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Abstract. The coastal ocean is affected by an array of co-
occurring biogeochemical and anthropogenic processes, re-
sulting in substantial heterogeneity in water chemistry, in-
cluding carbonate chemistry parameters such as pH and par-
tial pressure of CO2 (pCO2). To better understand coastal
and estuarine acidification and air-sea CO2 fluxes, it is impor-
tant to study baseline variability and driving factors of car-
bonate chemistry. Using both discrete bottle sample collec-
tion (2014–2020) and hourly sensor measurements (2016–
2017), we explored temporal variability, from diel to inter-
annual scales, in the carbonate system (specifically pH and
pCO2) at the Aransas Ship Channel located in the north-
western Gulf of Mexico. Using other co-located environ-
mental sensors, we also explored the driving factors of that
variability. Both sampling methods demonstrated significant
seasonal variability at the location, with highest pH (lowest
pCO2) in the winter and lowest pH (highest pCO2) in the
summer. Significant diel variability was also evident from
sensor data, but the time of day with elevated pCO2 and de-
pressed pH was not consistent across the entire monitoring
period, sometimes reversing from what would be expected
from a biological signal. Though seasonal and diel fluctu-
ations were smaller than many other areas previously stud-
ied, carbonate chemistry parameters were among the most
important environmental parameters for distinguishing be-
tween time of day and between seasons. It is evident that
temperature, biological activity, freshwater inflow, and tide
level (despite the small tidal range) are all important controls
on the system, with different controls dominating at different
timescales. The results suggest that the controlling factors of
the carbonate system may not be exerted equally on both pH

and pCO2 on diel timescales, causing separation of their diel
or tidal relationships during certain seasons. Despite known
temporal variability on shorter timescales, discrete sampling
was generally representative of the average carbonate system
and average air-sea CO2 flux on a seasonal and annual basis
when compared with sensor data.

1 Introduction

Coastal waters, especially estuaries, experience substantial
spatial and temporal heterogeneity in water chemistry – in-
cluding carbonate chemistry parameters such as pH and
partial pressure of CO2 (pCO2) – due to the diversity of
co-occurring biogeochemical and anthropogenic processes
(Hofmann et al., 2011; Waldbusser and Salisbury, 2014).
Carbonate chemistry is important because an addition of CO2
acidifies seawater, and acidification can negatively affect ma-
rine organisms (Barton et al., 2015; Bednaršek et al., 2012;
Ekstrom et al., 2015; Gazeau et al., 2007; Gobler and Tal-
mage, 2014). Additionally, despite the small surface area of
coastal waters relative to the global ocean, coastal waters are
recognized as important contributors to global carbon cycling
(Borges, 2005; Cai, 2011; Laruelle et al., 2018).

While carbonate chemistry, acidification, and air-sea CO2
fluxes are relatively well studied and understood in open
ocean environments, large uncertainties remain in coastal en-
vironments. Estuaries are especially challenging to fully un-
derstand because of the heterogeneity between and within es-
tuaries that is driven by diverse processes operating on dif-
ferent timescales such as river discharge, nutrient and or-
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ganic matter loading, stratification, and coastal upwelling
(Jiang et al., 2013; Mathis et al., 2012). The traditional sam-
pling method for carbonate system characterization involv-
ing discrete water sample collection and laboratory analysis
is known to lead to biases in average pCO2 and CO2 flux
calculations due to daytime sampling that neglects to cap-
ture diel variability (Li et al., 2018). Mean diel ranges in pH
can exceed 0.1 unit in many coastal environments, and espe-
cially high diel ranges (even exceeding 1 pH unit) have been
reported in biologically productive areas or areas with higher
mean pCO2 (Challener et al., 2016; Cyronak et al., 2018;
Schulz and Riebesell, 2013; Semesi et al., 2009; Yates et al.,
2007). These diel ranges can far surpass the magnitude of
the changes in open ocean surface waters that have occurred
since the start of the industrial revolution and rival spatial
variability in productive systems, indicating their importance
for a full understanding of the carbonate system.

Despite the need for high-frequency measurements, sen-
sor deployments have been limited in estuarine environ-
ments (especially compared to their extensive use in the
open ocean) because of the challenges associated with highly
variable salinities, biofouling, and sensor drift (Sastri et al.,
2019). Carbonate chemistry monitoring in the Gulf of Mex-
ico (GOM), has been relatively minimal compared to the
United States east and west coasts. The GOM estuaries cur-
rently have less exposure to concerning levels of acidifica-
tion than other estuaries because of their high temperatures
(causing water to hold less CO2 and support high productiv-
ity year-round) and often suitable river chemistries (i.e., rela-
tively high buffer capacity) (McCutcheon et al., 2019; Yao
et al., 2020). However, respiration-induced acidification is
present in both the open GOM (e. g., subsurface water influ-
enced by the Mississippi River Plume and outer shelf region
near the Flower Garden Banks National Marine Sanctuary)
and GOM estuaries, and most estuaries in the northwestern
GOM have also experienced long-term acidification (Cai et
al., 2011; Hu et al., 2015, 2018; Kealoha et al., 2020; Mc-
Cutcheon et al., 2019; Robbins and Lisle, 2018). This evi-
dence of acidification as well as the relatively high CO2 ef-
flux from the estuaries of the northwest GOM illustrates the
necessity to study the baseline variability and driving fac-
tors of carbonate chemistry in the region. In this study, we
explored temporal variability in the carbonate system in the
Aransas Ship Channel (ASC) – a tidal inlet where the la-
goonal estuaries meet the coastal waters in a semi-arid region
of the northwestern GOM – using both discrete bottle sam-
ple collection and hourly sensor measurements, and we ex-
plored the driving factors of that variability using data from
other co-located environmental sensors. The characterization
of carbonate chemistry and consideration of regional drivers
can provide context to acidification and its impacts and im-
proved estimates of air-sea CO2 fluxes.

Figure 1. Study area. The location of monitoring in the Aransas
Ship Channel (red star) and the locations of NOAA stations used
for wind data (yellow circles) are shown.

