forest–savanna bi-stability to climate–
fire–vegetation feedbacks. Many recent studies investigat-
ing potential forest–savanna bi-stability and tipping points of
forests in and around the Amazon region rely solely on such
climatic ranges of tropical biomes (Hirota et al., 2011; Wuyts
et al., 2017; Zemp et al., 2017; Staal et al., 2018; Ciemer et
al., 2019). The results of LPJmL4.0-VR show that knowl-
edge on local tree root adaptations is another important ex-
planatory variable of vegetation cover, reducing the uncer-
tainty and width of anticipated climatic ranges where vegeta-
tion cover could be bi-stable. These findings are supported by
a recent study that finds rooting depth more crucial than fire
dynamics for explaining PFT dominance in South America
(Langan et al., 2017).

Whether the transition between the evergreen and decidu-
ous tree PFT for the thresholds of MAP and the MCWD we
find with LPJmL4.0-VR is mainly caused by (a) environmen-
tal filtering (including vegetation–fire feedbacks) of deep tree
rooting strategies, (b) their competitive exclusion by shallow-
rooted deciduous sub-PFTs together with the tropical herba-
ceous PFT (Fig. B8) or (c) most probably a combination of
both is yet to be determined. Given that we used the most
simplistic fire module of LPJmL (Glob-FIRM; Thonicke et
al., 2001) and current land-use input to allow model evalua-
tion against remotely sensed data in this study, investigating
the natural mechanisms of tropical PFT shifts should be the
focus of further studies.

Regardless of the mechanisms that eventually lead to a
PFT shift, we can state that neither costs for deep-root in-
vestment nor a heterogeneous pattern of soil depth across the
study region disproves that locally adapted tree rooting depth
is key for explaining the current geographical distribution of
tropical evergreen forests in South America. Given the large
differences between LPJmL4.0-VR and LPJmL4.0-VR-base
(Fig. 4), it is clear that in roughly half of the Amazon region
the carbon balance of the evergreen PFT is superior to the de-
ciduous PFT only when investing substantial amounts of car-
bon in deeper roots, i.e. below-ground biomass (Fig. B9). On
the one hand this investment has a direct negative effect on

https://doi.org/10.5194/bg-18-4091-2021 Biogeosciences, 18, 4091–4116, 2021



4100 B. Sakschewski et al.: Variable tree rooting strategies in a DGVM

productivity, because during growth the allocation of assim-
ilated carbon shifts towards respiring below-ground biomass
while investments in productive AGB (Fig. B10) need to be
reduced. On the other hand, drier and more seasonal envi-
ronments show less cloud cover during the dry season (Ne-
mani et al., 2003), enhancing photosynthesis at this time of
the year which increases productivity as long as water access
is assured (Costa et al., 2010; Wu et al., 2016). The trade-
off between AGB and BGB investment most probably leads
to a more homogenous AGB pattern across the Amazon re-
gion with similar values over a wide climatic range (compare
EQ E and SAMz in Fig. B10c–e).

4.3 Diverse tree rooting strategies improve simulated
evapotranspiration and productivity

LPJmL4.0-VR simulates rates of local ET and NEE which
reasonably match respective measurements at different
FLUXNET sites throughout the Amazon region (Figs. B6–
B7), even though we run the model with regionally gridded
instead of locally measured climate data. While potentially
lacking information on local short-term weather events, grid-
ded climate input still seems to be sufficient to capture broad
seasonal signals for our comparisons on a monthly basis.
This also increases the confidence in our results on a regional
scale.

Across large parts of the Amazon region, variable tree
rooting strategies decrease the intra-annual variability in ET
and maintain high rates of NEE and ET during the dry season
in accordance with the intra-annual trends suggested by eval-
uation data (Figs. 3, B6, B7). More than that, simulated rates
of ET and productivity can peak during the dry season, e.g. in
EQ E, which has been explained by increased solar radiation
during this time of the year (Nemani et al., 2003; da Rocha et
al., 2004). Especially in EQ E and SAMz, at least parts of the
forest area must have access to sufficient water in the model
and in reality (Costa et al., 2010; Wu et al., 2016). Given that
LPJmL4.0-VR and LPJmL4.0-VR-base are essentially iden-
tical models with the same soil depth input and subsequent
hydrology over the whole soil column, their differences in
simulated ET and NEE must emerge from their only differ-
ence, which is the number of simulated tree rooting strate-
gies. Therefore, local root adaptations in LPJm4.0-VR can
be regarded as a buffer against seasonal precipitation deficits
by usage of deep water (exemplarily shown in large detail for
the FLUXNET Site STM_K67 in Fig. B11).

We can here quantify this water access for the first time
on the basis of carbon investment and return and limited by
spatial heterogeneous soil depth. Without limits to rooting
depth in the form of local soil depth (e.g. by applying a uni-
versal soil depth of 20 m) and below-ground carbon invest-
ment, seasonally dry climatological clusters would poten-
tially shift towards deeper-rooted sub-PFT dominance, con-
sequently leading to an overestimation of ET rates. There-
fore, we argue that both factors are of great importance in

explaining regional rates of ET. This also means that forests
in the same climatological cluster contribute very differently
to the overall ET and therefore to moisture recycling across
South America. We can here mechanistically explain this co-
herence as we show for the first time on the regional scale
how PFTs with variable tree rooting strategies adjust to lo-
cal environmental conditions and in return lead to simulated
rates of ET very close to validation data (Figs. 3, B6). The
heterogeneous picture of D95 we find (Fig. 2) might provide
a direct guideline for where to put emphasis on forest con-
servation to maintain continental-scale moisture recycling, as
D95 directly scales with rates of ET.

