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Abstract. An increasing number of dead zoning (hypoxia)
has been reported as a consequence of declining levels of dis-
solved oxygen in coastal oceans all over the globe. Despite
substantial efforts a quantitative description of hypoxia up to
a level enabling reliable predictions has not been achieved
yet for most regions of societal interest. This does also apply
to Eckernförde Bight (EB) situated in the Baltic Sea, Ger-
many. The aim of this study is to dissect underlying mech-
anisms of hypoxia in EB, to identify key sources of uncer-
tainties, and to explore the potential of existing monitoring
programs to predict hypoxia by developing and documenting
a workflow that may be applicable to other regions facing
similar challenges. Our main tool is an ultra-high spatially
resolved general ocean circulation model based on a code
framework of proven versatility in that it has been applied
to various regional and even global simulations in the past.
Our model configuration features a spacial horizontal reso-
lution of 100m (unprecedented in the underlying framework
which is used in both global and regional applications) and
includes an elementary representation of the biogeochemical
dynamics of dissolved oxygen. In addition, we integrate ar-
tificial “clocks” that measure the residence time of the water
in EB along with timescales of (surface) ventilation. Our ap-
proach relies on an ensemble of hindcast model simulations,
covering the period from 2000 to 2018, designed to cover a
range of poorly known model parameters for vertical back-
ground mixing (diffusivity) and local oxygen consumption
within EB. Feed-forward artificial neural networks are used
to identify predictors of hypoxia deep in EB based on data at
a monitoring site at the entrance of EB.

Our results consistently show that the dynamics of low
(hypoxic) oxygen concentrations in bottom waters deep in-
side EB is, to first order, determined by the following an-
tagonistic processes: (1) the inflow of low-oxygenated water
from the Kiel Bight (KB) – especially from July to Octo-

ber – and (2) the local ventilation of bottom waters by local
(within EB) subduction and vertical mixing. Biogeochem-
ical processes that consume oxygen locally are apparently
of minor importance for the development of hypoxic events.
Reverse reasoning suggests that subduction and mixing pro-
cesses in EB contribute, under certain environmental condi-
tions, to the ventilation of the KB by exporting recently ven-
tilated waters enriched in oxygen. A detailed analysis of the
2017 fish-kill incident highlights the interplay between west-
erly winds importing hypoxia from KB and ventilating east-
erly winds which subduct oxygenated water.

1 Introduction

The impact of humans on the Earth system has reached a
level of magnitude comparable to natural influences. Among
the changes apparently accompanying our way into the
Anthropocene are decreasing oxygen concentrations in the
global oceans. This decrease in oxygen is manifesting itself
most prominently in coastal regions: in the 1960s only 42 of
the so-called “dead zones”, which no longer permit the sur-
vival of higher animals, were reported. In 2008 this number
already increased to 400 (Diaz and Rosenberg, 2008). The
implications can be substantial, including mass mortality of
(commercial) fish, loss of blue carbon (associated with sea-
grass habitat loss), degradation of touristic and recreational
assets, and release of the potent greenhouse gas N2O (e.g.,
Naqvi et al., 2010).

The Baltic Sea in central northern Europe is a prominent
example of a coastal region that has been exposed to inter-
mittent dead zoning (i.e., hypoxic events) in the past (Zillén
et al., 2008). Apparently hypoxia has increased over time in
response to anthropogenic nutrient inputs and ocean warm-
ing (Jonsson et al., 1990; Carstensen et al., 2014). Conse-
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quently, international mitigation measures are put into action
by the highly industrialized and populated bordering nations
(e.g., Helsinki Convention, EU Marine Strategy Framework
Directive, Baltic Sea Action Plan), and a discussion of geo-
engineering options targeted at containing dead zoning has
been opened (Stigebrandt and Kalen, 2013; Stigebrandt et al.,
2015; Liu et al., 2020).

The mechanisms behind the dynamics of oxygen dissolved
in seawater are well known: oxygen is produced as a by-
product of organic matter production by autotrophs in the
sunlit surface ocean. Organic matter is exported to depth
where its remineralization is typically associated with oxy-
gen consumption by bacteria. Air–sea fluxes of oxygen may
be in- or outgoing depending on whether the ocean’s surface
is over- or undersaturated. Typical surface concentrations of
dissolved oxygen are around a few hundred millimoles O2
per cubic meter (mmolO2 m−3), predominantly set by physi-
cal solubility as a function of temperature and salinity. Addi-
tional complexity is added by the ocean circulation which de-
termines the timescales on which oxygen sources and sinks
may accumulate before antagonistic processes set in. This
holds especially for the Baltic Sea where sporadic inflows
of salty and oxygenated North Sea surface waters replace
oxygen-deprived bottom waters of the Baltic Sea (Matthäus,
2006) and where wind-driven upwelling has been identified
as a key process effecting vertical exchange of heat and nu-
trients (e.g., Lehmann and Myrberg, 2008).

Even though there is consensus regarding the underlying
processes, the numerical quantitative simulation of hypoxic
conditions remains challenging because it is, essentially, the
quest to simulate extreme (low) values that are determined by
the difference of relatively large and uncertain numbers. This
introduces high uncertainty to both the open ocean model ap-
plications (e.g., Cocco et al., 2013; Dietze and Löptien, 2013;
Löptien and Dietze, 2017) and Baltic Sea model applications
(Meier et al., 2011, 2012), which limits their contribution
to management or geoengineering decisions of stakeholders.
For example, it has been illustrated in a global model that
deficiencies in biogeochemical model components may be
compensated for by deficiencies in circulation model compo-
nents (Löptien and Dietze, 2019), thereby obscuring even the
sign of the sensitivity of the (global) warming to come. This
raises the question if it is actually feasible to reliably (i.e.,
getting the right answer for the right reason) simulate low-
oxygen events in systems such as the Baltic Sea that are (1)
infamous for their natural variability (Meier et al., 2021) and
(2) subject to antagonistic effects of improved management
of water resources and climate change on oxygen concentra-
tions (e.g., Lennartz et al., 2014; Hoppe et al., 2013), which
is notoriously difficult to deconvolve (Naqvi et al., 2010).

The present study steps forward to simulate oxygen dy-
namics at the exemplary site Eckernförde Bight (EB) which
is an appendix to the Kiel Bight (KB) in the German part
of the Baltic Sea (Fig. 1). The EB site is special in that
it hosts the monitoring station Boknis Eck (Fig. 2), one of

Figure 1. Overview map. The colors indicate water depth (in m).

the longest-operated time series stations worldwide (e.g.,
Lennartz et al., 2014). Consequently, EB is exceptionally
well sampled, which facilitates the development of numer-
ical models and piloting approaches which may be put to
use in other coastal regions threatened by hypoxia (such as
other Baltic Sea regions, the East China Sea, and Cheasa-
peake Bay). The overarching aim is to “. . . identify critical
processes. . . ” and to “. . . provide a supreme dynamic test of
knowledge. . . ” (Flynn, 2005) by simulating hypoxia in EB
using a code framework that is proven to be easily applica-
ble globally (e.g., in Dietze et al., 2017), near-globally (e.g.,
in Dietze et al., 2020), and regionally (e.g., in Dietze et al.,
2014). We use an ensemble approach of a suite of regional
coupled biogeochemical ocean models targeted at dissecting
uncertainties of the biogeochemical module from those of the
ocean circulation module. The analyses are aided by integrat-
ing artificial tracers measuring residence times – a concept
essential to understanding hypoxia (e.g., Fennel and Testa,
2019). Finally, we use an artificial neuronal network (ANN)
to identify the critical processes that make the oxygen defi-
ciency deep in the EB predictable – an approach which also
gives guidance on the question of where uncertainty may
lurk.