2 Materials and methods

2.1 Location

Autonomous sensor monitoring and discrete water sample
collections for laboratory analysis of carbonate system pa-
rameters were performed in ASC (located at 27◦50′17′′ N,
97◦3′1′′W). ASC is one of the few permanent tidal inlets
that intersect a string of barrier islands and connect the GOM
coastal waters with the lagoonal estuaries in the northwest
GOM (Fig. 1). ASC provides the direct connection between
the northwestern GOM and the Mission-Aransas Estuary
(Copano and Aransas Bays) to the north and Nueces Estu-
ary (Nueces and Corpus Christi Bays) to the south (Fig. 1).
The region is microtidal, with a small tidal range relative to
many other estuaries, ranging from∼ 0.6 m tides on the open
coast to less than 0.3 m in upper estuaries (Montagna et al.,
2011). Mission-Aransas Estuary (MAE) is fed by two small
rivers, the Mission (1787 km2 drainage basin) and Aransas
(640 km2 drainage basin) Rivers (http://waterdata.usgs.gov/,
last access: 20 January 2020), which both experience low
base flows punctuated by periodic high flows during storm
events. MAE has an average residence time of one year (So-
lis and Powell, 1999), so there is a substantial lag between
time of rainfall and riverine delivery to ASC in the lower es-
tuary. A significant portion of riverine water flowing into the
Aransas Bay originates from the larger rivers further north-
east on the Texas coast via the Intracoastal Waterway (i.e.,
Guadalupe River (26 625 km2 drainage basin) feeds San An-
tonio Bay and has a much shorter residence time of nearly
50 d) (Solis and Powell, 1999; USGS, 2001).
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2.2 Continuous monitoring

Autonomous sensor monitoring (referred to throughout as
continuous monitoring) of pH and pCO2 was conducted
from 8 November 2016 to 23 August 2017 at the Univer-
sity of Texas Marine Science Institute’s research pier in ASC.
Hourly pH data were collected using an SAtlantic® SeaFET
pH sensor (on a total pH scale) and hourly pCO2 data were
collected using a Sunburst® SAMI-CO2. The pH and pCO2
sensors were placed in a flowthrough system that received
surface water from ASC using a time-controlled diaphragm
pump prior to each measurement. Hourly temperature and
salinity data were measured by a YSI® 600OMS V2 sonde.
All hourly data were single measurements taken on the hour.
The average difference between sensor pH and discrete qual-
ity assurance samples measured spectrophotometrically in
the lab was used to establish a correction factor (−0.05)
across the entire sensor pH dataset. Note, this correction
scheme was not ideal (Bresnahan et al., 2014) although less
rigorous correction based on sensor and discrete pH values
has also been used (Shadwick et al., 2019). Nevertheless, the
overall good agreement between discrete and corresponding
sensor pH values during the deployment period suggested
that the SeaFET sensor remained stable. It is also worth not-
ing that our monitoring setup remained free from biofoul-
ing during the 10-month period. We attribute this to the de-
ployment design in which the high frequency movement of
the pumping mechanisms in the diaphragm pump must have
eliminated the influence of animal larvae. See Supplement
for additional sensor deployment and quality assurance in-
formation.

2.3 Discrete sample collection and sample analysis

Long-term monitoring via discrete water sample collection
was conducted at ASC from 2 May 2014 to 25 February 2020
(in addition to the discrete, quality assurance sample collec-
tions). A single, discrete, surface water sample was collected
every two weeks during the summer months and monthly
during the winter months from a small vessel at a station near
(<20 m from) the sensor deployment. Water sample collec-
tion followed standard protocol for ocean carbonate chem-
istry studies (Dickson et al., 2007). Ground glass borosilicate
bottles (250 mL) were filled with surface water and preserved
with 100 µL saturated mercury chloride (HgCl2). Apiezon®

grease was applied to the bottle stopper, which was then se-
cured to the bottle using a rubber band and a nylon hose
clamp.

These samples were used for laboratory dissolved inor-
ganic carbon (DIC) and pH measurements. DIC was mea-
sured by injecting 0.5 mL of sample into 1 mL 10 % H3PO4
(balanced by 0.5 M NaCl) with a high-precision Kloehn sy-
ringe pump. The CO2 gas produced through sample acidifi-
cation was then stripped using high-purity nitrogen gas and
carried into a Li-Cor infrared gas detector. DIC analyses had

a precision of 0.1 %. Certified Reference Material (CRM)
was used to ensure the accuracy of the analysis (Dick-
son et al., 2003). For samples with salinity >20, pH was
measured using a spectrophotometric method at 25± 0.1 ◦C
(Carter et al., 2003) and the Douglas and Byrne (2017) equa-
tion. Analytical precision of the spectrophotometric method
for pH measurement was ± 0.0004 pH units. A calibrated
Orion Ross glass pH electrode was used to measure pH at
25± 0.1 ◦C for samples with salinity <20, and analytical
precision was ± 0.01 pH units. All pH values obtained us-
ing the potentiometric method were converted to total scale
at in situ temperature (Millero, 2001). Salinity of the dis-
crete samples was measured using a benchtop salinometer
calibrated by MilliQ water and a known salinity CRM. For
discrete samples, pCO2 was calculated in CO2Sys for Excel
using laboratory-measured salinity, DIC, pH, and in situ tem-
perature for calculations. Carbonate speciation calculations
were done using Millero (2010) carbonic acid dissociation
constants (K1 andK2), Dickson (1990) bisulfate dissociation
constant, and Uppström (1974) borate concentration.

2.4 Calculation of CO2 fluxes

Equation (1) was used for air-water CO2 flux calculations
(Wanninkhof, 1992; Wanninkhof et al., 2009). Positive flux
values indicate CO2 emission from the water into the atmo-
sphere (the estuary acting as a source of CO2), and negative
flux values indicate CO2 uptake by the water (the estuary act-
ing as a sink for CO2).

F = kK0
(
pCO2,w−pCO2,a

)
, (1)

where k is the gas transfer velocity (in m d−1), K0 (in
mol L−1 atm−1) is the solubility constant of CO2 (Weiss,
1974), and pCO2,w andpCO2,a are the partial pressure of
CO2 (in µatm) in the water and air, respectively.

We used the wind speed parameterization for gas transfer
velocity (k) from Jiang et al. (2008) converted from cm h−1

