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Abstract. The hypoxic zone in the northern Gulf of Mex-
ico varies spatially (area, location) and temporally (onset,
duration) on multiple scales. Exposure of fish to hypoxic
dissolved oxygen (DO) concentrations (< 2 mg L−1) is often
lethal and avoided, while exposure to 2 to 4 mg L−1 occurs
readily and often causes the sublethal effects of decreased
growth and fecundity for individuals of many species. We
simulated the movement of individual fish within a high-
resolution 3-D coupled hydrodynamic water quality model
(FVCOM-WASP) configured for the northern Gulf of Mex-
ico to examine how spatial variability in DO concentrations
would affect fish exposure to hypoxic and sublethal DO
concentrations. Eight static snapshots (spatial maps) of DO
were selected from a 10 d FVCOM-WASP simulation that
showed a range of spatial variation (degree of clumpiness)
in sublethal DO for when total sublethal area was moderate
(four maps) and for when total sublethal area was high (four
maps). An additional case of allowing DO to vary in time
(dynamic DO) was also included. All simulations were for
10 d and were performed for 2-D (bottom layer only) and 3-
D (allows for vertical movement of fish) sets of maps. Fish
movement was simulated every 15 min with each individual
switching among three algorithms: tactical avoidance when
exposure to hypoxic DO was imminent, strategic avoidance
when exposure had occurred in the recent past, and default
(independent of DO) when avoidance was not invoked. Cu-
mulative exposure of individuals to hypoxia was higher un-
der the high sublethal area snapshots compared to the mod-
erate sublethal area snapshots but spatial variability in sub-
lethal concentrations had little effect on hypoxia exposure.
In contrast, relatively high exposures to sublethal DO con-
centrations occurred in all simulations. Spatial variability in

sublethal DO had opposite effects on sublethal exposure be-
tween moderate and high sublethal area maps: the percent-
age of fish exposed to 2–3 mg L−1 decreased with increasing
variability for high sublethal area but increased for moder-
ate sublethal area. There was also a wide range of exposures
among individuals within each simulation. These results sug-
gest that averaging DO concentrations over spatial cells and
time steps can result in underestimation of sublethal effects.
Our methods and results can inform how movement is simu-
lated in larger models that are critical for assessing how man-
agement actions to reduce nutrient loadings will affect fish
populations.

1 Introduction

Hypoxia is expanding at locations with historical hypoxia
and is appearing in new locations in the global ocean and
associated coastal waters (Breitburg et al., 2018). The hy-
poxic zone in the northern Gulf of Mexico (GOM) is one
of the world’s largest areas (up to ∼ 23 000 km2) of sea-
sonal coastal hypoxia (Rabalais et al., 2007; Rabalais and
Turner, 2019). Hypoxia is often defined as a dissolved oxy-
gen (DO) concentration less than 2 mg L−1 (Rabalais et al.,
2001). In the GOM, hypoxia generally occurs between April
and October (Turner and Rabalais, 1991). The formation of
hypoxia is influenced by the high river discharges in the
spring from the Mississippi and Atchafalaya rivers that bring
nutrients and freshwater to the shelf that then trigger in-
creased primary productivity and water column stratification.
The layer of fresh river water, weak tides, and weak winds
during the spring and summer all contribute to strong strat-
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ification (Rabalais et al., 2001, 2002). Organic matter re-
sulting from nutrient-enhanced surface primary production
sinks to the bottom layer where it is respired. Because of
the strong stratification during summertime, oxygen supply
is generally lower than respiration, thus creating conditions
favorable for hypoxia development (Justic et al., 1996; Ra-
balais et al., 2002). Hypoxia is broken up in the fall by in-
creased winds associated with cold fronts and cooling of sur-
face waters. Annual summertime (late July) surveys since
1985 have documented a highly variable hypoxic area whose
extent during 1985 to 2011 varied from 700 to 23 200 km2

(Table S2 in Obenour et al., 2013). The areal extent of hy-
poxia is expected to increase under future climate change
scenarios (Justic et al., 2003, 2016; Sperna Weiland et al.,
2012; Lehrter et al., 2017; Rabalais and Turner, 2019). The
interannual variation in hypoxic area in the GOM has been
extensively analyzed using regression and simplified semi-
empirical (e.g., box model) methods (Obenour et al., 2015;
Scavia et al., 2017; Del Giudice et al., 2019), as well as with
more complex three-dimensional coupled hydrodynamic–
biogeochemical models (e.g., Fennel et al., 2013; Justić and
Wang, 2014).