2 Methods

MOMBE (Modular Ocean Model Bight of Eckernförde) is
a new configuration of a general ocean circulation model
(GCM). The GCM is coupled to a simple representation of
biogeochemical processes by introducing an additional pas-
sive tracer that is advected and mixed just like the tracer
temperature and salinity but, other than that, is controlled by
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Figure 2. Model bathymetry. The horizontal and vertical resolutions are 100 and 1 m, respectively. The northern and eastern boundaries are
closed (rigid walls). Sea surface height, temperatures, and salinities around the closed boundaries are restored to prescribed values. Gray
circles depict the locations of the observational sites at the entrance and deep inside EB. Mittelgrund is a shallow. Note that the region east
of the orange rectangular area is discarded in all following plots because it is essentially determined by our boundary conditions rather than
by intrinsic model dynamics.

prescribed rates of oxygen production and consumption. Fur-
ther, we introduce artificial tracers or “clocks” that estimate
the residence times and the age (i.e., the time of last contact
to the surface) of water parcels. This approach facilitates the
dissection between local (i.e., inside EB) and remote (e.g.,
inflowing hypoxic deep water from the KB) processes that
drive the oxygen dynamics. The following subsections de-
scribe the GCM, followed by a model evaluation in Sect. 3.
Feed-forward neural networks designed to mimic the full-
fledged coupled GCM at a station deep inside the bight are
described in Sect. 4.4.

2.1 Model configuration

We use the Modular Ocean Model framework MOM4p1,
as released by NOAA’s Geophysical Fluid Dynamics Lab-
oratory (Griffies, 2009). Model code and configuration are
almost identical to those described in Dietze et al. (2014)
and Dietze et al. (2020). The few exceptions are listed in
the following subsections. Section 2.1.1 describes the model
grid, Sect. 2.1.2 describes the subgrid parameterizations, and
Sect. 2.1.3 specifies the input data (boundary conditions).
Section 2.1.4 documents the representation of sea ice. Sec-
tion 2.1.5 introduces the implementation of the residence
time and age racers. The implementation of the oxygen mod-
ule is documented in Sect. 2.1.6.

2.1.1 Grid and bathymetry

The bathymetric data are provided by the Federal Mar-
itime and Hydrographic Agency of Germany (BSH;
https://www.geoseaportal.de/mapapps/resources/apps/
bathymetrie/index.html?lang=de, last access: 15 July 2021).
We use a bilinear scheme to interpolate these onto an
Arakawa B model grid (Arakawa and Lamp, 1977).
There are 165× 103 grid boxes horizontally, each about
100m× 100m in size (Fig. 2). The total wet area of the
model is 119 km2. The vertical resolution is 1 m with a
total of 31 layers. The average water depth is 11.7 m. The
bathymetry was smoothed with a filter similar to the Shapiro
filter (Shapiro, 1970). The filter weights are 0.25, 0.5, and
0.25. The filter essentially fills steep holes in the ocean floor
which increases numerical stability of the GCM. The filter
was successively applied three times as this has proven (in
Dietze and Kriest, 2012; Dietze et al., 2014, 2020) to be a
good compromise between unnecessary smoothing on the
one hand and numerical instability on the other hand.

2.1.2 Subgrid parameterizations

Even a horizontal resolution as high as 100 m horizontally
and 1 m vertically fails to explicitly resolve all (turbulent)
processes of relevance for the transport and mixing of sub-
stances in EB. Hence, effects of unresolved small-scale pro-
cesses have to be parameterized. We use parameterizations
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and settings identical to those applied by Dietze et al. (2014)
in a high-resolution model configuration of the Baltic Sea.
An exception is the parameter choice for the vertical back-
ground diffusivity: Holtermann et al. (2012) estimates from
measurements for deep water processes in the central Baltic
Sea a vertical diffusivity of 10−5 m2 s−1 (calculated from
the propagation speed of a purposely deployed dye-like sub-
stance). Closer to coast Holtermann et al. (2012) report much
higher values. Because mapping this information on condi-
tions in EB is difficult, we decided to test a range of vertical
background diffusivities and to assess the respective model
performances based on available observations. The consid-
ered diffusivities are 5×10−5, 1×10−4, and 5×10−4 m2 s−1.
This range comprises relatively low diffusivities, which are
characteristic for the deep central Baltic Sea, and fairly high
values, which are more representative for coastal mixing (as
can be expected in the shallow Eckernförde Bight).

2.1.3 Boundary conditions

The atmospheric boundary conditions of our model are
set by a reanalysis from the Swedish Meteorological and
Hydrological Institute (SMHI). We use the results of the
reanalysis framework as a means to interpolate (patchy)
observations in time and space. The underlying atmo-
spheric model features a horizontal resolution of 11 km.
For the period 2000 to 2015 we use RCA4 (Samuelsson
et al., 2015, 2016). RCA4 data are available only until
2015. Hence, for the period 2016 to 2018 we switched
to another product: UERRA (regional reanalysis for Eu-
rope; https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-uerra-europe-complete?tab=overview, last ac-
cess: 15 July 2021). UERRA is more advanced but does not
include “spectral nudging” to the large-scale atmospheric
circulation. This detail may allow for unrealistic shifts in
the trajectories of low-pressure systems. Fortunately, for
the time and location under consideration here, a rough
comparison with the observations from Kiel lighthouse (in
position 54.3344◦ N, 10.1202◦ E) showed a generally good
agreement between reanalysis and direct observations (not
shown).

A key element of regional ocean circulation model con-
figurations are artificial boundary conditions introduced to
limit the model domain. Typically, the choice of the extent of
the model domain is enforced by computational capabilities
rather than by scientific necessity. This can be problematic
because boundary conditions are known to introduce spu-
rious effects (e.g., Jensen, 1998; Blayo and Debreu, 2005;
Herzfeld et al., 2011). Our choice is pragmatic in that we
choose a rigid wall (such as Carton and Chao, 1999; Dietze
et al., 2014). In combination with our spacial discretization
(Arakawa B; Arakawa and Lamp, 1977) this necessitates a
no-slip boundary condition which removes kinetic energy.
By this choice, we may underestimate the effect of water

entering and leaving the EB. This factor will be considered
when analyzing the model results.

The water exchange across the rigid wall boundary con-
dition is mimicked by restoring to prescribed temperature,
salinity, and sea surface height values at the model bound-
aries only. There is no restoring inside EB, and there are
no tides because the impact of tides is negligible in the
Baltic Sea. For sea surface height we restore it to pre-
scribed values taken from an oceanic reanalysis carried out
with MOMBA (Dietze et al., 2014). MOMBA differs from
MOMBE in that it covers the entire Baltic Sea with a hor-
izontal resolution of 1 nautical mile, while MOMBE intro-
duced here covers the EB only – albeit with much higher
resolution (100 m). For the sake of consistency, MOMBA
has been integrated for the entire hindcast period 2000–
2018 using the atmospheric forcing described above (which
differs from Dietze et al., 2014). For temperature, salinity,
and oxygen we restore MOMBE at its horizontal bound-
aries with Kiel Bight to interpolated measurements from
station Boknis Eck at the entrance of EB (Lennartz et al.,
2014, http://www.bokniseck.de/, last access: 15 July 2021,
http://doi.pangaea.de/10.1594/PANGAEA.855693).

2.1.4 Sea ice

The focus of our investigation is on ice-free seasons. We
will show in Sect. 4.1 that the memory of the system un-
der consideration, as given by residence times in Eckernförde
Bight, is less than a month. This suggests that sea ice dynam-
ics are rather irrelevant to the processes and seasons exam-
ined here. Even so, for the sake of completeness, we report
that our ocean component is coupled to a dynamical sea ice
module, the NOAA’s Geophysical Fluid Dynamics Labora-
tory (GFDL) sea ice simulator (SIS). The SIS uses elastic–
viscous–plastic rheology adapted from Hunke and Dukow-
icz (1997). We use the exact same settings described in Di-
etze et al. (2020) (which are identical to the settings in Dietze
et al., 2014, except for switching to levitating sea ice).