to m d−1, which is thought to be the best estuarine parame-
terization at this time (Crosswell et al., 2017), as it is a com-
posite of k over several estuaries. The calculation of k re-
quires a wind speed at 10 m above the surface, so wind speeds
measured at 3 m above the surface were converted using the
power law wind profile (Hsu, 1994; Yao and Hu, 2017). To
assess uncertainty, other parameterizations with direct appli-
cations to estuaries in the literature were also used to calcu-
late CO2 flux (Raymond and Cole, 2001; Ho et al., 2006).
We note that parameterization of k based on solely wind
speed is flawed because several additional parameters can
contribute to turbulence including turbidity, bottom-driven
turbulence, water-side thermal convection, tidal currents, and
fetch (Wanninkhof, 1992; Abril et al., 2009; Ho et al., 2104;
Andersson et al., 2017), however it is currently the best op-
tion for this system given the limited investigations of CO2
flux and contributing factors in estuaries.
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Hourly averaged wind speed data for use in CO2 flux cal-
culations were retrieved from the NOAA-controlled Texas
Coastal Ocean Observation Network (TCOON; https://
tidesandcurrents.noaa.gov/tcoon.html, last access: 1 Octo-
ber 2020). Wind speed data from the nearest TCOON sta-
tion (Port Aransas Station – located directly in ASC, <2 km
inshore from our monitoring location) was prioritized when
data were available. During periods of missing wind speed
data at the Port Aransas Station, wind speed data from
TCOON’s Aransas Pass Station (<2 km offshore from mon-
itoring location) were next used, and for all subsequent gaps,
data from TCOON’s Nueces Bay Station (∼ 40 km away)
were used (Fig. 1; additional discussion of flux calcula-
tion and wind speed data can be found in the Supplement).
For flux calculations from continuous monitoring data, each
hourly measurement of pCO2 was paired with the corre-
sponding hourly averaged wind speed. For flux calculations
from discrete sample data, the pCO2 calculated for each
sampled day was paired with the corresponding daily aver-
aged wind speed (calculated from the retrieved hourly aver-
aged wind speeds).

Monthly mean atmospheric xCO2 data (later converted to
pCO2) for flux calculations were obtained from NOAA’s
flask sampling network of the Global Monitoring Division
of the Earth System Research Laboratory at the Key Bis-
cayne (FL, USA) station. Global averages of atmospheric
xCO2 were used when Key Biscayne data were unavailable.
Each pCO2 observation (whether using continuous or dis-
crete data) was paired with the corresponding monthly aver-
aged xCO2 for flux calculations. Additional information and
justification are available in the Supplement.

2.5 Additional data retrieval and data processing to
investigate carbonate system variability and
controls

All reported annual mean values are seasonally weighted
to account for disproportional sampling between seasons.
However, reported annual standard deviation is associated
with the unweighted, arithmetic mean (Table S1). Tempo-
ral variability was investigated in the form of seasonal and
diel variability (Tables S1, S2, S3). For seasonal analy-
sis, December to February was considered winter, March
to May was considered spring, June to August was consid-
ered summer, and September to November was considered
fall. It is important to note that the fall season had much
fewer continuous sensor observations than other seasons be-
cause of the timing of sensor deployment. For diel com-
parisons, daytime and nighttime variables were defined as
09:00–15:00 local standard time and 21:00–03:00 local stan-
dard time, respectively, based on the 6 h periods with the
highest and lowest photosynthetically active radiation (PAR;
data from co-located sensor, obtained from the Mission-
Aransas National Estuarine Research Reserve (MANERR)
at https://missionaransas.org/science/download-data, last ac-

cess: 1 October 2020). Diel ranges in parameters were cal-
culated (daily maximum minus daily minimum) and only re-
ported for days with the full 24 h of hourly measurements
(176 out of 262 measured days) to ensure that data gaps did
not influence the diel ranges (Table S3).

Controls on pCO2 from thermal and nonthermal (i.e.,
combination of physical and biological) processes were in-
vestigated following Takahashi et al. (2002) over annual, sea-
sonal, and daily timescales using both continuous and dis-
crete data. Over any given time period, this method uses
the ratio of the ranges of temperature-normalized pCO2
(pCO2,nt, Eq. 2) and the mean annual pCO2 perturbed by
the difference between the mean and observed temperature
(pCO2,t , Eq. 3) to calculate the relative influence of nonther-
mal and thermal effects on pCO2 (T/B, Eq. 4). When calcu-
lating annual T/B values with discrete data, only complete
years (sampling from January to December) were included
(2014 and 2020 were omitted). When calculating daily T/B
values with continuous data, only complete days (24 hourly
measurements) were included.

pCO2, nt = pCO2,obs × exp[δ × (Tmean− Tobs)] (2)
pCO2, t = pCO2,mean × exp[δ × (Tobs− Tmean)] , (3)

where the value for δ (0.0411 ◦C−1), which represents aver-
age [∂ ln pCO2/∂ temperature] from field observations, was
taken directly from Yao and Hu (2017), Tobs is the observed
temperature, and Tmean is the mean temperature over the in-
vestigated time period.

T/B =
max

(
pCO2, thermal

)
−min

(
pCO2, thermal

)
max

(
pCO2,non thermal

)
−min

(
pCO2,non thermal

) , (4)

where a T/B greater than one indicates that temperature’s
control on pCO2 is greater than the control from nonther-
mal factors and a T/B less than one indicates that nonther-
mal factors’ control on pCO2 is greater than the control from
temperature.

Tidal control on parameters was investigated using our
continuous monitoring data and tide level data obtained from
NOAA’s Aransas Pass Station (the Aransas Pass Station used
for wind speed data, <2 km offshore from monitoring loca-
tion, Fig. 1) at https://tidesandcurrents.noaa.gov/, last access:
1 October 2020. Hourly measurements of water level were
merged with our sensor data by date and hour. Given that
there were gaps in available water level measurements (and
no measurements prior to 20 December 2016), the usable
dataset was reduced from 6088 observations to 5121 obser-
vations and fall was omitted from analyses. To examine dif-
ferences between parameters during high tide and low tide,
we defined high tide as a tide level greater than the third quar-
tile tide level value and low tide as a tide level less than the
first quartile tide level value.

Other factors that may exert control on the carbonate sys-
tem were investigated through parameter relationships. In
addition to previously discussed tide and wind speed data,
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we obtained dissolved oxygen (DO), PAR, turbidity, and
chlorophyll fluorescence data from MANERR-deployed en-
vironmental sensors that were co-located at our monitoring
location (obtained from https://missionaransas.org/science/
download-data, last access: 1 October 2020). Given that
MANERR data are all measured in the bottom water (>5 m)
while our sensors were measuring surface waters, we ex-
cluded observations with significant water column stratifi-
cation (defined as a salinity difference >3 between surface
water and bottom water) from analyses. Omitting stratified
water reduced our continuous dataset from 6088 to 5524 ob-
servations (removing 260 winter, 133 spring, 51 summer, and
120 fall observations), and omitting observations where there
were no MANERR data to determine stratification further re-
duced the dataset to 4112 observations. Similarly, removing
instances of stratification reduced discrete sample data from
104 to 89 surface water observations.

2.6 Statistical analyses

All statistical analyses were performed in R, version 4.0.3
(R Core Team, 2020). To investigate differences between
daytime and nighttime parameter values (temperature, salin-
ity, pH, pCO2, and CO2 flux) using continuous monitoring
data across the full sampling period and within each sea-
son, paired t-tests were used, pairing each respective day’s
daytime and nighttime values (Table S3). We also used loess
models (locally weighted polynomial regression) to identify
changes in diel patterns over the course of our monitoring
period.

