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Abstract. Plant community composition influences carbon,
water, and energy fluxes at regional to global scales. Vegeta-
tion demographic models (VDMs) allow investigation of the
effects of changing climate and disturbance regimes on veg-
etation composition and fluxes. Such investigation requires
that the models can accurately resolve these feedbacks to
simulate realistic composition. Vegetation in VDMs is com-
posed of plant functional types (PFTs), which are specified
according to plant traits. Defining PFTs is challenging due
to large variability in trait observations within and between
plant types and a lack of understanding of model sensitiv-
ity to these traits. Here we present an approach for devel-
oping PFT parameterizations that are connected to the un-
derlying ecological processes determining forest composi-
tion in the mixed-conifer forest of the Sierra Nevada of Cali-
fornia, USA. We constrain multiple relative trait values be-
tween PFTs, as opposed to randomly sampling within the
range of observations. An ensemble of PFT parameteriza-
tions are then filtered based on emergent forest properties
meeting observation-based ecological criteria under alternate
disturbance scenarios. A small ensemble of alternate PFT
parameterizations is identified that produces plausible for-
est composition and demonstrates variability in response to
disturbance frequency and regional environmental variation.
Retaining multiple PFT parameterizations allows us to quan-
tify the uncertainty in forest responses due to variability in

trait observations. Vegetation composition is a key emergent
outcome from VDMs and our methodology provides a foun-
dation for robust PFT parameterization across ecosystems.

1 Introduction

Plant community composition has important influences on
carbon, water, and energy fluxes at regional (Wullschleger et
al., 2014) and global scales (Bonan, 2008). Because climate-
driven shifts in community composition have occurred over
the past century (Adams et al., 2010; Allen and Breshears,
1998; Millar and Stephenson, 2015; Kelly and Goulden,
2008) and are projected to continue into the future (Buotte
et al., 2019; Williams et al., 2013; Thorne et al., 2017), cap-
turing compositional changes is critical for simulating feed-
backs within the Earth system. Vegetation demographic mod-
els (VDMs) can resolve the ecological mechanisms that de-
termine community composition and are computationally ef-
ficient enough to be coupled to Earth system models (Fisher
et al., 2018). These models track plant size, height, and
canopy position, which allows for light competition, com-
petitive exclusion, and dynamic recovery after disturbance
(Fisher et al., 2018).

Community composition is a dynamic property of ecosys-
tems, arising from complex interactions among climate, dis-
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turbance, plant ecological strategies, and abiotic conditions
(Johnstone et al., 2016; Stephenson, 1990). VDMs predict
composition by simulating the effects of the environment
on growth and mortality rates based on physiological func-
tions, which are simplified by grouping species into plant
functional types (PFTs) (Fisher et al., 2018; Koven et al.,
2020; Lebauer et al., 2013). Increasing the ecological resolu-
tion represented by PFT's can improve simulated vegetation—
climate feedbacks (Druel et al., 2017) and ecotone transitions
(Baudena et al., 2015).

The functional complexity of VDMs comes with inherent
challenges. While VDMs have flexibility in PFT definitions
(Fisher et al., 2015; Medvigy et al., 2009), observed trait vari-
ability, even within a single species, can be large (Kattge
et al., 2020). While progress is being made in quantifying
model sensitivity to traits (Dietze et al., 2014; Raczka et al.,
2018; Shiklomanov et al., 2020), PFT parameterizations are
likely to exhibit variability across climatic gradients. It re-
mains a challenge, given the non-linear feedbacks among cli-
mate, disturbance, and PFT composition in VDMs, to define
PFT parameterizations that lead to accurate resolution of the
interactions that determine community composition (Shiklo-
manov et al., 2020).

Prior research suggests that the model parameters that are
most important in determining composition are likely to vary
according to the model’s representation of the primary con-
straints on plant growth (Nemani et al., 2003) and distur-
bance regimes. In the mesic temperate forest, temperature
has a strong effect on the distribution of evergreen and de-
ciduous broadleaf trees (Xie et al., 2015), and the simulated
biome boundary between cold-deciduous hardwood and ev-
ergreen needleleaf trees was sensitive to temperature effects
on leaf lifespan (Fisher et al., 2015). Competition for light
exerts a strong control on tropical forest community com-
position (Farrior et al., 2016; Condit et al., 2013), and sim-
ulated coexistence of tropical PFTs depends on parameters
that influence the relative differences in canopy tree growth
and mortality rates (Koven et al., 2020; Massoud et al., 2019;
Powell et al., 2018). In semiarid temperate forests, light
availability, water availability, and the fire regime exert im-
portant controls on forest composition (North et al., 2016;
Nemani et al., 2003). However, the controls on forest com-
position within VDMs have not been examined in this forest
type.

Here we present an approach for defining PFT parame-
terizations that ensures simulated forest composition is a re-
sult of the interactions among the ecological strategies the
PFTs represent, alternate disturbance regimes, and climate.
We illustrate this approach by defining two conifer PFTs in
the Functionally Assembled Terrestrial Ecosystem Simulator
(FATES) for the mixed-conifer forest of the Sierra Nevada,
California, USA. We define a pine PFT representative of a
shade-intolerant, moderately drought-tolerant, fire-resistant
conifer and an incense cedar PFT representative of a shade-
tolerant, very drought-tolerant, less fire-resistant conifer. In
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this ecosystem, FATES simulations with robust PFT parame-
terizations should demonstrate that (1) PFT-specific trait pa-
rameters related to shade tolerance, drought tolerance, and
fire resistance influence forest composition via their controls
on growth and mortality rates; (2) forest composition is sen-
sitive to the simulated fire regime through fire’s effect on the
light environment and direct mortality; and (3) forest com-
position is sensitive to variation in water availability, with
less pine in areas with low water availability compared with
greater water availability.