In addition to interannual variation, the hypoxic zone
within the GOM varies spatially during the summer depend-
ing on the interaction of various physical and biological fac-
tors, local bathymetry, wind forcing, hydrodynamics, solar
radiation, river freshwater and nutrient inputs, phytoplankton
productivity, and zooplankton grazing (Bianchi et al., 2010).
The hypoxic zone typically includes a core area that is hy-
poxic over most summers with outer regions where DO con-
centrations are typically more variable in time and space (Ra-
balais et al., 2007; DiMarco et al., 2010). Continuous DO
measurements at fixed locations often show rapid changes
(on the order of± 1–3 mg L−1 h−1) in bottom DO concentra-
tions (Babin and Rabalais, 2009; Bianchi et al., 2010; Rabal-
ais et al., 2010; Babin, 2012). Such temporal variations have
also been documented for other coastal systems (e.g., San-
ford et al., 1990; Booth et al., 2014; Kraus et al., 2015). These
temporal variations are caused by the combined effects of lo-
cal DO dynamics and the transport of DO via the movement
of water and therefore imply some degree of spatial variation.
Spatial analysis of DO measured synoptically at multiple lo-
cations in the GOM shows various degrees of patchiness in
hypoxia on kilometer scales (Zhang et al., 2009), and such
spatial variation is common in other estuarine systems (e.g.,
Muller et al., 2016). Hypoxia in the GOM also varies in the
vertical dimension. For example, the thickness of the hypoxic
zone varied from less than a meter to 20 m over the historical
record (Fig. S2 in Obenour et al., 2013). Rose et al. (2018b)
summarized continuous measurements of DO obtained using
a towed vehicle (Scanfish) that undulated between 2 m below
the surface and 2 m above the bottom (Roman et al., 2012;
Zhang et al., 2014), and documented that bottom DO can
frequently change by about 0.5 mg L−1 min−1 on the scale
of tens of meters. It seems that the more we look, the more

we find that low DO varies on increasingly finer temporal and
spatial scales. Understanding these finer scales is relevant for
quantifying the exposure of mobile organisms such as fish.

Individual fish are affected both directly and indirectly
by hypoxia. Direct effects of hypoxia on fish include mor-
tality, and the sublethal effects of reduced fecundity and
growth (Shimps et al., 2005; Stierhoff et al., 2006; Rose
et al., 2009; Thomas and Rahman, 2012; Limburg and Casini,
2018, 2019). Fish and other organisms change their move-
ment behavior to avoid lethal levels of DO (Eby and Crow-
der, 2002; Bell and Eggleston, 2005; Pollock et al., 2007;
Craig, 2012). However, while many species avoid hypoxia
(< 2 mg L−1), they are still exposed to low DO concentra-
tions (2 to 4.5 mg L−1) that cause sublethal effects (Vaquer-
Sunyer and Duarte, 2009; Hrycik et al., 2017). Indirect ef-
fects of hypoxia on fish include changes in mortality, growth,
and fecundity that result from avoidance of low DO, caus-
ing fish to experience less suitable habitat in their new loca-
tions, as well as by direct effects of low DO on their prey and
predators. Hypoxia avoidance can result in fish being forced
out of preferred habitat to one where there are fewer suit-
able prey and less shelter from predators (Eby and Crow-
der, 2002). Hypoxia can also affect the size, growth, energy
demands, and behavior of predators (Pollock et al., 2007;
Breitburg et al., 2009) and the productivity, distribution, and
composition of their zooplankton and benthic prey (Baustian
et al., 2009; Levin et al., 2009; Roman et al., 2019). While
effects on individuals have been well documented in the lab-
oratory under known and fixed exposures, major challenges
remain to estimate exposure of fish to dynamically changing
DO in two and three dimensions (Rose et al., 2009; LaBone
et al., 2019), and to translate these time-varying exposures to
growth, mortality, and reproduction effects (Neilan and Rose,
2014).

The fine-scale temporal and spatial dynamics of DO have
been simulated in the GOM using high-resolution, three-
dimensional (3-D) coupled hydrodynamic–biogeochemical
models (Fennel et al., 2016; Rose et al., 2017). These include
the FVCOM-WASP (Finite Volume Coastal Ocean Model -
Water Quality Analysis Simulation Program) model (Justić
and Wang, 2014) and an implementation of the ROMS (Re-
gional Ocean Modeling System) model coupled with a wa-
ter quality and NPZ model (Fennel et al., 2013). FVCOM
is an open-source, unstructured grid ocean circulation model
(Chen et al., 2011). WASP is a water quality model with a
number of modules, including one for eutrophication (Wool
et al., 2006). We have previously used the FVCOM-WASP
model and added the capability to simulate the fine-scale
movement of individual fish (Justić and Wang, 2014; Rose
et al., 2014). The same model setup used here was previously
used to compare the effects of different movement algorithms
(LaBone et al., 2017) and 2-D versus 3-D avoidance move-
ment on fish exposure to hypoxia (LaBone et al., 2019).

In this paper, we build upon the analysis of LaBone et al.
(2017, 2019) and quantify fish exposure to hypoxia and sub-
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Figure 1. Planar view of the FVCOM-WASP model grid. There
were also 30 vertical sigma layers.

lethal DO concentrations under different levels of spatial
variability in DO on static maps. For comparison, we also
include the dynamic DO map from which we extracted the
static maps as snapshots. Spatial variability in DO on the
static maps was summarized statistically to ensure that con-
trasting levels of spatial variability were selected for the
analysis. FVCOM-WASP was used to generate the dynamic
DO fields within which the individual fish moved and ex-
perienced static or dynamic (hourly changing) DO concen-
trations. Movement of individual fish was modeled every
15 min for 10 d on the static and dynamic maps of DO within
the same grid as used by FVCOM-WASP. Effects of spatial
variability in DO concentrations on exposure were compared
for fish with poor versus good avoidance capabilities and
with and without an option for vertical avoidance. The re-
sults for the 2-D (bottom layer) and 3-D (vertical avoidance
allowed) analyses were similar, so here we focus on the 2-D
results; the 3-D results are summarized in the Supplement.
Our overarching hypothesis was that more spatially variable
DO conditions should result in higher hypoxia and sublethal
exposures. However, our results showed that the relationship
between spatial variability and exposure is complex; the ef-
fects of spatial variability on sublethal exposures are highly
dependent on the areal extent of sublethal DO levels.

