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Abstract. Mosses need to be incorporated into Earth sys-
tem models to better simulate peatland functional dynam-
ics under the changing environment. Sphagnum mosses are
strong determinants of nutrient, carbon, and water cycling in
peatland ecosystems. However, most land-surface models do
not include Sphagnum or other mosses as represented plant
functional types (PFTs), thereby limiting predictive assess-
ment of peatland responses to environmental change. In this
study, we introduce a moss PFT into the land model com-
ponent (ELM) of the Energy Exascale Earth System Model
(E3SM) by developing water content dynamics and nonva-
scular photosynthetic processes for moss. The model was
parameterized and independently evaluated against obser-
vations from an ombrotrophic forested bog as part of the
Spruce and Peatland Responses Under Changing Environ-
ments (SPRUCE) project. The inclusion of a Sphagnum PFT
with some Sphagnum-specific processes in ELM allows it to
capture the observed seasonal dynamics of Sphagnum gross
primary production (GPP) albeit with an underestimate of
peak GPP. The model simulated a reasonable annual net
primary production (NPP) for moss but with less interan-
nual variation than observed, and it reproduced aboveground
biomass for tree PFTs and stem biomass for shrubs. Differ-
ent species showed highly variable warming responses un-
der both ambient and elevated atmospheric CO2 concentra-
tions, and elevated CO2 altered the warming response direc-

tion for the peatland ecosystem. Microtopography is critical:
Sphagnum mosses on hummocks and hollows were simu-
lated to show opposite warming responses (NPP decreasing
with warming on hummocks but increasing in hollows), and
hummock Sphagnum was modeled to have a strong depen-
dence on water table height. The inclusion of this new moss
PFT in global ELM simulations may provide a useful foun-
dation for the investigation of northern peatland carbon ex-
change, enhancing the predictive capacity of carbon dynam-
ics across the regional and global scales.
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1 Introduction

Boreal peatlands store at least 500 pg of soil carbon due
to the incomplete decomposition of plant litter inputs re-
sulting from a combination of low temperature and water-
saturated soils. Because of this capacity to store carbon, bo-
real peatlands have played a critical role in regulating the
global climate since the onset of the Holocene (Frolking and
Roulet, 2007; Yu et al., 2010). The total carbon stock is large
but uncertain: a new estimation of northern peatland carbon
stock of 1055 pg was recently reported by Nichols and Pe-
teet (2019). The rapidly changing climate at high latitudes
is likely to impact both primary production and decomposi-
tion rates in peatlands, contributing to uncertainty in whether
peatlands will continue their function as net carbon sinks in
the long term (Moore et al., 1998; Turetsky et al., 2002; Wu
and Roulet, 2014). Manipulative experiments and process-
based models are thus needed to make defensible projections
of the net carbon balance of northern peatlands under antici-
pated global warming (Hanson et al., 2017; Shi et al., 2015).

Peatlands are characterized by a ground layer of
bryophytes, and the raised or ombrotrophic bogs of the bo-
real zone are generally dominated by Sphagnum mosses that
contribute significantly to total ecosystem CO2 flux (Oechel
and Van Cleve, 1986; Williams and Flanagan, 1998; Robroek
et al., 2009; Vitt, 2014). Sphagnum mosses also strongly af-
fect the hydrological and hydrochemical conditions at the
raised bog surface (Van, 1995; Van der Schaaf, 2002). As
a result, microclimate and Sphagnum species interactions in-
fluence the variability of both carbon accumulation rates and
water and exchanges within peatland and between peatland
and atmosphere (Heijmans et al., 2004a, b; Rosenzweig et
al., 2008; Brown et al., 2010; Petrone et al., 2011; Goetz
and Price, 2015). Functioning as a keystone species of bo-
real peatlands, Sphagnum mosses strongly influence the nu-
trient, carbon, and water cycles of peatland ecosystems (Nils-
son and Wardle, 2005; Cornelissen et al., 2007; Lindo and
Gonzalez, 2010; Turetsky et al., 2010, 2012) and exert a sub-
stantial impact on ecosystem net carbon balance (Clymo and
Hayward; 1982; Gorham, 1991; Wieder, 2006; Weston et el.,
2015; Walker et al., 2017; Griffiths et al., 2018).

Numerical models are useful tools to identify knowl-
edge gaps, examine long-term dynamics, and predict future
changes. Earth system models (ESMs) simulate global pro-
cesses, including the carbon cycle, and are primarily used
to make future climate projections. Poor model representa-
tion of carbon processes in peatlands is identified as a defi-
ciency, causing biases in simulated soil organic mass and het-
erotrophic respiratory fluxes for current ESMs (Todd-Brown
et al., 2013; Tian et al., 2015). Although most ESMs do
not include moss, a number of offline dynamic vegetation
models and ecosystem models do include one or more moss
plant functional types (PFTs) (Pastor et al., 2002; Nungesser,
2003; Zhuang et al., 2006; Bond-Lamberty et al., 2007; Hei-
jmans et al., 2008; Euskirchen et al., 2009; Wania et al.,

2009; Frolking et al., 2010). Several peatland-specific mod-
els contain moss species and have been applied globally or
at selected peatland sites. For example, the McGill Wetland
Model (MWM) was evaluated using the measurements at
Degerö Stormyr and the Mer Bleue bogs (St-Hilaire et al.,
2010). The peatland version of the General Ecosystem Sim-
ulator – Model of Raw Humus, Moder, and Mull (GUESS-
ROMUL) was used to simulate the changes in daily CO2 ex-
change rates with water table position at a fen (Yurova et al.,
2007). The PEATBOG model was implemented to character-
ize peatland carbon and nitrogen cycles in the Mer Bleue bog,
including moss PFTs but without accounting for microtopog-
raphy (Wu and Blodau, 2013). The CLASS-CTEM model
(the coupled Canadian Land Surface Scheme and the Cana-
dian Terrestrial Ecosystem Model), which includes a moss
layer as the first soil layer, was applied to simulate water, en-
ergy, and carbon fluxes at eight different peatland sites (Wu et
al., 2016). The IAP-RAS (Institute of Applied Physics, Rus-
sian Academy of Sciences) wetland methane (CH4) model
with a 10 cm thick moss layer (Mokhov et al., 2007) was run
globally to simulate the distribution of CH4 fluxes (Wania
et al., 2013). The CHANGE model (a coupled hydrologi-
cal and biogeochemical process simulator), which includes
a moss cover layer (Launiainen et al., 2015), was used to in-
vestigate the effect of moss on soil temperature and carbon
flux at a tundra site in northeastern Siberia (Park et al., 2018).
Chadburn et al. (2015) added a surface layer of moss to the
JULES land-surface model to consider the insulating effects
and treated the thermal conductivity of moss depending on its
water content to investigate the permafrost dynamics. Porada
et al. (2016) integrated a stand-alone dynamic nonvascular
vegetation model LiBry (Porada et al., 2013) to land-surface
scheme JSBACH, but JSBACH mainly represents bryophyte
and lichen cover in upland forest and not a peatland ecosys-
tem. Druel et al. (2017) investigated the vegetation–climate
feedbacks at high latitudes by introducing a nonvascular
plant type representing mosses and lichens to the global land-
surface model ORCHIDEE. Moreover, those models did not
consider microtopography and the lateral transports between
hummocks and hollows. Two models, the “ecosys” model
(Grant et al., 2012) and CLM_SPRUCE (Shi et al., 2015),
have been parameterized to represent peatland microtopo-
graphic variability (e.g., the hummock and hollow micro-
terrain characteristic of raised bogs) with lateral connections
across the topography. The prediction of water table dynam-
ics in the “ecosys” model is constrained by specifying a re-
gional water table at a fixed height and a fixed distance from
the site of interest, thereby missing key controlling factors of
a precipitation-driven dynamic water table (Shi et al., 2015).
The CLM_SPRUCE model (Shi et al., 2015) was developed
to parameterize the hydrological dynamics of lateral trans-
port for microtopography of hummocks and hollows in the
raised bog environment of the SPRUCE (Spruce and Peat-
land Responses Under Changing Environments) experiment
(Hanson et al., 2017). That model version did not include
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the biophysical dynamics of Sphagnum moss, and it used a
prescribed leaf area instead of allowing leaf area to evolve
prognostically.