Being able to mechanistically reproduce and explain the
broad-scale stabilization of water fluxes into the atmosphere
has wide implications for DGVM frameworks and simula-
tion of ET as moisture input to the atmosphere in Earth sys-
tem models (ESMs). Our approach can help to better quan-
tify the role of forests for local- to continental-scale mois-
ture recycling and to project the fate of forests under future
climate and land-use change. The approach presented here
is easily applicable for a wide range of DGVMs and ESMs
which simulate fine-root distribution in a similar way to in
the LPJmL model family (based on Jackson et al., 1996). A
first and easy-to-implement step for other models could be
to prescribe the relative fine-root distribution in a spatially
explicit way in accordance with D95 values presented in this
study.

5 Conclusions

In this paper we reconfirm the hypotheses that climate and
soil depth determine dominant tree rooting strategies (hy-
pothesis I) and tree rooting depth is key for explaining the
distribution and dominance (hypothesis II) as well as evapo-
transpiration and productivity rates (hypothesis III) of tropi-
cal evergreen forests in South America, even when the com-
petition of tree rooting strategies and carbon investment in
gradually growing roots are considered. In fact our findings
suggest that roughly half of the evergreen forests in the Ama-
zon region depend on investments in rooting systems which
go deeper than the standard average PFT parameterization
based on the literature allows for. Those deep root systems
can be regarded as a buffer against seasonal precipitation
deficits by usage of deep water, and they keep rates of ET
and productivity at high levels throughout the year.

A major advance of the new sub-model version
LPJmL4.0-VR is that simulations start with uniform input
distributions of tree rooting strategies in each location which
develop into a distribution of abundance driven by local en-
vironmental filtering and competition. Therefore, these dis-
tributions are not a pre-selected input but an emergent simu-
lation output.

The new model features will enable the introduction of lo-
cal tree rooting depth as a key explanatory variable into fu-
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ture studies dealing with bi-stability of potential forest cover
in tropical regions. Generally, we are convinced that our ap-
proach is of high importance to all modelling frameworks of
DGVMs and Earth system models (ESMs) aiming at quan-
tifying continental-scale moisture recycling, forest tipping
points and resilience. So far, the importance of local-scale
tree root adaptations for regional-scale ecosystem functions
underlines the need to protect this below-ground functional
diversity and not only in the scope of future global change.
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Appendix A: Methods

A1 A new tree rooting scheme for LPJmL4.0

In this section we describe the new basic scheme for soil
layer partitioning, the new tree rooting scheme, the simu-
lation of below-ground carbon investment and how differ-
ent tree rooting strategies (implemented in the new scheme)
compete.

A1.1 Scheme for soil layer partitioning

LPJmL4.0 employs a globally universal soil depth of 3 m.
For LPJmL4.0-VR we extended the general maximum soil
depth to 20 m (but restrict it to local soil depth information
at the model’s spatial resolution; Sect. 2.3.2). We applied the
same basic scheme for soil layer partitioning from LPJmL4.0
(Schaphoff et al., 2018a) in order to keep model differences
small (Table A1). We chose a maximum soil depth of 20 m to
considerably increase the maximum soil depth compared to
the constant 3 m in LPJmL4.0 while keeping the increment of
computational demand connected to adding more soil layers
within an acceptable range. As with LPJmL4.0 (Schaphoff et
al., 2018a), we use grid-cell-specific soil texture information
which is applied to the whole soil column.

A1.2 Water balance, infiltration and percolation

We here provide a very brief description of LPJmL’s water
balance and soil hydrology. A detailed description can be
found in Schaphoff et al. (2018a).

The hydraulic conductivity and water-holding capacity
(water content at permanent wilting point, at field capac-
ity, and at saturation) for each grid cell are derived from in-
formation on soil texture from the Harmonized World Soil
Database (HWSD) version 1 (Nachtergaele et al., 2009), and
relationships between texture and hydraulic properties are
derived from Cosby et al. (1984). Each soil layer’s (Ap-
pendix A, Sect. A1.1) water content can be altered by infil-
trating rainfall and percolation. The soil water content of the
first soil layer determines the infiltration rate of rain and irri-
gation water. The excess water that does not infiltrate gener-
ates surface water runoff. Water percolation through the soil
layers is calculated by the storage routine technique (Arnold
et al., 1990) as used in regional hydrological models such as
SWIM (Krysanova et al., 1998). Water percolation thus de-
pends on the hydraulic conductivity of each soil layer and
the soil water content between field capacity and saturation
at the beginning and the end of the day for all soil layers.
Similarly to water infiltration into the first soil layer, perco-
lation in each soil layer is limited by the soil moisture of
the following lower layer. Excess water over the saturation
levels forms lateral runoff in each layer and contributes to
subsurface runoff. Surface and subsurface runoff accumulate
to form river discharge. The routines for water balance, infil-
tration and percolation were not changed for LPJmL4.0-VR.

Table A1. Soil layer partitioning scheme used in LPJmL4.0-VR.
The first metre of the soil column is split into three soil layers, and
after 1 m of soil depth each following soil layer is assigned a thick-
ness of 1 m as in LPJmL4.0. Whereas LPJmL4.0’s last soil layer
reaches 3 m, LPJmL4.0-VR’s last soil layer reaches 20 m.