2 Methods
2.1 Modeling framework

FATES was developed through integration of the Ecosystem
Demography (ED) model (Medvigy et al., 2009; Moorcroft
et al., 2001) with the Community Land Model (Oleson et
al., 2013), with initial testing focused on eastern US forests
(Fisher et al., 2015) and Panamanian tropical forests (Koven
et al., 2020; Massoud et al., 2019). FATES resolves vegeta-
tion demographics at the level of the cohort, which represents
the density of individuals of a given PFT, size, and canopy
position. PFTs are defined by functional traits that describe
plant physiology (e.g., photosynthesis, respiration, carbon al-
location, and turnover) and sensitivity to disturbance and en-
vironmental variation. Patches can contain multiple cohorts
of plants and patch age is tracked according to time since
last disturbance. The number of patches and cohorts is dy-
namic during a simulation. Allocation of carbon to reproduc-
tion creates new cohorts within a patch. Disturbance caused
by tree mortality, fire, or harvest splits existing patches to
create a new patch. Growth rates for each cohort are deter-
mined by carbon assimilation and allocation, which are af-
fected by light and water availability and climate. Mortality
is based on fire, carbon starvation, hydraulic failure, and cold
stress, along with a background mortality rate representing
mortality sources not yet incorporated into the model. FATES
computes physiological processes on half-hourly time steps,
and growth, mortality, regeneration, and disturbance on daily
time steps. Here we have coupled FATES to the Commu-
nity Land Model version 5 (Lawrence et al., 2019), which
allows for a dynamic relationship between soil water avail-
ability and evapotranspiration that is governed by PFT water
stress tolerance and soil physical properties. A full descrip-
tion of physiological and demographic processes in FATES
can be found in Fisher et al. (2015) and Koven et al. (2020).
SPITFIRE, a forest fire behavior and effects model meant for
use at regional to global scales (Thonicke et al., 2010). As
implemented in FATES, fires are initiated based on a light-
ning ignitions dataset (Li et al., 2013) and once ignited are
modulated by climate with the Nesterov fire danger index.
Fire behaviors, including rate of spread, duration, and inten-
sity, depend on six classes of ground fuels and their moisture
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status. Scorch height is estimated for each cohort of trees and
is a measure of crown damage. Cambial damage, which is
modulated by traits such as bark thickness, canopy damage,
and cambial heating determine the probability of tree mortal-
ity. The amount of biomass consumed is calculated based on
fire intensity and rate of spread.

2.2 Study area and forest type

We simulated the two dominant conifer genera in Cali-
fornia’s mixed-conifer forest: pine and incense cedar. The
pine species in this forest, including ponderosa (Pinus pon-
derosa), Jeftrey (Pinus jeffreyii), and sugar (Pinus lamber-
tiana) pine, are shade intolerant and highly resistant to fire
(North et al., 2016). Incense cedar (Calocedrus decurrens) is
more shade and drought tolerant, but less fire resistant (North
et al., 2016). Surface fires, and the creation of microclimates
suitable for pine regeneration are thought to be important for
promoting pine dominance in the Sierra Nevada (Van de Wa-
ter and Safford, 2011; Yeaton, 1983).

We conducted a parameter sensitivity analysis and devel-
oped PFT parameterizations with FATES simulations at the
Soaproot Saddle flux tower site (O’Geen et al., 2018). We
evaluated simulated forest composition, model biases, and
environmental controls on coexistence across a regional do-
main that is dominated by the combination of pine (pon-
derosa, Jeffrey, and sugar) and incense cedar according to
data produced by the Landscape Ecology, Modeling and
Mapping Analysis (LEMMA) project (Ohmann et al., 2011)

(Fig. 1).
2.3 Trait data

We compiled a database of trait observations by tree
species, starting with the TRY database (Kattge et
al., 2011) and supplementing with data from addi-
tional literature where necessary (included in data archive
https://doi.org/10.6078/D15M5X). To limit variability in
trait values resulting from diverse geographic locations, we
focused our literature search on California, and 72 % of the
collected pine and cedar trait observations came from studies
conducted in the Sierra Nevada. The remaining observations
were from elsewhere in the western US. We queried existing
databases for allometric observations (Jenkins et al., 2004;
Chojnacky et al., 2014; Falster et al., 2015).