2 Methods

2.1 FVCOM-WASP

Output from the coupled FVCOM-WASP model (Justić and
Wang, 2014) was used with the FVCOM particle tracking
module that was modified to simulate behavioral movement
of individual fish. Individual fish were followed within the
same 3-D grid that was used for hydrodynamics and the wa-
ter quality modeling. The model domain covered the coastal
GOM from Mobile Bay, Alabama, to Galveston Bay, Texas,
and extended offshore to a depth up to 300 m with the wa-
ter column divided into 30 sigma layers (Fig. 1, Wang and
Justic, 2009). Sigma layers vary in their thickness across
the model domain because the same number of layers are

Figure 2. The results of Ripley’s K function versus the neighbor-
hood size (r) for eight static 2-D snapshot maps of DO from the bot-
tom layer of the FVCOM-WASP simulation of 20–30 August 2002.
The snapshots are defined in Table 1. Ripley’s K values (lines) are
shown for maps split into high (a) and moderate (b) sublethal ar-
eas and by AUC values with each panel. There are lines for the two
minimum and single mean and maximum AUC values for the high
sublethal area and for the minimum and to mean AUC areas for
the moderate sublethal area. Some of the curves overlap and are not
easily distinguished. The line labeled “theo” represents the relation-
ship between Ripley’s K and r for the theoretical condition when
the spatial variability in sublethal DO cells is homogeneous.

used from shallow to deep waters; individual fish locations
are also available by depth that is computed from the sigma
layers. The unstructured model grid allows higher resolution
along the coast and an accurate representation of the GOM
coastline. The FVCOM-WASP model has been previously
calibrated to accurately represent the circulation and strat-
ification on the shelf (Wang and Justic, 2009). Hourly DO
from a 10 d simulation (20–30 August 2002) was used as the
source for the 2-D and 3-D static and dynamic DO maps. The
20–30 August 2002 time period had a large hypoxic zone
(∼ 16 000 km2) that showed variation at fixed locations on
hourly and daily timescales. The bottom sigma layer from
the 3-D FVCOM-WASP model output was used to create 2-
D DO maps for simulating fish movement so that the DO
values in the bottom layer were identical for the 2-D and 3-D
maps.

2.2 Movement algorithms

Fish movement was simulated within the FVCOM-WASP
grid by using a suite of algorithms that determined the veloc-
ities of individual fish in the horizontal plane (u and v) for
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Table 1. Areas (hypoxic, sublethal, and normoxic; km2 and percent of grid) and AUC (area under the curve) values for eight snapshots
selected from the hourly DO maps generated by FVCOM-WASP simulation of 10 d (20–30 August 2002). Sublethal DO was defined as
2–4 mg L−1. Based on the sublethal area and AUC values, each snapshot was labeled by category of total sublethal area (S. area; high or
moderate) and by category of AUC (minimum, mean, or maximum).

Label Category Area AUC

km2 Percent

AUC S. area Sublethal Hypoxic Normoxic Sublethal Hypoxic Normoxic Sublethal Hypoxic

Min-1 Min Moderate 29 099 15 548 84 619 23 12 66 1.05 1.69
Min-2 Min Moderate 29 465 15 460 84 340 23 12 65 1.05 1.69
Mean-1 Mean Moderate 31 527 17 166 80 559 24 13 62 1.20 1.70
Mean-2 Mean Moderate 31 951 17 341 79 956 25 13 62 1.20 1.68
Min-1 Mean High 38 813 19 752 70 630 30 15 55 1.04 1.52
Min-2 Mean High 38 667 19 869 70 659 30 15 55 1.04 1.51
Mean Mean High 38 083 16 972 74 156 30 13 57 1.19 1.80
Max Mean High 36 748 16 300 76 168 28 13 59 1.34 1.90

2-D and additionally using the vertical velocity (w) for the
3-D simulations (Rose et al., 2014; LaBone et al., 2019). The
changes in fish position were calculated by updating their
previous time step’s positions on the grid with the newly
computed velocities to obtain the new positions of the fish
(Watkins and Rose, 2013; Rose et al., 2014). In 2-D, the
equations are

x(t +1t)= x(t)+u(t) ·1t, (1)
y(t +1t)= y(t)+ v(t) ·1t, (2)

where x and y were the fish positions on the model grid (dis-
tance in meters from bottom left-hand corner of grid), u and
v are the velocities in the x and y directions, and 1t is the
time step (15 min). The velocities u and v were calculated
each time step as

u(t)= ss · cos(θ(t)), (3)
v(t)= ss · sin(θ(t)), (4)

where ss was the swimming speed (m s−1) and θ was the
swimming angle (radians) relative to the x axis. The swim-
ming speed and swimming angle were computed differently
among the algorithms, and which algorithm to use was se-
lected based on the DO concentrations experienced by the
fish. The collection of algorithms to model fish movement
and exposure to DO were the same as used in previous anal-
yses (LaBone et al., 2017, 2019).