In this study, we introduce a new Sphagnum moss PFT
into the model and migrate the entire raised-bog capability
into the new Energy Exascale Earth System Model (E3SM),
specifically into version 1 of the E3SM land model (ELM v1;
Ricciuto et al., 2018). The objectives of this study are as fol-
lows: (1) to introduce a Sphagnum PFT to the ELM model
with additional Sphagnum-specific processes to better cap-
ture the peatland ecosystem and (2) to apply the updated
ELM to explore how an ombrotrophic, raised-dome bog peat-
land ecosystem will respond to different scenarios of warm-
ing and elevated atmospheric CO2 concentration.

2 Model description

2.1 Model provenance

ELM v1 is the land component of E3SM v1, which is sup-
ported by the US Department of Energy (DOE). Developed
by multiple DOE laboratories, E3SM consists of atmosphere,
land, ocean, sea ice, and land ice components linked through
a coupler that facilitates across-component communication
(Golaz et al., 2019). ELM was originally branched from the
Community Land Model (CLM4.5; Oleson et al., 2013) with
new developments that include representation of coupled car-
bon, nitrogen, and phosphorus controls on soil and vege-
tation processes and new plant carbon and nutrient storage
pools (Ricciuto et al., 2018; Yang et al., 2019; Burrows et
al., 2020). Inputs of new mineral nitrogen of ELM are from
atmospheric deposition and biological nitrogen fixation. The
fixation of new reactive nitrogen from atmospheric N2 by soil
microorganisms is an important component of nitrogen bud-
gets. ELM follows the approach of Cleveland et al. (1999)
that uses an empirical relationship of biological nitrogen fix-
ation as a function of net primary production to predict the
nitrogen fixation. The model version used in this study is des-
ignated ELM_SPRUCE and includes the new implementa-
tion of Sphagnum mosses, as well as the hydrological dy-
namics of lateral transport between hummock and hollow
microtopographies. The implementation has been parameter-
ized based on observations from the S1-Bog in northern Min-
nesota, USA, as described by Shi et al. (2015) with additional
details provided below.

2.2 Nonvascular plants: Sphagnum mosses

To represent the nonvascular plant, Sphagnum mosses, we
modified the C3 arctic grasses equations as follows. We con-
sidered Sphagnum biomass to be represented mainly by leaf
and stem carbon (only a very shallow root). In addition, we
modified the vascular C3 arctic grasses equations for pho-
tosynthesis and stomatal conductance (see below the new
model development) and the associated parameters as re-

Table 1. Physiological parameters of Sphagnum mosses as given in
Hobbie (1996).

Parameters Description Values

lflitcn Leaf litter C : N ratio (g C / g N) 66
lf_fcel Leaf litter fraction of cellulose 0.737
lf_flab Leaf litter fraction of labile 0.227
lf_flig Leaf litter fraction of lignin 0.036

ported by Tables 1–3. We use the same framework as for
C3 arctic grasses, but the Ball–Berry slope term is assumed
to be zero, and the intercept term is the conductance term
as a function of water content of Sphagnum mosses. For
all other processes like the evapo(transpi)ration and associ-
ated parameters not described below, we used the C3 arctic
grasses equations reported by Oleson et al. (2013). Drying
impacts the conductance and affects evapo(transpi)ration of
the internal water. The specific leaf area (SLA) and leaf C : N
ratio parameters are strong controls on the maximum rate of
Rubisco carboxylase activity (Vcmax) and therefore overall
productivity and Sphagnum moss leaf area index (LAI). The
high sensitivities occur because LAI is a strong control on
evapo(transpi)ration.

2.3 New model developments

2.3.1 Water content dynamics of Sphagnum mosses

The main sources for water content of Sphagnum mosses are
passive capillary water uptake from peat and the intercep-
tion of atmospheric water on the capitulum (growing tip of
the moss) (Robroek et al., 2007). Capillary water uptake, the
internal Sphagnum moss water content, is modeled as func-
tions of soil water content and evaporation losses. Water in-
tercepted on the Sphagnum moss capitulum is modeled as a
function of moss foliar biomass, current canopy water, water
drip, and evaporation losses.

Since evaporation at the Sphagnum surface depends on the
atmospheric water vapor deficit, moss–atmosphere conduc-
tance, and available water pool which depends on capillary
wicking of water up to the surface, we developed a relation-
ship between measured soil water content at depth and sur-
face Sphagnum water content. At SPRUCE, the peat volu-
metric water content is measured at several depths using au-
tomated sensors (model 10HS, Decagon Devices, Inc., Pull-
man, WA) calibrated for the site-specific upper peat soil us-
ing mesocosms (reference Fig. S1 in the Supplement; Han-
son et al., 2017). During those calibrations, we periodically
sampled the surface Sphagnum for gravimetric water content
and water potential using a dew point potentiometer (WP4,
Decagon Devices, Inc.) which also provided a surface soil
water retention curve. The destructive sampling of surface
Sphagnum was primarily hummock species but did include
some hollow species. The automated measurements of peat
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Table 2. PFT-specific optimized model parameters.

Parameter Description Sphagnum Picea Larix Shrub Range

flnr Rubisco-N fraction of leaf N 0.2906 0.0678 0.2349 0.2123 (0.05, 0.30)
croot_stem Coarse root to stem allocation ratio N/A 0.2540 0.1529 0.7540 (0.05, 0.8)
stem_leaf1 Stem to leaf allocation ratio N/A 1.047 1.016 0.754 (0.3, 2.2)
leaf_long Leaf longevity (yr) 0.9744 53 N/A N/A (0.75, 2.0)
slatop Specific leaf area at canopy top (m2 g C−1) 0.00781 0.00462 0.0128 0.0126 (0.004, 0.04)
leafcn Leaf C to N ratio 35.56 70.17 64.84 33.14 (20, 75)
froot_leaf2 Fine root to leaf allocation ratio 0.3944 0.8567 0.3211 0.6862 (0.15, 2.0)
mp Ball–Berry stomatal conductance slope N/A 7.50 9.32 10.8 (4.5, 12)

Optimized values of PFT-specific parameters. The range column values in brackets indicate the range of acceptable parameter values used in the sensitivity
analysis and the optimization across all four PFTs in the format (minimum, maximum). N/A indicates that parameter is not relevant for that PFT.
1 For tree PFTs, this parameter depends on NPP. The value shown is the allocation at an NPP of 800 g C m−2 yr−1. 2 The fine root pool is used as a surrogate
for non-photosynthetic tissue in Sphagnum. 3 This parameter was not optimized; we used the default value.

Table 3. Non-PFT-specific optimized model parameters.