Two-way ANOVAs were used to examine differences in
parameter means between seasons and between monitoring
methods (Table S2). Since there were significant interactions
(between season and sampling type factors) in the two-way
ANOVAs for each individual parameter (Table S2), differ-
ences between seasons were investigated within each moni-
toring method (one-way ANOVAs) and the differences be-
tween monitoring methods were investigated within each
season (one-way ANOVAs). For the comparison of monitor-
ing methods, we included both the full discrete sampling data
as well as a subset of the discrete sampling data to overlap
with the continuous monitoring period (referred to through-
out as reduced discrete data orDC) along with the continuous
data. To interpret differences between monitoring methods, a
difference in means between the continuous monitoring and
discrete monitoring datasets would only indicate that the 10-
month period of continuous monitoring was not representa-
tive of the 5+ year period in which discrete samples have
been collected. However, a difference in means between the
continuous data and discrete sample data collected during the
continuous monitoring period represents discrepancies be-
tween types of monitoring. Post hoc multiple comparisons
(between seasons within sampling types and between sam-
pling types within seasons) were conducted using the West-
fall adjustment (Westfall, 1997).

Differences in parameters between high tide and low tide
conditions were investigated using a two-way ANOVA to
model parameters based on tide level and season. In the mod-
els for each parameter, there was a significant interaction be-
tween tide level and season factors (based on α = 0.05, re-
sults not shown), thus t-tests were used (within each season)
to examine differences in parameters between high and low
tide conditions. Note that fall was omitted from this analy-
sis because tide data were only available at the location be-
ginning 20 December 2016. Sample sizes were the same for
each parameter (High tide – winter: 354, spring: 569, sum-
mer: 350; Low tide – winter: 543, spring: 318, summer: 415).

Additionally, to gain insight into carbonate system con-
trols through correlations, we conducted Pearson correlation
analyses to examine individual correlations of pH and pCO2
(both continuous and discrete) with other environmental pa-
rameters (Table S5).

To better understand overall system variability over differ-
ent timescales, we used a linear discriminant analysis (LDA),
a multivariate statistic that allows dimensional reduction, to
determine the linear combination of environmental parame-
ters (individual parameters reduced into linear discriminants,
LDs) that allow the best differentiation between day and
night as well as between seasons. We included pCO2, pH,
temperature, salinity, tide level, wind speed, total PAR, DO,
turbidity, and fluorescent chlorophyll in this analysis. All
variables were centered and scaled to allow direct compar-
ison of their contribution to the system variability. The mag-
nitude (absolute value) of coefficients of the LDs (Table 1)
represents the relative importance of each individual envi-
ronmental parameter in the best discrimination between day
and night and between seasons, i.e., the greater the absolute
value of the coefficient, the more information the associated
parameter can provide about whether the sample came from
day or night (or winter, spring, or summer). Only one LD
could be created for the diel variability (since there are only
two classes to discriminate between – day and night). Two
LDs could be created for the seasonal variability (since there
were three classes to discriminate between – fall was omitted
because of the lack of tidal data), but we chose to only report
the coefficients for LD1 given that LD1 captured 95.64 % of
the seasonal variability.

3 Results

3.1 Seasonal variability

Both the continuous and discrete data showed substantial
seasonal variability for all parameters (Fig. 2, Tables S1 and
S2). All discrete sample results reported here are for the en-
tire 5+ years of monitoring; the subset of discrete sample
data that overlaps with the continuous monitoring period will
only be addressed in the discussion for method comparisons
(Sect. 4.1.1). Both continuous and discrete data demonstrate
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Figure 2. Boxplots of seasonal variability in pH and pCO2 using
all discrete data, reduced discrete data (to overlap with continuous
monitoring, 8 November 2016–23 August 2017), and continuous
sensor data.

significant differences in temperature between each season,
with the highest temperature in summer and the lowest in
winter (Tables S1 and S2). Mean salinity during sampling
periods was highest in the summer and lowest in the fall (Ta-
ble S1). Significant differences in seasonal salinity occurred
between all seasons except spring and winter for continuous
data, but only summer differed from other seasons based on
discrete data (Tables S1 and S2).

Carbonate system parameters also varied seasonally
(Fig. 2). For both continuous and discrete data, winter had
the highest seasonal pH (8.19± 0.08 and 8.162± 0.065,
respectively) and lowest seasonal pCO2 (365± 44 and
331± 39 µatm, respectively), while summer had the lowest
seasonal pH (8.05± 0.06 and 7.975± 0.046, respectively)
and highest seasonal pCO2 (463± 48 and 511± 108 µatm,
respectively) (Fig. 2, Table S1). All seasonal differences in
pH and pCO2 were significant, except for the discrete data
spring versus fall for both parameters (Table S2).

Mean CO2 flux differed by season (Fig. 3, Tables S1 and
S2). Both continuous and discrete data records resulted in
net negative CO2 fluxes during fall and winter months, with
winter being the most negative. Both methods reported a net
positive flux for summer, while spring fluxes were positive
according to continuous data and negative according to the
5+ years of discrete data (Fig. 3, Table S1). Annual net CO2
fluxes were near zero (Table S1).

Results of the LDA incorporated carbonate system param-
eters along with additional environmental parameters to get
a full picture of system variability over seasonal timescales
(Table 1). The most important parameter in system variabil-
ity that allowed differentiation between seasons was temper-
ature (Table 1, Seasonal LD1), as would be expected with
the clear seasonal temperature fluctuations (Fig. S1e). The
second most important parameter for seasonal differentiation
was chlorophyll, likely indicating clear seasonal phytoplank-

Figure 3. CO2 flux calculated over the sampling periods from con-
tinuous (a) and discrete (b) data. Gray scale in (a) and (b) denote
different seasons. Vertical lines in (b) denote the time period of con-
tinuous monitoring. (c) shows the seasonal mean CO2 flux. Error
bars represent mean CO2 flux using Ho (2006) and Raymond and
Cole (2001) wind speed parameterizations.

Table 1. Coefficients of linear discriminants (LD) from LDA using
continuous sensor data and other environmental parameters. Dis-
criminants for both diel and seasonal variability shown.

Seasonal Diel

LD1 LD1

Temperature (◦C) −3.53 0.54
Salinity 0.04 0.15
pCO2 (µatm) −0.29 −0.16
pH 0.10 0.06
Tide level (m) −0.24 0.10
Wind speed (ms−1) 0.05 −0.00
Total PAR −0.07 −2.29
DO (mg L−1) 0.09 −0.08
Turbidity 0.15 −0.06
Fluor. chlorophyll −0.40 0.14

ton blooms. The carbonate chemistry also played a critical
role in seasonal differentiation, as pCO2 was the third most
important factor (Table 1).

