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Abstract. We present new estimates of the regional North
Atlantic (15–80◦ N) CO2 flux for the 2000–2017 period
using atmospheric CO2 measurements from the NOAA
long-term surface site network in combination with an at-
mospheric carbon cycle data assimilation system (GEOS-
Chem–LETKF, Local Ensemble Transform Kalman Filter).
We assess the sensitivity of flux estimates to alternative ocean
CO2 prior flux distributions and to the specification of un-
certainties associated with ocean fluxes. We present a new
scheme to characterize uncertainty in ocean prior fluxes, de-
rived from a set of eight surface pCO2-based ocean flux
products, and which reflects uncertainties associated with
measurement density and pCO2-interpolation methods. This
scheme provides improved model performance in compar-
ison to fixed prior uncertainty schemes, based on metrics
of model–observation differences at the network of surface
sites. Long-term average posterior flux estimates for the
2000–2017 period from our GEOS-Chem–LETKF analyses
are −0.255± 0.037 PgC yr−1 for the subtropical basin (15–
50◦ N) and −0.203± 0.037 PgC yr−1 for the subpolar region
(50–80◦ N, eastern boundary at 20◦ E). Our basin-scale esti-
mates of interannual variability (IAV) are 0.036± 0.006 and
0.034± 0.009 PgC yr−1 for subtropical and subpolar regions,
respectively. We find statistically significant trends in car-
bon uptake for the subtropical and subpolar North Atlantic
of −0.064± 0.007 and −0.063± 0.008 PgC yr−1 decade−1;
these trends are of comparable magnitude to estimates from
surface ocean pCO2-based flux products, but they are larger,

by a factor of 3–4, than trends estimated from global ocean
biogeochemistry models.

1 Introduction

The ocean plays a key role in the global carbon budget, ac-
counting for 2.5± 0.6 PgC yr−1 of net CO2 uptake from the
atmosphere during the last decade (period 2009–2019), a
level equivalent to ∼ 26 % of global fossil fuel CO2 emis-
sions (Friedlingstein et al., 2020). The North Atlantic ocean
has been identified as a region of significant net oceanic CO2
uptake in a range of recent analyses (Schuster et al., 2013;
Landschützer et al., 2013; Lebehot et al., 2019), and it is also
the location of the largest Northern Hemisphere uptake of
anthropogenic CO2 in recent decades (Gruber et al., 2019;
Khatiwala et al., 2013; Sabine et al., 2004). Recent esti-
mates of net air–sea CO2 fluxes derived from sea surface par-
tial pressure CO2 measurements (pCO2) indicate net annual
uptake for the North Atlantic over the past decade (2009–
2018) with a range of 0.35–0.55 PgC yr−1 (Landschutzer et
al., 2016; Rodenbeck et al., 2013; Zeng et al., 2015; Watson
et al., 2020) and equivalent to about 14 %–22 % of the global
net ocean carbon ocean sink reported for this period. Region-
ally aggregated air–sea CO2 fluxes over the North Atlantic
basin also display significant variability on interannual (Wat-
son et al., 2009) and decadal timescales (Landschützer et al.,
2016, 2019). Based on analyses of surface pCO2 measure-
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ments, variations in regional pCO2 trends were observed in
the subtropical and subpolar regions, potentially associated
with large-scale climate oscillations such as the North At-
lantic Oscillation and the Atlantic Multidecadal Variability
(McKinley et al., 2011; Landschützer et al., 2019; Macovei
et al., 2020). Devries et al. (2019) estimated a negative trend
(i.e., a strengthening ocean sink) in North Atlantic CO2 up-
take for the 2000–2009 period based on analysis of pCO2-
based estimates and ocean models. Lebehot et al. (2019) find
statistically significant trends in surface ocean CO2 fugac-
ity (fCO2) for the 1992–2014 period from both observation-
based surface mapping methods and from the CMIP5 Earth
system models.

Recent analyses of North Atlantic air–sea CO2 fluxes
have primarily been based on “bottom-up” methods of vary-
ing complexity which use interpolated surface ocean pCO2
distributions (derived from in situ pCO2 measurements) in
combination with parameterizations of air–sea gas exchange
(e.g., Landschützer et al., 2013; Rödenbeck et al., 2015;
Takahashi et al., 2002, 2009). Estimates of air–sea CO2
fluxes have also been derived by alternative methods such
as global ocean biogeochemical models (e.g., Buitenhuis et
al., 2013; Ziehn et al., 2017) and “top-down” methods which
involve the application of inverse analyses or data assimila-
tion methods to atmospheric and oceanic CO2 measurements
(e.g., Gruber et al., 2009; Mikaloff Fletcher et al., 2006;
Gurney et al., 2003; Peylin et al., 2013). Top-down anal-
yses estimate surface CO2 fluxes by using information on
observed gradients in atmospheric CO2 together with atmo-
spheric transport constraints (typically from 3D atmospheric
models) and prior information on the magnitude and associ-
ated uncertainties of surface CO2 flux distributions (Röden-
beck et al., 2003; van der Laan-Luijkx et al., 2017; Peters et
al., 2005; Peylin et al., 2013; Chevallier et al., 2014; Gaubert
et al., 2019).

Previous studies also note that estimates of carbon fluxes
from the atmospheric inverse method are sensitive to the
specification of the prior flux distribution and its associated
uncertainty distribution (Carouge et al., 2010; Chatterjee et
al., 2013; Peylin et al., 2013). While there have been re-
cent studies evaluating the sensitivity of land-based carbon
flux estimates to specification of the prior flux and its uncer-
tainty, there has been far less examination of ocean flux es-
timates from inverse methods. Several global inverse model
assessments of the past decade have relied on the climato-
logical ocean–atmosphere CO2 flux database of Takahashi et
al. (2009) to specify prior ocean fluxes. In view of the lim-
ited information available on the temporal and spatial vari-
ability of ocean carbon fluxes from this climatological ocean
database, these inverse analyses have adopted different ap-
proaches to the specification of prior uncertainty for ocean
fluxes, ranging from uncertainties derived from a separate
ocean model inversion (in the case of Nassar et al., 2011)
to a specified percentage of the prior flux magnitude (Feng et
al., 2016; Liu et al., 2016).

In this study we present a new long-term estimate of
North Atlantic air–sea CO2 fluxes for recent decades (pe-
riod 2000–2017) using atmospheric inverse methods. We fo-
cus in particular on the specification of prior ocean fluxes
(including sensitivity of flux estimates to alternative prior
flux distributions) and on their associated flux uncertain-
ties. To our knowledge, these influences on inverse esti-
mates of North Atlantic CO2 flux have not been assessed
previously. We use the carbon cycle data assimilation sys-
tem GEOS-Chem–LETKF (denoted GCL described further
in Sect. 2), which combines the global atmospheric CO2
transport model GEOS-Chem (Nassar et al., 2010) with the
Local Ensemble Transform Kalman Filter (LETKF) data as-
similation system (Hunt et al., 2007; Miyoshi et al., 2007;
Liu et al., 2019). In recent years several new global air–
sea CO2 flux products have been developed based on map-
pings of ocean surface pCO2 measurements (e.g., Land-
schutzer et al., 2016; Rodenbeck et al., 2014; Watson et
al., 2020, and products reported in the intercomparison of
Roedenbeck et al., 2015). These ocean flux distributions
are frequently derived from interpolations of surface ocean
pCO2 measurements from the SOCAT database (Bakker et
al., 2016) together with parameterizations of air–sea gas ex-
change. Following recent updates, the surface ocean pCO2
database SOCATv2020 (https://www.socat.info/index.php/
data-access/, last acess: 20 June 2021) now includes over
28 million surface ocean carbon measurements. The SOCAT
database provides a valuable resource towards the devel-
opment of bottom-up estimates of ocean–atmosphere CO2
fluxes, and a compilation of these flux products is reported in
the recent Global Carbon Budget (Friedlingstein et al., 2020).
The increased range of global air–sea CO2 flux products
available (beyond the Takahashi et al., 2009, climatology)
provides a valuable opportunity to develop an improved rep-
resentation of air–sea CO2 flux variability and a more robust
characterization of the uncertainties associated with ocean
carbon fluxes. In this study we employ some of the recently
developed ocean CO2 flux products to provide a new method
of characterizing the prior ocean flux uncertainty used for
atmospheric inverse analyses. The methodology is based on
the ensemble spread of the multiple ocean flux products and
reflects underlying uncertainties in these products, such as
those associated with sampling density of the surface mea-
surements and interpolation method employed. It provides
a spatially and temporally variable specification of prior flux
uncertainty that will be of value to the inverse modeling com-
munity.