2.1.5 Artificial clocks

In order to facilitate the dissection of local versus remote pro-
cesses influencing the oceanic oxygen concentrations in EB,
we introduce two artificial tracers or “clocks” to the ocean
circulation model (following an approach similar to Dietze
et al., 2009). Both clocks behave like dyes in that they are
subject to transport processes just like temperature, salinity,
and dissolved oxygen. In addition to being transported, the
clocks continuously count up time in every grid box. The
first clock is reset to zero whenever a water parcel reaches
the ocean surface. Thus, it measures the time elapsed since a
water parcel had been in contact with the atmosphere. This
time is also referred to as the age of the water. The second
clock is reset to zero at the eastern boundaries of the model
domain. Thus, it measures the time elapsed since water en-
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tered EB. This time is also referred to as the residence time
of water in EB.

2.1.6 Oxygen

Our dissolved oxygen module is dubbed EckO2 module
(from Eckernförde O2). The module is very similar to the
OXYCON approach that Bendtsen and Hansen (2013) used
and also Lehmann et al. (2014). A schematic representation
of EckO2 is given in Fig. 3. Following Bendtsen and Hansen
(2013), the local development over time of dissolved oxygen,
∂O2
∂t

, is defined by

∂O2

∂t
= A(O2)+D(O2)+ S(O2), (1)

where A und D denote the divergence of the 3-D advective
and diffusive fluxes as calculated by the GCM. S denotes bio-
geochemical oxygen sources and sinks given by the model
parameters opro at the sunlit sea surface, by orewa at depth
below the compensation depth zco, and by orese in the low-
ermost wet model grid box. These parameters determine how
much oxygen is generated by primary production (opro) and
how much is consumed at depth (orewa) and in the sediment
(orese). The respective parameter choices are based on litera-
ture values listed in Table 1. Following Babenerd (1991) and
based on Ærtebjerg et al. (1981) we assume that the subsur-
face oxygen consumption rates are rather uniform throughout
KB, EB, and up into the Danish straits. This assumption is
necessitated by our lack of direct measurements of consump-
tion rates in EB. EckO2 prescribes climatological monthly
mean consumption rates.

Note that our choice of oxygen consumption rates (Ta-
ble 2) corresponds to a best guess at the higher end of pub-
lished estimates (Table 1). To this end the simulations includ-
ing these local sources and sinks of oxygen provide an upper
bound on the effects of local biotic processes on local oxygen
dynamics in EB. A lower bound is explored by setting local
consumption and production to zero.

2.2 Observations

We use data from the regular monitoring program of the Lan-
desamt für Landwirtschaft, Umwelt und ländliche Räume
(LLUR). Respective approximate monthly observations of
salinity, temperature, and oxygen covered the entire hindcast
period at the monitoring station Buoy 2a (location marked
in Fig. 2). Typical surface concentrations of dissolved oxy-
gen are around a few hundred millimoles O2 per cubic me-
ter (mmolO2 m−3), predominantly set by physical solubility
as a function of temperature and salinity (and rather con-
stant atmospheric concentrations). At depth, however, oxy-
gen sinks can accumulate oxygen deficits until critical thresh-
olds for the survival of animal or even plants are under-
cut. Common denominations for critical thresholds are hy-
poxic, suboxic, and anoxic conditions. Their respective val-
ues are, however, fuzzy. Here, we follow Gray et al. (2002)

and define the threshold values for hypoxia as a concentration
of dissolved oxygen of 2 mgO2 L−1, which corresponds to
≈ 60 mmolO2 m−3. The relevance of this threshold is that it
limits the survival of most fish (Hofmann et al., 2011). In ad-
dition we consider a second threshold of 4 mgO2 L−1 corre-
sponding to≈ 120 mmolO2 m−3. This value is used as an in-
dicator for the eutrophication of stratified water bodies (such
as EB) by the Baltic Marine Environment Protection Com-
mission (Helsinki Commission – HELCOM, 16th Meeting of
the Intersessional Network on Eutrophication Helsinki, Fin-
land, 29–30 January 2020), and as such it is of relevance to
the stakeholder LLUR.

3 Ensemble generation

Among the challenges in simulating oxygen dynamics is
that both biotic parameters (determining oxygen respiration;
Sect. 2.1.6) and the antagonistic abiotic parameters (that con-
trol ventilation with surface water high in oxygen such as, for
example, vertical diffusivity; Sect. 2.1.2) are uncertain. Our
approach is to run an ensemble of simulations encompass-
ing a plausible range of settings. These settings are listed in
Table 2. We compare low, medium, and high levels of dif-
fusivity (tagged LoMix, MedMix, and HighMix, respectively)
and, further, simulations which totally neglect local sources
and sinks of oxygen (tagged Rem for “remote biotic effects
only”) versus those featuring a best guess of local sources
and sinks that are on the higher end of published estimates
(cf. Table 1 with Table 2). This section identifies the most re-
alistic simulations which will be considered in the following.
The ultimate goal is to chose parameter settings which cover
the contemporary uncertainty range.

Figure 4 shows Taylor diagrams which compare simulated
and observed temperature, salinity, and oxygen. The simula-
tions with high diffusivity (HiMix and HiMixRem) feature the
lowest performance in reproducing the observed variability
in temperature, salinity, and oxygen. This is consistent with
an assessment of simulated velocities by Marlow (2020). We
thus discard these simulations from the analysis. The more
realistic simulations LoMix and HiMix are very similar irre-
spective of whether we account for local sources and sinks
of oxygen or not. We conclude (from Fig. 4) that the lower
values for the diffusivity are more realistic and that local
sources and sinks of oxygen are apparently of minor impor-
tance within EB.

Figure 5 shows simulated and observed oxygen concentra-
tions at the bottom of the monitoring station Buoy 2a for the
years 2000–2015. The respective months of April to October
are shown. November to March are omitted because these
months feature high concentrations of dissolved concentra-
tions beyond our scope of interest. The overall impression is
that the model retraces the dynamics of temperature, salin-
ity, and oxygen reasonably well. Figure 6 provides a more
quantitative estimate of the fidelity in reproducing hypoxic
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Figure 3. Schematic of dissolved oxygen module EckO2. EckO2 calculates sinks and sources of oxygen throughout the water column
for every grid box. These terms are then passed to the 3-D general ocean circulation that handles the effect of advection and diffusion.
The velocity of the air–sea gas exchange is determined by the piston velocity kgt. Above the compensation depth zco, primary production
produces oxygen at a rate prescribed by the model parameter opro. Below the compensation depth zco, respiration of organic matter consumes
dissolved oxygen at a rate prescribed by orewa. At the bottom, prescribed oxygen fluxes orese mimic the oxygen consumption of the sediment
that is fueled by the transfer across the water–sediment boundary. Table 2 summarizes respective parameter settings.

events (as defined by the 120 mmolO2 m−3 introduced in
Sect. 1) at the monitoring station Buoy 2a. It shows sensitiv-
ity and specificity achieved with the simulations LoMix and
MedMix that account for local sources and sinks of oxygen:
LoMix typically simulates ≈ 70% true positives and ≈ 10%
false positives. MedMix, in comparison, simulates only sev-
eral percent false positives but fails to identify every third
event (i.e., ≈ 70% true positives).

4 Results

We start with exploring the simulated residence and venti-
lation timescales (Sect. 4.1) for the simulations LoMix and
MedMix. This provides a base for understanding the dynam-
ics behind our hindcast presented in Sect. 4.2. A complemen-
tary case study of the intense hypoxic event 2017 is presented
in Sect. 4.3. Section 4.4 describes the application of artificial
intelligence for feature selection and extraction of the predic-
tive capability of monitoring data at station Boknis Eck at the

entrance of EB to forecast hypoxia within EB at the monitor-
ing station Buoy 2a.

