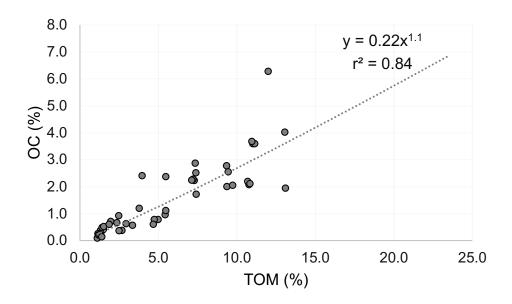
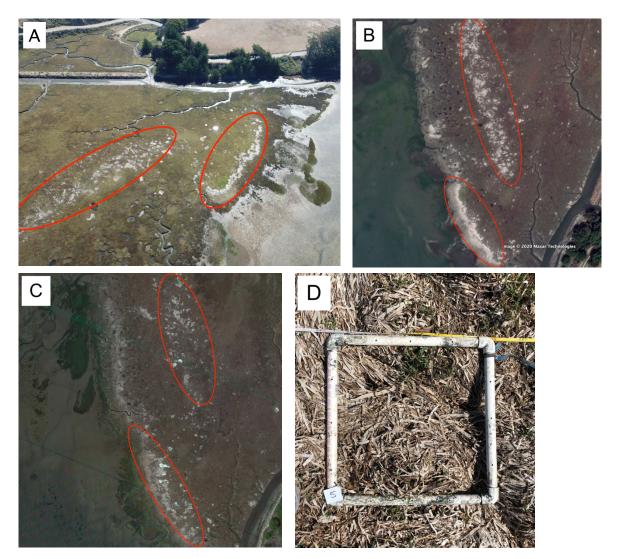
Supplement of Biogeosciences, 18, 4717–4732, 2021 https://doi.org/10.5194/bg-18-4717-2021-supplement © Author(s) 2021. CC BY 4.0 License.

Supplement of


Blue carbon stocks and exchanges along the California coast

Melissa A. Ward et al.


Correspondence to: Melissa A. Ward (maward@ucdavis.edu)

The copyright of individual parts of the supplement might differ from the article licence.

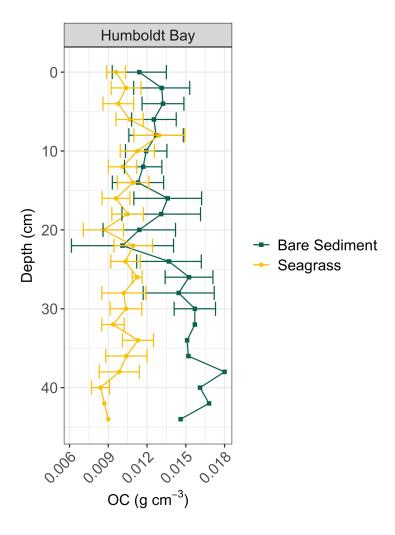

Supplementary Figures

Figure S1: Total organic carbon (OC) was estimated using a power model developed between measured total organic material (TOM, %) and measured total OC (%) in a subset of samples. A power model was selected over a linear model for these data to avoid negative estimates of carbon stocks at low levels of TOM.

Figure S2: UAV (drone) image collected in October 2019 immediately prior to sediment core collection (A). Historic seagrass wrack lines can be observed in similar locations using satellite imagery, as shown here by the image taken on September 9th, 2018 and October 24th, 2009 (B and C, respectively; © Google Earth, 2020). Seagrass wrack lines are circled in red. Wrack biomass was measured from quadrats along a transect running through the southern wrack line (D).

Figure S3: Average organic carbon (g cm⁻³) in each core depth interval for seagrass meadows and bare sediments in Humboldt Bay. These cores were sampled to 45 centimeters.