The remainder of the paper is organized as follows: Sect. 2
covers the methodology of the atmospheric inverse anal-
ysis, outlining the carbon cycle data assimilation system
(GEOS-Chem–LETKF), the atmospheric CO2 observations,
and specifications of prior fluxes and uncertainties. Further
details of the methodology are presented in Appendix A. In
Sect. 3 we present GEOS-Chem–LETKF assessments of al-
ternative specifications of ocean prior fluxes and flux uncer-
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tainties and then use these results to derive long-term esti-
mates of North Atlantic CO2 fluxes for the 2000–2017 pe-
riod. We also summarize specific characteristics of North At-
lantic CO2 fluxes derived from these analyses, namely, long-
term means, trends, and interannual variability of fluxes, and
compare our results with other recent relevant studies.

2 Materials and methods

2.1 Overview

Our analysis employs the global GEOS-Chem atmospheric
chemistry transport model together with the Local Ensemble
Transform Kalman Filter (LETKF) (described in Sect. 2.2)
and atmospheric CO2 observations from the NOAA ESRL
network of surface sites (Sect. 2.3). Section 2.4 describes the
compilation of the set of air–sea CO2 flux products and the
derivation of the prior flux uncertainty specification for the
North Atlantic based on the ensemble spread of these prod-
ucts. Section 3 presents model results, including sensitivity
analyses assessing different prior flux representations and
flux uncertainty schemes (Sect. 3.1), and regional CO2 flux
estimates for the 2000–2017 period from the GEOS-Chem–
LETKF system (Sect. 3.2). Further details on model analy-
ses, observations, and uncertainty calculations are presented
in the sections below and in Appendix A.

2.2 The GEOS-Chem–Local Ensemble Transform
Kalman Filter (GCL) system

The GEOS-Chem atmospheric chemistry transport model
has been used in a range of previous investigations into atmo-
spheric CO2 and applied in conjunction with inverse analyses
to estimate surface carbon fluxes (Nassar et al., 2010, 2011;
Suntharalingam et al., 2005; Liu et al., 2016). In this analysis
we employ GEOS-Chem v11-01 at a horizontal resolution of
2◦ latitude by 2.5◦ longitude, with 47 levels in the vertical.
Model transport fields are provided by GEOS-5 assimilated
meteorological data from the NASA Global Modeling and
Assimilation Office (GMAO; Rienecker et al., 2008). The
GEOS-Chem configuration employed here primarily follows
that of Nassar et al. (2011) but with updated representation
of prior fluxes; more detail on the prior CO2 fluxes and un-
certainties implemented in this study is given in Sect. 2.4.

The Local Ensemble Transform Kalman Filter (LETKF) is
a data assimilation system which provides an estimate given
a prior (or “background”) estimate of the current state based
on past and current data (in this case, the atmospheric CO2
mole fraction observations). The general framework of the
LETKF is described in Hunt et al. (2007); it has been adapted
by Miyoshi et al. (2007) to provide grid-scale localized anal-
ysis of flux estimates. The LETKF system has been used to
estimate CO2 fluxes in a range of previous studies (e.g, Kang
et al., 2012; Liu et al., 2016, 2019). The LETKF provides it-
erative estimates of the time evolution of the system state, x,

(here representing the grid-scale surface carbon fluxes). Each
step involves a forecast stage (based on a physical model of
the system evolution) and a state estimation stage (the “anal-
ysis” step), which combines system observations, y, together
with the background forecast, xb, to derive the improved state
estimate. The observation operator H provides the mapping
from the state space to the observation space; in this studyH
is provided by the GEOS-Chem atmospheric model.

In this analysis we employ the complete GEOS-Chem–
LETKF (GCL) data assimilation system to conduct sensi-
tivity analyses on the ocean prior fluxes and to provide a
long-term flux estimate of surface CO2 fluxes for the North
Atlantic for the period 2000–2017. We report a posteriori
fluxes on monthly timescales for the 2000–2017 period; the
optimized monthly fluxes are derived from four sequential
weeks of assimilation cycles, as further described below. Our
methods follow the implementation of the LETKF system
by Liu et al. (2019), who have extended the previous carbon
data assimilation system of Kang et al. (2011, 2012). The
study of Kang et al. (2011) assimilated meteorological data
and atmospheric CO2 concentrations to provide estimated at-
mospheric CO2 concentrations as part of the state estimate.
Kang et al. (2012) extended this method to also provide es-
timates of surface carbon fluxes. Both these LETKF studies
assimilated meteorological data and atmospheric CO2 con-
centrations and employed a short assimilation window of 6 h
in order to maintain linear behavior of the ensemble per-
turbations (Kang et al., 2011, 2012). In addition, Kang et
al. (2012) also tested longer assimilation windows (up to
3 weeks) for LETKF formulations that assimilated atmo-
spheric CO2 concentrations alone (eliminating the assimila-
tion of the meteorological data). The LETKF system of Liu
et al. (2019) extended the Kang et al. (2011, 2012) analy-
ses by incorporating the GEOS-Chem atmospheric model as
the forecast model, along with its representation of surface
CO2 fluxes which provide the prior flux specification for the
forecast step. However, Liu et al. (2019) assimilate only at-
mospheric CO2 measurements (i.e., no assimilation of mete-
orological measurements) and use an assimilation window of
7 d; the duration of the assimilation window was selected to
maximize the correlation between observations and surface
fluxes. The GEOS-Chem–LETKF system employed in our
study follows the Liu et al. (2019) formulation; atmospheric
CO2 measurements are assimilated at 7 d timescales, with the
LETKF analysis step providing updates of the surface fluxes
and associated uncertainties required as initial conditions for
the next weekly forecast step. We report monthly flux esti-
mates following four assimilation cycles. Further details on
the LETKF and the governing equations for flux estimation
are provided in Appendix A.
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2.3 Atmospheric CO2 observations

Atmospheric CO2 observations used for this study are taken
from the NOAA ESRL GLOBALVIEWplus Observation
Package v4.2 (ObsPack, Cooperative Global Atmospheric
Data Integration Project, 2018). CO2 measurement records
for the period 2000–2017 from 86 surface sites were used
in this analysis. Further details on the measurement sites
and the site-specific observation uncertainty characteristics
are presented in Table A1 of Appendix A. The specification
of observational uncertainty associated with incorporation of
the atmospheric CO2 measurements into the LETKF is de-
rived using the methods of Chevallier et al. (2010); we use
the standard deviation of measurement variability from de-
trended and deseasonalized CO2 time series at each measure-
ment site. The resulting specification of observational uncer-
tainty varies between 0.16 ppm (for stations in and around
the Southern Ocean) to over 5 ppm (for stations in continen-
tal interiors) (see Appendix Table A1 for more details).

2.4 Specification of prior CO2 fluxes and associated
flux uncertainties

The GEOS-Chem model CO2 simulation employed in this
study includes representation of fossil fuel emissions, air–
sea fluxes, and exchange with the terrestrial biosphere. De-
tails of the data sources used to specify the prior flux dis-
tributions are outlined here. Fossil fuel emissions are taken
from Chevallier et al. (2019) (Global Atmospheric Research
version 4.3.2; Crippa et al., 2016; scaled globally and annu-
ally from Le Quéré et al., 2018), and land biosphere fluxes
are taken from the Joint UK Land Environment Simulator
(JULES; Clark et al., 2011).

The focus of our study is on North Atlantic Ocean CO2
fluxes, and we investigate the representation of ocean prior
fluxes and prior flux uncertainty in more detail. Firstly, in
Sect. 3.1, in a set of sensitivity analyses, we compare the im-
plementation of three different representations of ocean CO2
fluxes that have been used to specify prior fluxes in recent in-
verse analyses: (i) the widely used Takahashi et al. (2009) cli-
matology (hereinafter Ta), (ii) the interannually varying flux
product of Landschützer et al. (2016) derived from surface
pCO2 distributions (hereinafter La), and (iii) the interannual
fluxes from the ocean mixed-layer scheme of Rödenbeck et
al. (2014) (hereinafter Ro). We also evaluate, in more de-
tail, the impact of different specifications of prior flux uncer-
tainty for ocean fluxes. Many previous atmospheric inverse
estimates of air–sea carbon fluxes have employed relatively
simple characterizations of the prior ocean flux uncertainty,
e.g., based on a fixed proportion of the grid-scale or regional
prior flux (Nassar et al., 2011; Liu et al., 2016; Feng et al.,
2016). In Sect. 3.1, we employ both fixed flux uncertainties
and also present an alternative scheme derived from the en-
semble spread of ocean CO2 flux products, as described be-
low.