4.1 Residence and ventilation times

The estimates of residence and ventilation times are calcu-
lated with “artificial clocks”, as described in Sect. 2.1.5. Both
model versions LoMix and MedMix show similar results: the
water with the longest residence time is found at the end of
EB in the interior close to the city of Eckernförde (Fig. 7).
Typical values are of the order of 1 month for both exemplary
months, August and October. Overall, MedMix shows lower
values than LoMix indicating that vertical diffusive processes
promote the horizontal exchange of water between EB and
KB. This makes sense because the longest residence times
can be found at the surface (Fig. 8), suggesting that, on av-
erage, water enters the bight at depth and leaves the bight at
the surface. A stronger vertical diffusivity is then associated
with an accelerated rate of surface water renewal by deep
water with shorter residence times.

Biogeosciences, 18, 4243–4264, 2021 https://doi.org/10.5194/bg-18-4243-2021



H. Dietze and U. Löptien: Retracing hypoxia in Eckernförde Bight 4249

Table 1. Estimates of oxygen consumption and production converted to respective model parameters of the EckO2 module. Conversions may
include division by the average water depth and area of Eckernförde Bight (see Sect. 2.1.1), a O2 : C ratio of 1.1, and a C : P ratio of 106.

Reference Description opro orewa orese
(mmolO2 m−2 d−1) (mmolO2 m−3 d−1) (mmolO2 m−2 d−1)

Babenerd (1991) In situ measurements during summer strat-
ification 1985 and 1986 at the monitoring
station Boknis Eck

3.75

Bendtsen and Hansen (2013) Prescribed parameters in a model of the
Baltic Sea–North Sea transition which
yielded a good fit to observed oxygen con-
centrations

2.75 0.36 3.1

Rahm (1987) Budget calculations for the Baltic Proper 0.26

Noffke et al. (2016) In situ measurements with a lander in the
eastern Gotland Basin

5.8–20.8

Pers and Rahm (2000) Budget calculations for the Baltic Proper 1.1–2.4

Smetacek (1980, 1985) In situ measurements in the western Kiel
Bight with detritus traps in June (assuming
negligible fraction of permanent burial)

1.6

Smetacek (1980, 1985) In situ measurements in the western Kiel
Bight with detritus traps in August (assum-
ing negligible fraction of permanent burial)

6.3

Haustein (2002) Average (dry days) oxygen consumption
equivalent of Kiel Bülk sewage effluent,
distributed evenly over Eckernförde Bight

0.04

Haustein (2002) Episodic, extreme discharge event during
18 and 19 July 2002 of the Kiel Bülk
sewage plant, converted into oxygen con-
sumption equivalent distributed evenly over
Eckernförde Bight

0.36

Nausch et al. (2011) Average Kiel Bülk sewage phosphorous ef-
fluent, converted into oxygen consumption
assuming that it fuels organic matter pro-
duction that is remineralized in Eckernförde
Bight

0.03

Nausch et al. (2011) Phosphorous loads of rivulet Schwentine
that drains into Kiel Bight, converted into
oxygen consumption assuming that it fu-
els organic matter production that is entirely
remineralized at depth in Eckernförde Bight

0.18

The distribution of ventilation times or age is similar to
that of residence times in that the highest values are generally
found within the bight towards Eckernförde (Fig. 9). The hor-
izontal gradient is more pronounced in the simulation with
lower mixing, while higher prescribed vertical background
mixing equalizes the effective ventilation processes horizon-
tally. In terms of vertical distribution, age has, in contrast to
the residence time, high values at depth and low at the sur-
face, where it is reset to zero (Fig. 10).

In summary, we find that residence times and age are of
similar magnitude. This suggests that the first order control
of processes that determine oxygen concentrations in EB is
an antagonistic interplay of inflowing water (generally low
in oxygen) and the local aeration by vertical exchange with

oxygenated surface waters. Biogeochemical processes in the
interior of EB are apparently of minor importance for the
oxygen dynamics within EB.

4.2 The typical seasonal cycle inside EB

Figure 5 shows a comparison between the observed and sim-
ulated temporal evolution of dissolved oxygen concentra-
tions at the bottom of the monitoring station Buoy 2. Most
prominent is a pronounced seasonal cycle. The generic expla-
nation for such seasonal cycles in such latitudes is that tem-
peratures and biomass production in the surface waters ramp
up in spring, being driven by enhanced levels of photosyn-
thetically available radiation (note, however, that there is an
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Table 2. List of model parameter settings for the EckO2 module and diffusive background mixing in MOMBE: κv refers to vertical back-
ground mixing (diffusivity), and opro, orewa, and orese refer to monthly (one value per month starting with the January value) oxygen
production, water column oxygen respiration, and oxygen consumption by the sediment, respectively (cf. Fig. 3). Values for orewa and orese
are derived from the published estimates listed in Table 1; opro is calculated as residual assuming instant equilibration of sedimentary fluxes.

Tag Description κv opro orewa orese
(m2 s−1) (mmolO2 m−2 d−1) (mmolO2 m−3 d−1) (mmolO2 m−2 d−1)

LoMix Low vertical background mixing of
momentum and tracers. Local oxy-
gen consumption and production
rates at the upper limit of published
estimates.

5× 10−5 48 47 47 46 46 45
48 50 50 49 48 48

3.8 3.8 3.8 3.8 3.8
3.8 3.8 3.8

4 3.5 3 2.5 2.1 1.6
3.95 6.3 5.8 5.4 4.9
4.4

LoMixRem Low vertical background mixing of
momentum and tracers. No local
oxygen consumption and produc-
tion.

5× 10−5 0 0 0 0 0 0 0 0 0 0
0 0

0 0 0 0 0 0 0 0 0 0
0

0 0 0 0 0 0 0 0 0 0
0 0

MedMix Medium vertical background mix-
ing of momentum and tracers. Lo-
cal oxygen consumption and pro-
duction rates at the upper limit of
published estimates.

1× 10−4 48 47 47 46 46 45
48 50 50 49 48 48

3.8 3.8 3.8 3.8 3.8
3.8 3.8 3.8

4 3.5 3 2.5 2.1 1.6
3.95 6.3 5.8 5.4 4.9
4.4

MedMixRem Medium vertical background mix-
ing of momentum and tracers. No
local oxygen consumption and pro-
duction.

1× 10−4 0 0 0 0 0 0 0 0 0 0
0 0

0 0 0 0 0 0 0 0 0 0
0

0 0 0 0 0 0 0 0 0 0
0 0

HiMix High vertical background mixing
of momentum and tracers. Local
oxygen consumption and produc-
tion rates at the upper limit of pub-
lished estimates.

5× 10−4 48 47 47 46 46 45
48 50 50 49 48 48

3.8 3.8 3.8 3.8 3.8
3.8 3.8 3.8

4 3.5 3 2.5 2.1 1.6
3.95 6.3 5.8 5.4 4.9
4.4

HiMixRem High vertical background mixing of
momentum and tracers. No local
oxygen consumption and produc-
tion.

5× 10−4 0 0 0 0 0 0 0 0 0 0
0 0

0 0 0 0 0 0 0 0 0 0
0

0 0 0 0 0 0 0 0 0 0
0 0

ongoing discussion on this issue: Behrenfeld, 2010; Arteaga
et al., 2020; Smetacek, 1985). The biomass eventually sinks
to depth where it degrades and issues oxygen consumption.
Later in the season, the water column stratifies, and the sur-
face layer heats up, effectively creating a barrier to the ex-
change of bottom water (deprived of oxygen) and the oxy-
genated surface waters. As autumn approaches, the surface
ocean cools again and weakens the stratified barrier to ver-
tical mixing. This facilitates the wind-driven mixing events
that come along with more unstable autumn weather. In win-
ter, convective mixing homogenizes the entire (rather shal-
low) water column vertically (e.g., Fennel and Testa, 2019;
Petenati, 2017). Apparently the model captures this dynamic
well; i.e., the ensemble mean of LoMix and MedMix features
a high visual correspondence between the respective curves
in Fig. 5 (see Fig. 4 for more quantitative estimate).