Soil layer Soil layer Soil layer
number boundary (m) thickness (m)

1 0.2 0.2
2 0.5 0.3
3 1 0.5
4 2 1
. . . . . . . . .
23 20 1

Figure A1. Relative amount of fine roots in each soil layer for dif-
ferent β values in LPJmL4.0 and LPJmL4.0-VR. In the legend,
βold1 and βold2 correspond to the β values of the two tropical
tree PFTs (deciduous and evergreen) simulated in LPJmL4.0. The
corresponding graphs lie on top of each other due to marginal differ-
ences in their β values. β1–β10 correspond to the 10 β values used
in LPJmL4.0-VR (Table A2) to create the 10 sub-PFTs of the trop-
ical evergreen and deciduous tree PFTs (Appendix A, Sect. A1.3).
For LPJmL4.0-VR the fine-root distribution at maximum rooting
depth is shown. Please note, the first three soil layers (as described
in Appendix A, Sect. A1.1) in this visualization are treated as one
layer of 1 m thickness for reasons of visual clarity.

Thus the routines now apply for soil columns of up to a 20 m
depth (Appendix A, Sect. A1.1).

A1.3 Diversifying general tree rooting strategies

In LPJmL4.0 the tree rooting strategy of a PFT is reflected
by a certain prescribed vertical distribution of fine roots
throughout the soil column. Each soil layer l is assigned a
PFT-specific relative amount of fine roots, rootdistl:

rootdistl = rootdist(zl)− rootdist(zl−1) , (A1)

where zl is the soil layer boundary depth in centimetres of
each soil layer l and rootdist(zl) is the relative amount of
fine roots between the forest floor and the boundary of soil
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Table A2. β values assigned to the 10 sub-PFTs of each tropi-
cal PFT (evergreen and deciduous) in LPJmL4.0-VR and the cor-
responding maximum rooting depth reached by 95 % of the roots
(D95_max).

sub-PFT number β value D95_max (m)

1 0.9418 0.5
2 0.9851 2
3 0.9925 4
4 0.995 6
5 0.9963 8
6 0.9971 10
7 0.9976 12
8 0.9981 14
9 0.9986 16
10 0.9993 18

layer l. The function rootdist(z) is defined following Jackson
et al. (1996):

roodist(z)=
1−βz

1−βzbottom
, (A2)

where β is a constant parameter shaping the vertical distribu-
tion of fine roots and therefore determining the tree rooting
strategy and zbottom is the maximum soil depth in centime-
tres. In LPJmL4.0 each PFT is assigned a different β value
reflecting the average tree rooting strategy on this broad PFT
scale (Schaphoff et al., 2018a).

To quantify the maximum rooting depth of PFTs that ac-
tually results from this approach (Eqs. A1 and A2), we here
calculate the depth at which the cumulated fine-root biomass
from the soil surface downwards is 95 % (D95_max) as fol-
lows:

D95_max =
log(1− 0.95 · (1− βzbottom))

log (β)
. (A3)

In LPJmL4.0 the β values of tropical tree PFTs are set to
0.962 for the tropical broadleaved evergreen tree and to 0.961
for the tropical broadleaved deciduous tree following Jack-
son et al. (1996). According to Eq. A3 both PFTs have a
D95_max smaller than 1 m. For LPJmL4.0-VR we extended
this representation of tree rooting strategies by splitting both
tropical tree PFTs into 10 sub-PFTs and assigning each with
a different β value. These values were chosen to cover a
range of different D95_max values between 0.5 and 18 m (Ta-
ble A2). We chose 18 m as the largestD95_max value in order
to avoid that roots of the respective sub-PFT significantly ex-
ceed the maximum soil depth of 20 m (see also Appendix A,
Sect. 1.5). Figure A1 shows the new maximum distribution of
fine roots throughout the soil column for the different β val-
ues chosen (Table A2).

A1.4 Below-ground carbon investment

Tropical trees can avoid water stress under seasonally dry
climates by growing relatively deep roots (Brum et al., 2019;
Fan et al., 2017), which is accompanied by increased below-
ground carbon investment. Thus, the need for deep water ac-
cess creates a trade-off between below-ground and above-
ground carbon investment. Therefore, a new carbon alloca-
tion scheme for LPJmL4.0-VR was necessary to account for
this trade-off in order to reproduce locally to regionally ob-
served patterns and distributions of tree rooting strategies in-
stead of prescribing them. In LPJmL4.0-VR we introduced
two new carbon pools, namely root sapwood and root heart-
wood. Like stem sapwood in LPJmL4.0, root sapwood in
LPJmL4.0-VR also needs to satisfy the assumptions of the
pipe model (Shinozaki et al., 1964; Waring et al., 1982). The
pipe model describes that, for a certain amount of leaf area, a
certain amount of water-conducting tissue must be available.
In LPJmL4.0 the cross-sectional area of stem sapwood needs
to be proportional to the leaf area LAind as follows:

LAind = kla:sa · SAind , (A4)

where kla:sa is a constant describing the ratio of leaf area and
stem sapwood cross-sectional area (SAind). In LPJmL4.0-VR
we also apply the pipe model to root sapwood. The root sap-
wood cross-sectional area in the first soil layer is equal to
the stem sapwood cross-sectional area, as all water must be
transported through the root sapwood within this soil layer.
In the following soil layers downwards, the root sapwood
cross-sectional area decreases by the relative amount of fine
roots in all soil layers above (Fig. 1). Root sapwood is turned
into root heartwood at an equal rate to stem sapwood being
turned into stem heartwood, i.e. 5 % per year as implemented
in LPJmL4.0 (see Schaphoff et al., 2018a).