2.4 Experimental design and analysis

Our approach combines observations of plant traits and
changes in forest composition under different disturbance
scenarios with ensembles of model simulations to select ro-
bust parameterizations (Fig. 1). After an initial parameter
sensitivity analysis, we filter an ensemble of potential PFT
parameterizations based on ecological criteria at a single site.
We then evaluate simulated forest composition in the en-
semble of retained parameterizations across a regional do-
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Figure 1. Overview of our workflow for developing and apply-
ing PFT parameterizations. We suggest sampling with relative trait
value constraints to create the initial ensemble of potential PFT pa-
rameterizations. An initial sensitivity analysis may be necessary if
applying the VDM in a new ecosystem. Ecological expectations
are developed according to understanding of the climate and distur-
bance controls on coexistence in that ecosystem. These expectations
are used to filter the simulation outcome, thereby retaining PFT pa-
rameterizations that conform to their intended ecological niches.
The retained parameterizations are applied to a regional domain to
evaluate model performance, model biases, and environmental con-
trols, which can indicate potential for improvements to PFT def-
initions or forcing data, or representation of processes within the
model. Retaining an ensemble of parameterizations allows for quan-
tification of uncertainty in simulated outcomes due to variability in
trait observations.

main and explore model biases and environmental controls
on composition and PFT-specific vital rates to suggest av-
enues for improving simulated forest composition.

All FATES simulations were forced with 4 x 4 km spatial
resolution daily climate data from 1979-2009 (Abatzoglou,
2013) disaggregated to 3-hourly intervals (Rupp and Buotte,
2020). Soil texture and organic carbon content were taken
from the best available soils data for our domain, as described
in Buotte et al. (2019), and, due to a lack of adequate spatially
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resolved soil data and no representation of root access to re-
golith water sources in FATES, soil depth was set to 10 m for
all grid cells (O’Geen et al., 2018; Klos et al., 2018).

Because FATES had not been previously exercised in the
temperate mixed-conifer forest, we assessed the sensitivity of
simulated coexistence to 46 PFT trait and model parameters
(Table S1). We defined two hypothetical PFTs with trait val-
ues (Table S1) drawn from distributions of trait observations
of all conifer species present at the flux tower site (SI trait
database) to create a 720-member ensemble of FATES pa-
rameterizations. We randomly sampled the parameter space
based on Latin hypercube sampling. We first divided each
parameter range into intervals with equal probability and
randomly sampled values from these intervals. We then or-
dered the sampled parameter values to maintain specified
rank correlation between different parameters (Xu and Gert-
ner, 2007; Iman and Conover, 1982). The rank correlation
matrix was calculated based on observed trait values for the
PFT. Samples for each parameter were drawn from a distri-
bution defined by the observations such that pairings of sam-
ples between parameters maintain the specified rank correla-
tion (Iman and Conover, 1982). Some parameters, such as the
target carbon allocated to storage reserves, are not observ-
able; others are observable but regionally specific data are
scarce or non-existent. For such parameters, ranges were de-
termined based on previous sensitivity studies (Fisher et al.,
2015; Koven et al., 2020; Massoud et al., 2019). We started
these simulations from bare ground and ran the ensemble for
100 years with fire active, recycling the 1979-2009 climate
forcing.

We quantified composition as the ratio of the basal area
of PFT #1 to the total basal area. This ratio therefore varies
between 0, indicating complete PFT #2 dominance, to 1, in-
dicating complete PFT #1 dominance. We used univariate,
non-linear generalized additive models to quantify the vari-
ance in composition explained by the differences between
PFT #1 and PFT #2 parameter values. Because each param-
eter is varied over its full range of realistic values, variable
importance as measured by R? (coefficient of determination
or variance explained) is also a measure of parameter sensi-
tivity.

Next, we created an ensemble of parameterizations for
a shade-intolerant, fire-resistant pine and a shade-tolerant,
drought-tolerant, less fire-resistant incense cedar (Table S1).
The parameter sensitivity results, along with the availability
of observations, informed our decision of which trait param-
eters to vary. We varied eight trait parameters to capture the
differences in these two ecological strategies. We represented
plant response to the light environment with four trait param-
eters: the specific leaf area at the top of the canopy (SLAop),
the maximum possible specific leaf area (SLA;;,4, ), the maxi-
mum rate of carboxylation (V; max), and leaf nitrogen (leafy),
which affects leaf respiration in FATES. The soil matric po-
tential at which stomata close (SMPSC) controlled drought
tolerance and bark thickness (bark) controlled fire resistance.

Biogeosciences, 18, 4473-4490, 2021

P. C. Buotte et al.: Capturing functional strategies and compositional dynamics

We varied two additional trait parameters, leaf lifespan (leaf
life) and wood density (wood den), that differ between these
two strategies (Niinemets, 2010; Kozlowski and Pallardy,
1997) but are not easily tied to light availability, water avail-
ability, or fire resistance in FATES.

We constrained the eight trait parameter values to the dis-
tributions of observations of pine and incense cedar (Ta-
ble S1), as opposed to the full range of conifer trait values
as in the 720-member ensemble used in the parameter sen-
sitivity analysis. All other trait parameters were held con-
stant between the two PFTs as the mean of the combined
pine and cedar observations. Although some of these trait
parameters were found to be influential (e.g., allometric pa-
rameters), observations were insufficient to distinguish be-
tween pine and incense cedar. Non-trait model parameters
were set based on previous research with FATES (Table S1).
Following the same sampling methods that maintain rank
correlation between trait parameters as above, we created a
360-member ensemble of PFT parameterizations. We ran this
ensemble for 100 years for a total of four scenarios: from
bare ground and from initialized stands, with fire both ac-
tive and inactive. Initialized stands began with an even pro-
portion of pine and cedar, with the size structure based on
census data from the flux tower site (included in data archive
https://doi.org/10.6078/D15M5X).