Based on the hindcast simulation from 2000 to 2015 hy-
poxic events at station Buoy 2a are most common in Au-
gust and October with a local minimum of occurrences in
September (Fig. 11). This is inconsistent with the generic ex-
planation outlined above, where a period of ever decreasing
levels of dissolved oxygen ends in autumn when increasing
winds and a pronounced air–sea heat transfer promotes net
ventilation. So why do hypoxic conditions deep in EB at sta-
tion Buoy 2a become more frequent after the September set-
back despite increasing winds and decreasing thermal strat-
ification? The histograms of bottom oxygen concentrations
observed at station Boknis Eck, situated at the entrance to
EB (and used to prescribe the conditions of water flowing
into EB in the model), suggest that particularly low oxygen
concentrations are more frequent in October than in August
(Fig. 12). Hence, water entering EB from KB in October
is more likely to “import” hypoxia. Note that these consid-
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Figure 4. Model assessment (Taylor plots) at station Buoy 2a in the interior of EB (Fig. 2). Observational data and model output refer to
the 2000 to 2015 period. The simulation tags are defined in Table 2: LoMix, MedMix, and HiMix denote the levels of diffusive background
mixing. Rem indicates remote effects of biogeochemical sources and sinks of oxygen only (i.e., no local oxygen consumption in EB.

erations are in line with simulations LoMixRem/LoMix and
MedMixRem/MedMix, each pair showing in Fig. 4 very little
effect of local oxygen consumption within EB, even though
(1) the respective biotic local oxygen consumptions are cho-
sen to represent the upper limit of published estimates and
(2) the water exchange with KB is hampered by a rigid wall
boundary condition.

We conclude that the typical oxygen deficit in late sum-
mer is imported along with water from the KB, rather than
being produced locally in EB. The following Sect. 4.3 will
elucidate the underlying succession of events by means of a
detailed case study.

4.3 Hypoxic event 2017

In fall 2017 a particularly pronounced hypoxic event oc-
curred and led to a mass fish-kill incidence. In the following,
we analyze this event in the MOMBE LoMix simulation.

Figure 13 shows a sequence of snapshots of simulated hy-
poxia in EB, starting 20 August and ending at peak con-
ditions on 10 September. Over the course of these several
weeks, EB loses oxygen, and hypoxic waters apparently en-
ter the bight at the bottom from the east and move upwards.

The notion of “imported” hypoxic conditions is backed by
the Hovmöller diagrams of simulated age and residence
times at the monitoring station Buoy 2a in Fig. 14: dur-
ing the buildup of the hypoxic event in EB, the residence
time features a local minimum deep inside EB. This suggests
the prevalence of water masses “recently imported” from
KB (Fig. 14b). Simultaneously, the age features a maximum
(Fig. 14a), indicating that the recently imported hypoxic wa-
ters are well shielded from ventilation by oxygenated sur-
face waters. Further evidence is provided in Fig. 15, show-
ing that the oxygen decline in EB is contemporaneous with
winds blowing out of the bight. These winds drive an over-
turning circulation, shown in Fig. 16, with surface waters be-
ing pushed out of the bight and bottom waters, for continuity
reasons, being sucked into the bight at depth. Consequently,
we find in Fig. 15 that the oxygen decline at the entrance
of the bight (at station Boknis Eck) occurs earlier than the
oxygen decline inside the bight (at station Buoy 2a) – just
as expected in a system where water enters the bight at the
bottom.

During the relaxation phase that terminates the 2017 hy-
poxic event, the processes are reversed: Fig. 17 shows that the
winds are blowing consistently into the bight for more than
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Figure 5. Simulated and observed oxygen concentrations at the bot-
tom (20 m depth) of the monitoring station Buoy 2a. Panels (a–c)
refer to oxygen concentrations, temperature, and salinity, respec-
tively. Red crosses denote observations. The black line denotes the
ensemble mean of the simulations MedMix and LoMix. The gray
line envelopes the ensembles’ extremes at any given time. The hor-
izontal dashed cyan and green lines in panel (a) show 120 and
60 mmolO2 m−3 hypoxia thresholds, respectively.

a week. Consequently, water is pushed into the bight at the
surface, having nowhere to go. Some of the well-oxygenated
surface water is subducted to depth and subsequently leaves
EB at depth. Just as expected, the increase in oxygen at the
monitoring station Buoy 2a inside the bight occurs earlier
than the corresponding oxygen increase at the entrance sta-
tion Boknis Eck. The oxygen levels at Boknis Eck now lag
behind Buoy 2a by approximately 1 week.

In summary, we identified a governing mechanism by
which EB is – depending on wind direction – either (1) im-
pacted by imported low-oxygenated waters from KB or (2)
being flushed by oxygenated surface water that is subducted
to depth in the interior of EB and is exported at depth to KB
– whereby EB is effectively ventilating KB.

Open questions, however, remain. Of particular interest
is the questions of why some years are hit especially hard
by hypoxia and whether such events are predictable days or
weeks in advance. Such predictions may, for example, allow

Figure 6. Fidelity of hindcasted hypoxic events (oxygen threshold
of 120 mmolO2 m−3) at station Buoy 2a.

for netting and landing of doomed fish. The following section
applies artificial intelligence (AI) to pursue these questions.

4.4 AI-based feature selection and time series
prediction

The following section explores the statistical relations be-
tween the simulated time series at station Buoy 2a deep in the
bight and Boknis Eck at the entrance of the bight. The major
aims are (1) to gain further mechanistic insight and (2) to de-
velop a surrogate model for the stakeholder that may be im-
plemented on off-the-shelf desktop computers, smart phones,
or even on very low cost (< 10 EUR) embedded devices
rather than necessitating access to a super-computing facil-
ity (as is the case with the full-fledged coupled model). This
section is motivated by recent and encouraging success in
emulating general circulation models (e.g., Castruccio et al.,
2014), ecosystem models (e.g., Fer et al., 2018), the tremen-
dous success in machine learning and data-driven methods
in fluid dynamics (as summarized, for example, by Brunton
et al., 2020a), and the sneaking suspicion that “. . . the most
pressing scientific and engineering problems of the modern
era are not amenable to empirical models or deviations of
first principles. . . ” (Brunton et al., 2020b).

In the following, we describe the application of shallow
and deep feed-forward artificial neural networks (ANNs) to
forecast bottom oxygen concentrations deep inside EB at the
Buoy 2a monitoring station 2 weeks in advance from the at-
mospheric conditions and the regularly sampled monitoring
station Boknis Eck at the entrance of the bight. The forecast
range is chosen as a compromise between the time needed for
mitigation measures (e.g., by netting and landing of doomed
fish) and forecast accuracy which typically degrades with
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Figure 7. Simulated climatological estimate of the residence time of water parcels in EB. The units are days elapsed since the water flushed
into the bight. The estimate refers to the longest residence time found in local water columns. Panels (a) and (b) refer to August calculated
by the simulations LoMix and MedMix, respectively. Panels (c) and (d) refer to October calculated by the simulations LoMix and MedMix,
respectively. Note that the model domain extends beyond the eastern boundary shown here (see also Fig. 2).

Figure 8. Simulated climatological estimate of the residence times of water parcels in EB. The units are days elapsed since the water
flushed into the bight. Sections along EB are shown. Panels (a) and (b) refer to August calculated by the simulations LoMix and MedMix,
respectively. Panels (c) and (d) refer to October calculated by the simulations LoMix and MedMix, respectively. Note that the model domain
extends beyond the eastern boundary shown here (see also Fig. 2).

forecasting range. During the course of this exercise we will
use different combinations of predictors (or input data) and
test their impact on the forecast skill – a process also re-
ferred to as capacity estimation and feature selection (e.g.,
Sbalzarini et al., 2002). Note, however, that a comprehensive
analysis of time series forecasting, which must include tradi-
tional statistical approaches in addition to machine learning

methods (Makridakis et al., 2018), is beyond the scope of this
article.