A1.5 Root growth

In LPJmL4.0 (Schaphoff et al., 2018a) no vertical root
growth is simulated; thus the relative distribution of fine roots
over the soil column is constant over space and time. It means
that PFTs starting from bare ground in a sapling stage dis-
play the same relative distribution of fine roots throughout
the soil column as a full-grown forest, which contradicts
the principles of dynamic root growth over a tree’s lifetime.
Applied to LPJmL4.0-VR, the below-ground biomass of an
initialized deep-rooting-strategy sub-PFT would exceed its
above-ground biomass (AGB) by orders of magnitude when
considering coarse roots. Consequently, deep rooting strate-
gies would always be disadvantageous, calling for modelling
gradual root growth in LPJmL4.0-VR. Unfortunately, little
is known about how roots of tropical trees grow over time,
given the fact that this research field is strongly time and re-
source demanding and at the same time the variety of tree
species, rooting strategies and environmental conditions is
large (Jenik, 1978). A recent promising study by Brum et
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Table A3. Description of FLUXNET sites used for the evaluation of simulated ET.

Site name Short name Country LPJmL coordinate

latitude longitude

Ecotone Bananal Island (BR-Ban) TOC_BAN Brazil −9.75 −50.25

Manaus-ZF2 K34/BR-Ma2 MAN_K34 Brazil −2.75 −60.25

Santarem-Km67- STM_K67 Brazil −2.75 −54.75
Primary Forest/BR-Sa1

Santarem-Km77- STM_K77 Brazil −3.25 −54.75
Pasture/BR-Sa2

Santarem-Km83-Logged Forest/BR-Sa3 STM_K83 Brazil −3.25 −54.75

Rond.-Rebio Jaru Ji RON_RJA Brazil −10.25 −61.75
Parana-Tower B/BR-Ji3

Guyaflux GF_GUY French Guiana 5.25 −52.75

al. (2019) was able to capture the effective functional root-
ing depth (EFRD) of different size classes of 12 dominant
tree species in a seasonal Amazon forest where tree roots
grow considerably deep with maximum values reaching be-
low 30 m. To our knowledge this is the only study captur-
ing the relation between the size of tropical trees and their
maximum rooting depth in a high spatial resolution covering
sufficient tree-height classes to derive a functional relation
between tree height and rooting depth. Following the find-
ings of Brum et al. (2019), we here implemented a logistic
root growth function, which calculates a general maximum
conceivable tree rooting depth D depending on tree height:

D =
S

1+ e−kSh ·
(
S
D0
− 1

) , (A5)

where S is the maximum soil depth in the model (20 m), k
is a dimensionless constant defining the growth rate of the
standard logistic growth function (set to 0.02), h is the av-
erage tree height of a PFT in metres and D0 is the initial
rooting depth of tree PFT saplings (set to 0.1 m; tree saplings
in LPJmL4.0-VR are initialized with a height of 0.45 m as
in LPJmL4.0). The distribution of fine-root biomass of each
sub-PFT in the soil column is then adjusted according to D
at each time step, by restricting zbottom in Eq. (A2). Every
time D crosses a specific soil layer boundary (Appendix A,
Sect. A1.1), zbottom is assigned the value of the next soil layer
boundary. Thus, zbottom increases in discrete steps. Conse-
quently, each tree rooting strategy allowed for in this study
(Appendix A, Sect. A1.3) shows a logistic growth of root-
ing depth which is dependent on the sub-PFT height and
which saturates towards its specific maximum rooting depth
(Fig. A2). Therefore, limitations of above-ground sub-PFT
growth due to below-ground carbon investment of different
tree rooting strategies (Appendix A, Sect. A1.4) are equal in
the sapling phase of all sub-PFTs (starting from bare ground)

Figure A2. Relation between tree height and rooting depth in
LPJmL4.0-VR. Black line: implemented general growth function
of rooting depth (Eq. A5). Lines with colour scale from yellow
to blue: growth functions of rooting depth for each of the 10 sub-
PFTs (Sect. 2.2.3). Here temporal rooting depth is expressed asD95
and eventually reaches D95_max (Eq. A3). Solid red line: mean ef-
fective functional rooting depth over tree height (EFRD) adapted
from Brum et al. (2019) using Eq. (A5). Dashed red line: respec-
tive 75th-percentile EFRD over tree height adapted from Brum et
al. (2019). Please also see Supplementary Video 1 for a visual-
ization of root growth and development of below-ground carbon
pools over time available at http://www.pik-potsdam.de/~borissa/
LPJmL4_VR/Supplementary_Video_1.pptx.

and start to diverge with increasing sub-PFT height. In the
case that D exceeds the grid-cell-specific local soil depth (as
prescribed by the soil thickness input; see Sect. 2.3.2), all
the respective fine-root biomass exceeding this soil depth is
transferred to the last soil layer matching this soil depth (see
also Fig. 1 right panel and Supplementary Video 1 for a visu-
alization of root growth available at http://www.pik-potsdam.
de/~borissa/LPJmL4_VR/Supplementary_Video_1.pptx).
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Figure A3. Soil/sediment thickness from Pelletier et al. (2016) re-
gridded to the 0.5◦× 0.5◦ longitude–latitude grid of LPJmL4.0-VR
and restricted to a maximum of 20 m. Colour bar in decadic loga-
rithm.