Observations allow us to devise ecological criteria, or ex-
pectations, for how the composition of trees with these two
ecological strategies should respond to disturbance. To en-
sure the PFT definitions represented the intended ecologi-
cal strategies, we filtered the ensemble of parameterizations
based on eight criteria. In the mixed-conifer forest of the
Sierra Nevada, pine dominates when fire is present on the
landscape (North et al., 2016) and incense cedar increases
in dominance when fire is excluded (Dolanc et al., 2014a, b).
From these observations we created six criteria based on pine
and incense cedar basal area according to initial conditions
and the presence of fire (Table 1). We included two criteria
based on observations of leaf area index and carbon use effi-
ciency (Table 1). We filtered the 360-member ensemble and
retained ensemble members that met all eight criteria.

Shade-tolerant trees tend to have lower maximum rates of
carboxylation (V¢ max), lower dark respiration rates, higher
specific leaf area (SLA), and longer leaf lifespan than shade-
intolerant trees (Kozlowski and Pallardy, 1997; Niinemets,
2010). However, filtering the 360-member ensemble retained
only one parameterization that preserved these relative trait
parameter values for pine and incense cedar.

We therefore created a 72-member ensemble of pine and
incense cedar parameterizations using the same eight trait
parameters varied in the 360-member ensemble but further
constrained to enforce the appropriate relative differences be-
tween these functional types (Table S1, Fig. 1). Parameter
values were drawn from pine and incense cedar trait obser-
vation distributions that were centered on the filtered parame-
terization from the 360-member ensemble, spanned one stan-
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Table 1. Ecologically expected outcomes for each disturbance (fire on vs. off) and initial condition (bare ground vs. initialized stands) sce-
nario for FATES simulations at the Soaproot Saddle site in the Sierra Nevada of California. BA = basal area; NPP = net primary productivity.

FATES scenario Expected conditions

Time period/ References

simulation duration

Pine BA > cedar BA
Pine NPP > 0
Cedar NPP > 0

Bare ground start, fire on

After 100 years Dolanc et al. (2014a, b)

Soaproot Saddle census data

Bare ground start, fire off

Cedar BA > cedar BA from bare ground with fire on
pine BA < Pine BA from bare ground with fire on

After 100 years Dolanc et al.(2014a, b)

Soaproot Saddle census data

Pine NPP > 0
Cedar NPP >0

Initialized start, fire on Pine BA > cedar BA After 100 years Dolanc et al. (2014a, b)
Pine NPP > 0 Soaproot Saddle census data
Cedar NPP >0

Initialized start, fire off

Pine NPP > 0
Cedar NPP >0

Cedar BA > cedar BA from initialized with fire on
Pine BA < pine BA from initialized with fire on

Dolanc et al. (2014a, b)
Soaproot Saddle census data

After 100 years

LAI within 2-3

Average 2009-2011 MODIS

0.32 < carbon use efficiency < 0.58

After 100 years DeLucia et al. (2007)

dard deviation of the mean, maintained between-trait corre-
lations, and retained the appropriate relative differences be-
tween pine and incense cedar traits. This ensemble was run
for 100 years for each of the four scenarios of initial stand
conditions and fire at the flux tower site. The results were fil-
tered based on the eight criteria in Table 1 to identify the pine
and incense cedar parameterizations most consistent with the
eight expected ecological outcomes. This filtering retained
four plausible parameterizations. We evaluated these four pa-
rameterizations against monthly gross primary productivity
(GPP) and evapotranspiration (ET) fluxes from tower mea-
surements over a 43 month period from July 2010 through
January 2014 (O’Geen et al., 2018). These simulations were
initialized with stand composition and structure according to
the site conditions in 2010.

To evaluate performance of these parameterizations across
a wide range of environmental conditions, we ran the four
plausible parameterizations across our regional domain from
bare ground with fire on for 100 years. We compared the sim-
ulated ratio of pine basal area to total basal area (hereafter re-
ferred to as pine fraction) with the LEMMA data (Ohmann et
al., 2011) and evaluated area burned with data from the Mon-
itoring Trends in Burn Severity (MTBS) data (Eldenshink et
al., 2007). We classified each FATES grid cell as having a
reasonable pine fraction if it was within one standard devi-
ation of the mean of the 30 m LEMMA grid cells encom-
passed by the FATES grid cell. We compared simulated and
observed annual area burned over the domain with probabil-
ity density functions and boxplots of each distribution.

We evaluated model biases as the binary correct/not cor-
rect response as a multivariate, non-linear function of aver-
age annual temperature, total annual precipitation, and sim-
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ulated annual area burned. Climate variables were averaged
over the range of climate forcing data, 1979-2009, for each
4km grid cell. We evaluated the environmental controls on
simulated forest composition across the mixed-conifer for-
est type in the Sierra Nevada. We statistically modeled the
pine fraction as a multivariate, non-linear function of annual
precipitation, average annual temperature, and soil charac-
teristics (percent sand, clay, and organic carbon). All statisti-
cal analyses were performed using the mgcv package (Wood,
2011) in R version 3.6.2 (R Core Team, 2019).