The prior ocean flux distributions employed in atmo-
spheric inversions are frequently derived from interpolations
of the surface ocean pCO2 database (e.g., SOCAT; Bakker
et al., 2016) in combination with ocean–atmosphere gas ex-
change parameterizations. Uncertainties in the derived prod-
ucts stem from uncertainties in the input data (e.g., density of
measurements), interpolation methods, and gas-transfer pa-
rameterizations (Landschutzer et al., 2013). However, some
ocean regions, the North Atlantic in particular, have a higher
density of pCO2 measurements and more consistent flux es-
timates from pCO2-based products (Schuster et al., 2013;
Landschutzer et al., 2013). Here we exploit the recent ex-
pansion of pCO2-based ocean flux products to outline a new
specification of ocean prior flux uncertainty based on the en-
semble spread of the different flux products (the “spread-
based” uncertainty scheme). Towards the development of the
spread-based scheme, we have compiled a set of eight global
gridded interannually varying ocean–atmosphere CO2 flux
products. These are Landschutzer et al. (2016), Rodenbeck
et al. (2014), Denvil-Sommer et al. (2019), Iida et al. (2015),
Zeng et al. (2015), Gregor et al. (2019), Chau et al.. (2020),
and Watson et al. (2020).

The spread-based prior flux uncertainty scheme uses a di-
agnostic derived from the variation among the set of ocean
atmosphere carbon flux products (see Eq. 1). This scheme
specifies lower uncertainty levels where alternative prior flux
representations are in accord (e.g., when well-constrained
by availability of surface pCO2 measurements) and higher
uncertainty levels where the prior flux distributions differ
significantly (typically in undersampled regions or those of
significant flux variability). This specification follows pre-
viously used methods to characterize uncertainties in ocean
flux distributions (e.g., Bopp et al., 2013). For this spread-
based uncertainty specification, the gridded prior flux uncer-
tainty,U(i,j ) (for a grid cell with coordinates (i,j)), is spec-
ified as the standard deviation of the spread of the different
prior flux products. Thus, the uncertainty U(i,j ) is calcu-
lated as

U(ij)= sqrt

(
K∑
k

(
fk(i,j)− f (i,j)

2
)
/(K − 1)

)
. (1)

Here K is the total number of the prior ocean flux products
considered, and subscript k refers to an individual flux prod-
uct. fk(ij) represents the gridded monthly flux for each prior
ocean flux, and f (i,j) is the gridded monthly mean across all
prior ocean flux products. These prior flux uncertainties are
estimated on monthly timescales and also account for inter-
annual variations. The uncertainty statistics of the prior ocean
flux distributions will be dependent on the uncertainties asso-
ciated with the respective inputs and methods of constructing
the flux products. Ocean–atmosphere carbon flux products
derived from surface ocean pCO2 measurements are gen-
erally subject to two main sources of uncertainty: (i) in the
specification of the surface CO2 partial pressure difference
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across the air–sea interface and (ii) in the specification of the
gas exchange coefficient used to derive fluxes (e.g., see dis-
cussion of Landschutzer et al., 2013; Watson et al., 2020).
In the extended database of eight pCO2-based flux prod-
ucts that we present above, the majority of the flux products
(seven of the eight) rely on the surface ocean pCO2 data of
the SOCAT database (Bakker et al., 2016). These flux prod-
ucts will be subject to similar uncertainties associated with
data coverage in different ocean regions, although the uncer-
tainties due to differences among surface interpolation meth-
ods may vary.

In this study we account for spatial correlations in the
prior ocean fluxes by inclusion of off-diagonal elements
in the background error covariance matrix Pb (Eq. A3 in
Appendix A). We follow the recommendations of Jones et
al. (2012) on autocorrelation length scales in the surface
ocean. That study derived spatial autocorrelation functions
for air–sea fluxes from an analysis of the surface ocean pCO2
database reported in Takahashi et al. (2009), combined with a
gas exchange parameterization. We currently do not account
for spatial correlation in land fluxes, but we will investigate
this in future analyses.

3 Results and discussion

We first present in Sect. 3.1 results of short-term sensitiv-
ity tests that compare the influence of different prior ocean
flux distributions and prior ocean flux uncertainty schemes
on GCL estimates of North Atlantic (NA) CO2 fluxes. Using
these analyses as a basis, in Sect. 3.2 we conduct a multi-
year GCL analysis of North Atlantic CO2 ocean fluxes for the
2000–2017 period. We also report on derived characteristics
of regionally aggregated North Atlantic subtropical and sub-
polar fluxes (long-term means, trends, and interannual vari-
ability) and compare these GCL results with recent estimates
from other methodologies, including global ocean biogeo-
chemical models (GOBMs), other atmospheric inverse stud-
ies, and surface pCO2-based data products.

3.1 Sensitivity tests on specification of prior flux
uncertainty

In this section we investigate, via sensitivity analyses, the ap-
plication of the spread-based prior flux uncertainty scheme
outlined in Sect. 2.4 in comparison to the fixed prior uncer-
tainty levels commonly used in previous inverse estimates
of ocean CO2 fluxes. The alternative specifications of prior
flux uncertainty for ocean fluxes employed include (a) fixed
percentage-based levels (U1: 60 % of prior flux, and U2:
120 % of prior flux) and (b) gridded flux uncertainties rep-
resenting the variation or “spread” of the different ocean flux
data products at each location, as well as based on the stan-
dard deviation of the variation among the prior fluxes (U3:
spread-based uncertainty; see Eq. 1). The selection of the

fixed percentage prior uncertainty levels used in the sensi-
tivity analyses was based on the range of variability seen for
the individual prior flux distributions (Fig. 1) for the sub-
regions of the North Atlantic. These ranged from average
levels of ∼ 60 % for the subtropical North Atlantic to levels
greater than 120 % for the subpolar North Atlantic; hence,
we have selected a level of U1 (60 %) to characterize the
lower sensitivity case and U2 (120 %) for the higher case.
We apply the alternative flux uncertainty specifications to
the three different ocean prior flux distributions discussed in
Sect. 2.4, namely, (i) the Takahashi et al. (2009) climatology
(Ta), (ii) the flux product of Landschützer et al. (2016) (La),
and (iii) the flux product of Rödenbeck et al. (2014) (Ro).

Sensitivity analyses are conducted for the year 2003, fol-
lowing a 3-year GEOS-Chem model spin-up, starting from
1 January 2000; the length of spin-up was determined by
recommendations on the duration required for stabilization
of tropospheric CO2 gradients (e.g., Gurney et al., 2002) and
following methods used for previous GEOS-Chem CO2 anal-
yses (e.g., Nassar et al., 2010). The year 2003 was selected
for sensitivity tests as the first viable year following spin-
up. Analyses of interannual variability in Atlantic CO2 (e.g.,
Landschutzer et al., 2013; Schuster et al., 2013) do not find
2003 to be an anomalous year for regional ocean fluxes. We
evaluate the sensitivity of posterior ocean flux estimates with
three different prior ocean uncertainty schemes U1, U2, and
U3, described above; these are applied in turn for each of the
three prior ocean flux distributions (Ta, La, and Ro). Figure 1
presents the seasonal variation of the spatial distribution of
the spread-based prior ocean flux uncertainty U3 (3-month
averages for the year 2003). Figure 1 demonstrates that over
the course of the year, and particularly in the Northern Hemi-
sphere winter months, the spread-based uncertainty scheme
(U3) provides a looser constraint on prior fluxes (i.e., lev-
els of prior flux uncertainty > 120 %) than the U1 and U2
schemes in the subpolar region, and a tighter constraint in
the subtropical region (levels < 60 %).