Supplementary Tables

Site	Habitat Type	N (cores)	Bulk Density (g/cm3)	Mud (%)	OC (%)	OC (kg/m2)
Bodega Bay	Bare Sediment	3	2.5 ± 0.039	13 ± 0.44	0.3 ± 0.011	1.5 ± 0.082
Bodega Bay	Seagrass	15	1.3 ± 0.18	18 ± 2.5	1 ± 0.28	2.2 ± 2.1
Elkhorn Slough	Pan	3	0.55 ± 0.027	95 ± 1.4	5 ± 0.8	4.6 ± 0.77
Elkhorn Slough	Salt Marsh	11	0.66 ± 0.095	93 ± 1.8	4.6 ± 0.56	5.1 ± 1.3
Humboldt Bay	Bare Sediment	3	1.4 ± 0.22	NA	0.91 ± 0.16	2.5 ± 0.67
Humboldt Bay	Seagrass	4	1.7 ± 0.38	NA	0.7 ± 0.14	2.1 ± 0.43
Newport Bay	Salt Marsh	4	0.85 ± 0.21	76 ± 17	3.7 ± 1.1	3.4 ± 1.3
Newport Bay	Seagrass	4	0.66 ± 0.074	98 ± 0.59	2.3 ± 0.24	2.9 ± 0.23
Mission Bay	Bare Sediment	2	0.78 ± 0.12	NA	1.6 ± 0.21	2.6 ± 1
Mission Bay	Seagrass	3	0.6 ± 0.012	NA	1.6 ± 0.26	1.8 ± 0.46
Tomales Bay	Bare Sediment	9	1.4 ± 0.32	66 ± 15	1.6 ± 0.37	2.7 ± 1.6
Tomales Bay	Salt Marsh	6	0.62 ± 0.088	91 ± 1.9	5.2 ± 0.53	5.6 ± 2
Tomales Bay	Seagrass	15	1.5 ± 0.15	35 ± 9	0.86 ± 0.17	2.1 ± 1.4

Table S1: Summary of sediment cores collected from each habitat type at each of the six sites. The displayed summary data are the mean values across all cores (\pm SE). Organic carbon stocks are presented in kg m⁻² in the top 20 cm of sediment.

Site	Source	Mean (%)	95% CI (low)	95% CI (high)
Walker Salt Marsh	Diatoms/C3	87.5	79.0	96.0
Walker Salt Marsh	C4 Plants	7.6	0.0	16.7
Walker Salt Marsh	Seagrass	4.8	0.0	11.3
Elkhorn Slough	Diatoms/C3	83.0	77.0	89.1
Elkhorn Slough	C4 Plants	11.9	1.1	21.0
Elkhorn Slough	Seagrass	5.1	0.0	12.0
Under wrack?	Source	Mean (%)	95% CI (low)	95% CI (high)
Yes	Diatoms/C3	86.1	76.1	95.8
Yes	C4 Plants	8.8	0.0	19.4
Yes	Seagrass	5.1	0.0	12.3
No	Diatoms/C3	79.5	72.7	86.5
No	C4 Plants	13.5	0.8	24.7
No	Seagrass	7.0	0.0	15.2
Shallow Vs. Deep	Source	Mean (%)	95% CI (low)	95% CI (high)
Surface	Diatoms/C3	78.7	69.7	87.7
Surface	C4 Plants	13.0	0.1	25.4
Surface	Seagrass	8.4	0.0	17.5
Deep	Diatoms/C3	79.7	69.2	90.2
Deep	C4 Plants	12.8	0.0	25.3
Deep	Seagrass	7.4	0.0	16.7

Table S2: Bayesian mixing model results display the mean (%) contribution of each source (\pm 95% CI). These results are presented for salt marsh sediments in two sites – Walker salt marsh and Elkhorn salt marsh (Elkhorn Slough) (top panel); for salt marsh sediments in Walker salt marsh under persistent seagrass wrack lines versus not under persistent wrack lines (middle panel); and in shallow versus deep sediments found under wrack in Walker salt marsh (bottom panel).