3 Results

3.1 Sensitivity of PFT composition to trait and model
parameters

Coexistence between two hypothetical conifer PFTs was
most influenced by trait parameters controlling gross primary
productivity and carbon allocation, as controlled in part by
allometry (Fig. S1). Allometric parameters and wood den-
sity set the growth rates of stem diameter and thus tree height
growth per unit of biomass gained. Non-trait model param-
eters controlling the creation of new patches from tree-fall
(Disturb Frac), and height sorting to determine canopy posi-
tion (Comp Excln) were among the least important (Fig. S1).
We used these sensitivity results to focus further analysis on
the influential trait parameters that distinguish pine and cedar
strategies and ensure we held sensitive but observationally
unconstrained parameters constant between the two PFTs.

Biogeosciences, 18, 4473-4490, 2021
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Figure 2. Distribution of pine and incense cedar parameter values in a 360-member ensemble (light gray), in which selected values were
constrained by trait correlations and the distributions of observations, and in a 72-member ensemble (dark gray), in which values were
additionally constrained to preserve the appropriate relative values between pine and incense cedar (hatched area). The parameterizations
retained from filtering based on expectations in Table 2 are shown in colors.

3.2 Constraining potential pine and incense cedar PFT
parameterizations

Only one of the 360 ensemble members had the appropri-
ate relative differences in pine and incense cedar trait values
and met all eight ecological criteria. This single ensemble
member was used as the center point for generating the 72-
member ensemble in which the relative trait parameter values
for pine and incense cedar were additionally constrained ac-
cording to the ecological strategies represented by each PFT
(dark gray points in Fig. 2). When between-PFT constraints
were not enforced in sampling the observations, many en-
semble members (light gray points in Fig. 2) fell outside of
the range of relative trait values that represent these two eco-
logical strategies.

Filtering the 72-member ensemble based on ecological cri-
teria with and without fire was critical for selecting param-
eterizations that yielded the correct pine fraction under al-
ternate fire regimes (Fig. 3). While many ensemble mem-
bers (parameterizations) met individual ecological criteria,
four members met all criteria regarding the effects of fire
(Fig. 3) and also were within the range of observed leaf area
index and carbon use efficiency (not shown). After contin-
uing simulations with these four parameterizations for an-
other 100 years, all four still met the ecological criteria.
Because these parameterizations span a range of observed
pine and cedar trait values (Fig. 2), they show differences
in the magnitude of the effect of fire on the pine fraction
(Fig. 4). All four parameterizations show a decrease in pine
fraction when fire is excluded (Fig. 4) and all four have the
appropriate relative trait values (Fig. 2). Simulated monthly

Biogeosciences, 18, 4473-4490, 2021

GPP and ET showed moderate agreement with observations
(Fig. S2). Simulations underestimate peak GPP by 14 %—
26 % and overestimate peak ET by 6 %28 %.

Retaining multiple, plausible PFT definitions allows us to
quantify the uncertainty in simulated outcomes due to vari-
ability in trait observations. For example, when starting from
even stands of pine and incense cedar, variability in observed
traits leads to a 26 %—84 % decline in the total pine fraction
when fire is inactive (Fig. 4). Taking canopy position into ac-
count, variability in observed traits leads to a 24 %—102 %
increase in the fraction of incense cedar in the canopy and
56 %—178 % increase in the understory when fire is inactive
(Fig. 4).

3.3 Evaluation of regional forest composition

When we applied the four-member ensemble of PFT param-
eterizations across the Sierra Nevada mixed-conifer domain,
all four parameterizations simulated reasonable total basal
areas with an average overestimate of 4 %—18 % (Fig. S3).
Seventy-nine percent of all grid cells were classified as hav-
ing the correct (within one standard deviation of observed)
ratio of pine to total basal area in all four simulations (Fig. 5).
In each simulation, over 85 % of the incorrect grid cells un-
derrepresented pine basal area. Annual area burned and fire
size were similar to observations, although FATES lacked
representation of very large fires (Fig. S4). Regression anal-
yses indicated that all four parameterizations underestimated
the pine fraction where precipitation was the lowest (Fig. 6a)
or the area burned was the least (Fig. 6b). The response func-
tions for the other climate and environmental variables had
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Figure 3. Ensemble predictions relative to six of the filters based on ecological expectations listed in Table 2. Each simulation (lines) had
a unique PFT parameterization. Black hatched areas indicate the range of expected outcomes. Colored lines indicate simulations that were
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95 % confidence intervals that spanned zero along the entire
range of the independent variable, indicating they were not
reliable predictors of FATES ability to simulate the correct
pine fraction.

3.4 Environmental controls on forest composition

Regional variation in forest composition was most sensitive
to precipitation (Fig. 7a). Pine dominated in the wetter areas,
with extreme incense cedar dominance in the driest areas in
three of the four parameterizations (Fig. 8a). This dominance
was not formally enforced by the eight expectations, but in-
stead emerges from the combination of model dynamics and
the eight enforced expectations. Forest composition was less
sensitive to soil characteristics, but cedar tended to dominate
on soils with higher sand and clay content, and pine on soils
with higher organic matter content (Fig. 8b—d).

Forest composition was sensitive to differences between
pine and incense cedar vital rates (Fig. 7b). PFT differences
in growth rates could be offset by opposing PFT differences
in mortality rates to prevent pine or incense cedar from ex-
cluding the other, and the degree of compensation possi-
ble varied among the four parameterizations (Fig. 9). When
pine growth rates were moderately faster than incense cedar,
higher pine mortality rates allowed incense cedar to persist in
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the canopy and understory (Fig. 9). Differences among trait
values in the four parameterizations (Fig. 2) allowed for vary-
ing degrees of compensation between growth and mortality
rates (Fig. 9). PFT differences in growth rates were sensi-
tive to precipitation and temperature (Fig. S5). Pine growth
rates were faster than incense cedar growth rates in wetter
and cooler areas (Fig. S6). Incense cedar growth rates were
faster than pine growth rates in the driest areas, regardless of
temperature (Fig. S6).