Description Optimized value Default Range

r_mort Vegetation mortality 0.0497 0.02 (0.005, 0.1)

decomp_depth_efolding Depth-dependence e-folding
depth for decomposition (m)

0.3899 0.5 (0.2, 0.7)

qdrai,0 Maximum subsurface drainage
rate (kg m−2 s−1)

3.896×10−6 9.2×10−6∗ (0, 1×10−3)

Q10_mr Temperature sensitivity of
maintenance respiration

2.212 1.5 (1.2, 3.0)

br_mr Base rate for maintenance
respiration (g C (g N)−1 s−1)

4.110×10−6 2.52×10−6 (1×10−6, 5×10−6)

crit_onset_gdd Critical growing degree days
for leaf onset

99.43 200 (20, 500)

lw_top_ann Live wood turnover proportion
(yr−1)

0.3517 0.7 (0.2, 0.85)

gr_perc Growth respiration fraction 0.1652 0.3 (0.12, 0.4)

rdrai,0 Coefficient for surface water
runoff (kg m−4 s−1)

6.978×10−7 8.4×10−8∗ (1×10−9, 1×10−6)

Optimized and default values for non-PFT-specific parameters. The range column values in brackets indicate the range of acceptable parameter values used
in the sensitivity analysis and the optimization in the format (minimum, maximum).
∗ Previously calibrated value from Shi et al. (2015).

water content at 10 cm depth were shown to be a good indi-
cator of surface Sphagnum water content (Fig. 1). Based on
this relationship, we model the water content of Sphagnum
moss due to capillary rise (Winternal) (g water / g dry moss)
as follows:

Winternal = 0.3933+ 7.6227/(1+ exp(−(Soilvol

−0.1571))/0.018) , (1)

where Soilvol is the averaged volumetric soil water of mod-
eled soil layers nearest the 10 cm depth horizon (layers three
and four in the ELM v1 vertical layering scheme).

The Sphagnum moss surface water (Wsurface) was calcu-
lated using the model predicted canopy water and the dry
foliar biomass as follows:

Wsurface = can_water/fmass, (2)

where Wsurface (g water / g dry moss) is the surface water
content and fmass is the foliar biomass of Sphagnum mosses.
The can_water is the Sphagnum moss canopy water, and it is
simulated by a function of interception, canopy drip, dew,
and canopy evaporation (Oleson et al., 2013).
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Figure 1. The measured relationship between soil water content at
depth and the water content of surface Sphagnum based on destruc-
tive sampling.

The total water content (Wtotal) of Sphagnum mosses is
the sum of water taken up from peat and the surface water
content (St-Hilaire et al., 2010; Wu et al., 2013).

Wtotal =Winternal+Wsurface. (3)

2.3.2 Modeling Sphagnum CO2 conductance and
photosynthesis

ELM_SPRUCE computes photosynthetic carbon uptake
(gross primary production or GPP) for each vascular PFT on
a half-hourly time step based on the Farquhar biochemical
approach (Farquhar et al., 1980; Collatz et al., 1991, 1992)
with implementation as described by Oleson et al. (2013).
While Sphagnum lacks a leaf cuticle and stomata that regu-
late water loss and CO2 uptake in vascular plants (Titus et al.,
1983), the primary transport pathway for CO2 is through the
cells and is analogous to mesophyll conductance in higher
plants. Thus, we calculate the total conductance to CO2 for
Sphagnum mosses by using total water content following the
method reported by Williams and Flanagan (1998) described
below. Goetz and Price (2015) also indicated that capillary
rise through the peat is essential to maintain a water con-
tent sufficient for photosynthesis for Sphagnum moss species
but that atmospheric inputs can provide small but critical
amounts of water for physiological processes.

The stomatal conductance for vascular plant types in
ELM_SPRUCE is derived from the Ball–Berry conductance
model (Collatz et al., 1991). That model relates stomatal con-
ductance to net leaf photosynthesis scaled by the relative hu-
midity and the CO2 concentration at the leaf surface. The
stomatal conductance (gs) and boundary layer conductance
(gb) are required to obtain the internal leaf CO2 partial pres-

sure (Ci) of vascular PFTs:

Ci = Ca−

(
1.4gs+ 1.6gb

gsgb

)
PatmAn, (4)

where Ci is the internal leaf CO2 partial pressure, Ca is the
atmospheric CO2 partial pressure, An is leaf net photosyn-
thesis (µmol CO2 m−2 s−1), Patm is the atmospheric pressure,
and values 1.4 and 1.6 are the ratios of the diffusivity of CO2
to H2O for stomatal conductance and the leaf boundary layer
conductance, respectively.

For Sphagnum moss photosynthesis, we followed the
method from the McGill Wetland Model (St-Hilaire et al.,
2010; Wu et al., 2013), which is based on the effects of
Sphagnum moss water content on photosynthetic capac-
ity (Tenhunen et al., 1976) and total conductance of CO2
(Williams and Flanagan, 1998) and replaces the stomatal
conductance representation used for vascular PFTs.

Ci = Ca−
PatmAn

gtc
. (5)

The total conductance to CO2 (gtc) was determined from a
least-squares regression described by Williams and Flana-
gan (1998) as follows:

gtc =−0.195+ 0.134Wtotal− 0.0256W 2
total

+ 0.0028W 3
total− 0.0000984W 4

total

+ 0.00000168W 5
total, (6)

where Wtotal is as defined in Eq. (3). This relationship is only
valid up to the maximum water holding capacity of mosses.
Note that we assume that the boundary layer conductance
is greater than moss surface layer conductance, and the moss
surface layer conductance is greater than chloroplast conduc-
tance.

In addition to the water content, the effects of moss sub-
mergence were taken into account in the calculation of moss
photosynthesis. Walker et al. (2017) reported significant im-
pacts of submergence on measured Sphagnum GPP and mod-
eled the effect by modifying the Sphagnum leaf (stem) area
index. Submergence in Walker et al. (2017) was expressed as
photosynthesizing stem area index (SAI) as a logistic func-
tion of water table depth. A maximum SAI of 3 was used,
and the parameter combination that most closely described
the GPP data gave a range of water table depth from −10 cm
for complete submergence and SAI of ∼ 2.5 at 10 cm. This
allowed for a range of processes such as floatation of Sphag-
num with the water table and adhesion of water to the Sphag-
num capitula. For simplicity, in ELM_SPRUCE, we calcu-
lated such impacts on Sphagnum GPP directly as a function
of the height of simulated surface water, assuming that GPP
from the submerged portion of photosynthetic tissue is negli-
gible. GPP is thus reduced linearly according to the following
equation:

GPPsub = GPPorig× (hmoss−H2Osfc) , (7)
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where GPPsub is the GPP corrected for submergence ef-
fects, GPPorig is the original GPP, H2Osfc is the surface wa-
ter height, and hmoss is the height of the photosynthesizing
Sphagnum layer above the soil surface, set to 5 cm in our
simulations. If H2Osfc is equal to or greater than hmoss, GPP
is reduced to zero. Because in our simulations surface water
is never predicted to occur in the hummocks, in practice this
submergence effect only affects the moss GPP in the hollows.

3 Methods

3.1 Site description

We focused on a high C, ombrotrophic peatland (the S1-
Bog) that has a perched water table with limited groundwater
influence (Sebestyen et al., 2011; Griffiths and Sebestyen,
2016). This southern boreal bog is located in the Marcell
Experimental Forest approximately 40 km north of Grand
Rapids, Minnesota, USA (lat 47.50283◦, long −93.48283◦)
(Sebestyen et al., 2011), and is the site of the SPRUCE cli-
mate change experiment (http://mnspruce.ornl.gov, last ac-
cess: 13 January 2021; Hanson et al., 2017). The S1-Bog
has a raised hummock and sunken hollow microtopography,
and it is nearly covered by Sphagnum mosses. S. angusti-
folium (C.E.O. Jensen ex Russow) and S. fallax (Klinggr.)
occupy 68 % of the moss layer and exist in both hummocks
and hollows. S. magellenicum (Brid.) occupies ∼ 20 % of
the moss layer and is primarily limited to the hummocks
(Norby et al., 2019). The vascular plant community at the
S1-Bog is dominated by the evergreen tree Picea mari-
ana (Mill.) B.S.P., the deciduous tree Larix laricina (Du
Roi) K. Koch, and a variety of ericaceous shrubs. Trees are
present due to natural regeneration following strip cut har-
vesting in 1969 and 1974 (Sebestyen et al., 2011). The soil of
this peat bog is the Greenwood series, a Typic Haplohemist
(https://websoilsurvey.sc.egov.usda.gov, last access: 13 Jan-
uary 2021), and its average peat depth is 2 to 3 m (Parsekian
et al., 2012)

Northern Minnesota has a subhumid continental climate
with average annual precipitation of 768 mm and annual air
temperature of 3.3 ◦C for the time period from 1965 to 2005.
Mean annual air temperatures at the bog have increased about
0.4 ◦C per decade over the last 40 years (Verry et al., 2011).