Table 1 summarizes the prior and posterior ocean flux es-
timates for the global and North Atlantic region (subdivided
into subpolar and subtropical regions) from the respective
sensitivity tests. The distribution of prior flux for the sub-
tropical North Atlantic shows closer agreement among the
three source representations (Ta, La, and Ro), with regional
variation of 0.05 PgC yr−1 in comparison to a regional vari-
ation of ∼ 0.1 PgC yr−1 for the subpolar region. Under the
constraints provided by the atmospheric CO2 observations,
all posterior flux estimates for the North Atlantic show in-
creased uptake (Table 1), indicating that all three represen-
tations of ocean prior flux underestimate the regional net
atmosphere–ocean flux for the 2003 period. Largest changes
in the regional posterior fluxes are estimated under the U3
specification of prior flux uncertainty. In addition, our esti-
mates indicate a larger increase in CO2 uptake in the subpo-
lar basin (∼ 0.05 PgC yr−1, changing from a prior flux range
of −0.13 to −0.23 PgC yr−1 to posterior flux range of −0.18
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Figure 1. Distribution of the spread-based prior ocean flux uncertainty (U3) (3-month averages for the year 2003). The distribution in this
study is calculated from the following eight air–sea CO2 flux products: (1) Denvil-Sommer et al. (2019) (product LSCE-FFNN-v1); (2) Iida
et al. (2015) (JMA); (3) Zeng et al. (2015) (NIES); (4) Gregor et al. (2019) (CSIR-ML6); (5) Chau et al. (2020) (CMEMS); (6) Watson et
al. (2020); (7) Landschützer et al. (2016); and (8) Rödenbeck et al. (2014). It is represented here as a percentage of the prior ocean flux for
ease of comparison with U1 and U2. The percentage shown for each grid cell is derived from the ratio of spread-based prior ocean uncertainty
divided by the prior ocean flux value at that grid cell. DJF represents the monthly average for December, January, and February; MAM for
March, April, and May; JJA for June, July, and August; and SON for September, October, and November.

to−0.27 PgC yr−1 for the U3 scenarios) in comparison to the
smaller-magnitude change for the subtropical North Atlantic
basin (of ∼ 0.04 PgC yr−1 from around −0.18 PgC yr−1 to
−0.22 PgC yr−1 for the U3 scenarios).

We note that the increases in estimated uptake for the
North Atlantic basins are relatively smaller (on average in the
range 10 %–20 %) than the increased uptake estimated on the
global scale (∼ 30 %–50 % changes; see Table 1), indicating
that the prior flux representations of North Atlantic carbon
uptake are more consistent with the constraints from atmo-
spheric CO2 measurements than the comparison on a global
scale.

The U3 flux uncertainty specification is derived from the
variation among a set of ocean–atmosphere carbon flux prod-
ucts (Eq. 1). This scheme specifies lower uncertainty lev-
els where alternative prior flux representations are in ac-
cord (e.g., when well constrained by availability of surface
pCO2 measurements, as in the subtropical North Atlantic)
and higher uncertainty levels where the prior flux distribu-
tions differ significantly (typically in undersampled regions

or those of significant flux variability, such as the subpolar
North Atlantic). We further assess the value of the U3 scheme
using a metric of GCL modeled atmospheric CO2 concen-
tration; specifically, estimates of the model–observation mis-
match for the year 2003 at the NOAA network station sites
in the North Atlantic using the a posteriori fluxes associ-
ated with the sensitivity analyses of this section (Appendix
Table A2). The results summarized in Table A2 indicate
that scheme U3 provides the smallest-magnitude model–
observation mismatch for the individual North Atlantic sites
and for the global network average. Therefore, for the long-
term analyses in the remainder of this study, we use the U3
spread-based flux uncertainty scheme in preference to the
fixed-level flux uncertainty schemes used in many previous
inverse analyses.
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Table 1. Global and North Atlantic CO2 flux estimates from the GEOS-Chem–LETKF (GCL) system for year 2003 (PgC yr−1), summarizing
sensitivity analyses on the prior ocean flux distribution and prior flux uncertainty. Prior flux references are Ta (Takahashi et al., 2009), La
(Landschutzer et al., 2016), and Ro (Rodenbeck et al., 2014). Prior flux uncertainty specifications are U1: 60 %; U2: 120 %; and U3: spread-
based scheme (following methods of Sect. 2.4).

Global ocean CO2 flux (PgC yr−1)

Ta −1.37 La −1.25 Ro −2.09
TaU1 −1.63± 0.13 LaU1 −1.52± 0.13 RoU1 −2.31± 0.16
TaU2 −2.05± 0.26 LaU2 −1.96± 0.26 RoU2 −2.68± 0.31
TaU3 −1.97± 0.17 LaU3 −1.83± 0.19 RoU3 −2.60± 0.18

North Atlantic subtropics (15–50◦ N)

Ta −0.22 La −0.18 Ro −0.17
TaU1 −0.23± 0.02 LaU1 −0.19± 0.02 RoU1 −0.18± 0.02
TaU2 −0.25± 0.05 LaU2 −0.21± 0.04 RoU2 −0.20± 0.04
TaU3 −0.26± 0.03 LaU3 −0.22± 0.03 RoU3 −0.23± 0.03

North Atlantic subpolar (50–80◦ N), eastern boundary at 20◦ E

Ta −0.23 La −0.13 Ro −0.21
TaU1 −0.23± 0.05 LaU1 −0.13± 0.02 RoU1 −0.22± 0.04
TaU2 −0.25± 0.1 LaU2 −0.14± 0.05 RoU2 −0.23± 0.09
TaU3 −0.27± 0.05 LaU3 −0.18± 0.05 RoU3 −0.24± 0.05

3.2 Multiyear analyses of North Atlantic CO2 fluxes

In this section we present results of a multiyear GCL analysis
(for the period 2000–2017), calculating regional estimates of
North Atlantic CO2 fluxes on annual to decadal timescales.
Prior flux distributions for fossil fuel emissions and exchange
with the land biosphere fluxes are as described in Sect. 2.4.
For ocean prior fluxes, we employ the distribution of Land-
schützer et al. (2016); this is an established surface pCO2-
based product and also provides interannually varying fluxes
over the entire estimation period (2000–2017) in compari-
son to the climatology-only fluxes of Takahashi et al. (2009).
Ocean prior flux uncertainties are specified by the spread-
based scheme U3 described above and derived from the eight
ocean–atmosphere pCO2-based flux products summarized in
Sect. 2.4.

Figure 2 presents the variation of air–sea CO2 flux for
the North Atlantic subtropical and subpolar regions for the
2000–2017 period (represented as a 12-month running aver-
age). We also plot in Fig. 2 flux estimates from three other at-
mospheric inverse analysis studies including CAMS (v18r2,
Chevallier et al., 2019), CT (CarbonTracker 2019; Jacob-
son et al., 2020) and CTE (Carbon Tracker Europe; van der
Laan-Luijkx et al., 2017). All data are regridded to 2◦ lati-
tude× 2.5◦ longitude to be consistent with the GCL model
resolution.

For the North Atlantic subtropical region, the GCL pos-
terior flux magnitude is close to that of the ocean prior flux
employed (Landschutzer et al., 2016), with differences of ap-
proximately 0.01 PgC yr−1 over the period. Variation among
the other inverse flux estimates can reach up to 0.3 PgC yr−1

(e.g., between CT and CAMS in 2017), and these differ-
ences can be ascribed, in part, to the different underlying
prior flux distributions used in the respective inverse analyses
(see Sect. 3.2.2). For the North Atlantic subpolar region, the
GCL posterior flux estimate deviates more from the prior flux
estimate (e.g., showing differences of up to 0.04 PgC yr−1),
especially for some years (2012–2017) of the analysis. The
majority of flux estimates for the North Atlantic subpolar re-
gion are in closer accord (Fig. 2b) with differences of less
than 0.2 PgC yr−1 (the CT estimate is an exception indicating
variations of greater than 0.3 PgC yr−1 from the other esti-
mates). A potential reason for the anomalous behavior of the
CT estimate in the North Atlantic is the underlying prior flux
uncertainties used in the analysis, which give a loose con-
straint on the prior ocean fluxes and allow the ocean fluxes
to deviate far from the prior fluxes influenced by the atmo-
spheric CO2 signals (Jacobson et al., 2020).