Fire was the primary source of mortality across the mixed-
conifer forest domain in all four simulations (Fig. S7). How-
ever, PFT differences in fire mortality rates were less than
PFT differences in carbon starvation mortality rates (Fig. 10),
leading to PFT differences in fire mortality rates having less
influence on regional forest composition than PFT differ-
ences in carbon starvation mortality rates (Fig. 7b). Fire-
caused mortality rates were similar between small pine and
incense cedar trees but higher for incense cedar among larger
trees (Fig. 10a). Pine had higher carbon starvation mortal-
ity rates across all size classes (Fig. 10b). PFT differences
in carbon starvation mortality rates were sensitive to climate
(Fig. S5), with a sharp increase in pine mortality at the lowest
precipitation levels (Fig. S6), where pine growth rates were
much lower than incense cedar (Fig. S6). PFT differences

Biogeosciences, 18, 4473-4490, 2021
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Figure 4. Fraction of pine (blue) and incense cedar (red) basal area (inner circle), differentiated by canopy position (outer circle), in simula-
tions at the Soaproot Saddle flux tower site. Each circle shows one of the four parameterizations retained after filtering based on expectations
in Table 1. Simulations were started from even stands and run with fire active (top row) and inactive (bottom row) for 100 years with recycled
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Figure 5. Number of simulations with correct pine fraction, ac-
cording to the LEMMA (Ohmann et al., 2011) dataset, out of four
FATES simulations with plausible pine and incense cedar parame-
terizations.
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in fire-caused mortality rates were less sensitive to climate
(Fig. S5).

4 Discussion
4.1 Approach for defining PFTs

Creating PFT definitions that accurately resolve commu-
nity composition is essential for simulating the Earth sys-
tem (Wullschleger et al., 2014). We developed and applied
a novel approach for assuring PFT definitions have high fi-
delity to the emergent properties of their intended ecological
strategies. First we extended the common practice of sam-
pling trait parameter observations based on observed corre-
lations among traits within a PFT (Lebauer et al., 2013) by
incorporating between-PFT parameter constraints. Secondly,
we introduced an ensemble filtering process based on ex-
pected compositional changes in response to alternate initial
conditions and disturbance scenarios and the emergent prop-
erties of leaf area index and carbon use efficiency. Finally,
we evaluated the robustness of the resulting plausible PFT
definitions across a wide range of environmental conditions,
comparing simulations to observationally constrained forest
composition (Ohmann et al., 2011).

Several methods for parameter estimation are commonly
employed, including Bayesian (Lebauer et al., 2013; Raczka
et al., 2018), maximum likelihood (Medvigy et al., 2009),
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Figure 7. Variance in the fraction of pine basal area relative to the
total basal area of pine and incense cedar that is explained by envi-
ronmental variables (a) and the difference between pine and incense
cedar (pine minus cedar) growth (GR) and mortality rates (MR; b)
for each of four pine and cedar parameterizations over a regional do-
main in the Sierra Nevada mixed-conifer forest, starting from bare
ground and run with fire active for 100 years. Pine fraction was cal-
culated for the final year and rates were averaged over the duration
of the FATES simulations.

and iteration (Hudiburg et al., 2009). However, these meth-
ods do not ensure that simulated composition, even when ac-
curate, is a result of the mechanisms that determine competi-
tive outcomes and drive composition (Williams et al., 2009).
Employing between-PFT parameter constraints and filtering
simulations based on outcomes connects the PFT definitions
to the processes that drive community composition. In the
mixed-conifer forest of the Sierra Nevada, pine dominates
when fire is present on the landscape (North et al., 2016)
and incense cedar increases in dominance when fire is ex-
cluded (Dolanc et al., 2014a, b). This knowledge allows us
to create eight criteria based on pine and incense cedar basal
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area according to initial conditions and the presence of fire
(Table 1). We found many PFT parameterizations that met
one of these criteria. However, fewer parameterizations met
all eight criteria. Further filtering based on ecophysiological
constraints (here, carbon use efficiency) and emergent prop-
erties (here, leaf area index) provide additional connections
to field-based understanding of how the ecological strategies
we are representing interact to determine community compo-
sition. It is important to diagnose the model’s ability to simu-
late both forest composition and biogeochemical stocks and
fluxes (Shiklomanov et al., 2020). We evaluated simulations
using the final filtered parameterizations against observations
of GPP and ET; however, these metrics could be applied as
additional filters instead.