2.2.1 Event-based movement

An event-based algorithm was used to choose among the var-
ious algorithms that computed swim speed and angle. There
were four possible algorithms that an individual fish could
use on a time step: neighborhood search (NS), Sprint, cor-
related random walk (CRW), and Cauchy CRW (CCRW).
On each time step, two cues for DO-related movement were

computed (e1 and e2), and these were used to select among
three avoidance algorithms (NS, Sprint, and CRW) depend-
ing on the severity of hypoxia exposure. When none of the
three DO-related algorithms for avoidance were selected, the
individual used the default movement algorithm (CCRW)
that was unrelated to DO conditions. The cuing variables e1
and e2 were binary variables (zero or one) computed on each
time step (every 15 min) for each individual, with e1 being
triggered when the DO concentration in the cell (exposure
now) was less than 2 mg L−1, and e2 was triggered when
an individual’s cumulative exposure to DO< 2 mg L−1 ex-
ceeded a continuous 48 h. Thus, each individual had its own
evolving time series of zero or one values for each cue (e1
and e2).

2.2.2 Neighborhood search

When the NS algorithm was selected by the event-based al-
gorithm it was considered a tactical (immediate and urgent)
response because the individual fish was about to be ex-
posed to DO< 2 mg L−1. The individual then searched the
surrounding cells for the one with the lowest DO value and
moved in the opposite direction at a swim speed twice the
baseline (default) speed. The angle and swimming speed
were calculated as

θ(t)= atan2(y(t)− yl(t),x(t)− xl(t))

+ 0.15 · 2π(2 · ran− 1), (5)
ss= 2 · ss0± ss0 · ran, (6)

where x(t) and y(t) are the current x and y coordinates, xl(t)
and yl(t) are the coordinates of the center of the cell with the
lowest DO, ss0 is the default swim speed, and ran is a uniform
random number. The first part of Eq. (5) (atan2), calculates
the angle and the second part of the equation calculates a
random component that adds some variability to the angle.
The NS algorithm is efficient at avoiding hypoxia, but fish
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could get stuck in local maxima that were still hypoxic. The
random component added to the swimming angle prevented
most, but not all, fish from getting stuck at local hypoxic cells
that were also the local maximum DO concentration.

2.2.3 Sprint

The Sprint algorithm was also considered a tactical response
to hypoxia exposure and was selected when an individual fish
spent too long in the hypoxic waters, often the result of being
stuck at local hypoxic maxima from which the NS algorithm
could not successfully move fish to non-hypoxic waters. If
the fish spent more than 48 continuous hours in hypoxic con-
ditions, the fish would swim quickly (3 times the default
speed) in a straight line out of the hypoxic zone going in
the direction the fish last traveled. The angle and swimming
speed were calculated as

θ(t)= θ(t −1t), (7)
ss= 3 · ss0. (8)

The fish used Sprint on successive time steps until it exited
the hypoxic zone, when its continuous exposure to hypoxia
was reset back to zero.

2.2.4 CRW

CRW was a biased random walk algorithm (Kareiva and
Shigesada, 1983) used for a strategic response to hypoxia.
A strategic response is considered a response to hypoxia ex-
posure but when the exposure is not immediate (like with
tactical) but rather had occurred in the recent past. CRW, as
a strategic response, typically followed the tactical NS re-
sponse because once the immediate threat of exposure was
gone, there was still some memory of the immediate expo-
sure and the individual was likely in an area where there
was hypoxia. The CRW algorithm had fish continue to swim
away (at the relatively slower default speed) from hypoxic
areas after NS enabled the fish to exit hypoxic conditions.
CRW used the velocities from the previous time step to cal-
culate the angle and calculated a random speed:

θ(t)= atan2(v(t −1t),u(t −1t))

+ 0.05 · 2π · (2 · ran− 1), (9)
ss= ss0± 0.3 · sss0 · ran. (10)

The first half of Eq. (9) (atan2( )), are the velocities from the
previous time step and the second part of the equation is a
random component to add variation to the angle.

2.2.5 Default

CCRW was the random walk algorithm used as a default
movement in the model and is a more complicated biased
random walk than CRW (Wu et al., 2000). The magnitude
and direction of the bias can be controlled by choosing the

turning angle from a non-uniform, wrapped Cauchy distribu-
tion. The turning angle and swimming speed were calculated
by

θ(t)= θ(t −1t)+ 2 · atan[
(1− ε)
(1+ ε)

· tan((ran− 0.5) ·π)
]
+ θm, (11)

ss= ss0± 0.3 · ss0 · ran, (12)

where ε determines the shape of the wrapped Cauchy distri-
bution and θm determines the center of the distribution. θ (t-
1t) is the previous angle and the 2 · atan[]+θm is the turning
angle. Higher values of ε result in more correlation and less
randomness to the direction of the fish. The value assigned
to θm determined the bias in whether the individual tended to
turn left or right.

2.2.6 Reflective boundary

Reflective boundary was an application of the NS algorithm
used to reflect fish back into the model domain. Reflective
boundary was used outside of the event-based algorithm and
was applied after all of the other algorithms for fish move-
ment were applied and the individual was placed in its new
location. The reflective boundary algorithm would be trig-
gered when a fish was determined to have moved outside of
the model domain. The fish was moved back to its position
at the start of the time step, and then the surrounding cells
were searched and the fish moved to the cell with the fewest
boundaries. The angle was calculated as

θ(t)= atan2(yl(t)− y(t),xl(t)− x(t))

+ 0.15 · 2π · (2 · ran− 1), (13)

where the values are the same as Eq. (5). The only change
in the calculation of θ as compared to NS was the order of
coordinate values in the atan2 function. Speed was calculated
using the default swim speed (ss0).