We also note that Peylin et al. (2013) have suggested that
significant interannual variability in atmospheric inverse es-
timates is a potential indicator of “flux leakage”, where sig-
nificant variability of terrestrial carbon fluxes in combina-
tion with sparse atmospheric sampling can result in misat-
tribution of carbon flux estimates between land and ocean.
To assess the significance of flux leakage in our GCL anal-
yses, we have calculated estimates of the diagnostic recom-
mended by Peylin et al. (2013) (i.e., the correlation between
the annual total land and total ocean fluxes) for the North-
ern Hemisphere as a whole (Equator to 90◦ N) and also by
latitudinal region. Estimates of this diagnostic are relatively
low for our GCL analyses (values of 0.2 and 0.5 for the sub-
polar and subtropical regions, respectively), indicating low
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Figure 2. Comparison of annual air–sea CO2 fluxes for North Atlantic for the 2000–2017 period for (a) North Atlantic subtropics and
(b) North Atlantic subpolar regions. The GCL posterior flux estimate from this study (red) is derived from the prior flux of Landschützer
et al. (2016) (pCO2La, black). The shaded grey area represents the uncertainty estimate on the GCL posterior flux (plotted at a 1σ level).
Also shown are the flux estimates of (i) Chevallier et al. (2019) (CAMS, yellow), (ii) Jacobson et al. (2020) (CT, CarbonTracker 2019, pink),
and (iii) van der Laan-Luijkx et al. (2017) (CTE, Carbon Tracker Europe, blue). All time series shown have a 12-month running mean filter
applied.

potential for flux leakage. As a point of comparison, Peylin
et al. (2013) note that 6 out of 11 atmospheric inverse analy-
ses in their model intercomparison reported correlation coef-
ficients of greater than 0.5.

3.2.1 Long-term mean

Figure 3 provides a comparison of the following GCL flux
estimates and associated characteristics for the North At-
lantic subtropical and subpolar regions for the period 2000–
2017: (i) the long-term mean of air–sea CO2 flux estimates
(the underlying data are tabulated in Table 2); (ii) the esti-
mated interannual variability (IAV) of fluxes (Table 3); and
(iii) the long-term trends (Table 4). The IAV is calculated
following methods of Rödenbeck et al. (2015) (i.e., derived
from the standard deviation of the residuals of a 12-month
running mean over the CO2 flux time series).

We also present in Fig. 3 the equivalent estimates from
other independent assessments, including (i) other atmo-
spheric inverse analyses, (ii) surface ocean pCO2-based
analyses, and (iii) analyses from global ocean biogeochem-
istry models (GOBMs). For the North Atlantic subtropical
region, the long-term mean of the GCL posterior flux es-
timate is −0.255± 0.037 PgC yr−1 (Fig. 3a and Table 2).
It lies in the range spanned by the other inverse analyses
(−0.31 to −0.20 PgC yr−1, of slightly larger magnitude than
CAMS but smaller than CT and CTE) and is in good agree-

ment with the mean-value estimates from surface pCO2-
based methods and GOBMs. For the North Atlantic subpo-
lar region, the GCL estimate of the long-term mean uptake
is −0.203± 0.037 PgC yr−1 (Table 2), which is close to the
inverse estimate of the CAMS analysis and of smaller mag-
nitude (by ∼ 0.1 PgC yr−1) than the inverse estimates of CT
and CTE. The GCL estimate is consistent with the mean esti-
mate from pCO2-based products and within the range of flux
estimates from GOBMs (from −0.341 to −0.197 PgC yr−1).

3.2.2 Interannual variability

The interannual variability (IAV) of CO2 flux estimates de-
rived from the GCL is 0.036± 0.006 PgC yr−1 for the North
Atlantic subtropics and 0.034± 0.009 PgC yr−1 for the North
Atlantic subpolar region (Fig. 3c and d, Table 3). The IAV
estimates from the different inverse analyses for both the
North Atlantic subtropics and subpolar regions display a
larger range (0.032 to 0.084 and 0.023 to 0.114 PgC yr−1,
respectively) than the ranges displayed by GOBMs (0.014 to
0.027 and 0.015 to 0.024 PgC yr−1, respectively) and pCO2-
based fluxes (0.029 to 0.050 and 0.009 to 0.037 PgC yr−1,
respectively). The larger range of IAV from atmospheric in-
verse analyses is influenced especially by high-magnitude
IAV estimates from the CarbonTracker (CT) inverse analy-
sis. Potential causes of the differences among atmospheric
inversion between the GCL and CAMS IAV estimates and
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Figure 3. Comparison of CO2 ocean flux metrics for the 2000–2017 period for North Atlantic subtropics (a, c, e) and subpolar re-
gions (b, d, f). Metrics shown are the long-term mean (a, b), interannual variability (IAV) (c, d), and long-term trend (e, f). The GCL
estimates (red stars) are shown in comparison to other atmospheric inverse analyses (red symbols), surface ocean pCO2 products (blue), and
global ocean biogeochemistry models (GOBMs, purple). Also shown are the estimated mean values from each subgroup of analyses (filled
cross symbols) with their minimum to maximum range. Circled symbols in (e) and (f) indicate a statistically significant trend.

those of the CarbonTracker estimates are the different prior
ocean fluxes employed by the inverse analyses, and the rela-
tive weighting assigned to the influence of atmospheric CO2
observations (Jacobson et al., 2020). The GCL and CAMS
estimates use the prior flux of Landschützer et al. (2016),
CTE uses the prior flux of Rodenbeck et al. (2014), and the
CarbonTracker inversions use the prior flux of Jacobson et
al. (2007).

Recent synthesis studies of global ocean carbon fluxes
have noted that GOBMs underestimate the magnitude of IAV
in comparison to estimates from pCO2-based mappings and
inverse analyses (DeVries et al., 2019; Hauck et al., 2020).
An important driver of IAV is the variability in biological
carbon export; the lower variability observed in the GOBMs
could result from opposing changes in biological vs. circu-
lation impacts on carbon export, which potentially reduces
the sensitivity of the GOBM air–sea carbon fluxes to climate
variability (Landschutzer et al., 2013; DeVries et al., 2019).

3.2.3 Estimated trends of North Atlantic CO2 fluxes

Our calculations of estimated trends for the 2000–2017 pe-
riod are presented in Table 4 and Fig. 3e and f. We also high-
light in the table and figure panels the trend estimates that
are statistically significant (significant at the 95 % confidence
level; Montgomery et al., 2012). Our GCL analyses indi-
cate statistically significant trends for the 2000–2017 period
of −0.064± 0.007 PgC yr−1 decade−1 in the North Atlantic
subtropical basin and 0.063± 0.008 PgC yr−1 decade−1 in
the subpolar region. These estimated trends are of simi-
lar magnitude to those estimated from surface ocean pCO2
products but of much larger magnitude (by a factor of 3–
4) than decadal trends estimated from the GOBMs (Fig. 3e,
Table 4). Our findings are similar to those of Devries et
al. (2019), who noted that decadal trend estimates of North
Atlantic CO2 uptake for the 2000s from the SOCOM (Sur-
face Ocean pCO2 Mapping intercomparison) of pCO2-based
flux products were larger than those from the GOBMs in their
analysis (see Fig. 3 of their study).
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Table 2. Summary metrics of GEOS-Chem–LETKF North Atlantic (NA) CO2 flux estimates and comparison with independent estimates
(from atmospheric inverse analyses, surface pCO2 mappings, and global ocean biogeochemistry models (GOBMs)) for the period 2000–
2017. Listed are estimates for the long-term mean. The metrics listed in this table are plotted in Fig. 3a and b.

Long-term mean (PgC yr−1)

NA subtropics NA subpolar
(15–50◦ N) (50–80◦ N; eastern

boundary at 20◦ E)

Atmospheric inversions

−0.255± 0.037 −0.203± 0.037 This study (GCL)∗

−0.203 −0.208 CAMS (Chevallier et al., 2019)
−0.315 −0.347 CTE (van der Laan-Luijkx et al., 2017)
−0.307 −0.340 CT (Jacobson et al., 2020)
(−0.315, −0.203) (−0.347, −0.203) Range of all atmospheric inverse studies (minimum, maximum)

Surface ocean pCO2-based flux products

−0.263 −0.230 pCO2La (Landschutzer et al., 2016)
−0.284 −0.252 pCO2Ro (Rodenbeck et al., 2014)
−0.264 −0.208 CMEMS (Chau et al., 2020)
−0.302 −0.248 CSIR (Gregor et al., 2019)
−0.295 −0.241 JMA (Iida et al., 2015)
−0.309 −0.192 LSCE-FFNN (Denvil-Sommer et al., 2019)
−0.193 −0.171 NIES (Zeng et al., 2015)
−0.305 −0.259 Watson et al. (2020)
(−0.309, −0.193) (−0.259, −0.171) Range of all pCO2-based representations (minimum, maximum)

Global ocean biogeochemistry models

−0.150 −0.197 NEMO-PlankTOM5 (Buitenhuis et al., 2010)
−0.238 −0.217 CCSM-BEC (Doney et al., 2009)
−0.342 −0.341 NEMO-PISCES (CNRM) (Séférian et al., 2013)
−0.188 −0.321 MPIOM-HAMOCC (Ilyina et al., 2013)
−0.351 −0.316 NorESM-OC (Schwinger et al., 2016)
−0.205 −0.256 MITgcm-REcoM2 (Hauck et al., 2016)
(−0.351, −0.150) (−0.341, −0.197) Range of GOBM studies (minimum, maximum)

∗ The uncertainty of the long-term mean estimate from the GCL (this study) is calculated as the standard deviation of the annual flux estimates
over the 2000–2017 period.