4.4.1 Capacity estimation and feature selection

For training the ANNs, we draw our training (80 %) and val-
idation data (20 %) randomly from the 2000 to 2016 model
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Figure 9. Simulated climatological estimate of local ventilation. The color shading denotes the time elapsed (age) since bottom water has
been in contact with the atmosphere in units of days. Panels (a) and (b) refer to August calculated by the simulations LoMix and MedMix,
respectively. Panels (c) and (d) refer to October calculated by the simulations LoMix and MedMix, respectively. Note that the model domain
extends beyond the eastern boundary shown here (see also Fig. 2).

Figure 10. Simulated climatological estimate of local ventilation. The color shading denotes the time elapsed (age) since water parcels
have been in contact with the atmosphere in units of days. Sections along EB are shown. Panels (a) and (b) refer to August calculated by
the simulations LoMix and MedMix, respectively. Panels (c) and (d) refer to October calculated by the simulations LoMix and MedMix,
respectively. Note that the model domain extends beyond the eastern boundary shown here (see also Fig. 2).

hindcast. We hand-design features (input data) and test their
respective capacity to forecast bottom oxygen concentrations
at station Buoy 2a (target data). Hand-designed features are
“. . . two edged swords” (e.g., Reichstein et al., 2019): they
can be seen as an advantage because they give us control of
the explanatory drivers which may be used to promote sys-
tem understanding. On the other hand, hand-designed fea-
tures are typically suboptimal. To this end our results here

provide a lower bound on the potential of ANNs for the task
at hand.

The ANN is trained using the Levenberg–Marquardt al-
gorithm (Marquardt, 1963) applied to neural network train-
ing following Hagan and Menhaj (1994) and Hagan et al.
(1996). Each training is repeated 30 times, each of which
may yield (slightly) differing results because, depending on
the (random) initialization of weights, the algorithm may ter-
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Figure 11. Simulated climatological (2000–2015) occurrence of
hypoxia at the monitoring station Buoy 2a. Occurrence refers to the
sum of suboxic (i.e., < 120 mmolO2 m−3) model grid boxes, iden-
tified in climatological daily model output. From November to June
suboxic conditions were absent.

Figure 12. Histogram of observed climatological bottom oxygen
concentrations at Boknis Eck (capped at 100 mmolO2 m−3).

minate in potentially differing local optima of the cost func-
tion. As cost function we choose mean-squared errors (calcu-
lated from MOMBE output and the ANN prediction designed
to mimic the MOMBE output). Figure 18 shows respective
cost as errors relative to a naive biweekly persistency fore-
cast based on bottom oxygen concentrations at the monitor-
ing station Boknis Eck: apparently the ANN’s performance
converges at 45 % relative to the persistency forecast. Defin-
ing this as the Pareto frontier suggests a Pareto optimal of
56 %, which corresponds to one or two nodes. The idea of
opting for a rather parsimonious two-node model that scores
80 % of the Pareto Frontier rather than 100 % is to reduce the
risk of overfitting which may hinder generalization. Further,
parsimonious models are easier to interpret than their com-
plex counterpart such that their robustness is easier to assess.
This is especially important because we have no straightfor-
ward way to extract human semantics from the “rules” the
neural network learned during the optimization process that
related our input features to the target bottom oxygen con-
centrations at station Buoy 2a.

We start with a shallow (one input, one hidden, and one
output layer) ANN utilizing the full vertical profiles of tem-
perature, salinity, and oxygen along with a biweekly wind

forecast totaling 106 input features (given by the three 1 m
resolution vertical profiles of temperature, salinity, and oxy-
gen down to 26 m depth and the 14 daily forecasts of zonal
and meridional winds each). This setup is based on an opti-
mistic estimate of the number of features available to stake-
holders. Specifically, we assume to have access to a correct
biweekly wind forecast along with one full vertical profile
each of temperature, salinity, and oxygen at the monitoring
station Boknis Eck located at the entrance of EB (i.e., the 106
features introduced above).

Figure 18 suggests that the Pareto Frontier is at 45 %, cor-
responding to a 55 % reduction in error relative to the persis-
tence model. A total of 80 % of this yields a Pareto Optimal
of 56 %. This corresponds to one or two nodes. Additional
tests with deeper ANNs featuring up to 10 hidden layers with
two nodes were unsuccessful in that respective errors were
always higher than 50 %. We conclude that a simple two node
shallow ANN already features a reasonable performance, and
two input features, of the 106 tested, may suffice to capture
the main effects.

Table 3 summarizes our effort to identify the most pre-
dictive features by backward elimination (e.g., Dietterich,
2002). Using combinations of only 15 features comprised of
biweekly zonal wind speed and the bottom values of either
temperature, salinity, or oxygen yielded a moderate degra-
dation in performance of only 10 % (Table 3 entries 2 to 4).
Pushing further we identified a combination of two features
only that are, on the one hand, within this 10 % degradation
and, on the other hand, especially easy to measure for stake-
holders: surface and bottom temperatures at station Boknis
Eck. Contrary to intuition, adding wind forecasts does not
improve the ANNs fidelity (compare entries 5 and 6 in Ta-
ble 3). Even so, the ANN fits the training and validation data
remarkably well (Fig. 19). We conclude that the ANN’s bi-
weekly forecast exploits links other than those being direct
consequences of the wind-driven inflow versus ventilation
mechanism identified in Sect. 4.3. Section 4.4.2 puts this ex-
ploitation to the test using independent test (model) data.

4.4.2 ANN generalization

This section discusses the fidelity of the two-node ANN us-
ing simulated bottom and surface temperatures identified in
Sect. 4.4.2 as being parsimonious but – nevertheless – yield-
ing reasonable results compared to more complex architec-
tures, such as deeper nets using more nodes and input data.
Here, we use independent test data covering the years 2016 to
2018 of our hindcast simulation. These data have been used
neither in training nor during validation so far. To rate the
forecast it is compared to the “persistence model”, which as-
sumes that the oxygen concentrations at station Boknis Eck
appear 2 weeks later at station Buoy 2a (green line in Fig. 20).
The first striking impression of the close-ups in Fig. 20 is
that all years feature a similar seasonal decline in bottom
oxygen in autumn and this decline generally closely resem-
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Figure 13. Simulation (LoMix) of the 2017 hypoxic event. The colors refer to oxygen concentrations (in mmolO2 m−3). The contours in
cyan and magenta show the 60 and 120 mmolO2 m−3 isolines. The left column (a–d) shows oxygen concentrations on the sea floor. The
right column (e–h) shows a section through the bight with the city of Eckernförde to the left and the entrance to the bight to the right.
(Corresponding animations featuring daily resolution named LoMix_O2_Bottom_2015.m4v and LoMix_O2_zonal_2017.m4v are archived at
https://doi.org/10.5281/zenodo.4271940.) Note that the model domain extends beyond the eastern boundary shown here (see also Fig. 2).

bles the oxygen decline in Boknis Eck 2 weeks in advance.
Large interannual differences, however, occur at the onset
of the trend reversal. This “return point” in time is not cap-
tured well by the persistency model. These results are con-
sistent with our results in Sect. 4.3 showing that the decline
is driven by the import of low-oxygenated waters from KB.

Ventilation, however, takes place in the interior of the bight,
and its signal reaches station Boknis Eck at the entrance af-
terwards such that we indeed expect no predictive power of
the persistency model under these circumstances. To this end,
our ANN clearly outperforms the persistency model in that it
predicts an earlier and more realistic recovery of oxygen val-
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Table 3. Capacity estimation of input features. This table relates the fidelity of biweekly walk-forward ANN forecasts of bottom oxygen
concentrations at the monitoring station Buoy 2a with data from station Boknis Eck fed to the ANN. The average of wind speed squared
refers to respective biweekly forecasts of zonal winds. The error is the RMS deviation between the (computationally cheap) ANN projection
and simulated (computationally expensive; full-fledged coupled biogeochemical ocean circulation model) bottom oxygen concentrations at
Buoy 2a relative to the respective RMS of the persistence model (which naively assumes that Boknis Eck bottom oxygen concentrations will
persist for 14 d at Buoy 2a.