3.2 Diel variability

The 10 months of in situ continuous monitoring revealed
that there was substantial diel variability in measured pa-
rameters (Fig. 4, Table S3). Temperature had a mean diel
range of 1.3± 0.8 ◦C (Table S3). Daytime and nighttime tem-
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Figure 4. Boxplots of the diel range (maximum minus minimum) and difference in daily parameter mean daytime minus nighttime measure-
ments for pH and pCO2 from continuous sensor data.

perature differed significantly during the summer and fall
months, with higher temperatures at night for both seasons
(Table S3). The mean diel range of salinity was 3.4± 2.7
(Table S3). Daytime and nighttime salinity differed signifi-
cantly during the winter and fall months, with higher salin-
ities at night for both seasons. The mean diel range of pH
was 0.09± 0.05 (Table S3). Daytime and nighttime pH dif-
fered significantly during the winter, summer, and fall, with
nighttime pH significantly higher during summer and winter
and lower during fall (Fig. 4, Table S3). The mean diel range
of pCO2 was 58± 33 µatm (Fig. 4, Table S3). Daytime and
nighttime pCO2 differed significantly during the winter and
summer months, with nighttime pCO2 significantly higher
during the summer and lower during the winter (Fig. 4, Ta-
ble S3). No significant difference in daytime and nighttime
DO were observed during any season (Fig. 5F; paired t-tests,
winter p = 0.1573, spring p = 0.4877, summer p = 0.794).

Loess models that investigated the evolution of day-night
difference in parameters revealed that other environmental
parameters, including salinity, temperature, and tide level,
also had diel patterns that varied over the duration of our con-
tinuous monitoring (Fig. 5).

CO2 flux also fluctuated on a daily scale, with a mean
diel range of 34.1± 29.0 mmol m−2 d−1 (Table S3). How-
ever, there was not a significant difference in CO2 flux of
daytime versus nighttime hours for the entire monitoring pe-
riod or any individual season based on α = 0.05 (paired t-
test, Table S3).

Results of the LDA for differentiation between daytime
and nighttime conditions revealed that the most important
factor was PAR, as would be expected (Table 1, Diel LD1).
Temperature was the second most important factor to differ-
entiate between day and night. The carbonate chemistry also
played a critical role in day/night differentiation, as pCO2
was the third most important parameter, providing more ev-
idence for differentiation between day and night than other
parameters that would be expected to vary on a diel timescale
(e.g., chlorophyll and DO) (Table 1).

3.3 Controlling factors and correlates

The relative influence of thermal and nonthermal factors
(T/B) in controlling pCO2 varied over different timescales
(Fig. 6, Table S4). Based on continuous data, nonthermal pro-
cesses generally exerted more control than thermal processes
(T/B<1) over the entire 5+ years of discrete monitoring,
within each season, and over most (167/178) d (Fig. 6, Ta-
ble S4). Annual T/B from discrete data ranged from 0.50 to
1.16, with only one of the five sampled years having T/B
greater than one (i.e., more thermal influence; Table S4).
While most individual seasons that were sampled experi-
enced stronger nonthermal control on pCO2 (T/B<1), the
only season that never experienced stronger thermal control
was summer, with summer T/B values ranging from 0.21–
0.35 for the 6 sampled years (Table S4).

Tidal fluctuations seemed to have a significant effect on
carbonate system parameters (Table 2). Both temperature and
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Figure 5. Loess models (red line) and their confidence intervals
(gray bands) showing the difference in daily daytime mean minus
nighttime mean measurements. The gray scale of the data points
represents the four seasons over which data were collected. Data
span from 8 November 2016 to 3 August 2017, except for the tide
data, which began 20 December 2016.

salinity were higher at low tide during the winter and sum-
mer months and higher at high tide during the spring. pCO2
was higher during low tide during all seasons. pH was higher
during high tide during the winter and summer, but this re-
versed during the spring, when pH was higher at low tide.
CO2 flux also varied with tidal fluctuations. CO2 flux was
higher (more positive or less negative) in the low tide condi-
tion for all seasons (though the difference was not significant
in spring), i.e., the location was less of a CO2 sink during
low tide conditions in the winter and more of a CO2 source
during low tide conditions in the summer.

Mean water level varied between all seasons; mean spring
(highest) water levels were on average 0.08 m higher than
winter (lowest) water levels (ANOVA p<0.0001, fall was
not considered because of a lack of water level data). The
mean daily tidal range during our continuous monitoring pe-
riod was 0.39 m± 0.13 m, which did not significantly differ
between seasons (ANOVA p = 0.739). However, the day-
night difference in tide level exhibited a strong seasonality,
with spring and summer having higher tide levels during
the daytime and winter having higher tide levels during the
nighttime (Fig. 5).

Figure 6. Thermal versus nonthermal control on pCO2 daily (a),
seasonal (b), and annual (c) timescales using both continuous sen-
sor data (daily, from 8 November 2016 to 3 August 2017) and dis-
crete sample data (seasonal and annual, from 2 May 2014–25 Febru-
ary 2020).

There were significant correlations between carbonate sys-
tem parameters (pH and pCO2) and many of the other en-
vironmental parameters, including wind speed, DO, turbid-
ity, and fluorescent chlorophyll (Fig. 7, Table S5). Both the
continuous and discrete sampling types indicate that pH has
a significant negative relationship to both temperature and
salinity and pCO2 has a significant positive relationship to
both temperature and salinity (Fig. 7). However, correlations
with temperature were stronger for continuous data and cor-
relations with salinity were stronger for discrete data (Ta-
ble S5). The strongest correlations between continuous car-
bonate system data and all investigated environmental pa-
rameters were with DO (positive correlation with pH and
negative correlation with pCO2; Table S5). It is worth not-
ing that there were no observations of hypoxia at our study
site during our monitoring, with minimum DO levels of 3.9
and 4.0 mg L−1 for our continuous monitoring period and our
discrete sampling period, respectively.
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Table 2. Mean and standard deviation of temperature, salinity, pH, pCO2, and calculated CO2 flux (from continuous sensor measurements)
during high and low tide conditions.