2.3 Algorithm selection

The event-based algorithm chooses the movement algorithm
that has the highest utility for each time step. Utilities are
used to represent the costs and benefits that a particular be-
havior has on an animal’s fitness (Anderson, 2002). For our
purposes of avoidance of low DO, we only considered that
avoiding hypoxia was critical to fitness. In evaluating the dif-
ferent algorithms, we did not factor in the costs of avoiding
hypoxia or how decisions would affect growth, mortality, or
reproduction. We computed three utility values for each time
step based on the probabilities of two events indicative of
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immediate (e1) and prolonged (e2) exposure occurring:

UNS(t)= utilNS · probNS(t), (14)
Usprint(t)= utilsprint · probsprint(t), (15)

UCRW(t)= utilCRW · probCRW(t), (16)

where utili is the intrinsic utility and probi is the probability
of a triggered event. The intrinsic utility is the weight each
algorithm has in the utility calculation. Tactical algorithms
have a higher weight than default or strategic algorithms and
thus are preferentially chosen. The probability of an event
being triggered was calculated for NS and CCRW using the
event of immediate exposure (e1):

probNS(t)= (1.0−memNS) · e1(t)

+memNS · probNS(t −1t), (17)

probCRW(t)= (1.0−memCRW) · e1(t)

+memCRW · probCRW(t −1t). (18)

The probability for Sprint used event two (e2):

probsprint(t)= (1.0−memsprint) · e2(t)

+memsprint · probsprint(t −1t). (19)

The three probabilities are running averages of present and
recent past hypoxia exposures and allow for the fish to have
some memory of past events. The utilities on each time step
were then compared and the algorithm with the largest util-
ity value that exceeded a minimum threshold was selected. If
none of the calculated utilities were larger than the threshold
(hypoxia exposure was not imminent and had not occurred in
the recent past), then the default behavior was used. Parame-
ters for Eqs. (14) to (19) are given in Table 2.

2.4 Selection of static DO snapshots

Eight static DO snapshots were selected from the 240 hourly
snapshots simulated during the 10 d (20–30 August 2002)
FVCOM-WASP simulation (Table 1). For each snapshot, a
2-D map and a 3-D map of DO were created. The snap-
shots were selected based on a combination of the total
area of sublethal DO and the degree of spatial variability
in DO on each of the 240 2-D maps. Area based on the
full range of sublethal concentrations (DO of 2–4 mg L−1),
and also the hypoxic area (DO < 2 mg L−1) and normoxic
area (DO> 4 mg L−1) for reference and comparison, were
computed for each hourly time step. Also for each of the
240 time steps (spatial maps of DO), Ripley’s K func-
tion (Kest in R; https://www.rdocumentation.org/packages/
spatstat/versions/1.63-3/topics/Kest, last access: 29 Novem-
ber 2020), with isotropic edge correction, was computed,
which resulted in the plots of the statistic K versus r . Rip-
ley’s K is an estimation of the K function that accounts for
maps with finite area and includes edge corrections. In our

Figure 3. Spatial maps of bottom DO showing the 2 and 4 mg L−1

contours for two of the eight snapshots from the FVCOM-WASP
simulation of 20–30 August 2002. The snapshots are defined in Ta-
ble 1. Snapshot Min-2 (a; row 2 in the Table) is moderate sublethal
area and minimum AUC, and snapshot Max (b; row 8 in the Table)
is high sublethal area and maximum AUC. Areas in white outside
the 4 mg L−1 line are normoxic.

case, we have a 2-D spatial map of cells that are either hy-
poxic, sublethal, or normoxic. We computed the Ripley’s K
based on whether cells were sublethal or not. Ripley’s K
measures the number of extra sublethal cells (above that ex-
pected under randomly distributed sublethal cells) within a
fixed distance (r , in meters) of a randomly chosen cell. Thus,
Ripley’s K used here is a method for quantifying the spa-
tial distribution of sublethal cells on a map compared to the
sublethal cells showing complete spatial randomness (CSR).
As an aid in interpretation, our computed Ripley’s K was
compared to the theoretical value expected if the sublethal
cells were spatially homogenous (Ktheo; Fig. 2). If our com-
puted K is less than Ktheo, then the sublethal cells are spa-
tially dispersed and sublethal cells are, on average, farther
apart than expected compared to a random distribution. If
our computedK for a map is greater thanKtheo, then there is
clustering of sublethal cells and sublethal cells generally oc-
cur closer together (clumped) than expected under random-
ness (Brunsdon and Comber, 2015). To obtain a single value
for a map as an indicator of spatial variability so we could
easily compare spatial variability across the 240 maps, we
used the area under the curve (AUC) relating Ripley’s K to
r for each map. By using AUC that summarizes over a wide
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Table 2. Parameter values for the four movement algorithms used to simulate avoidance of low DO and the default behavior of individual
fish.

Parameter Value Description Equation(s)

ss0 0.23 Baseline (default) swimming speed (m s−1) 6, 8, 10
ε 0.9 Determines if wrapped Cauchy distribution is circular or ovoid 11
θm 0 Determines direction of bias of wrapped Cauchy distribution 11
util 2, 3, 1 Utility weight for NS, Sprint, and CCRW algorithms 14, 15, 16
mem 0.5, 0.5, 0.9 Memory weight for NS, Sprint, and CCRW algorithms 17, 18, 19

Figure 4. Zoomed-in view of spatial maps of bottom DO showing
the 2 and 4 mg L−1 contours for two of the eight snapshots from the
FVCOM-WASP simulation of 20–30 August 2002. The snapshots
are defined in Table 1. Snapshot Min-2 (a; row 2 in the Table) is
moderate sublethal area and minimum AUC, and snapshot Max (b;
row 8 in the Table) is high sublethal area and maximum AUC. Areas
in white outside the 4 mg L−1 line are normoxic.

range of neighborhood sizes, larger AUC values imply the
map has greater spatial variability (more clumpiness) in its
distribution of sublethal DO concentrations.