4 Summary

In this study we present a new long-term estimate of North
Atlantic air–sea CO2 fluxes for recent decades (period 2000–
2017) using the atmospheric carbon cycle data assimila-
tion system GEOS-Chem–LETKF. We focus, in particular,
on the specification of prior ocean fluxes, including sen-
sitivity of flux estimates to alternative prior flux distribu-
tions and on the specification of uncertainties associated with
ocean fluxes. Towards this, we have developed the spread-
based flux uncertainty scheme which represents the variabil-
ity among a set of different prior ocean CO2 flux represen-
tations. The scheme ascribes higher levels of uncertainty to
regions with larger discrepancies among ocean CO2 prior
flux representation that arise from uncertainties associated
with measurement density and pCO2-interpolation methods
(Sect. 2.4). The spread-based flux uncertainty scheme pro-

vides improved performance in comparison to schemes with
fixed prior flux uncertainty levels, based on an assessment
metric of differences in model–observation values for at-
mospheric CO2 at North Atlantic measurement sites of the
NOAA-GLOBALVIEWCO2 network (Sect. 3.1). It provides
a valuable new means of specifying prior flux uncertainties
for atmospheric inverse analyses of ocean CO2 fluxes.

We have used the spread-based flux uncertainty scheme
in the GEOS-Chem–LETKF to derive estimates of CO2
fluxes in the North Atlantic for the 2000–2017 period.
Long-term mean estimates of the regional ocean CO2 up-
take are −0.255± 0.037 PgC yr−1 for the North Atlantic
subtropics and −0.203± 0.037 PgC yr−1 for North Atlantic
subpolar region, and they are consistent with recent re-
gional flux estimates from surface pCO2-based meth-
ods and global ocean biogeochemistry models (GOBMs).
The GEOS-Chem–LETKF estimates of interannual vari-
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Table 3. Summary metrics of GEOS-Chem–LETKF North Atlantic (NA) CO2 flux estimates and comparison with independent estimates
(from atmospheric inverse analyses, surface pCO2 mappings, and global ocean biogeochemistry models (GOBMs)) for the period 2000–
2017. Listed are estimates for the interannual variability of the regional fluxes over the period. The metrics listed in this table are plotted in
Fig. 3c and d.

Interannual variability (IAV) (PgC yr−1)

NA subtropics NA subpolar
(15–50◦ N) (50–80◦ N; eastern

boundary at 20◦ E)

Atmospheric inversions

0.036± 0.006 0.034± 0.009 This study (GCL)∗

0.032 0.023 CAMS (Chevallier et al., 2019)
0.065 0.064 CTE (van der Laan-Luijkx et al., 2017)
0.084 0.114 CT (Jacobson et al., 2020)
(0.032, 0.084) (0.023, 0.114) Range of all atmospheric inverse studies (minimum, maximum)

Surface ocean pCO2-based flux products

0.038 0.036 pCO2La (Landschutzer et al., 2016)
0.050 0.035 pCO2Ro (Rodenbeck et al., 2014)
0.031 0.018 CMEMS (Chau et al., 2020)
0.035 0.019 CSIR (Gregor et al., 2019)
0.028 0.009 JMA (Iida et al., 2015)
0.037 0.016 LSCE-FFNN (Denvil-Sommer et al., 2019)
0.029 0.019 NIES (Zeng et al., 2015)
0.037 0.037 Watson et al. (2020)
(0.029, 0.050) (0.009, 0.037) Range of all pCO2-based representations (minimum, maximum)

Global ocean biogeochemistry models

0.018 0.018 NEMO-PlankTOM5 (Buitenhuis et al., 2010)
0.014 0.015 CCSM-BEC (Doney et al., 2009)
0.027 0.024 NEMO-PISCES (CNRM) (Séférian et al., 2013)
0.016 0.019 MPIOM-HAMOCC (Ilyina et al., 2013)
0.021 0.016 NorESM-OC (Schwinger et al., 2016)
0.017 0.016 MITgcm-REcoM2 (Hauck et al., 2016)
(0.014, 0.027) (0.015, 0.024) Range of GOBM studies (minimum, maximum)

∗ The uncertainty of the estimated IAV from the GCL (this study) is calculated as the standard deviation of the ensemble posterior fluxes.

ability in air–sea CO2 fluxes are 0.036± 0.006 PgC yr−1

(North Atlantic subtropics) and 0.034± 0.009 PgC yr−1

(North Atlantic subpolar). In common with estimates from
other atmospheric CO2 inverse studies, the magnitude
of IAV derived from the GEOS-Chem–LETKF is larger
than corresponding estimates from GOBMs. Our GEOS-
Chem–LETKF estimates also indicate statistically signifi-
cant trends of increasing CO2 uptake for the North At-
lantic subtropical and subpolar regions (estimated trend of
−0.064± 0.007 and −0.063± 0.008 PgC yr−1 decade−1, re-
spectively). These trends are of comparable magnitude to
those estimated from surface pCO2-based flux products, but
much larger than those derived from global ocean biogeo-
chemistry models for the 2000–2017 period. Estimates of in-
terannual variability and long-term trends derived from our
GEOS-Chem–LETKF analyses are generally more robust for

the North Atlantic subtropics than for the subpolar region
and characterized by smaller uncertainty bounds. Limiting
factors affecting estimates for the North Atlantic subpolar
region include higher levels of uncertainty associated with
specification of prior fluxes (Fig. 1) and the observational un-
certainty at the atmospheric measurement CO2 sites in these
high northern latitudes (Table A1). The number of regional
atmospheric CO2 measurement sites available to constrain
North Atlantic subpolar fluxes are also relatively few in com-
parison to the subtropical region. Improved ocean CO2 flux
estimates and associated metrics for this North Atlantic re-
gion will be obtained by provision of additional high accu-
racy marine boundary layer CO2 measurements for the re-
gion from fixed surface sites and from ships and buoys (Wan-
ninkhof et al., 2019).
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Table 4. Summary metrics of GEOS-Chem–LETKF North Atlantic (NA) CO2 flux estimates and comparison with independent estimates
(from atmospheric inverse analyses, surface pCO2 mappings, and global ocean biogeochemistry models (GOBMs)) for the period 2000–
2017. Listed are estimates for the trend of the regional fluxes over the period. The metrics listed in this table are plotted in Fig. 3e and f of
the main study.