3.2 Field measurements

Multiple observational pretreatment data (the data were col-
lected prior to the initiation of the warming and CO2 treat-
ments) were used in this study. The flux-partitioned GPP
of Sphagnum mosses was derived from measured hourly
Sphagnum–peat net ecosystem exchange (NEE) flux (Walker
et al., 2017). The GPP–NEE relationship was also evalu-
ated using observed vegetation growth and productivity al-
lometric and biomass data on tree species, stem biomass
for shrub species (Hanson et al., 2018a, b), and Sphagnum

pretreatment net primary productivity (NPP) (Norby et al.,
2019). ELM_SPRUCE was driven by climate data (temper-
ature, precipitation, relative humidity, solar radiation, wind
speed, pressure, and long-wave radiation) from 2011 to 2017
measured at the SPRUCE S1-Bog (Hanson et al., 2015a, b).
The surface weather station is outside of the enclosures and
not impacted by the experimental warming treatments that
began in 2015. These data are available at https://mnspruce.
ornl.gov/ (last access: 13 January 2021).

3.3 Simulation of the SPRUCE experiment

Based on measurements at the SPRUCE site, ELM_SPRUCE
includes four PFTs: boreal evergreen needleleaf tree (Picea),
boreal deciduous needleleaf tree (Larix), boreal deciduous
shrub (representing several shrub species), and the newly in-
troduced Sphagnum moss PFT. Currently, ELM_SPRUCE
does not include light competition among multiple PFTs
and thus does not represent cross-PFT shading effects. Our
model also allows the canopy density of PFTs to change
prognostically, and their fractional coverage is held constant.
We used measurements from Sphagnum moss collected at
a tussock tundra site in Alaska (Hobbie, 1996) to set sev-
eral of the model leaf litter parameters for our simulations
(Table 1). The values for other parameters have been opti-
mized based on observations at the SPRUCE site (Tables 2
and 3; optimization methods described in Sect. 3.4). We pre-
scribe both hummock and hollow microtopographies to have
the same fractional PFT distribution. Consistent with Shi et
al. (2015), hummocks and hollows were modeled on sepa-
rate columns with lateral flow of water between them. All the
ELM_SPRUCE simulations were conducted using a prog-
nostic scheme for canopy phenology (Oleson et al., 2013).

The SPRUCE experiment at the S1-Bog consists of com-
bined manipulations of temperature (various differentials up
to+9 ◦C above ambient) and atmospheric CO2 concentration
(ambient and ambient plus 500 ppm) applied in 12 m diam-
eter and 8 m tall enclosures constructed in the S1-Bog. The
whole ecosystem warming began in August 2015, elevated
CO2 started from June 2016, and various treatments are en-
visioned to continue until 2025. Extensive pretreatment ob-
servations at the site began in 2009.

For the ELM_SPRUCE, we continuously cycled the 2011–
2017 climate forcing (see Sect. 3.2) to equilibrate carbon and
nitrogen pools under preindustrial atmospheric CO2 concen-
trations and nitrogen deposition and then launched a simu-
lation starting from year 1850 through year 2017. This tran-
sient simulation includes historically varying CO2 concentra-
tions, nitrogen deposition, and the land-use effects of a strip
cut and harvest at the site in 1974. These simulations were
used to compare model performance with pretreatment ob-
servations. A subset of these observations was also used for
optimization and calibration (Sect. 3.4).

To investigate how the bog vegetation may respond to
different warming scenarios and elevated atmospheric CO2
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concentrations, we performed 11 model runs from the same
starting point in the year 2015. These simulations were de-
signed to reflect the warming treatments and CO2 concen-
trations being implemented in the SPRUCE experiment en-
closures. The model simulations include one ambient case
(both ambient temperature and CO2 concentration) and five
simulations with modified input air temperatures to represent
the whole ecosystem warming treatments at five levels (+0,
+2.25, +4.50, +6.75, and +9.00 ◦C above ambient) and at
ambient CO2 and another five simulations with the same in-
creasing temperature levels and at elevated CO2 (900 ppm).
In the treatment simulations, we also considered the pas-
sive enclosure effects which reduce incoming shortwave ra-
diation and increase incoming longwave radiation (Hanson
et al., 2017). Following the SPRUCE experimental design,
there was no water vapor added so that the simulations used
constant specific humidity instead of constant relative humid-
ity across the warming levels. All the treatment simulations
were performed through the year 2025 by continuing to cycle
the 2011–2017 meteorological inputs (with modified temper-
ature and radiation to reflect the treatments) to simulate fu-
ture years.

3.4 Model sensitivity analysis and calibration

The vegetation physiology parameters in ELM_SPRUCE
were originally derived from CLM4.5 and its predeces-
sor, Biome-BGC, and represent broad aggregations of plant
traits over many species and varied environmental condi-
tions (White et al., 2000). To achieve reasonable model per-
formance at SPRUCE, site-specific parameters and targeted
parameter calibration are needed. Since the ELM_SPRUCE
contains over 100 uncertain parameters, parameter optimiza-
tion is not computationally feasible without first performing
some dimensionality reduction. Based on previous ELM sen-
sitivity analyses (e.g., Lu et al., 2018; Ricciuto et al., 2018;
Griffiths et al., 2018), we chose 35 model parameters for
further calibration (Tables 2 and 3). An ensemble of 3000
ELM_SPRUCE simulations were conducted, with each en-
semble member using a randomly selected set of parame-
ter values within uniform prior ranges. This model ensem-
ble was first used to construct a polynomial chaos surrogate
model which was then used to perform a global sensitiv-
ity analysis (Sargsyan et al., 2014; Ricciuto et al., 2018).
Main sensitivity indices, reflecting the proportion of output
variance that occurs for each parameter, are described in
Sect. 4.1.

To minimize potential biases in model predictions of treat-
ment responses, we calibrated the same 35 model parame-
ters using pretreatment observations as data constraints. We
employed a quantum particle swarm optimization (QPSO)
algorithm (Lu et al., 2018). While this method does not al-
low for the calculation of posterior prediction uncertainties,
it is much more computationally efficient than other methods
such as Markov chain Monte Carlo (MCMC). The constrain-

ing data included year 2012–2013 tree growth and biomass
(Hanson et al., 2018a), year 2012–2013 shrub growth and
biomass (Hanson et al., 2018b), year 2012 and 2014 Sphag-
num net primary productivity (Norby et al., 2019; Norby and
Childs, 2018), enclosure-averaged leaf area index by PFT
(year 2011 for tree and year 2012 for shrub and Sphagnum),
and year 2011–2013 water table depth (WTD) observations
aggregated to seasonal averages (Hanson et al., 2015b). The
goal of the optimization is to minimize a cost function, which
we define here as a sum of squared errors over all observation
types weighted by observation uncertainties. When observa-
tion uncertainties were not available, we assumed a range
of ±25 % from the default value. Site measurements were
also used to constrain the ranges of two parameters: leafcn
(leaf carbon to nitrogen ratio) and slatop (specific leaf area at
canopy top). The uniform prior ranges for these parameters
represent the range of plot to plot variability. Optimized pa-
rameter values are shown in Tables 2 and 3. Section 4 reports
the results of simulations using these optimized parameters
which were used to perform a spinup, transient (1850–2017),
and set of 11 treatment simulations (2015–2025) as described
above.