The parameter k in Eq. (A5) was chosen to preserve the
slope of the 75th-percentile function describing the rela-
tion between tree height and EFRD as found in Brum et
al. (2019). We could not implement any of the original func-
tions as suggested in Brum et al. (2019) since they deliver
unrealistically low values of rooting depth (between 0 and
10 cm) for trees ≤ 10 m, which results in a strong compet-
itive disadvantage against herbaceous PFTs in LPJmL4.0-
VR. We decided for the slope of the 75th-percentile func-
tion to allow for root growth rates close to the maximum
which also allows for the largestD95_max values in this study
(Appendix A, Sect. 1.3) to be reached. Note that Brum et
al. (2019) originally propose a relation between tree diame-
ter at breast height (DBH) and EFRD. For our purposes we
related rooting depth to tree height (h), which is calculated
from DBH in LPJmL4.0 according to Huang et al. (1992):

h= kallom2 · DBHkallom3 , (A6)

where kallom2 and kallom3 are constants set to 40 and 0.67,
respectively (Schaphoff et al., 2018a).

A1.6 Competition of rooting strategies

In each grid cell all sub-PFTs of the evergreen and de-
ciduous tree PFTs compete for light and water follow-
ing LPJmL4.0’s approach to simulate plant competition. In
LPJmL4.0, the number of new PFT saplings per unit area
(estPFT in ind m−2 a−1, where ind is individuals) which are
established each year is proportional to a maximum estab-
lishment rate kest and to the sum of foliage projected cover
(FPC; a relative number between 0 and 1) of all tree PFTs
present in a grid cell (FPCTREE). It declines in proportion to
canopy light attenuation when the sum of woody FPCs ex-
ceeds 0.95, thus simulating a decline in establishment suc-
cess with canopy closure (Prentice et al., 1993):

estPFT = kest · (1− e(−5·(1−FPCTREE)) ·
1− FPCTREE

nestTREE

, (A7)

where nestTREE is the number of established tree individuals
(ind m−2 a−1). It is important to note that LPJmL4.0 does not
simulate individual trees. As a common method of DGVMs,
tree saplings enter the average individual of a PFT as de-
scribed in Schaphoff et al. (2018a).

To allow for environmental filtering of tree rooting strate-
gies which are best adapted to local environmental condi-
tions, we changed the standard tree establishment scheme
in LPJmL4.0-VR. Now, the establishment rates of sub-PFTs
(estsub_PFT) are additionally weighted by the local dominance
of each sub-PFT as follows:

estsub_PFT = kest ·
(

1− e−5·(1−FPCTREE)
)
·

1−FPCTREE

nestTREE

·
FPCsub_PFT

FPCTREE
· nestTREE ,

(A8)

where FPCsub_PFT is the FPC of each sub-PFT. The new term
leads to a higher establishment rate for productive sub-PFTs
relative to their spatial dominance and vice versa, without
changing the overall establishment rate as set by Prentice et
al. (1993). This function has the effect that non-viable sub-
PFTs are outcompeted over time.

A1.7 Background mortality

In LPJmL4.0 background mortality is modelled by a frac-
tional reduction in PFT biomass, which depends on growth
efficiency (Schaphoff et al., 2018a). This annual rate of mor-
tality is limited by a constant maximum mortality rate of 3 %
of tree individuals per year which is applied to all tree PFTs.
In other words, the fastest total biomass loss of a tree PFT due
to low growth efficiency can happen within about 33 sim-
ulation years. In general, this maximum mortality rate can
be regarded as a global tuning parameter of biomass accu-
mulation as it caps the maximum biomass loss. Since many
mechanisms influencing tree mortality in the real world, e.g.
hydraulic failure (Johnson et al., 2018), are not yet imple-
mented in most DGVMs including LPJmL4.0 (Allen et al.,
2015), the parameterization of background tree mortality re-
mains a challenging topic. Under the current model status of
LPJmL4.0, maximum mortality rates are a necessary feature,
while future model development must overcome the concept
of applying a maximum mortality rate by refining and imple-
menting the most important mechanisms that influence tree
mortality.

In LPJmL4.0-VR tree PFTs can access water in soil depths
which were formerly inaccessible. This enhances the general
growth efficiency of tree PFTs and consequently decreases
their overall background mortality. Since global biomass pat-
terns simulated with LPJmL4.0 were already in an acceptable
range, the maximum background mortality in LPJmL4.0-
VR was calibrated and is now increased to 7 % in order
to counter-balance increased survival rates and therefore
biomass accumulation.
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Appendix B: Results

B1 Local evapotranspiration

Differences in intra-annual rates of ET and NEE between
the three LPJmL model versions are most pronounced at
FLUXNET sites with high seasonality of rainfall (Fig. B6b,
e, g and Fig. B7b, e, g). Here, variable tree rooting strate-
gies (LPJmL4.0-VR) lead to a major improvement in repro-
ducing measured FLUXNET NEE and ET, also expressed
in reduced NME and increased r2 values (Tables B1, B2).
Whereas constant tree rooting strategies (LPJmL4.0-VR-
base and LPJmL4.0) simulate decreasing ET and increasing
NEE during dry seasons at these sites, which is anticorrelated
to FLUXNET measurements, variable tree rooting strategies
(LPJmL4.0-VR) follow the intra-annual FLUXNET signals.
The most pronounced improvements are found at STM_K67
and STM_K83, where the NME of ET and NEE drop below
or close to 1 and where r2 values considerably increase com-
pared to in the other two model versions (Tables B1, B2).
For STM_K67, the r2 of NEE is higher under LPJmL4.0 and
LPJmL4.0-VR-base, but this refers to a significant negative
correlation.