Parameter Season High tide mean Low tide mean Difference
between tide
levels, t-test

p-value

Temperature (◦C) Winter 16.7± 1.7 17.6± 2.0 <0.0001
Spring 24.4± 2.7 23.6± 2.7 <0.0001
Summer 29.3± 0.5 30.1± 0.7 <0.0001

Salinity Winter 30.2± 2.5 31.3± 2.9 <0.0001
Spring 30.4± 1.9 30.0± 2.7 0.0071
Summer 30.5± 2.4 34.5± 3.0 <0.0001

pH Winter 8.20± 0.08 8.15± 0.06 <0.0001
Spring 8.07± 0.09 8.10± 0.07 <0.0001
Summer 8.08± 0.04 8.04± 0.06 <0.0001

pCO2 (µatm) Winter 331± 40 378± 42 <0.0001
Spring 435± 33 443± 50 0.0154
Summer 419± 30 482± 48 <0.0001

CO2 Flux (mmol m−2 d−1) Winter −33.0± 38.1 −11.7± 21.8 <0.0001
Spring 7.4± 14.0 8.7± 14.8 0.2248
Summer 1.8± 6.3 16.0± 14.5 <0.0001

Figure 7. Correlations of pH and pCO2 with temperature, salinity, and DO from continuous sensor data (gray) and all discrete data (black).

4 Discussion

4.1 Comparing continuous monitoring and discrete
sampling: representative sampling in a temporally
variable environment

Discrete water sample collection and analysis is the most
common method that has been employed to attempt to un-
derstand the carbonate system of estuaries. However, it is
difficult to know if these samples are representative of the
spatial and temporal variability in carbonate system param-
eters. While this time series study cannot conclude whether
our broader sampling efforts in the MAE are representative

of the spatial variability in the estuary, it can investigate how
representative our bimonthly to monthly sampling is of the
more high-frequency temporal variability that ASC experi-
ences.

There were several instances where seasonal parameter
means significantly differed between the 10-month contin-
uous monitoring period and the 5+ year discrete sampling
period (Table S2, C 6=D or DC 6=D) including temperature
in the summer and fall, salinity in the spring, pH in the sum-
mer and fall, and pCO2 in winter, spring, and summer. While
clear seasonal variability was demonstrated for most param-
eters (using both continuous and discrete data for the entire
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period), these differences between the 10-month continuous
monitoring period and our 5+ year monitoring period illus-
trate that there is also interannual variability in the system.
Therefore, short periods of monitoring are unable to fully
capture current baseline conditions.

During the continuous monitoring period (2016–2017), we
found no significant difference between sampling methods in
the seasonal mean temperature, salinity, or pCO2. The two
sampling methods also resulted in the same mean pH for all
seasons except for summer, when the sensor data recorded a
higher mean pH than discrete samples (Tables S1 and S2).
During this case, we can conclude that discrete monitoring
did not accurately represent the system variability that was
able to be captured by the sensor monitoring. However, given
that most seasons did not show differences in pH or pCO2
between sampling methods, the descriptive statistics associ-
ated with the discrete monitoring did a fair job of represent-
ing system means. This is evidence that long-term discrete
monitoring efforts, which are much more widespread in es-
tuarine systems than sensor deployments, can be generally
representative of the system despite known temporal vari-
ability on shorter timescales. However, further study would
be needed to determine if this applies throughout the system,
as the upper estuary generally experiences greater variability.

Understanding the relationships of pH and pCO2 to tem-
perature and salinity is important in a system (Fig. 7). Based
on the results of an Analysis of Covariance (ANCOVA), the
relationship (slope) of pH to both temperature and salinity
and of pCO2 to salinity were not significantly different be-
tween types of monitoring (considering the sensor deploy-
ment period only), supporting the effectiveness of long-term
discrete monitoring programs when sensors are unable to
be deployed. However, ANCOVA did reveal that the rela-
tionship of pCO2 to temperature is significantly different
(method : temp p = 0.0062) between monitoring methods.

The high temporal resolution of sensor data is presumably
better for estimating CO2 flux at a given location than dis-
crete sampling. Previous studies have pointed out that dis-
crete sampling methods, which generally involve only day-
time sampling, do not adequately capture the diel variability
in the carbonate system and may therefore lead to biased CO2
fluxes (Crosswell et al., 2017; Liu et al., 2016). However, we
found no significant difference (within any season) between
CO2 flux values calculated with hourly sensor data versus
single, discrete samples collected monthly to twice monthly
(Table S2, Fig. 3). Calculated CO2 fluxes also did not sig-
nificantly differ between day and night during any season,
despite some differences in pCO2 (Table S3), likely due to
the large error associated with the calculation of CO2 flux
(Table S1, Fig. 3) which will be further discussed below.
Therefore, the expected underestimation of CO2 flux based
on diel variability of pCO2 was not encountered at our study
site, validating the use of discrete samples for quantification
of CO2 fluxes (until methods with less associated error are
available). Even given less error in calculated flux, estimated

fluxes would likely not differ between methods on an annual
scale (as pCO2 did not), but CO2 fluxes may differ on a sea-
sonal scale since the differences between daytime and night-
time pCO2 were not consistent across seasons (Table S3,
Fig. 4).

There are many factors contributing to error associated
with CO2 flux. There is still large error associated with es-
timates of estuarine CO2 flux because turbulent mixing is
difficult to model and turbulence is the main control on CO2
gas transfer velocity, k, in shallow water environments. Thus,
our wind speed parameterization of k is imperfect and likely
the greatest source of error (Borges and Abril, 2011; Van
Dam et al., 2019). Other notable sources of error include the
data treatment. For example, we chose to seasonally weight
the individual calculated flux values in the calculation of an-
nual flux to account for differences in sampling frequency
between seasons. From continuous data, the weighted av-
erage flux was 0.2 mmol m−2 d−1, although choosing not to
seasonally weight and simply look at the arithmetic mean of
fluxes calculated directly from sampling dates would have re-
sulted in an annual CO2 flux of −0.7 mmol m−2 d−1 for the
same period. Similarly, the weighted average flux from all
5+ years of discrete data was −0.9 mmol m−2 d−1, but the
arithmetic mean of fluxes would have resulted in an annual
CO2 flux of 0.2 mmol m−2 d−1 for the same period. Another
source of error that could be associated with the calculation
of flux from the discrete data is the way in which wind speed
data are aggregated to be used in the wind speed parameter-
ization. We decided to use daily averages of the wind speed
for calculations. Using the wind speed measured for the clos-
est time to our sampling time or the monthly averaged wind
speed may have resulted in very different flux values.