To select the eight snapshots, we plotted AUC versus
sublethal area and identified eight snapshots with moderate
and high sublethal areas that corresponded to the minimum,
mean, and maximum AUC values (Table 1). For moderate
sublethal areas we selected two snapshots with minimum
AUC and two snapshots with mean AUC; the maximum
AUC was similar to the mean so no maximum was selected.
For the high sublethal area case, two snapshots were matched
with minimum AUC and single snapshots with mean and

maximum AUC values (Fig. 2). The duplicate snapshots for
a given AUC provide information on the variability of simu-
lation results when two different maps have similar sublethal
areas and AUC values. Figure 3 illustrates the spatial vari-
ability in DO using maps of sublethal DO for one of the
minimum AUC (Min-2) snapshots for the moderate sublethal
area and another for the maximum AUC (Max) with the high
sublethal area. The larger area of sublethal concentrations is
seen by the larger area of gray in Fig. 3b versus Fig. 3a. When
we visually compared maps of low versus high AUC for the
same sublethal area (high or moderate), differences in the
degree of clustering of sublethal areas between low and high
AUC values were not obvious. Figure 4 shows a blown-up
area that illustrates the higher clumpiness and patchiness in
sublethal DO when the AUC value is higher. The gray area
in Fig. 4b (AUC of 1.67×109) shows more irregular bound-
aries, especially in the top left and right portions of the sub-
lethal area, versus Fig. 4a (AUC of 1.33× 109).

2.5 Design of simulations

Movement, and the associated exposure to DO, was simu-
lated using 913 individual fish for 10 d on each of the eight
static maps and the dynamic version. The number of fish was
determined by placing a regular grid of fish locations onto
the model domain and removing any that were assigned to
land cells. The starting positions of the individuals were de-
termined by using an algorithm that had fish move towards a
preferred temperature (LaBone et al., 2017). Fish movement
was simulated for several days until the temperature-seeking
movement algorithm reached steady state with fish gathered
along the 26 ◦C contour line that was specified as their op-
timal temperature. This enabled initial starting locations to
be spread out over the domain while preserving a relatively
realistic initial spatial distribution expected without hypoxia.
Simulations were done for the 2-D and 3-D maps and for
good and poor avoidance competency. Good avoidance used
the NS as described, while poor avoidance competency was
achieved by changing the 0.15 value in Eq. (5) to 0.5, result-
ing in a much wider randomly generated direction of move-
ment during avoidance. Fish positions were updated every
15 min, and DO in the dynamic maps changed every hour. We
present the results for the 2-D set of maps; similar patterns
of spatial variability of effects on exposure were obtained
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for the 3-D set of maps (Supplement). Movement parame-
ters were set to values typical for croaker and related species
(Table 2). Croaker is an abundant demersal-oriented fish in
coastal waters of the northern GOM, especially in coastal
waters off of Louisiana where hypoxia occurs annually. Ex-
tensive laboratory and field data available for DO effects on
croaker have been previously used to specify realistic val-
ues for movement-related parameters (Rose et al., 2018b, a;
LaBone et al., 2017, 2019).

Model outputs of fish locations and DO experienced every
15 min were analyzed to determine how spatial variability in
DO affected exposure to hypoxia and sublethal DO concen-
trations. To illustrate the movement behavior, we show the
detailed movement calculations (e1, e2, and the three prob-
abilities and utilities) for a single fish for poor competency
on a single static map (Min-2 of moderate sublethal area)
and the movement tracks and DO experienced for four indi-
vidual fish for good and poor avoidance on two of the static
DO snapshots. The DO experienced was color coded to show
which movement algorithm was being used over time.

Exposure of all individuals was summarized over the 10 d
for each fish by their cumulative exposure, which was cal-
culated as the sum of the number of 15 min time steps (ex-
pressed as days) each fish was exposed to DO less than
2 mg L−1. Cumulative exposure to sublethal conditions was
calculated the same as the exposure to hypoxia, except the
overall sublethal range of 2–4 mg L−1 (sublethal) was sub-
divided into 2–3 mg L−1 and 3–4 mg L−1, and each of these
was considered the “exposed”. We show plots of the cumu-
lative exposure of all individual fish and also boxplots that
summarize cumulative exposures over all fish. Outlier values
were displayed in the box plots as points beyond the whiskers
of the plot and were identified as values outside 1.5 · IQR (in-
terquartile range). The outliers are considered extreme but
usable values, as they were not questionable or suspicious
“outlier” values in the statistical sense, and were therefore
included in all analysis of model outputs. Another summary
of the exposure output was the percentage of fish on each
time step between 2–3 mg L−1. We focus on the 2–3 mg L−1

range for the sublethal analysis in this paper because it would
have the most ecological effects on individuals (just above
lethality) and the results for 3–4 mg L−1 were consistent with
2–3 mg L−1 but showed less overall variation and so the pat-
terns were less clear. R was used for all statistical analysis
and graphs (R Core Team, 2019).