At STM_K77 (Fig. B6f) local circumstances show the
influence of variable rooting strategies on ET in a differ-
ent way. This former rainforest site was converted to pas-
ture before eddy covariance measurements began. This lo-
cal land use at STM_K77 is not representative of the re-
spective 0.5◦ grid cell, and thus all three LPJmL model
versions simulate mainly natural vegetation instead of pas-
ture. Therefore, the shallow rooting systems of LPJmL4.0
and LPJmL4.0-VR-base show a better match to ET measure-
ments at STM_K77. The site STM_K83 (Fig. B6g) is a se-
lectively logged primary-forest site which shares the same
model grid cell as STM_K77 due to their geographical prox-
imity. Again, here only simulations with variable tree rooting
strategies (LPJmL4.0-VR) reproduce increased ET and de-
creased NEE during the dry season. At sites with a weaker to
no dry season (Fig. B6c, d, h) differences between model ver-
sions become less pronounced, as water availability is more
stable throughout the year leading to less variable ET.

B2 Regional pattern of simulated above- and
below-ground biomass

The simulated mean AGB pattern (2001–2010) of
LPJmL4.0-VR (Fig. B10) shows that variable tree rooting
strategies lead to contiguous high biomass over the Amazon
region. Especially towards the borders of the south-eastern
Amazon region in the climatological clusters EQ E and
SAMz, AGB values appear rather homogenous in contrast
to constant shallow tree rooting strategies simulated in the
other two model versions (Fig. B10d, e). In connection
with the significantly improved underlying vegetation
composition (Fig. 4e, f), it is clear that LPJmL4.0-VR is

Figure B1. Mean annual precipitation for 2001–2010 under CRU
climate input.

Figure B2. Mean annual MCWD for 2001–2010 under CRU cli-
mate input.

the only model version capable of simulating high-AGB
evergreen rainforests across the climatic gradient of the
Amazon region (Figs. B1, B2). This pattern is also found by
one satellite-derived AGB product chosen for the evaluation
of our model results (Saatchi et al., 2011; Fig B10b) which
yields a corresponding NME close to 0 (Table B6). However,
compared to this product, low NME values are found for
all model versions. Surprisingly, in comparison to the other
AGB validation product (Avitabile et al., 2016; Fig. B9a)
LPJmL4.0-VR-base yields a smaller NME than LPJmL4.0-
VR. Considering the significantly less accurate underlying
vegetation composition of LPJmL4.0-VR-base as well as of
LPJmL4.0 (Fig. 4), we regard such comparisons as critical
in this context.

Comparisons of AGB pattern between all model versions
of this study and different biomass products are difficult,
since only LPJmL4.0-VR shows a reasonable geographical
distribution of underlying PFTs across the study area (Fig. 4,
Table B4). Therefore, differences in biomass are not solely
the consequence of different productivities directly related to
diversity in tree rooting strategies but also the consequence
of simulated PFT dominance; i.e. they are rather an indirect
effect of diversity in tree rooting strategies. Concentrating on
LPJmL4.0-VR only, the model matches substantially better
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Table B1. Normalized mean error (NME), coefficient of determination (r2) and p value of F statistic piecewise calculated for simulated ET
of the different LPJmL model versions used in this study forced with CRU climate input and FLUXNET data of ET at seven FLUXNET
sites (in accordance with Fig. B6).

Statistic Model TOC_BAN MAN_K34 STM_K67 STM_K77 STM_K83 RON_RJA GF_GUY

NME LPJmL4.0-VR 2.41 1.11 0.75 1.38 1.10 2.28 1.57
LPJmL4.0-VR-base 2.92 1.22 2.29 0.98 2.74 2.73 2.38
LPJmL4.0 2.93 1.23 2.27 0.98 2.74 2.70 2.36

r2 LPJmL4.0-VR 0.09 0.03 0.53 0.17 0.43 0.01 0.08
LPJmL4.0-VR-base 0.10 0.00 0.33 0.14 0.03 0.01 0.01
LPJmL4.0 0.09 0.00 0.33 0.14 0.03 0.01 0.01

p value LPJmL4.0-VR 0.075 0.041 <0.001 0.002 <0.001 0.575 0.005
LPJmL4.0-VR-base 0.067 0.585 <0.001 0.005 0.221 0.517 0.277
LPJmL4.0 0.068 0.672 <0.001 0.005 0.221 0.514 0.274

Table B2. Normalized mean error (NME), coefficient of determination (r2) and p value of F statistic piecewise calculated for simulated NEE
of the different LPJmL model versions used in this study forced with CRU climate input and FLUXNET data of NEE at three FLUXNET
sites (in accordance with Fig. B7).

Statistic Model STM_K67 STM_K83 GF_GUY

NME LPJmL4.0-VR 0.90 0.84 1.30
LPJmL4.0-VR-base 1.62 1.36 1.52
LPJmL4.0 1.68 1.39 1.52

r2 LPJmL4.0-VR 0.16 0.14 0.00
LPJmL4.0-VR-base 0.32 0.06 0.03
LPJmL4.0 0.33 0.07 0.03

p value LPJmL4.0-VR <0.001 0.003 0.515
LPJmL4.0-VR-base <0.001 0.055 0.046
LPJmL4.0 <0.001 0.047 0.059

Table B3. Normalized mean error (NME), coefficient of determination (r2) and p value of F statistic piecewise calculated for the simulated
ET of the different LPJmL model versions used in this study and continental-scale gridded ET products within five regional climatological
clusters. With respect to Fig. 3 comparisons are based on the monthly mean of corridors shown, i.e. (1) the monthly mean of all outputs
produced by one LPJmL model version but forced with different climate inputs and (2) the monthly mean of all continental-scale gridded ET
data products.