Trend (PgC yr−1 decade−1)

NA subtropics NA subpolar
(15–50◦ N) (50–80◦ N; eastern

boundary at 20◦ E)

Atmospheric inversions

−0.064± 0.007(S)a
−0.063± 0.008(S)a This study (GCL)b

−0.016 −0.023 CAMS (Chevallier et al., 2019)
−0.068 −0.028 CTE (van der Laan-Luijkx et al., 2017)
−0.067 −0.102 CT (Jacobson et al., 2020)
(−0.016, −0.085) (−0.023, −0.126) Range of all Atmospheric inverse studies (minimum, maximum)

Surface ocean pCO2-based flux products

−0.068(S) −0.056(S) pCO2La (Landschutzer et al., 2016)
−0.070(S) −0.029 pCO2Ro (Rodenbeck et al., 2014)
−0.057(S) −0.027(S) CMEMS (Chau et al., 2020)
−0.063(S) −0.034(S) CSIR (Gregor et al., 2019)
−0.048(S) −0.001 JMA (Iida et al., 2015)
−0.070(S) −0.021 LSCE-FFNN (Denvil-Sommer et al., 2019)
−0.057(S) −0.037(S) NIES (Zeng et al., 2015)
−0.069(S) −0.064(S) Watson et al. (2020)
(−0.048, −0.070) (−0.001, −0.064) Range of all pCO2-based representations (minimum, maximum)

Global ocean biogeochemistry models

−0.015 −0.023 NEMO-PlankTOM5 (Buitenhuis et al., 2010)
−0.010 0.0002 CCSM-BEC (Doney et al., 2009)
−0.021 −0.002 NEMO-PISCES (CNRM) (Séférian et al., 2013)
−0.014 −0.011 MPIOM-HAMOCC (Ilyina et al., 2013)
−0.036(S) −0.023 NorESM-OC (Schwinger et al., 2016)
−0.013 −0.014 MITgcm-REcoM2 (Hauck et al., 2016)
(−0.010, −0.036) (−0.0002, −0.023) Range of GOBM studies (minimum, maximum)

a The symbol “(S)” indicates that the calculated trend is statistically significant (at the 95 % confidence interval).
b The uncertainty of the fitted trend from the GCL estimates is reported as 1 standard deviation of the ordinary least squares (OLS)-fitted slope
(Montgomery et al., 2012).
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Appendix A: The Local Ensemble Transform Kalman
Filter (LETKF) system

Here we briefly describe the LETKF system used for estima-
tion of surface CO2 fluxes. The methodology follows that of
Hunt et al. (2007) and Miyoshi et al. (2007), and additional
detail is provided in these publications. The LETKF has been
previously used in meteorological forecasting and more re-
cently in atmospheric CO2 data assimilation (e.g., Liu et al.,
2019, 2016; Kang et al., 2012). The LETKF provides iter-
ative estimates of the time evolution of the system state, x,
(here representing the grid-scale surface carbon fluxes of di-
mension m). Each step involves a forecast stage (based on a
physical model of the system evolution) and a state estima-
tion stage (the “analysis” step), which combines system ob-
servations, y (of dimension n), together with the background
forecast, xb, to derive the improved state estimate. The ob-
servation operator H provides the mapping from the state
space to the observation space; in this study H is provided
by the GEOS-Chem atmospheric model. In the analysis step,
the surface carbon flux estimates are obtained by minimiza-
tion of a cost function (Eq. A1) which accounts for deviations
of the system state x from the background forecast, xb, and
for the mismatch between observations (y) and their modeled
representations (Hx):

J (x)= (x− xb)T P−1
(
x− xb

)
+ (y−Hx)TR−1 (y−Hx) , (A1)

where B represents the background flux covariance matrix,
and R represents the observation covariance matrix.

In the LETKF system, an ensemble of model simulations
is used to calculate the sample mean and covariance of the
system state; thus, the background state xb is given by (xb(i)

:

i = 1,2, . . .k) for k ensemble members. The sample mean xb

and covariance P b of the background state vector are given
by

xb
= k−1

k∑
i=1

xb(i), (A2)

P b
= (k− 1)−1

k∑
i=1

(
xb(i)
− xb

)(
xb(i)
− xb

)T
= (k− 1)−1Xb(Xb)TXb, (A3)

where Xb is an m× k matrix whose ith column is xb(i)
−xb.

Pb is the background state covariance matrix (m×m).
Similarly the analysis state is represented by the ensem-

ble (xa(i)
: i = 1,2, . . .k) with its sample mean and covari-

ance given by

xa
= k−1

k∑
i=1

xa(i), (A4)

P a
= (k− 1)−1

k∑
i=1

(
xa(i)− xa

)(
xa(i)− xa

)T
= (k− 1)−1Xa(Xa)T , (A5)

where Xa is the m×k matrix whose ith column is xa(i)
−xa.

The analysis state and covariance, xa and Pa, are updated
based on the background information xb and observations y
through the following equations:

xa
= xb
+P aH TR−1(y−Hxb), (A6)

P a
= (I +P bH TR−1H)−1P b. (A7)

The ensemble yb(i) of background observation vectors is
defined by

yb(i)
=H(xb(i)), (A8)

H
(
xb
+Xbw

)
≈ yb
+Y bw, (A9)

where Y b is the n× k matrix whose ith column is (yb(i)−

yb), and w is a Gaussian random vector with mean wb
=

0 and covariance P̃ b
= (k− 1)−1I . Then the analogues of

analysis Eqs. (6) and (7) are

wa
= P̃ a

(
Y b
)T
R−1(y− yb), (A10)

P̃ a
= [(k− 1)I + (Y b)TR−1Y b

]
−1. (A11)

Following Hunt et al. (2007) and Miyoshi et al. (2007) (re-
fer to these publications for the complete LETKF derivation)
the overall analysis equation is

x = xb
+Xb
[P̃ a

(
Y b
)T
R−1

(
y− yb

)
+ [(k− 1)P̃ a

]
1/2
]. (A12)

The LETKF allows for flexibility in the choice of observa-
tions to be assimilated at each grid point, based on the dis-
tance (r) of the observations from the grid point. The local-
ization weighting function f (r) is given by

f (r)= (−
r2

2L2 ), (A13)

where L is an observation localization length which can be
predefined to determine the outer boundary of the influence
of the observations; i.e., the localization weighting function
drops to zero at a value of

r = 2.

√
10
3
L. (A14)
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The observation localization is realized by multiplying the
inverse of the localization function f (r) with the observa-
tional error covariance R.

The parameter L represents the horizontal localization ra-
dius and is set to 2000 km for this study, following Liu et
al. (2016). The localization radius is used in the LETKF in
a latitude-dependent weighting function which characterizes
the spatial scale of the region within which atmospheric CO2
observations are assimilated at each grid point (Miyoshi et
al., 2007).
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Table A1. Atmospheric CO2 measurement sitesa.

Site Latitude Longitude Altitude Site name Ub

code (degrees) (degrees) (m) (ppm)

ABP −12.76 −38.16 6 Arembepe, Bahia 1.04
ALT 82.45 −62.51 195 Alert, Nunavut 1.34
AMY 36.54 126.33 125 Anmyeondo 8.88
ASC −7.97 −14.40 90 Ascension Island 0.66
ASK 23.26 5.63 2715 Assekrem 0.80
AZR 38.75 −27.08 24 Terceira Island, Azores 2.26
BAL 55.50 16.67 28 Baltic Sea 5.50
BCS 23.30 −110.20 14 Baja California Sur 3.42
BGU 41.97 3.23 13 Begur 3.93
BHD −41.41 174.87 90 Baring Head Station 1.12
BKT −0.20 100.32 875 Bukit Kototabang 3.49
BME 32.37 −64.65 17 St. David’s Head, Bermuda 2.57
BMW 32.27 −64.88 60 Tudor Hill, Bermuda 2.12
BRW 71.32 −156.60 28 Barrow Atmospheric Baseline Observatory 1.88
BSC 44.18 28.67 5 Black Sea, Constant,a 9.88
CBA 55.20 −162.72 25 Cold Bay, Alaska 2.41
CFA −19.28 147.06 5 Cape Ferguson, Queensland 1.04
CGO −40.68 144.68 164 Cape Grim, Tasmania 0.40
CHR 1.70 −157.15 5 Christmas Island 0.60
CIB 41.81 −4.93 850 Centro de Investigacion de la Baja Atmósfera (CIBA) 3.97
CPT −34.35 18.49 260 Cape Point 0.74
CRI 15.08 73.83 66 Cape Rama 3.47
CRZ −46.43 51.85 202 Crozet Island 0.49
CYA −66.28 110.52 55 Casey Station, Antarctica 0.29
DRP −55.00 −64.91 10 Drake Passage 0.41
DSI 20.70 116.73 8 Dongsha Island 3.46
EIC −27.15 −109.45 55 Easter Island 1.80
ELL 42.58 0.96 2005 Estany Llong 2.41
ESP 49.38 −126.53 47 Estevan Point, British Columbia 1.49
FKL 35.34 25.67 150 Finokalia, Crete 3.34
GMI 13.39 144.66 6 Mariana Islands 2.22
GPA −12.25 131.05 37 Gunn Point 2.02
HBA −75.61 −26.21 35 Halley Research Station, Antarctica 0.16
HPB 47.80 11.02 990 Hohenpeissenberg 6.71
HSU 41.05 −124.73 8 Humboldt State University 5.78
HUN 46.95 16.65 344 Hegyhátsál 6.00
ICE 63.40 −20.29 127 Stórhöfði, Vestmannaeyjar 2.03
IZO 28.30 −16.48 2378 Izana, Tenerife, Canary Islands 1.21
KEY 25.67 −80.20 6 Key Biscayne, Florida 4.14
KUM 19.52 −154.82 8 Cape Kumukahi, Hawaii 1.77
KZD 44.45 75.57 412 Sary Taukum 3.19
KZM 43.25 77.88 2524 Plateau d’Assy 3.00
LJO 32.87 −117.26 20 La Jolla, California 2.72
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Table A1. Continued.