Input features Error (%)

Average of zonal and meridional wind speed squared, full vertical profiles
(26 depth levels) of O2, temperature, and salinity

54

Average of zonal wind speed squared, bottom O2 64
Average of zonal wind speed squared, bottom salinity 65
Average of zonal wind speed squared, bottom temperature 62
Average of zonal wind speed squared, surface and bottom temperatures 58
Surface and bottom temperatures 58

Figure 14. Hovmöller diagrams of simulated water age and res-
idence time at the monitoring station Buoy 2a (a and b, respec-
tively). The oval marking in August–September highlights the 2017
hypoxic event. The vertical gray line marks the start of the relax-
ation phase ending the hypoxic event.

ues during the end of summer/beginning of autumn despite
the ANN also exclusively relying on data at the entrance at
station Boknis Eck.

The ANN essentially and successfully links information
regarding season (“derived” from sea surface temperature)

Figure 15. Simulated temporal evolution of (a) wind direction,
(b) wind speed, and (c) bottom oxygen concentrations during the
buildup of the 2017 hypoxic event. The black and red lines in
panel (c) refer to station Boknis Eck at the entrance and station Buoy
2a deep inside EB, respectively.

and stratification (“derived” from the temperature difference
between surface and depth) at the entrance of the bight with
oxygen concentration in the interior of the bight – without
utilizing information on winds. This clearly emphasizes the
role of stratification in putting an end to hypoxic events: EB
is in the latitudes of prevailing westerlies, with “prevailing”
entailing that the local winds shift back and forth as the
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Figure 16. Simulated, daily mean zonal currents during the buildup
of the 2017 hypoxic event shown in Figs. 13–15. Green to blue
colors characterize flows to the east (towards the KB). Yellow to
red colors indicate flows to the west (into EB). The unit is kilo-
meters per day (kmd−1). The depicted section has an extension of
≈ 13km. Note that the model domain extends beyond the eastern
boundary shown here (see also Fig. 2).

weather systems travel east. Any of these wind shifts from
westerly to easterly may end an hypoxic event in EB – if the
stratification is weak enough (and winds are strong enough)
such that oxygenated surface water can be pushed to depth.
In a nutshell, if the stratification has sufficiently weakened,
you know that the next wind shift will subduct oxygenated
water, thereby ending the hypoxic event.

In summary, the ANN features a remarkable performance
given that it simply relies on two temperature measurements
at the entrance of the bight. This performance is owed to the
importance of stratification in setting the length of hypoxic
events: eroding stratification preconditions the wind-driven
downwelling or subduction of oxygenated surface waters

Figure 17. Simulated temporal evolution of (a) wind direction, (b)
wind speed, and (c) bottom oxygen concentrations during the relax-
ation phase that terminates the 2017 hypoxic event. The black and
red lines in panel (c) refer to station Boknis Eck at the entrance and
station Buoy 2a deep inside EB, respectively.

Figure 18. ANN error relative to naive persistency forecast versus
the number of neurons in the hidden layer. The black line features
the best ANN parameter setting found within an ensemble of 30
optimizations for each of the number of neurons tested. The gray
bars denote the ensemble’s standard deviations.

which ends hypoxic events. Given that the EM is positioned
in the prevailing westerlies, the winds regularly change to
easterlies, but this only drives substantial oxygenation (re-
placement) of bottom waters if the stratification is weak
enough to be penetrated. Hence, there is a high explanatory
power of surface and bottom temperatures at the entrance of
EB to predict the dynamics of hypoxia deep in EB.
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Figure 19. Walk-forward performance of ANN based on training
and testing data (corresponding to 80 % and 20 % of the data shown
here). The black line shows bottom oxygen concentrations at station
Buoy 2a as simulated with the full-fledged and computationally ex-
pensive 3-D coupled ocean circulation biogeochemical model. Each
of the red dots denotes a respective biweekly walk-forward (com-
putationally cheap) ANN forecast utilizing surface and bottom tem-
peratures at station Boknis Eck only. For comparison, the green line
features a naive biweekly persistency forecast based on bottom oxy-
gen concentrations at station Boknis Eck.

5 Discussion

Oxygen concentrations are controlled by the antagonistic
interplay of respiration and ventilation processes, both of
which may respond antagonistically to climate change and
improved management of water resources (e.g., Lennartz
et al., 2014; Hoppe et al., 2013).

Our model-based analysis suggests that the variability in
the occurrence of hypoxic conditions in EB is correlated with
the high variability in wind-driven ventilation rather than
with a high variability in local respiration. This result is in
agreement with Ærtebjerg et al. (2003), who examined the
massive 2002 (one of the worst ever documented) oxygen
deficit event that encompassed the Kattegat, the Belt Sea, and
the western Baltic Sea. Back then, Ærtebjerg et al. (2003)
found no evidence for anomalous respiration patterns, i.e.,
metrics like anthropogenic phosphate loads, and the evolu-
tion of the phytoplankton spring bloom appeared to have
stayed – in contrast to the oxygen concentration – within typ-
ical bounds. This, in turn, highlighted the importance of the
variability in ventilation in shaping hypoxic events.

In our model frameworks we distinguish between two
types of ventilation: for one, vertical mixing driven by
isotropic turbulence and composed of a parameterization
of constant background mixing complemented by a surface
mixed layer model that mimics the effect of convection, shear
instability, and wind-induced turbulence (more specifically
we use the KPP scheme of Large et al., 1994). Vertical mix-

Figure 20. Walk-forward validation (generalization) of ANN. Pan-
els (a–c) refer to years 2016, 2017, and 2018. The black line shows
bottom oxygen concentrations at the monitoring station Buoy 2a as
simulated with the full-fledged and computationally expensive 3-D
coupled ocean circulation biogeochemical model. Each of the red
dots denotes a respective biweekly walk-forward (computationally
cheap) ANN forecast utilizing surface and bottom temperatures at
station Boknis Eck only. The green line features a naive biweekly
persistency forecast based on bottom oxygen concentrations from
station Boknis Eck for comparison.
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ing is difficult to constrain in models because direct observa-
tions of turbulence are rare and additional complexity arises
from numerical subtleties in models (e.g., Burchard et al.,
2008). That said, we use the fidelity of simulated tempera-
tures as a proxy for the realism of mixing rates: our simu-
lations LoMix and MedMix featuring a vertical diffusivity of
5×10−5 and 10−4 m2 s−1 both fit the observations inside the
bight reasonably well. The respective correlation coefficients
are ≈ 0.9 at a simulated standard deviation scoring ≈ 90%
of the observed (Fig. 4). This is roughly consistent with an
estimate inferred from the rate of spreading of a deliberately
released substance from Holtermann et al. (2012) who report
a basin-scale Baltic Sea vertical diffusivity of the order of
10−5 m2 s−1 with dramatically increasing values in proxim-
ity to the coast.