Statistic Model NSA EQ W EQ E SAmz SAMS

NME LPJmL4.0-VR 0.08 0.26 0.62 0.20 0.06
LPJmL4.0-VR-base 0.37 0.42 1.95 0.58 0.13
LPJmL4.0 0.34 0.26 1.92 0.58 0.11

r2 LPJmL4.0-VR 0.98 0.94 0.91 0.98 1.00
LPJmL4.0-VR-base 0.94 0.96 0.20 0.91 0.99
LPJmL4.0 0.93 0.96 0.21 0.90 0.99

p value LPJmL4.0-VR < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
LPJmL4.0-VR-base < 0.001 < 0.001 0.143 < 0.001 < 0.001
LPJmL4.0 < 0.001 < 0.001 0.135 < 0.001 < 0.001
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Figure B3. Distributions of simulated mean monthly NPP for each
D95_max class for 2001–2010 under CRU climate input at two
FLUXNET sites. (a) Site MAN_K34 near the city of Manaus. (b)
Site STM_K67 near the city of Santarem. For more site informa-
tion, see Table A3 and Fig. B6a. At the FLUXNET site MAN_K34
(a), which exhibits a mean annual precipitation (MAP) of 2609 mm
and a mean MCWD of −222 mm under CRU climate input (2001–
2010), the sub-PFT with a maximum rooting depth D95_max of
0.5 m contributes most to overall NPP and the whole distribution
of NPP-weighted D95_max classes shows a mean of 1.52 m. At the
FLUXNET site STM_K67 (b), which exhibits a lower MAP of
2144 mm and a stronger dry season reflected in a mean MCWD of
−465 mm, the NPP-weighted distribution ofD95_max shows a peak
at 10 m and a corresponding mean of 10.26 m. Since both sites have
a soil depth of 20 m (according to the soil depth input; Sect. 2.3.2,
Fig. A3) differences in rooting strategy compositions must emerge
from the climatic differences in those sites. It is important to note
that D95_max values (i.e. the bins on the x axes) do not necessar-
ily reflect the true rooting depth achieved by each sub-PFT but their
maximum value. For reasons of visual clarity, for this figure we kept
the bins of the x axes as chosen in Table A2.

Figure B4. Comparison of simulated D95 to product of maximum
tree root water uptake depth (MDRU). (a) Original (Fan et al.,
2017) MDRU regridded to 0.5◦× 0.5◦ resolution of LPJmL4.0-VR.
(b) Same as (a) but adjusted to soil depth input used in this study
(see Sect. 2.3.2), in cases where values of Fan et al. (2017) ex-
ceeded this soil depth. The colour-scale maximum for (a) and (b)
is set to 10 m. (c) Difference between (a) and D95 simulated with
LPJmL4.0-VR under CRU climate forcing (Fig. 2a). (d) Difference
between (b) andD95 simulated with LPJmL4.0-VR under CRU cli-
mate forcing (Fig. 2a). Red/blue colours denote higher/lower root-
ing depths in LPJmL4.0-VR.

Figure B5. Mean rooting depth depicted as mean D95 over classes
of MCWD and annual precipitation sums. Class step size for pre-
cipitation was set to 250 mm, and class size for MCWD was
set to 50 mm. Regions with high amounts of annual rainfall and
lower seasonality exclusively favour shallow-rooted forests (low
D95). D95 increases with decreasing MCWD (increasing seasonal
drought stress) and decreasing sums of annual precipitation. Below
1200 mm of annual rainfall or −1100 mm of MCWD, D95 sharply
decreases again. Note this figure does not consider soil depth. The
colour-scale maximum is set to 10 m.

with the gridded biomass product of Saatchi et al. (2011; Ta-
ble B5) since this product shows generally higher biomass
values across the Amazon region which are more similar to
those of LPJmL4.0-VR. Therefore, the higher NME found
in the comparison to the biomass product of Avitabile et
al. (2016) is mainly caused by divergence of mean biomass
values of the evergreen PFT across the whole study area
rather than by pattern divergence. Thus, we argue that lower-
ing overall biomass values in LPJmL4.0-VR would improve
its match with Avitabile et al. (2016), which is a matter of ad-
justing overall maximum tree mortality rates (Appendix A,
Sect. A1.7).

Simulating diverse tree rooting strategies in connection
with investment in coarse-root structures in LPJmL4.0-VR
allows for analysing carbon investment in the newly im-
plemented root carbon pools (Appendix A, Sects. A1.4 and
A2.2). As expected, below-ground biomass (BGB; Fig. B9)
follows the simulated pattern D95 (Fig. 2). The highest BGB
is found at maximum values of D95 and vice versa.

It is important to note that LPJmL4.0-VR appears to un-
derestimate BGB compared to empirical findings in the Ama-
zon region. While LPJmL4.0-VR shows BGB making up a
range of 3.6 %–16.2 % of total biomass across the Amazon
region, different site-specific empirical studies have found
mean values at the upper end or significantly exceeding this
range (Fearnside, 2016). The most plausible explanation for
underestimating BGB is that LPJmL4.0-VR does not account
for root structures needed for tree statics. Acknowledging
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Figure B6. Comparisons of monthly ET between different FLUXNET sites (Reference; see also Sect. 2.5.1) and respective simulation output
of the different LPJmL model versions used in this study forced with CRU climate. (a) Geographical location of different FLUXNET sites
(see also Table A3). For statistical measures of the individual comparison, see Table B1.