Our understanding of the importance of constraining
between-PFT parameter values emerged during the course of
our analysis. Even though the trait parameter values in the
360-member ensemble were drawn from observations sub-
ject to within-PFT trait correlations, filtering retained only
one parameterization with the appropriate relative pine and
incense cedar values across all eight trait parameters. In con-
trast, filtering the 72-member ensemble, in which between-
PFT constraints were applied, resulted in four plausible pa-
rameterizations and allowed us to quantify uncertainty in
simulated forest composition due to variability in trait ob-
servations. A greater proportion of the potential parame-
ters were retained in the 72-member ensemble because the
between-PFT trait constraints ensured pine would respond
to the environment as the less shade-tolerant, less drought-
resistant, and more fire-resistant PFT as compared to incense
cedar. Including between-PFT trait constraints ensures that
the PFT responses to environmental conditions are in accor-
dance with the ecological strategies the PFTs represent. The
process would be more efficient if between-PFT constraints

Biogeosciences, 18, 4473-4490, 2021
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and run with fire active over a regional domain in the Sierra Nevada mixed-conifer forest for 100 years. Each simulation uses one of the four
parameterizations retained after filtering the outcomes of 72 parameterizations run at a single site according to the criteria in Table 1.

were enforced before filtering an ensemble, as depicted by
the center box with heavy outline in Fig. 1.

We developed a set of plausible PFT parameterizations at
a single site and then applied those parameterizations across
a regional domain with variability in climate. Starting with
FATES simulations at a single site allowed us to reduce the
computational cost of simulating hundreds of potential pa-
rameterizations across a larger domain. For reference, CLM-
FATES simulations are approximately 5 to 6 times more
computationally expensive than big-leaf CLM simulations.
Even so, selecting additional site locations stratified by en-
vironmental variables may be beneficial, particularly when
developing more than two PFTs. Evaluating the retained pa-
rameterizations across the regional domain allowed us to use
model biases to determine if the retained parameterizations
were robust across temperature and precipitation gradients
and devise options for improving model performance.

Our approach could be easily applied in other ecosystems,
with ecological expectations and scenarios developed in ac-
cordance with the accumulated knowledge of the controls on

Biogeosciences, 18, 4473-4490, 2021

community composition. We suggest conducting an initial
parameter sensitivity analysis to ensure influential parame-
ters can either be estimated based on observations or held
constant. In our 720-member ensemble, trait parameters were
bounded by observations of all conifer species present at the
site, ensuring trait parameters spanned a broad range, and
thus limiting the potential for missing influential parameters
due to a lack of variability. However, a sensitivity analysis
could be run on the ensemble created by sampling with inter-
trait and inter-PFT constraints instead.

Coupling VDMs to Earth system models is providing new
opportunities for global change research (Fisher et al., 2018)
and defining global PFTs is a critical component of this in-
tegration. Current vegetation distributions are the result of
particular sequences of climate, disturbances, and dispersal
events across millennia (Jackson et al., 2009). Therefore,
without observations of realized disturbances (including land
management), and their representation in the model, a global
model may not be able to precisely replicate the spatial pat-
terns of vegetation structure and distribution from observa-
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Figure 9. Effects of differences (pine minus cedar) in (a) canopy and (b) understory growth and mortality rates on the log-odds of pine
dominance, or the fraction of pine basal area to the total basal area of pine and incense cedar, at the end of four FATES simulations started
from bare ground and run with fire active over a regional domain in the Sierra Nevada mixed-conifer forest for 100 years.

tions. Functional relationships among climate, disturbances,
and vegetation distributions may provide a more meaning-
ful benchmark. Our strategy of filtering ensembles of po-
tential parameterizations at single sites and then evaluating
model performance and biases across larger domains would
be an efficient means of arriving at robust global PFT defini-
tions. First, an ensemble of potential PFT definitions would
be created, maintaining the appropriate inter-trait and inter-
PFT correlations. Next, sites could be selected to represent
conditions with known coexistence and known competitive
exclusion among two or more PFTs. It may be useful to strat-
ify sites based on the limitations of temperature, radiation,
and water (Nemani et al., 2003) and to capture distinct dis-
turbance regimes. Ecological expectations would then be de-
veloped for each site—PFT combination to filter the ensemble
of potential PFT definitions. These expectations, and their
implications, depend on the processes and ecological mech-
anisms represented in the model (Medlyn et al., 2015). If, for
example, nutrient limitation has a strong influence on com-
munity composition but is not represented in the model, it
would be important to assess the filtered parameterizations to
understand which mechanisms are compensating to achieve
the expected composition. The filtered parameterizations can
be evaluated across a larger domain with gradients of cli-
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mate and soils to determine if additional parameter, or model,
modifications are necessary before investing in global simu-
lations.

4.2 Sierra Nevada forest composition

Enforcing the relative parameter constraints and filtering
based on ecological criteria resulted in PFT definitions that
led to realistic emergent dynamics and forest composition
that met all three of our driving expectations. Given the his-
torical occurrence of seasonal drought and frequent surface
fires in the mixed-conifer forest region of the Sierra Nevada
(North et al., 2016), we expected that the composition of tree
functional types in FATES would be sensitive to parameters
related to shade tolerance, drought tolerance, and fire resis-
tance. Our results described a simulated ecosystem where
forest composition is driven by available light and water and
the presence of fire. Forest composition in FATES was sen-
sitive to differences between the PFTs in specific leaf area,
Ve.max, and leaf respiration, reflecting the importance of the
light environment (Kozlowski and Pallardy, 1997). We found
composition was also sensitive to variation in bark thickness.
Within FATES (following Thonicke et al 2010), thicker bark
provides insulation against cambial damage from fire and
thereby lowers tree mortality due to fire. Unlike in a tropi-
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Figure 10. Pine and incense cedar fire mortality (a) and carbon star-
vation mortality (b) from smallest to largest size classes. Each box
plot shows the annual mortality over 100 years, pooled across the
four FATES simulations with the PFT parameterizations that met
the criteria in Table 2. Boxes bound the first and third quartiles, hor-
izontal lines mark the median and whiskers extend to the max and
min values.

cal forest, composition was not sensitive to parameters that
control patch creation from small-scale disturbances (Koven
et al., 2020), indicating the landscape-scale disturbance from
fire was more important than disturbances such as tree fall.
FATES was not sensitive to differences in the parameter
controlling the soil matric potential at which stomata close
(SMPSC). However, differences in PFT dominance accord-
ing to precipitation and soil characteristics that define the wa-
ter holding capacity indicate water availability affected com-
position.