4 Results

4.1 Model sensitivity analysis

Main effect (first-order) sensitivities are shown for eight
model output quantities of interest: total site gross pri-
mary productivity (GPP), GPP for the moss PFT only
(GPP_moss), total site net primary productivity (NPP), NPP
for the moss PFT only (NPP_moss), total site vegetation
transpiration (QVEGT), evaporation from the moss surface
(QVEG_moss), net ecosystem exchange (NEE), and site to-
tal vegetation carbon (TOTVEGC) (Fig. 2). Out of 35 param-
eters investigated, 25 show a sensitivity index of at least 0.01
for one of the quantities of interest, and these are plotted in
Fig. 2. In that figure, sensitivities are stacked in order from
highest to lowest for each variable with the height of the bar
equal to the sensitivity index. The first order sensitivities sum
to at least 0.95 for all variables, indicating that higher order
sensitivities (i.e., contributions to the sensitivity from combi-
nations of two or more parameters) contribute relatively little
to the variance in these quantities of interest.

According to this analysis, the variance in total site GPP
is dominated by three Picea parameters: the fraction of
leaf nitrogen in Rubisco (flnr_picea), leaf carbon to ni-
trogen ratio (leafcn_picea), and the specific leaf area at
canopy top (slatop_picea). GPP sensitivity for the moss
PFT is dominated by the same three parameters but for the
moss PFT instead of Picea (flnr_moss, leafcn_moss, and
slatop_moss). For NPP, QVEGT, and NEE, the highest sen-
sitivity is the maintenance respiration base rate br_mr, sim-
ilar to earlier results in Griffiths et al. (2018). The mainte-
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Figure 2. Sensitivity analysis of ELM_SPRUCE for selected parameters (Tables 2 and 3). The colored bars indicate the fraction of variance
in site gross primary productivity (GPP), moss-only GPP (GPP_MOSS), site net primary productivity (NPP), moss-only NPP (NPP_MOSS),
total vegetation transpiration (QVEGT), moss evaporation (QVEG_MOSS), site net ecosystem exchange (NEE), and total vegetation carbon
(TOTVEGC) controlled by each parameter. The legend shows the top 25 most influential parameters; the remaining parameters not shown
have sensitivities of no more than 0.01 for any of the outputs. All variables represent 2011–2017 average values over the ambient conditions.
For parameters that are treated as PFT dependent, the PFT is indicated with a suffix (picea, larix, shrub, or moss).

nance respiration temperature sensitivity Q10_mr is also a
key parameter for NPP and NEE. The critical onset grow-
ing degree day threshold (crit_onset_gdd), which drives de-
ciduous phenology in the spring for the Larix and shrub
PFTs, is an important parameter for NPP and NEE. The
flnr_picea parameter is important for both NPP and QVEGT.
For NPP_moss and QVEG_moss, leafcn_moss and the ratio
of non-photosynthesizing tissue to photosynthesizing tissue
(npt_moss) are sensitive. For TOTVEGC and NEE, vegeta-
tion mortality (r_mort) is also a sensitive parameter. For the
site-level quantities of interest, at least 10 parameters con-
tribute significantly to the uncertainty, illustrating the com-
plexity of the model and large number of processes contribut-
ing to uncertainty in SPRUCE predictions. For the moss vari-
ables, there are some cases where significant sensitivities ex-
ist for non-moss PFT parameters. For example, leafcn_shrub
is the seventh most sensitive parameter for GPP_moss, indi-
cating that competition between the PFTs for resources may
be important. In this case, uncertainty about parameters on
one PFT may drive uncertainties in the simulated productiv-
ity of other PFTs.

4.2 Model evaluation

Our model simulates GPP for vascular plants and Sphagnum
moss in both hummock and hollow settings with separate cal-
culations for each PFT. Here we use the model estimate of
GPP prior to downregulation by nutrient limitation from the
ambient case based on recent studies indicating that nutrient
limitation effects are occurring downstream of GPP (Raczka
et al., 2016; Metcalfe et al., 2017; Duarte et al., 2017). This
treatment of nutrient limitation on GPP has been modified in
a more recent version of ELM, and our moss modifications
will be merged to that version as a next step. For now, by re-
ferring to the pre-downregulation GPP, we are capturing the
most significant impact of those changes for the purpose of
comparison to observations.

Our model simulated two seasonal maxima of Sphagnum
moss GPP: one at the end of May and the other in August
(Fig. 3). Both peaks are lower than the maximum of observed
(flux-partitioned) GPP, which occurs in August. Based on re-
sults of the sensitivity analysis, it could be that the base rate
for maintenance respiration for moss is too high, causing an
underestimate of NPP and biomass, which leads to a low bias
in peak GPP.
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Figure 3. Predicted GPP (solid red line) compared with flux-
partitioned GPP (solid black line; GPP data were not used in the
parameters optimization) of Sphagnum mosses for the year 2014.
The blue line is the predicted GPP corrected with the observed wa-
ter table height. The dashed black and red lines are observed and
modeled water table height (the dashed gray line is the hollow sur-
face).

During June and October, observations suggest that
ELM_SPRUCE overpredicts GPP. The model does limit GPP
as a function of the depth of standing water on the bog sur-
face (Eq. 7). The water table height (WTH) above the bog
surface is being predicted by the model (dashed red line in
Fig. 3), and while the seasonal pattern of higher water table
in the spring and lower water table in the fall agrees well
with observations (dashed black line in Fig. 3), the predicted
WTH is generally too low by 5–10 cm. The modeled WTH
here is for hollow. We turned off the lateral transport when
there is ice on the soil layers above the water table to avoid
an unreasonable amount of ice accumulation on the frozen
layers which results when there is no flow from hummock
to hollow. Forcing the modeled GPP to respond to observed
WTH (during the period with observations) gives a pattern of
increasing GPP through June and July which is more consis-
tent with observations (blue line in Fig. 3). We do not have
observations for GPP earlier than June due to limitations of
the instrumentation when the bog surface is flooded.

The model simulated reasonable annual values for Sphag-
num NPP for the period 2014–2017 but showed much lower
NPP compared to observation (139 vs. 288 g C m−2 yr−1) for
the year 2012 (Fig. 4a). Measurement uncertainties are larger
in 2016–2017 than in earlier years, perhaps related to a new
measurement protocol for those years, and the model esti-
mates are within measurement uncertainty bounds for years
2014–2017 (Griffiths et al., 2018; Norby et al., 2019). The
observed Sphagnum NPP was measured at different plots,
and each plot included different species abundances. As a
result, the scaled NPP includes spatial variations and uncer-
tainty in species distribution (Norby and Childs, 2018).

Simulated tree aboveground biomass is within the ob-
served inter-plot variability (Fig. 4b). Observations suggest
an increasing trend in tree biomass which was not pre-
dicted by the model. The optimized parameters show in-

creased mortality and autotrophic respiration rate parameters
compared to the default model (Table 3), which causes the
simulations to approach steady state relatively quickly after
the 1974 disturbance. However, the sensitivity analysis also
identifies these mortality and maintenance respiration param-
eters as highly sensitive; therefore, this simulated response
is uncertain. For the shrub stem carbon, the simulated mean
from year 2012 to 2015 was 140.4 g C m−2, slightly higher
than the observation (133.9 g C m−2) but well within the ob-
served range of inter-plot variability (Fig. 4c).