Figure B7. Comparisons of monthly NEE between different FLUXNET sites (Reference; see also Sect. 2.5.1) and respective simulation
output of the different LPJmL model versions used in this study forced with CRU climate. (a) Geographical location of different FLUXNET
sites (see also Table A3). For statistical measures of the individual comparison, see Table B2. Note that due to data scarcity only three
FLUXNET sites are shown. Plots of all sites are shown in Fig. B12. We kept panel labelling as in Fig. B6 to ensure easy comparability.

tree statics would increase below-ground carbon investment
and therefore BGB. Nevertheless, below-ground carbon in-
vestment for tree statics would apply for all sub-PFTs simul-
taneously and would therefore most likely not significantly

change competition dynamics and the resulting distributions
of tree rooting strategies found in this study.
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Table B4. Normalized mean error (NME) of FPC comparison
piecewise calculated between (1) the satellite-derived vegetation
composition from ESA Land Cover CCI V2.0.7 (Li et al., 2018)
reclassified to the PFTs of LPJmL as in Forkel et al. (2014) and
(2) all LPJmL model versions used in this study forced with CRU
climate data (in accordance with Fig. 4).

Statistic Model FPC FPC
evergreen deciduous

NME LPJmL4.0-VR 0.31 1.01
LPJmL4.0-VR-base 0.38 1.5
LPJmL4.0 0.47 1.76

Figure B8. Foliage projected cover (FPC) of the tropical herba-
ceous PFT over the study region. (a) Satellite-derived vegetation
composition from ESA Land Cover CCI V2.0.7 (Li et al., 2018)
reclassified to the PFTs of LPJmL as in Forkel et al. (2014). (b)
LPJmL4.0-VR. (c) LPJmL4.0-VR-base. (d) LPJmL4.0. All LPJmL
model versions were forced with CRU climate input. The FPC
shown for all models refers to 2001–2010.

Figure B9. Mean sum (2001–2010) of below-ground biomass
(BGB; sum of tree coarse and fine roots) of evergreen and decid-
uous tree PFTs simulated with LPJmL4.0-VR under CRU climate
forcing.

Figure B10. Comparison of simulated AGB and satellite-derived
AGB validation products regridded to the spatial resolution of
LPJmL models. (a) Biomass validation product from Avitabile et
al. (2016). (b) AGB validation product from Saatchi et al. (2011).
(c–e) Mean AGB simulated for the time span 2001–2010 with (c)
LPJmL4.0-VR, (d) LPJmL4.0-VR-base and (e) LPJmL4.0. For sta-
tistical measures of individual comparisons between model versions
(c–e) and satellite-derived AGB evaluation products (a–b), see Ta-
ble B5.
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Table B5. Normalized mean error (NME) of AGB comparison piecewise calculated between (1) the satellite-derived AGB validation products
and (2) all LPJmL model versions used in this study forced with CRU climate data (in accordance with Fig. B10).

Statistic Model Avitabile et al. (2016) Saatchi et al. (2011)

NME LPJmL4.0-VR 0.78 0.12
LPJmL4.0-VR-base 0.69 0.11
LPJmL4.0 1.09 0.14

Figure B11. Difference in soil water reaction to seasonal precipitation between LPJmL4.0-VR-base and LPJmL4.0-VR at FLUXNET site
STM_KM67. (a) Mean monthly precipitation input from CRU for 2001–2010. (b) Difference in monthly relative soil water content between
LPJmL4.0-VR-base and LPJmL4.0-VR forced with CRU climate for 2001–2010. The underlying model output variable “soil water content”
of each model version is a number between 0 and 1 depicting the relative water saturation of the soil. Blue colours denote lower soil water
content in LPJmL4.0-VR, and red colours denote a lower soil water content in LPJmL4.0-VR-base.

Figure B12. Comparisons of monthly NEE between different FLUXNET sites (Reference; see also Sect. 2.5.1) and respective simulation
output of the different LPJmL model versions used in this study forced with CRU climate. (a) Geographical location of different FLUXNET
sites (see also Table A2).
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Code availability. The model code of LPJmL4.0-VR can be found
under https://doi.org/10.5281/zenodo.4709250 and should be cited
as Sakschewski et al. (2021a). The model code of standard
LPJmL4.0 can be found under Schaphoff et al. (2018b).

Data availability. All output data of LPJmL4.0-VR, LPJmL4.0-
VR-base and LPJmL4.0 analysed in this study can be found un-
der https://doi.org/10.5281/zenodo.4709166 and should be cited as
Sakschewski et al. (2021b). All data sources used in this study to
run and validate the model versions of LPJmL4.0 are referenced in
the “Materials and methods” section (Sect. 2.3–2.5).

Video supplement. Animation of root growth in LPJmL4.0-VR is
in accordance with Fig. 1. For description of panels please see de-
scription of Fig. 1. For reasons of visual clarity growth of tree stem
and crown do not follow the true allometric functions of LPJmL4.0-
VR. The video supplement is available at http://www.pik-potsdam.
de/~borissa/LPJmL4_VR/Supplementary_Video_1.pptx.
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