3 Results

3.1 Hypoxia avoidance in 2-D

Fish movement was a mix of the different behaviors, depend-
ing on the DO conditions they encountered (Figs. 5 and 6).
Our example fish (Fig. 5) was immediately exposed to hy-
poxia that triggered the NS tactical avoidance (via e1) and

Figure 5. DO experienced and the component calculations used by
the event-based algorithm to select movement algorithms at every
15 min time step for fish 278 under the conditions of poor compe-
tency and minimum AUC (Min-2) maps with moderate sublethal
area. DO is used each time step (a) to determine e1 and e2 (b), with
e1 used to compute the probabilities for NS (tactical) and CRW
(strategic) avoidance and e2 used to compute the probability for
Sprint (d). These probabilities are used to compute utilities for the
three algorithms each time step, (e) and the algorithm with highest
utility above a minimum threshold is selected to be used for move-
ment for that time step (c). If none of the three avoidance-related
algorithms are selected, then a fourth algorithm (CCRW) that is un-
related to DO concentration is used.

also showed a slower rising utility for the CRW (strategic)
as the fish’s past exposure was considered. When the fish
was unable to avoid waters with DO< 2 mg L−1 for 2 d (time
step= 192, Fig. 5a), Sprint got invoked (Fig. 5b, c). Once
the fish entered waters with DO> 2 mg L−1 using Sprint, the
utilities for both NS and CRW avoidance movement quickly
returned to zero as exposures to DO> 2 mg L−1 accumulated
(Fig. 5e). The fish then used default (CCRW) while moving
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Figure 6. Time series of DO experienced by the four fish shown in Fig. 7 over the 10 d of the model for good and poor avoidance and the two
snapshot DO maps (Min-2 for moderate sublethal and Max for high sublethal area). The color of the lines denotes the movement algorithm
that each individuals was using. Black lines denote the thresholds for hypoxia (2 mg L−1) and the upper value (4 mg L−1) considered for
sublethal concentrations.

among cells with DO> 2 mg L−1 (Fig. 5c). At time step 400,
the fish wandered into water with DO< 2 mg L−1, causing
the utilities for NS and CRW to rise (Fig. 5e) and trigger-
ing NS for an extended time period (time steps 475 to 600,
Fig. 5c) as the fish moved around trying unsuccessfully to
avoid waters with DO< 2 mg L−1. Once NS enabled the fish
to move to waters with DO> 2 mg L−1, CRW would briefly
get triggered because of its history of exposure (Fig. 5c). Sev-
eral more times the pattern of NS and CRW (both avoidance)
were triggered (Fig. 5c, e), mostly keeping the fish in wa-
ters with DO> 2 mg L−1, except for a few brief time periods
(Fig. 5a). While the fish generally avoided hypoxia after the
initial exposure and during the one extended period of hy-
poxia exposure (time steps 475 to 600), the fish was then
always exposed to sublethal levels (2–4 mg L−1) throughout
the 10 d.

DO experienced and fish trajectories (Figs. 6 and 7) il-
lustrated how a fish with good avoidance used NS (mostly
straight path with some randomness) to escape the hypoxic
zone, while several of the fish with poor avoidance (higher

randomness) had to use Sprint (perfectly straight path) af-
ter spending 48 h in hypoxic conditions. Several of the se-
lected fish used a mix of all four algorithms (all fish in Min-
2 with poor competency), while other individuals used two
or fewer algorithms that were dominated by default move-
ment. The exposure patterns and variability in DO experi-
enced also varied among individuals, even though these were
maps with fixed spatial distributions of low DO. For exam-
ple, individual no. 12 (Fig. 6b), after escaping hypoxia ex-
posure, was exposed to DO just above 2 mg L−1 throughout,
while other individuals on certain maps (e.g., 425 on Min-
2 with good competence, Fig. 6i) eventually went to waters
with DO> 4 mg L−1.

3.2 Hypoxia exposure

Cumulative exposure of individuals to hypoxia was higher
under the high sublethal area snapshots compared to the
moderate sublethal snapshots, with good competence show-
ing the greater difference between moderate and high. With
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Figure 7. Movement tracks taken by four fish for good and poor
hypoxia avoidance (left versus right) and two snapshots (Min-2 for
moderate sublethal area and max AUC for high sublethal area). All
four fish start (triangle symbol) in the hypoxic zone. These are the
same maps as shown in Fig. 3, but here they only show a portion of
the model grid.

good avoidance competency, almost all fish showed expo-
sures of about 1–2 d for maps with high sublethal area
(Fig. 8a), which were further reduced to almost no expo-
sure to hypoxia for moderate sublethal area maps (Fig. 9a).
Sublethal area was positively correlated with hypoxic area,
while both were somewhat negatively related to normoxic
area (Table 1). Poor avoidance resulted in much more similar
exposures between high and moderate sublethal conditions
(Figs. 8b and 9b), which reflected that the fish have more
randomness to their avoidance movement that masks some
of the differences between the moderate and high sublethal
area maps. Because of the effects of Sprint being triggered
after the first 48 h for some fish under poor competency, we
also examined the results using days 3 through 10 (Supple-
ment). The patterns in the results described for hypoxia expo-
sure were less pronounced for the good competency results
because there was little exposure to hypoxia after the first
48 h when fish moved out of hypoxia and were effective at
avoiding further exposure. However, removing the effects of
the initial triggering of Sprint for poor competency simula-
tions only slightly lowered overall hypoxic exposure, as fish
continued to be exposed to hypoxia intermittently but with
similar percentage of individuals throughout the 10 d.