4.3 Simulated carbon cycle response to warming and
elevated atmospheric CO2 concentration

Different PFTs demonstrated different warming responses
for both ambient CO2 and elevated CO2 concentration con-
ditions (Fig. 5). Both Larix and shrub NPP increased with
warming under both CO2 concentration conditions (Fig. 5b,
c, h, and i). In addition, CO2 fertilization stimulates the
growth of these two PFTs, and the fertilization effect further
increases with warming (Fig. S1). In contrast, Picea NPP de-
creased with warming levels (Fig. 5a and g) for both CO2
conditions. For Sphagnum, NPP decreased in hummocks but
increased in hollows with increasing temperature (Fig. 5d, e,
j, and k). The CO2 fertilization also stimulates the growth of
the Picea and Sphagnum PFTs (Fig. 5a, d, e, g, j, and k). The
total enclosure NPP for all PFTs responded differently to the
warming only and warming with elevated CO2 (Fig. 5f and
l). The total enclosure NPP for each warming level changed
less under the ambient CO2 condition than those with the
elevated CO2 condition, and NPP decreased with warming
in most of the years under the ambient CO2 condition but in-
creased under the elevated CO2 condition (Fig. 5f and l). This
result demonstrated that the elevated CO2 scenario changes
the sign of the NPP warming response for the bog peatland
ecosystem.

Compared with the ambient biomass, the biomass of black
spruce (Picea) significantly decreased, but the biomass of
Larix significantly increased under the greatest warming
treatment (+9.00 ◦C; Fig. 6). Biomass of shrub and hollow
Sphagnum also increased but less than Larix did. The hum-
mock Sphagnum biomass also showed a strong correlation
with water table height at roughly a 3-month lag (the maxi-
mum correlation occurs with an 82 d lag; R2

= 0.56). NPP
is allocated instantaneously into biomass. A positive NPP
anomaly caused by water table shifts leads to higher LAI,
which also increases future productivity for some amount
of time even if the water table returns to normal. Sphag-
num biomass has a 1-year turnover time in the simulation.
This combination of effects leads to a roughly 3-month time
lag. Due to the relative lower height of the water table in the
hummock than the hollow, the simulated hummock Sphag-
num was more significantly water-stressed than the hollow
Sphagnum as the water table height declines. This is con-
sistent with multiple studies finding that an increase in tem-
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Figure 4. Predicted (red bars) Sphagnum NPP (a), aboveground tree biomass (b), and shrub stem carbon (c) compared with the observations
(black bars). Observed NPP data are based on growth of 12–17 bundles of 10 Sphagnum stems in 2012–2015 (unpublished data) and in two
ambient plots by the method described by Norby et al. (2019) in 2016–2017 (data in Norby and Childs, 2018). The Sphagnum NPP data for
the years 2015–2017 and aboveground tree biomass and shrub stem carbon for the years 2014–2015 are independent of the related parameter
optimization.

peratures associated with drought (low water table height)
reduces Sphagnum growth (Bragazza et al., 2016; Granath
et al., 2014; Mazziotta et al., 2018). We plotted the pre-
dicted canopy evaporation for hummock and hollow Sphag-
num responses to warming and found that both hummock
and hollow Sphagnum canopy evaporation amounts increase
with warming for both ambient and elevated atmospheric
CO2 conditions despite the Larix and shrubs growing with
warming. Moreover, the hollow Sphagnum canopy evapora-
tion warming response is stronger than that of the hummock
Sphagnum (Fig. S2). In summary, the growth of bog vegeta-
tion is predicted to have species-specific warming responses
that differ in sign and magnitude.

5 Discussion

Sphagnum moss is the principal plant involved in the peat ac-
cumulation in peatland ecosystems, and the effective charac-
terization of its biophysical and physiological responses has
implications for predicting peatland and global carbon, wa-
ter, and climate feedbacks. This study moves us closer to our
long-term goal of improving the prediction of peatland water,
carbon, and nutrient cycles in ELM_SPRUCE by introducing
a new Sphagnum moss PFT and implementing water content
dynamics and photosynthetic processes for this nonvascular
plant. The Sphagnum model development combined with our
previous hummock and hollow microtopography represen-
tation and laterally coupled two-column hydrology scheme
enhance the capability of ELM_SPRUCE in simulating high-
carbon wetland hydrology and carbon interactions and their
responses to plausible environmental changes.

5.1 Uncertainties in simulating Sphagnum productivity

Our predicted peak GPP is similar to the results found by
Walker et al. (2017) when they calculated the internal resis-
tance to CO2 diffusion as a function of Sphagnum water con-

tent using a stand-alone photosynthesis model. In both cases,
the predicted peak GPP is lower than observations. Walker
et al. (2017) were, however, able to capture the observed
peak magnitude with a combination of light extinction co-
efficient, canopy clumping coefficient, maximum SAI, and a
logistic function describing the effective Sphagnum SAI in
relation to the water table. Here we used model default val-
ues for the light extinction and canopy clumping coefficients.
While the water table impacts Sphagnum productivity in our
simulation, modeled LAI is mainly controlled by NPP and
turnover. In addition, we use the default formulation for the
acclimation of Vcmax in ELM which is based on a 10 d mean
growing temperature. At this point, we do not have sufficient
measurements to test this assumption, but we can prioritize
these measurements in the future. Sphagnum temperature is
computed from surface energy balance, but because the cur-
rent model does not estimate the shading effects from trees
and shrubs, this may be overestimated. Moreover, biases in
predicted water table height contribute to errors in the cal-
culated submergence effect. Improving these biases and as-
suming an exponential rather than a linear CO2 uptake pro-
file may improve representation of the submergence effect.
All these aspects may be attributed to the biases of the sim-
ulated Sphagnum GPP. We can consider this in the future
when we have more detailed measurements. Further inves-
tigation is thus needed to understand how representative the
chamber-based observations of the larger-scale SPRUCE en-
closures from Walker et al. (2017) are and to reconcile these
GPP estimates with plot-level NPP observations (Norby et
al., 2019).

The hydrology cycle, especially water table depth (WTD),
is also a key factor that influences the seasonality of GPP
in Sphagnum mosses (Lafleur et al., 2005; Riutta et al., 2007,
Sonnentag et al., 2010; Grant et al., 2012; Kuiper et al., 2014;
Walker et al., 2017). One key feedback is that if the water ta-
ble declines, there can be enhanced decomposition and subsi-
dence of the peat layer, which brings the surface down closer
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Figure 5. Predicted NPP response to warming with ambient atmospheric CO2 (a–f, solid lines) and warming with elevated atmospheric CO2
concentration (g–l, dashed lines). The solid black line TAMB is the ambient temperature and CO2 case, and T0.00 to T9.00 means increasing
temperature from 0 to 9 ◦C.

to the water table again. But we currently did not consider the
peat layer elevation changes in our model, and this will be
one of the future development directions. The capillary rise
plays into the Sphagnum hydrological balance, which varies
depending on water table depth and evaporative demand. At
short timescales or under rapidly changing conditions, there
may not be equilibration between the Sphagnum water con-
tent and the peat moisture. Generally, the Sphagnum water
content will equilibrate with the peat on a daily basis out-
side the plot since the dew point is often reached at night.
But since the vapor pressure deficit does not go to zero in-

side the warmer plots, some disequilibration could remain.
High-frequency latent heat flux data from the site are cur-
rently lacking but could help to constrain these effects in the
future.