4.2 Factors controlling temporal variability in
carbonate system parameters

Our study site had a relatively small range of pH and pCO2
on both diel and seasonal scales compared to other coastal re-
gions (Challener et al., 2016; Yates et al., 2007). This small
variability is likely tied to a combination of the subtropical
setting (small temperature variability), the lower estuary po-
sition of our monitoring (further removed from the already
small freshwater influence), little ocean upwelling influence,
and the system’s relatively high buffer capacity that results
from the high alkalinity of the freshwater endmembers (Yao
et al., 2020). Just as the extent of hypoxia-induced acidifica-
tion was relatively low in Corpus Christi Bay because of the
bay’s high buffer capacity (McCutcheon et al., 2019), the ex-
tent of pH fluctuation resulting from all controlling factors at
ASC would also be modulated by the region’s high intrinsic
buffer capacity.
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4.2.1 Thermal and biological controls on carbonate
chemistry

We demonstrated that both temperature and nonthermal
processes exert control on pCO2, but nonthermal control
generally surpasses thermal control in ASC over multiple
timescales (Fig. 6, Table S4, T/B<1). The magnitude of
pCO2 variation attributed to nonthermal processes varied
greatly (i.e., 1pCO2,nt had large standard deviations, Ta-
ble S4). For example, during the year of strongest nonthermal
control (2016), 1pCO2,nt was 534 µatm versus 1pCO2,nt
of 209 µatm in the year of weakest thermal control (2019).
Conversely, the magnitude of pCO2 variation attributed to
temperature was consistent across timescales. For exam-
ple, during the year of strongest thermal control (2015),
1pCO2,t was 276 µatm versus 1pCO2,t of 242 µatm in the
year of weakest thermal control (2017). Spring and fall sea-
sons, which experienced the greatest temperature swings (Ta-
ble S1), had greater relative temperature control exerted on
pCO2 out of all seasons (Fig. 6, Table S4). The difference
in T/B between sampling methods is relatively small over
the 10-month sensor deployment period, but it is worth not-
ing that T/B did not align over shorter seasonal timescales
sampling methods (Fig. 6, Table S4). Continuous monitor-
ing demonstrated a greater magnitude of fluctuation result-
ing from both temperature and nonthermal processes (i.e.,
greater1pCO2,t and1pCO2,nt), indicating that the extremes
are generally not captured by discrete, daytime sampling, and
sensor data would provide a better understanding of system
controls.

The greater influence of nonthermal controls that we re-
port conflicts with Yao and Hu (2017), who found that ASC
was primarily thermally controlled (T/B 1.53–1.79) from
May 2014 to April 2015. Yao and Hu (2017) also found that
locations in the upper estuary experienced lower T/B dur-
ing flooding conditions than drought conditions. Although
the opposite was found at ASC, it is likely that the high T/B
calculated at ASC by Yao and Hu (2017) was still a result of
the drought condition due to the long residence time of the
estuary. Since 2015, there has not been another significant
drought in the system, so it seems that nonthermal controls
on pCO2 are more important at this location under normal
freshwater inflow conditions.

Significantly warmer water temperatures were observed
during the nighttime in both summer and fall (Fig. 5), in-
dicating that temperature could exert a slight control on the
carbonate system over a diel timescale. We note that signif-
icant differences in day and night temperature within sea-
sons do not indicate that diel differences were observed on all
days within the season, as large standard deviations in both
daytime and nighttime values result in considerable over-
lap. More substantial temperature swings between seasons
would result in more temperature control over a seasonal
timescale. ASC seems to have less thermal control of the
carbonate system than offshore GOM waters, as temperature

had substantially higher explanatory value for pH and pCO2
based on simple linear regressions in offshore GOM waters
(R2
= 0.81 and 0.78, respectively, Hu et al., 2018) than at

ASC (R2
= 0.30 and 0.52, respectively, for sensor data and

R2
= 0.38 and 0.25, respectively, for discrete data).

Though annual average pCO2 (and CO2 flux) are higher in
the upper MAE and lower offshore than at our study site, the
same seasonal patterns that we observed (i.e., elevated pCO2
and positive CO2 flux in the summer and depressed pCO2
and negative CO2 flux during the winter, Table S1, Fig. S1)
has also been observed throughout the entire MAE and the
open Gulf of Mexico (Hu et al., 2018; Yao and Hu, 2017).
These seasonal patterns correspond with both the directional
response of the system to temperature and the net community
metabolism response to changing temperature, i.e., elevated
respiration in the summer months (Caffrey, 2004). Despite
there being no observations of hypoxia, there was a strong re-
lationship between the carbonate system parameters and DO
(Fig. 7, Table S5), suggesting that net ecosystem metabolism
may exert an important control on the carbonate system on
seasonal timescales. The lack of day-night difference in DO
(Fig. 5f) despite the significant day-night difference in both
pH and pCO2 suggests that net community metabolism is
likely not a strong controlling factor on diel timescales. Bio-
logical control likely becomes more important over seasonal
timescales.

4.2.2 Tidal control on carbonate chemistry

While the tidal range in the northwestern GOM is relatively
small (1.30 m over our 10-month continuous monitoring pe-
riod), the tidal inlet location of our study site results in pro-
portionally more “coastal water” during high tide and pro-
portionally more “estuarine water” during low tide. The car-
bonate chemistry signal of these different water masses was
seen in the differences between high tide and low tide con-
ditions at ASC (i.e., high tide having lower pCO2 because
coastal waters are less heterotrophic than estuarine waters,
Table 2). Consequently, the relative importance of thermal
versus nonthermal controls may be modulated by tide level.
We calculated the thermal and nonthermal pCO2 terms sep-
arately during high tide and low tide periods and found that
nonthermal control is more important during low tide condi-
tions (within each season T/B is 0.10± 0.07 lower during
the low tide than high tide). This is likely because low tide
has proportionally more “estuarine water” at the location and
because there is less volume of water for the end products of
biological processes to accumulate. The difference in T/B
between high tide and low tide conditions was greatest in the
spring, likely due to a combination of elevated spring-time
productivity and larger tidal ranges in the spring.