Simulated between-PFT differences in regional growth
and mortality met our expectations of the influence of the
fire regime and water availability on forest composition and
increased our confidence in FATES’ ability to represent the
ecological dynamics in the Sierra Nevada mixed-conifer for-
est. Our filtering process forced the expected changes in pine
and cedar abundance due to fire. The emergent responses in
growth and mortality, however, were not enforced yet con-
formed to our expectations. When fire is active in the model,
tree mortality from fire should open canopy gaps, increas-
ing light availability and favoring pine (Yeaton, 1983; North
et al., 2016). Conversely, when fire is inactive, the canopy
should close, reducing light availability and favoring incense
cedar (North et al., 2016; Dolanc et al., 2014a). The com-
bination of increasing pine dominance with increasing area
burned and increasing pine dominance with greater differ-
ences between pine and cedar growth rates supports these
expectations. Fire was the dominant source of mortality, with
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large incense cedars experiencing relatively greater mortality
from fire than pines did. Our filtering process did not force
the expected pine and cedar dominance along the precipi-
tation gradient. Yet, our regional simulations reflect the ex-
pected drought-tolerance strategies: pine was more dominant
in wetter areas and the pine growth rate was lower and car-
bon starvation mortality rate was higher than incense cedar
in drier areas.

Exploration of model biases across the regional ensemble,
along with analyses of the environmental controls on for-
est composition and between-PFT differences in vital rates
revealed a deficiency in our current simulations with re-
gards to water availability. In all four parameterizations, pine
was underrepresented at the lowest precipitation levels. This
could indicate that, given the range of observed variability
in pine carbon allocation and drought tolerance (DeLucia
et al., 2000), further delineation of a dry pine PFT may be
necessary to simulate this forest type across its full range in
the Sierra Nevada. Another possibility is that variability in
root-depth distributions, in conjunction with improved soil
definitions, may be necessary. Root distributions were held
constant between the pine and cedar PFTs due to a lack of
observations. Recent analysis with FATES at the Soaproot
Saddle site (Ding et al., 2021) indicates that greater root-
ing depth yields higher pine productivity during progressive
drought compared with shallow rooting depth. Alternatively,
this model bias may indicate a structural deficiency in how
drought stress is represented. In our simulations, water stress
is represented with a scaling factor that reduces potential
productivity (Oleson et al., 2013). Incorporating an explicit
representation of the flow of water through the soil-plant—
atmosphere continuum (Christoffersen et al., 2016; Xu et al.,
2016; Meunier et al., 2021) may be necessary to represent
forest dynamics in a climate with strong seasonal drought.
Further iterations of the process of defining PFTs and evalu-
ating model biases with an additional PFT and variable root-
ing parameters could indicate whether improved parameter-
izations or additional model processes are needed to correct
this bias.

Our domain has historically experienced a surface fire
regime (Van de Water and Safford, 2011; North et al., 2016).
Our simulations represented a surface regime with frequent,
small fires in all parameterizations. However, canopy fuels
are not included in the calculations of fire behavior and char-
acteristics, and observations indicate forest composition is
changing in ways that may promote increases in canopy fire
(Menning and Stephens, 2007). Given the important role of
fire in filtering ensemble members, fire behavior algorithms
should be updated to allow for the inclusion of canopy fuels.
As these changes may influence competitive ability, pine and
incense cedar parameterizations may require further updates.
Our approach provides an efficient, albeit computationally
demanding, means of updating PFT definitions as new de-
velopments are incorporated into FATES.
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5 Conclusions

Plant functional type definitions determine the ability of
vegetation demographic models to accurately simulate plant
composition. Traditional means of parameterization, such as
iteration, do not guarantee ecologically robust PFT defini-
tions and can be extremely slow when many parameters in-
teract to determine outcomes. Imposing between-PFT trait
parameter constraints and filtering an ensemble of parame-
terizations based on a discrete set of criteria for outcomes un-
der alternate disturbance or environmental scenarios ensures
that PFTs are representing their intended ecological strate-
gies. We applied this approach to define four plausible PFT
parameterizations for a shade-intolerant, fire-resistant pine
and a shade-intolerant, drought-tolerant, less fire-resistant in-
cense cedar. All four parameterizations produced robust sim-
ulations of forest composition across the mixed-conifer for-
est in the Sierra Nevada. Analyses of parameter sensitivity
and PFT-specific vital rates indicate FATES simulated the ex-
pected interactions among the fire regime and light and water
availability in this ecosystem. This approach could be applied
in any ecosystem or scaled up to define global PFTs. Robust
resolution of community composition will allow us to use
VDMs to address important questions related to future cli-
mate and management effects on forest structure, composi-
tion, and carbon storage and feedbacks within the Earth sys-
tem.
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