Supplement of Biogeosciences, 18, 467–486, 2021
https://doi.org/10.5194/bg-18-467-2021-supplement
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Supplement of

Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO₂

Xiaoying Shi et al.

Correspondence to: Xiaoying Shi (shix@ornl.gov)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Figure S1. The differences between the elevated and ambient CO$_2$ with warming conditions (ECO$_2$-ACO$_2$) for modeled potential GPP for *Larix* and shrub species.
Figure S2 predicted *Sphagnum* canopy evaporation response to warming with ambient atmospheric CO$_2$ (a-b, solid lines) and warming with elevated atmospheric CO$_2$ concentration (c-d, dash lines), the black solid line TAMB is the ambient temperature and CO$_2$ case, T0.00 to T9.00 means increasing temperature from 0°C to 9°C.
Figure S3 predicted Sphagnum canopy evaporation relationship with the differences between the vegetation temperature of Sphagnum and 2m air temperature (vegetation temperature of Sphagnum minus 2m air temperature) from the ambient simulation of year 2015.
Figure S4 predicted MR response to warming with ambient atmospheric CO2 (a-b, solid lines) and warming with elevated atmospheric CO2 concentration (c-d, dash lines), the black solid line TAMB is the ambient temperature and CO2 case, T0.00 to T9.00 means increasing temperature from 0°C to 9°C.
Figure S5 predicted leaf area index response to warming with ambient atmospheric CO₂ (a-b, solid lines) and warming with elevated atmospheric CO₂ concentration (c-d, dash lines), the black solid line TAMB is the ambient temperature and CO₂ case, T0.00 to T9.00 means increasing temperature from 0°C to 9°C.