The current phenology observations also include whether
Sphagnum hummock and hollow are wet or dry, and we
could look at the relationship with soil water content sen-
sors in the future. Moreover, the timescales for rewetting may
change as the peat dries since the cross section for capillary
rise will decline, and thus the maximum flux to the surface
will decline. At some point between gravity potential and re-
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Figure 6. The relative changes in biomass for different PFTs and
water table height (the weighted average between hummock and
hollow) between the +9.00 ◦C treatment case and the ambient case
((+9.00 ◦C / ambient)− 1).

duced hydraulic conductivity, we expect that the capillarity
will no longer satisfy evaporative demand. Alternately, un-
der saturated conditions when the water table is close to the
Sphagnum surface, Sphagnum photosynthesizing tissue can
become submerged or surrounded by a film of water that
is likely to reduce the effective LAI of the Sphagnum and
thus reduce photosynthesis (Walker et al., 2017). Submerged
Sphagnum can take up carbon derived from CH4 via symbi-
otic methanotrophs (Raghoebarsing et al., 2005), but in any
case, CO2 diffusion for photosynthesis will dramatically de-
crease under water. Larmola et al. (2014) also reported that
the activity of oxidizing bacteria provides not only carbon but
also nitrogen to peat mosses and, thus, contributes to carbon
and nitrogen accumulation in peatlands, which store approx-
imately one-third of the global soil carbon pool. We currently
did not consider this kind of CH4 associated carbon and ni-
trogen uptake by Sphagnum.

The live green Sphagnum moss layer buffers the exchange
of energy and water at the soil surface and regulates the soil
temperature and moisture because of its high water holding
capacity and the insulating effect (McFadden et al., 2003;
Block et al., 2011; Turetsky et al., 2012; Park et al., 2018).
Currently, we apply the same method for the hummock and
hollow Sphagnum water content prediction and can test the
model against the measured data when more data are avail-
able. Our model still can predict Sphagnum water content
differences between these microtopographies as expected,
though with the water content of hollows greater than that
of hummocks. In addition, our model is able to represent
the self-cooling effect, although we do not yet have measure-
ments available to validate the model. The relationship of the
differences between vegetation temperature (TV) and 2 m air
temperature (TBOT) (TV-TBOT) and canopy evaporation for
both hummock and hollow Sphagnum demonstrated that the
differences of TV-TBOT was negative and the canopy evap-
oration had a negative relationship with TV-TBOT (Fig. S3).
Moreover, Walker et al. (2017) reported that the function of

Sphagnum water content to soil water content or to water ta-
ble depth they used for the SPRUCE site was empirical and
may not be representative for a peatland ecosystem. To better
represent the peatland ecosystem in our model, we will even-
tually treat the Sphagnum mosses as the “top” soil layer with
a lower thermal conductivity and higher hydraulic capacity
(Beringer et al., 2001; Wu et al., 2016; Porada et al., 2016).

5.2 Predicted warming and elevated CO2
concentration response uncertainties

Our model warming simulations suggested that increasing
temperature reduced the Picea growth but increased the
growth of Larix under both ambient and elevated atmo-
spheric CO2 conditions. The main reason for this model dif-
ference in response for the two tree species is that despite
their similar productivity under ambient conditions, Picea
has more respiring leaf and fine root biomass because of
lower SLA, longer leaf longevity, and higher fine root alloca-
tion. Therefore, warming results in a much larger increase in
maintenance respiration relative to changes in NPP for Picea
compared to Larix (Figs. 5 and S4). Increased tree growth
and productivity in response to the recent climate warming
for high-latitude forests has been reported (Myneni et al.,
1997; Chen et al., 1999; Wilmking et al., 2004; Chavardes,
2013). On the other hand, reductions in tree growth and neg-
ative correlations between growth and temperature have also
been shown (Barber et al., 2000; Wilmking et al., 2004; Silva
et al., 2010; Juday and Alix 2012; Girardin et al., 2016;
Wolken et at., 2016).

Our model also predicted the increasing growth of shrubs
with increased temperature in a similar way to the simulated
increase in shrub cover caused mainly by warmer temper-
atures and longer growing seasons reported by Miller and
Smith (2012) using their model LPJ-GUESS. In addition,
several other modeling studies have also found increased
biomass production and LAI related to shrub invasion and
replacement of low shrubs by taller shrubs and trees in re-
sponse to increased temperatures in tundra regions (Zhang et
al., 2013; Miller and Smith, 2012; Wolf et al., 2008; Porada
et al., 2016; Rydssa et al., 2017).

The responses of Sphagnum mosses to warming simu-
lated by ELM_SPRUCE showed that Sphagnum growth in
hollows was consistently higher with increased temperatures
when water availability was not limited. Sphagnum growing
on hummocks, on the other hand, showed negative warming
responses that are related to the strong dependency on wa-
ter table height. A recent study of the same SPRUCE site
(Norby et al., 2019) had suggested that the hummock and
hollow microtopography had a larger influence on Sphag-
num responses to warming than species-specific traits. In ad-
dition, the previous studies had demonstrated that the most
dominant mechanism of Sphagnum warming response was
probably through the effect of warming on depth to the water
table and water content of the acrotelm, both of which re-
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sponded to increasing temperature (Grosvernier et al., 1997;
Rydin, 1985; Weltzin et al., 2001; Norby et al., 2019). More-
over, desiccation of capitula due to increased evaporation as-
sociated with higher temperatures and vapor pressure deficits
can reduce Sphagnum growth independent of the water table
depth (Gunnarsson et al., 2004). We currently used the same
parameters for both hummock and hollow but could consider
species differences in the future. Norby et al. (2019) inves-
tigated different Sphagnum species at the same site and re-
ported there was no support for the hypothesis that species
more adapted to dry conditions (e.g., S. magellanicum and
Polytrichum mainly on hummocks) would be more resistant
to the stress and would increase in dominance, and both hum-
mock and hollow Sphagnum decline with warming despite
the differences between them. This declining trend may be
in part due to increased shading from the shrub layer which
expands with warming (McPartland et al., 2020).

Ecosystem warming can have direct and indirect effects
on Sphagnum moss growth. The growth of Sphagnum may
be reduced directly by higher air temperature due to the rela-
tively low temperature optima of moss photosynthesis (Hob-
bie et al.,1999; Van Gaalen, 2007; Walker et al., 2017). On
the other hand, increased shading by the shrub canopy and
associated leaf litter could indirectly decrease moss growth
(Chapin et al., 1995; Hobbie and Chapin 1998; Van der Wal
et al., 2005; Walker et al., 2006; Breeuwer et al., 2008). In
contrast, other studies suggest that Sphagnum growth can be
promoted by a cooling effect of shading on the peat surface,
by alleviating photo-inhibition of photosynthesis, and also by
reducing evaporation stress (Busby et al., 1978; Murray et al.,
1993; Man et al., 2008; Walker et al., 2015; Bragazza et al.,
2016; Mazziotta et al., 2018). Our model sensitivity analysis
also indicated that the parameters of shrub showed signifi-
cant sensitivities to Sphagnum mosses’ GPP, indicating that
competition between the PFTs for resources might be im-
portant. Moreover, ELM_SPRUCE did predict the enhance-
ment of shrub and Larix tree with increased temperatures
in both ambient and elevated CO2 conditions (LAI increas-
ing with warming; Fig. S5). Currently, ELM_SPRUCE does
not include light competition among multiple PFTs and thus
does not represent cross-PFT shading effects, which may
contribute to the warming and elevated CO2 response differ-
ences between our model prediction and the observed result
of Norby et al. (2019). Meanwhile, we have fixed cover frac-
tion for PFTs in our model which may also contribute to the
disagreement of predicted and observed warming responses,
while Norby et al. (2019) showed that the fractional cover of
different Sphagnum species declined with warming.