The other type of ventilation that is of relevance in our
coupled ocean circulation biogeochemical model is the ex-
plicitly resolved (i.e., not parameterized) wind-driven over-
turning circulation in EB (Fig. 16). There is consensus that
wind-driven vertical circulation is a key mechanism in the
Baltic Sea (e.g., Lehmann and Myrberg, 2008), including EB
(Karstensen et al., 2014). Wind-driven vertical circulation is
associated with upwelling only most of the times simply be-
cause upwelled waters are typically cold and nutrient-rich,
which may be easily traced by satellites resolving cold fila-
ments and spawning phytoplankton blooms both in space and
time. Less prominent is the effect of wind-induced down-
welling. Driven by a convergence of surface water such
events typically do not manifest themselves in surface prop-
erties and, consequently, are rarely discussed. A closer look
into our simulated seasonal cycles of the years 2016, 2017,
and 2018 (Fig. 20), however, showcases the importance of
(often ignored) wind-driven downwelling in controlling hy-
poxia in EB: we find that the minimum oxygen concentra-
tion is mainly set by the timing of the first overturning event
in late summer/beginning of autumn when winds push sur-
face waters into the bight where it is subducted, overcomes
the vertical stratification, and replaces deoxygenated bottom
waters with recently oxygenated surface waters. This explic-
itly resolved overturning cycle expands over the whole bight
and apparently exports oxygenated bottom waters, thereby
ventilating KB. Given the reasonable representation of the
seasonal cycles during the 2000 to 2016 period (Fig. 5), we
conclude that our coupled ocean circulation biogeochemical
model resolves the major processes at play – although at a
high computational cost.

Further mechanistic insight resulted from an exploration
of the relations between simulated time series at station Buoy
2a in the interior of EB and biweekly lagged series at sta-
tion Boknis Eck at the entrance of the bight using an ANN:
contrary to our intuition, an ANN fed only with information
on stratification (i.e., bottom and surface temperatures whose
difference is a measure of stratification) at the entrance of the
bight and season (i.e., surface temperature which is strongly
correlated to season) performs surprisingly well without ac-

cess to wind forecasts even though the major mechanism be-
hind the oxygen variability is wind-driven. This highlights
the importance of the preconditioning that has to precede a
ventilating overturning event: in EB, deoxygenation contin-
ues almost monotonically until destabilizing buoyancy fluxes
have eroded the stability of the water column to a point when
the next shift to easterly wind can replace the denser bottom
waters with lighter surface waters. Because synoptic weather
systems and associated wind directions have a lifetime of the
order of a week in EB, forecasts based on state of precondi-
tioning are, on average, accurate within a week.

So although the wind-driven upwelling and, especially, the
downwelling (which traditionally are not so much in focus
because their effects are not as evident at the easy-to-observe
surface) are the key process driving oxygen dynamics, we
identified the stratification to be the ultimate gatekeeper for
determining the length and severity of seasonal hypoxia in
EB. This result relates hypoxia in EB directly with climate
change because increased oceanic stratification is driven by
a warming atmosphere.

Yet caveats remain. Among those is the influence of the
waste water treatment facility Kiel Bülk. Kiel Bülk serves
310 000 citizens and discharges 19× 106 m3 treated sewage
per year into the sea close to our model boundary. Our model
calculations do not account for this because we lack respec-
tive data on sewage composition. The following back-of-the-
envelope calculation based on published data covering an ex-
treme event puts the potential influence of Kiel Bülk into
perspective: Haustein (2002) documents a discharge corre-
sponding to 24.4 t of COD (chemical oxygen demand) for the
extreme heavy rain event of 18 July 2002. This corresponds
to 7.6× 105 molO2. Our model domain covers roughly a
wet area of 120 km2 with an average depth of 11.7 m, cor-
responding to a volume of 1.4× 109 m3. Hence, assuming
that currents swept the entire discharge of 18 July into EB
where it spread out homogeneously yields a reduction of
only 1 mmolO2 m−3. This is negligible to the extent that the
assumption of instantaneous homogeneous distribution over
the entire bight holds.

Another issue that surfaced in the review process is bound-
ary conditions. Our model domain ends east of Mittelgrund
with a rigid wall which introduces spurious effects. Note that
this applies to all boundary conditions (e.g., Blayo and De-
breu, 2005; Herzfeld et al., 2011; Jensen, 1998) because there
is, inevitably, a price to be paid for the benefit of not having
to resolve the entire ocean (and pay the associated computa-
tional cost). In our case the Arakawa B model grid (Arakawa
and Lamp, 1977) discretization necessitates a no-slip bound-
ary condition, effectively taking kinetic energy out of the sys-
tem. Even so we find that the thereby (spuriously) damped
circulation is the key process in that it, on the one hand, im-
ports hypoxia into EB and, on the other hand, subducts oxy-
genated surface waters. We argue that this result is robust to-
wards the choice of boundary condition because open bound-
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ary conditions (as opposed to the rigid wall we use here) are
prone to allow an even more vivid circulation.

6 Conclusions

Oxygen concentrations are controlled by the antagonistic
interplay of respiration and ventilation processes, both of
which may respond antagonistically to climate change and
improved management of water resources (e.g., Lennartz
et al., 2014; Hoppe et al., 2013). The quantitative estimation
of respective sensitivities is painstaking also because of the
systems’ intrinsic large natural variability (e.g., Meier et al.,
2021), but it is without alternative if well-intentioned policy
is to effectively combat coastal hypoxia in a warming world
featuring already more than 60 patents on artificial down-
welling techniques (Liu et al., 2020).

We set out to dissect the mechanisms driving hypoxic
events and associated fish kills in EB and to identify the ma-
jor sources for uncertainties in the underlying model. We de-
veloped the high-resolution coupled ocean circulation bio-
geochemical model MOMBE and integrated an ensemble of
hindcast simulations covering the years 2000 to 2018. Our
analysis based on simulated and observed oxygen, tempera-
ture, and salinity along with artificial model tracers quantify-
ing residence times and local ventilation (ideal age) revealed
the two major and antagonistic processes determining oxy-
gen variability in EB. (1) The oxygen deficit in EB which
builds up every summer is imported from KB. The prevailing
westerlies push surface water out of the bight. Its replace-
ment enters the bight at depth which, in summer, taps into
the oxygen depleted deep(er) KB. Local oxygen consump-
tion in EB plays a minor role in shaping hypoxic events. (2)
Intermittent easterly winds subduct oxygenated surface wa-
ter at the end of the bight once the vertical stratification has
been sufficiently degraded in late summer/beginning of Au-
gust. The subducted water ventilates the entire EB and, as it
is exported to KB, contributes to ventilating KB.

Further, we explored the predictability of hypoxia in the
interior of EB (at station Buoy 2a) based on data from the
entrance (at station Boknis Eck). The rationale was to iden-
tify main controlling mechanisms and to develop a compu-
tationally cheap forecasting tool for stakeholder. Successful
experiments with an artificial neural network, trained with
data from the coupled MOMBE model, revealed in a back-
ward elimination exercise that surface and bottom tempera-
tures on their own (taken at a monitoring station at the en-
trance of EB) provide enough information for a reasonable
biweekly forecast of bottom oxygen concentrations deep in
EB. This finding traces the severity of hypoxia in late sum-
mer as being a consequence of a wind-induced subduction
of surface water that is delayed (or advanced) by the state
of stratification. More specifically we identified a system in
which the severity of seasonal hypoxia is clearly controlled
by a wind-induced downwelling gate kept by stratification.

Our approach to simulate local hypoxia with high-
resolution models and then identify the key processes by
ways of machine learning is versatile in that it may easily be
applicable to other regions affected by hypoxic conditions.
Given that there are already more than 60 artificial down-
welling techniques patented (Liu et al., 2020) – which may
or may not be put to work to contain coastal hypoxia in our
warming future – we rank a more comprehensive quantita-
tive system understanding of local hypoxia all over the world
among pressing societal questions.

Code and data availability. The circulation model code MOM4p1
is distributed by NOAA’s Geophysical Fluid Dynamics Lab-
oratory (https://github.com/mom-ocean/MOM4p1, last access:
15 July 2021, Grieffies, 2009). We use the original code with-
out applying any changes to it. Meridional sections and bottom
values of simulated oxygen concentrations, temperature, salin-
ity, residence time, and age have been visualized for the hind-
cast period 2000–2018 for the stakeholder. They are archived un-
der https://doi.org/10.5281/zenodo.4271941 (Dietze and Löptien,
2020). The Boknis Eck time series station is run by the Chemical
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