The GOM is one of the few places in the world that ex-
periences diurnal tides (Seim et al., 1987; Thurman, 1994),
so theoretically, the fluctuations in pCO2 associated with
tides may align to either amplify or reduce/reverse the fluc-
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tuations that would result from diel variability in net com-
munity metabolism. Based on diel tidal fluctuations at this
site (i.e., higher tides during the day in the spring and sum-
mer and higher tides at night during the winter, Fig. 5e)
and the higher pCO2 associated with low tide (Table 2),
tidal control should amplify the biological signal (nighttime
pCO2> daytime pCO2) during spring and summer and re-
duce or reverse the biological signal during the winter. This
tidal control can explain the diel variability present in our
pCO2 data, which showed the full reversal of the expected
biological signal in the winter (Fig. 5c, Table S3, nighttime
pCO2< daytime pCO2), i.e., the higher nighttime tides in
winter brought in enough low CO2 water from offshore to
fully offset any nighttime buildup of CO2 from the lack of
photosynthesis. However, we note that the expected diel, bi-
ological control was likely minimal since daytime DO was
not consistently higher than nighttime DO (Fig. 5f). The
same seasonal pattern diel tide fluctuations were exhibited
from 20 December 2016 (when the tide data is first available)
through the rest of our discrete monitoring period (25 Febru-
ary 2020), indicating that tidal control on diel variability of
carbonate system parameters was likely consistent through-
out this 3+ year period. The diel variability in pH did not
mirror pCO2 as would be expected (Fig. 5). The relationship
between pH and tide level more closely mirrored the relation-
ships of salinity and temperature to tide level (versus pCO2
relationship to tide level; Table 2), indicating that controlling
factors of the carbonate system may not be exerted equally
on both pH and pCO2 over different timescales.

4.2.3 Salinity and freshwater inflow controls on
carbonate chemistry

Previous studies have indicated that freshwater inflow may
exert a primary control on the carbonate system in the estu-
aries of the northwestern GOM (Hu et al., 2015; Yao et al.,
2020; Yao and Hu, 2017). Though the river water still has ele-
vated pCO2 and depressed pH compared to the seawater end-
member, the high riverine alkalinity (often higher than the
seawater endmember) in the region results in relatively well-
buffered estuarine conditions in MAE (Yao and Hu, 2017).
Carbonate system variability is much lower at ASC than it is
in the more upper reaches of MAE, likely due to the lesser
influence of freshwater inflow and its associated changes in
biological activity at ASC (Yao and Hu, 2017). Given the lo-
cation of our sampling in the lower portion of the estuary
and the long residence time in the system, we did not di-
rectly address river discharge as a controlling factor, but the
influence of freshwater inflow may be evident in the response
of the system to changes in salinity. Fluctuating salinity at
ASC may also result from direct precipitation, stratification,
and tidal fluctuations; however, the low R2 (0.02) associated
with a simple linear regression between tide level and salin-
ity (p<0.0001) indicates that salinity fluctuations are more
indicative of nontidal factors. Salinity data from both sensor

and discrete monitoring were strongly correlated with both
pH and pCO2, with correlation coefficients nearing (contin-
uous) or surpassing (discrete) that of the correlations with
temperature (Fig. 7; Table S5). Periods of lower salinity had
higher pH and lower pCO2, likely due to enhanced freshwa-
ter influence and subsequent elevated primary productivity at
the study site.

4.2.4 Wind speed and CO2 inventory

We investigated wind speed as a possible control on the car-
bonate system to gain insight into the effect of wind-driven
CO2 fluxes on the inventory of CO2 in the water column
(and subsequent impacts to the entire carbonate system). The
Texas coast has relatively high wind speeds, with the mean
wind speed observed during our continuous monitoring pe-
riod being 5.8 m s−1. While this results in relatively high
calculated CO2 fluxes (Fig. 3), the seasonal relationship be-
tween pCO2 and wind speed does not support a change in
inventory with higher winds. Since spring and summer both
have a mean estuarine pCO2 greater than atmospheric levels
(and positive CO2 flux, Table S1), a negative relationship be-
tween wind speed and pCO2 would be necessary to support
this hypothesis, but winter, spring, and fall all experience in-
creases in pCO2 with increasing wind based on simple linear
regression.

4.3 Carbonate chemistry as a component of overall
system variability

Estuaries and coastal areas are dynamic systems with human
influence, riverine influence, and influence from an array of
biogeochemical processes, resulting in highly variable envi-
ronmental conditions. Based on a LDA used to assess overall
system variability using a suite of environmental parameters
compiled at a single location, we can conclude that carbonate
chemistry parameters are among the most important of vari-
ants on both daily and seasonal timescales in this coastal set-
ting. Of the two carbonate system components that we incor-
porated (pH and pCO2), pCO2 was the most critical in dis-
criminating along diel or seasonal scales despite similar sea-
sonal differences that were identified by ANOVA (Table S2)
and more seasons with significant diel differences in pH (Ta-
ble S3). pH seemed to be a larger component of overall sys-
tem variability on a seasonal time scale (compared to the very
small contribution seen on a diel scale, Table 1). Given that
seasonal and diel variability in carbonate chemistry at this
location is relatively small compared to other coastal areas
that are in the literature, the high contribution of carbonate
chemistry to the overall system variability that we detected
is likely to be present at other coastal locations around the
world.
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5 Conclusions

We monitored carbonate chemistry parameters (pH and
pCO2) using both sensor deployments (10 months) and dis-
crete sample collection (5+ years) at the Aransas Ship Chan-
nel, TX, to characterize temporal variability. Significant sea-
sonal variability and diel variability in carbonate system pa-
rameters were both present at the location. Diel fluctuations
were smaller than many other areas previously studied. The
difference between daytime and nighttime values of carbon-
ate system parameters varied between seasons, occasionally
reversing the expected diel variability due to biological pro-
cesses. Tide level (despite the small tidal range), tempera-
ture, freshwater influence, and biological activity all seem to
exert important controls on the carbonate system at the loca-
tion. The relative importance of the different controls varied
with timescale, and controls were not always exerted equally
on both pH and pCO2. Carbonate chemistry (particularly
pCO2) was among the most important environmental param-
eters of overall system variability for distinguishing between
both diel and seasonal environmental conditions.

Despite known temporal variability on shorter timescales,
discrete sampling was generally representative of the average
carbonate system on a seasonal and annual basis based on
comparison with our sensor data. Discrete data captured in-
terannual variability, which could not be captured by shorter-
term continuous sensor data. Additionally, there was no dif-
ference in CO2 flux between sampling types. All of these
findings support the validity of discrete sample collection for
carbonate system characterization at this location.

This is one of the first studies investigating high-temporal
frequency data from deployed sensors that measure carbon-
ate system parameters in an estuary-influenced environment.
Long-term, effective deployments of these monitoring tools
could greatly improve our understanding of estuarine sys-
tems. This study’s detailed investigation of data from mul-
tiple, co-located environmental sensors was able to provide
insight into potential driving forces of carbonate chemistry
on diel and seasonal timescales; this provides strong support
for the implementation of carbonate chemistry monitoring in
conjunction with preexisting coastal environmental monitor-
ing infrastructure. Strategically locating such sensors in ar-
eas that are subject to local acidification drivers or support
large biodiversity or commercially important species may be
the most crucial in guiding future mitigation and adaptation
strategies for natural systems and aquaculture facilities.
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