Sphagnum mosses are sitting on top of high CO2 sources.
CH4 can be a significant carbon source of submerged Sphag-
num (Raghoebarsing et al., 2005; Larmola et al., 2014); the
refixation of CO2 derived from decomposition processes is
also an important source of carbon for Sphagnum (Rydin and
Clymo, 1989; Turetsky and Wieder, 1999). The effects of the
elevation of atmospheric CO2 on Sphagnum moss are cur-

rently disputed, with studies indicating an increase in growth
rate (Jauhiainen and Silvde 1999; Heijmans et al., 2001;
Saarnio et al., 2003), decreases in growth rate (Grosvernier
et al., 2001; Fenner et al., 2007), and no response (Van der
Hejiden et al., 2000; Hoosbeek et al., 2002; Toet et al., 2006).
Norby et al. (2019) indicated no growth stimulation of both
hummock and hollow Sphagnum under elevated CO2 con-
dition but significant negative effects of elevated CO2 on
Sphagnum NPP in the year 2018 at the same study site. Con-
trasting responses between Sphagnum species are thought to
be coupled with the water availability. In contrast, our model
results showed that both hummock and hollow Sphagnum
growths were stimulated by the elevated CO2 concentration,
which may be attributed to the fact that we did not consider
the light competition between the PFTS (shrub and tree shad-
ing effects) but used a fixed cover fraction of Sphagnum.

The CO2 vertical concentration profile is assumed to be
uniform in the simulations. In the experiment, the enclosure’s
regulated additions of pure CO2 are distributed to a manifold
that splits the gas into four equal streams feeding each of the
four air handling units (Hanson et al., 2017, Fig. 2a) and in-
jects it into the duct work of each furnace just ahead of each
blower and heat exchanger. Horizontal and vertical mixing
within each enclosure homogenizes the air volume distribut-
ing the CO2 along with the heated air. The horizontal blowers
in the enclosures together with external wind eddies ensure
vertical mixing. We do not have routine automated CO2 con-
centration data below 0.5 m. The moss layer may well be ex-
periencing higher concentrations than assumed by the model,
but such an impact will be minimized during daylight hours.
Preliminary isotopic measurements imply that a significant
fraction of carbon assimilated by the moss may come from
subsurface-respired CO2 (i.e., CO2 with older 14C signatures
predating bomb carbon that can only be sourced from deeper
peat; Hanson et al., 2017). However, the observed elevated
CO2 response is smaller than simulated (Hanson et al., 2020).
Understanding the drivers of elevated CO2 response or lack
thereof is a key topic for future work.

To better investigate the Sphagnum warming and elevated
CO2 responses, we should also focus on revealing the in-
teractions with shrub and nitrogen availability (Norby et al.,
2019). Nitrogen (N2) fixation is a major source of available
N in ecosystems that receive low amounts of atmospheric N
deposition, like boreal forests and subarctic tundra (Lindo et
al., 2013; Weston et al., 2015; Rousk and Michelsen, 2016;
Kostka et al., 2016). For example, diazotrophs are estimated
to supply 40 %–60 % of N input to peatlands (Vile et at.,
2014) with a high accumulation of fixed N in plant biomass
(Berg et al., 2013). Nevertheless, N2 fixation is an energy-
expensive process and is inhibited when N availability and
reactive nitrogen deposition are high (Gundale et al., 2011;
Ackermann et al., 2012; Rousk et al., 2013). This could
limit ecosystem N input via the N2 fixation pathway. We are
measuring Sphagnum-associated N2 fixation at the SPRUCE
site and found that rates decline with increasing temperature
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(Carrell et al., 2019; Global Change Biology). We are con-
tinuing these measurements to see if they correlate with the
GPP empirical relationship from Cleveland et al. (1999) or if
temperature disrupts that association. Once finished, results
will be used to represent N fixation by the Sphagnum layer
and testing with measurements.

It is also encouraging that while we did not use leaf-level
gas exchange observations in our optimization, the increased
maintenance respiration base rate and temperature sensitivity
compared to default (Table 2) are largely consistent with pre-
treatment leaf level observations (Jensen et al., 2018). In the
future, a multiscale optimization framework that can assim-
ilate leaf- and plot-level observations simultaneously should
lead to improved model predictions and reduced uncertain-
ties for the treatment simulations. If similar patterns observed
in ambient conditions continue during the treatments, incor-
porating seasonal variations in leaf photosynthetic param-
eters may also further improve the simulated response to
warming (Jensen et al., 2019).

Overall, while the sensitivity analysis is useful to indicate
the key parameters and mechanisms responsible for uncer-
tainty, our ability to quantify prediction uncertainty is limited
because we consider only a single simulation with optimized
parameters. Ideally, we should perform a model ensemble
that represents the full range of posterior uncertainty over
simulations that are consistent with the pretreatment observa-
tions and also a range of possible future meteorological con-
ditions. This is currently being done for SPRUCE with the
TECO carbon cycle model (Jiang et al., 2018), but the com-
putational expense of ELM_SPRUCE currently prohibits this
approach. By combining new surrogate modeling approaches
(e.g., Lu and Ricciuto, 2019) with Markov chain Monte Carlo
(MCMC) techniques, it may be possible to achieve this in
the near future. This will help to reduce prediction uncer-
tainties which currently prevail in the future carbon budget
of peatlands and its feedback to climate change (McGuire et
al., 2009).

The algorithms used to represent moss (Williams and
Flanagan, 1998) are transferable to and have been applied by
other modeling groups in other peatlands. However, we ex-
pect that certain parameters will vary, for example, the micro-
topographic parameters, the relationship between peat mois-
ture and internal water content, and moss properties such as
the C : N ratio. The parameter sensitivity analysis informs us
as to the most important parameters responsible for predic-
tion uncertainty and can inform us how to prioritize these
measurements. Collecting these measurements from a vari-
ety of sites will be a necessary preliminary exercise. In ad-
dition to the simulations aimed at improved understanding
of bog response to experimental manipulations at the plot
scale, we are pursuing model implementations at larger spa-
tial scales. The model framework described in this study is
capable of performing regional simulations, although the cur-
rent simulations were designed for the mechanistic under-

standing of Sphagnum mosses’ hydrological and physiologi-
cal dynamics at the plot level.

6 Summary

In this study, we reported the development of a Sphag-
num moss PFT and associated processes within the
ELM_SPRUCE model. Before being used to examine the
ecosystem response to warming and elevated CO2 at a tem-
perate bog ecosystem, the updated model was evaluated
against the observed Sphagnum GPP and annual NPP, above-
ground tree biomass, and shrub stem biomass. The new
model can capture the seasonal dynamics of moss Sphag-
num GPP but with lower peak GPP compared to site-level
observations, and it can predict reasonable annual values for
Sphagnum NPP but with lower interannual variation. Our
model largely agrees with observed tree and shrub biomass.
The model predicts that different PFTs responded differently
to warming levels under both ambient and elevated CO2 con-
centration conditions. The NPP of the two dominant tree
PFTs (black spruce and Larix) showed contrasting responses
to warming scenarios (increasing with warming for Larix but
decreasing for black spruce), while shrub NPP had a similar
warming response to Larix. Hummock and hollow Sphag-
num showed opposite warming responses: hollow Sphagnum
shows generally higher growth with warming, but the hum-
mock Sphagnum demonstrates more variability and strong
dependence on water table height. The ELM predictions fur-
ther suggest that the effects of CO2 fertilization can change
the direction of the warming response for the bog peatland
ecosystem, although observations of Sphagnum species at the
site does not yet appear to support this (Norby et al., 2019).

Code and data availability. The model code we used is avail-
able here: https://doi.org/10.5281/zenodo.3733924 (Ricciuto et al.,
2020). The datasets and scripts used for the figures are here:
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