Site Latitude Longitude Altitude Site name Ub

code (degrees) (degrees) (m) (ppm)

LLB 54.95 −112.45 546 Lac La Biche, Alberta 8.91
LLN 23.46 120.86 2867 Lulin 5.27
LMP 35.51 12.61 50 Lampedusa 2.08
MAA −67.62 62.87 42 Mawson Station, Antarctica 0.32
MEX 18.98 −97.31 4469 High Altitude Global Climate Observation Center 1.33
MHD 53.33 −9.90 26 Mace Head, County Galway 3.23
MID 28.22 −177.37 8 Sand Island, Midway 1.39
MKN −0.06 37.30 3649 Mt. Kenya 1.98
MLO 19.53 −155.58 3402 Mauna Loa, Hawaii 0.63
MQA −54.48 158.97 13 Macquarie Island 0.33
NAT −5.52 −35.26 20 Farol de Mãe Luiza Lighthouse 1.44
NMB −23.58 15.03 461 Gobabeb 1.13
NWR 40.05 −105.58 3526 Niwot Ridge, Colorado 1.88
OBN 55.12 36.60 484 Obninsk 6.49
OTA −38.52 142.82 50 Otway, Victoria 17.45
OXK 50.03 11.81 1185 Ochsenkopf 8.18
PAL 67.97 24.12 570 Pallas-Sammaltunturi, GAW station 3.72
PDM 42.94 0.14 2877 Pic Du Midi 2.71
POC 14.97 −145.13 20 Pacific Ocean 1.47
PSA −64.92 −64.00 15 Palmer Station, Antarctica 0.23
PTA 38.95 −123.73 22 Point Arena, California 5.50
RK1 −29.20 −177.90 12 Kermadec Island 2.23
RPB 13.17 −59.43 20 Ragged Point 0.83
SDZ 40.65 117.12 298 Shangdianzi 9.57
SEY −4.68 55.53 7 Mahé island, Seychelles 0.98
SGP 36.62 −97.48 374 Southern Great Plains, Oklahoma 4.91
SHM 52.72 174.10 28 Shemya island, Alaska 2.91
SIS 60.09 −1.26 33 Shetland Islands 2.87
SMO −14.25 −170.57 47 Tutuila, American Samoa 1.19
STM 66.00 2.00 7 Ocean Station M 2.03
SUM 72.60 −38.42 3215 Summit, Greenland 1.32
SYO −69.00 39.58 16 Syowa Station, Antarctica 0.23
TAC 52.52 1.14 236 Tacolneston 6.78
TAP 36.73 126.13 21 Tae-ahn Peninsula 6.90
THD 41.05 −124.15 112 Trinidad Head, California 4.54
TIK 71.60 128.89 29 Hydrometeorological Observatory of Tiksi 2.64
USH −54.85 −68.31 32 Ushuaia 1.41
UTA 39.90 −113.72 1332 Wendover, Utah 2.65
UUM 44.45 111.10 1012 Ulaan-Uul 2.78
WIS 30.86 34.78 482 Weizmann Institute of Science at the Arava Institute, Ketura 2.39
WLG 36.27 100.92 3815 Mt. Waliguan 2.26
WPC −29.86 167.50 10 Western Pacific cruise 1.70
ZEP 78.91 11.89 479 Ny-Ålesund, Svalbard 1.82

a Source reference: Cooperative Global Atmospheric Data Integration Project, 2018. Version: obspack_co2_1_GLOBALVIEWplus_v4.2_2019-03-19
(https://doi.org/10.25925/20190319, last access: 14 October 2020). b The specification of observational uncertainty U on atmospheric CO2 measurements
(and represented in matrix R of Eq. A1) is calculated as the standard deviation of measurement variability and using the detrended and deseasonalized
CO2 time series at each measurement site (following methods of Chevallier et al., 2010).
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Table A2. Model–observation mismatch in atmospheric CO2 concentrations (unit: ppm) at North Atlantic sites (average over year 2003).
GCL model values are derived from the a posteriori model analyses associated with the sensitivity analyses of Sect. 3.1. Atmospheric CO2
observations are from the NOAA GLOBALVIEW network described in Sect. 2.3. Note AVI (−64.75◦, 17.76◦), site name: St. Croix, Virgin
Islands. No observation is available during 2000–2017. Here the observations from the nearest site RPB (−59.43◦, 13.17◦) for 2003 are used.

Sensitivity analyses North Atlantic sites Global network

(Sect. 2.3) average
BMW KEY AVI AZR IZO ICE

U1Ta 0.81 0.88 0.76 1.49 1.83 1.20 0.54
U2Ta 0.71 0.82 0.69 1.42 1.74 1.13 0.44
U3Ta 0.58 −0.20 0.36 0.85 1.64 0.40 0.01
U1La 0.92 0.93 0.76 1.60 1.94 1.44 0.61
U2La 0.84 0.87 0.68 1.53 1.86 1.38 0.51
U3La 0.52 −0.27 0.21 0.84 1.58 0.58 0.04
U1Ro 0.74 0.74 0.54 1.35 1.66 0.98 0.35
U2Ro 0.66 0.68 0.47 1.28 1.57 0.91 0.26
U3Ro 0.55 −0.28 0.21 0.73 1.48 0.27 −0.11
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Data availability. The data sources are the following:
(i) Atmospheric CO2 measurements were taken from
obspack_co2_1_GLOBALVIEWplus_v4.2_2019-03-19
(https://gml.noaa.gov/ccgg/obspack/data.php?id=obspack_
co2_1_GLOBALVIEWplus_v4.2_2019-03-19, (ObsPack,
Cooperative Global Atmospheric Data Integration Project,
2018, last access: 14 October 2020); (ii) Prior ocean flux
oc_v1.7 from Rödenbeck et al. (2013) were taken from
http://www.bgc-jena.mpg.de/CarboScope/ (last access: 5 June
2020). Prior ocean flux from Landschützer et al. (2016) were taken
from https://www.ncei.noaa.gov/access/ocean-carbon-data-system/
oceans/SPCO2_1982_present_ETH_SOM_FFN.html (last access:
6 May 2020). Prior ocean flux from Takahashi et al. (2009)
were taken from ftp://ftp.as.harvard.edu/gcgrid/geos-chem (last
access: 9 July 2018). (iii) CarbonTracker CT2019 results were
provided by NOAA ESRL, Boulder, Colorado, USA, from the
website at http://carbontracker.noaa.gov (Jacobson et al., 2020, last
access: 15 May 2020). CTE flux estimates were downloaded from
ftp://ftp.wur.nl/carbontracker/data/fluxes/data_flux1x1_monthly/
(van der Laan-Luijkx et al., 2017, last access: 24 November
2020). The flux estimates from CAMS (v18r2) were taken
from https://apps.ecmwf.int/datasets/data/cams-ghg-inversions/
(Chevallier et al., 2019, last access: 6 December 2019).
(iv) The model CO2 fluxes for JULES (land) and GOBMs
(ocean) were taken from Le Quéré et al. (2018). Time se-
ries of reconstructed surface ocean pCO2 and CO2 fluxes
(LSCE-FFNN) from Denvil-Sommer et al. (2019) are
the first version of CMEMS, downloaded from https:
//resources.marine.copernicus.eu/?option=com_csw&task=results
(last access: 14 January 2021). The products from Iida et al. (2015)
were downloaded from http://www.data.jma.go.jp/gmd/kaiyou/
english/co2_flux/co2_flux_data_en.html (last access: 14 January
2021). The products from Zeng et al. (2015) were downloaded from
https://db.cger.nies.go.jp/DL/10.17595/20201020.001.html.en (last
access: 14 January 2021). The products from CMEMS, CSIR, and
Watson were taken from Friedlingstein et al. (2020).
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