The effects of different degrees of spatial variability on
hypoxia exposure were small. There was a weak suggestion
that exposure to hypoxia decreased with increasing variabil-
ity with the high sublethal area maps but increased with in-
creasing variability for moderate sublethal area maps. This
is seen by the tendency for exposure to decrease from left to
right in each panel of Fig. 8, while exposure tended to in-
crease from left to right in each panel of Fig. 9. This pattern

of opposite effects of spatial variability on hypoxia exposure
being dependent on the degree of sublethal area, which is
weak here, will become more apparent when sublethal expo-
sure is examined.

3.3 Sublethal exposure

The effects of spatial variability on cumulative sublethal ex-
posure to 2–3 mg L−1 of individuals showed higher exposure
for high sublethal area (as expected – simply more possibility
of exposure) and a tendency for opposite effects of variability
between high and moderate sublethal areas. For poor avoid-
ance and especially for good avoidance competency, there
was a subtle but consistent shifting to lower exposures with
increasing variability for high sublethal area (points shifting
to lower values from top to bottom in Fig. 10), while there
was a shifting to higher exposures for the moderate sublethal
area maps (less open space near top of each plot, except
for dynamic, in Fig. 11). The pattern of fish with ID values
greater than 750 having higher exposures to sublethal DO in
Figs. 10 and 11 was due to the how individuals were num-
bered in the simulation and how they related to where they
were initially placed on the grid. High-numbered individuals
were generally located closer to hypoxia and sublethal con-
centrations at the start of the simulations.

This opposite effect of variability was more apparent when
the exposures of fish to 2–3 mg L−1 was examined as the
percent of all individuals. Under high sublethal area, the
percent of fish exposed to 2–3 mg L−1 decreased with in-
creasing variability for both good competency (Fig. 12a) and
poor competency (Fig. 12b). The green lines (min AUC, low
variability) had the highest exposure, while the purple lines
(max) and magenta lines (dynamic map) had the lowest ex-
posures. For good competency, the averaged percent of indi-
viduals exposed to 2–3 mg L−1 over the 10 d was 46 % and
47 % for the two min variability maps, 39 % for the mean
map, and 37 % for the max map. A similar range (maxi-
mum minus minimum) of averaged percent exposed of about
8 % occurred with poor competency: 37 % and 38 % for min
variability, 32 % for mean, and 30 % for the max map. In
both cases, the percent exposure for the dynamic maps were
within the values of their respective static maps (38 % for the
good competency and 29 % for poor competency).

The opposite pattern was predicted for the moderate sub-
lethal area conditions (Fig. 13); percent exposed to 2–
3 mg L−1 increased, rather than decreased, with increasing
variability. In Fig. 13, the green lines (2 min AUC maps)
showed the lowest exposures while the orange line (mean
AUC) and magenta line (dynamic) showed the highest expo-
sures. For good competency, the averaged percent of individ-
uals exposed to 2–3 mg L−1 was 36 % for the two min vari-
ability maps and 40 % and 43 % for the mean maps, a range
of about 8 %. For poor competency, there was little differ-
ence in percent exposed from min and mean maps: 28 % for
the two min maps and 29 % for the two mean maps. This lack
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Figure 8. Boxplots of cumulative hypoxia exposure of all individu-
als (days) for good and poor competency on the four DO snapshot
maps with high sublethal area. The cumulative exposure for the sim-
ulation using the dynamic map is also shown. The lower and upper
lines of the boxplots show the 25th and 75th percentile value of cu-
mulative exposure and the center line is the median. Individual fish
values flagged as extreme values are shown as individual points.
The star symbol denotes the mean.

of a difference was also due to the inclusion of the first 2 d
when exposure was similarly low on all of the maps due to
Sprint, but the differences after day 2 were still not strong.

The opposite effects of spatial variability between moder-
ate and high sublethal areas were maintained for 3-D sim-
ulations, and the effects were maintained, but smaller, for
exposure to 3–4 mg L−1. The patterns for exposure to 2–
3 mg L−1 were maintained after the first 48 h of exposures, so
that Sprint was not overly influential on the patterns, and also
under 3-D conditions, demonstrating the results were robust
to including an option for vertical avoidance (see the Supple-
ment). For both moderate and high sublethal areas, the oppo-
site effects of spatial variability were similar but less appar-
ent for exposure to 3–4 mg L−1 because exposures in general
showed less variation among simulations for 3–4 mg L−1 (re-
sults not shown).

4 Discussion

The spatial variability of DO in the Gulf of Mexico, and
likely in other places with chronic river-driven seasonal hy-
poxia, is patchier than we envisioned. As measurements be-
come more resolved and hydrodynamic water quality models
become more detailed, what was once considered a continu-

Figure 9. Boxplots of cumulative hypoxia exposure of all individu-
als (days) for good and poor competency on the four snapshot DO
maps with moderate sublethal area. The cumulative exposure for
the simulation using the dynamic map is also shown. The lower and
upper lines of the boxplots show the 25th and 75th percentile value
of cumulative exposure, and the center line is the median. Individ-
ual fish values flagged as extreme values are shown as individual
points. The star symbol denotes the mean.

ous area of hypoxia now reveals itself to have a much more
spatial structure. The persistence at a location, the dissipation
and reforming of hypoxia in response to weather events, local
bathymetric influences (e.g., Virtanen et al., 2019), and other
factors, all contribute to the spatial variability in the hypoxic
and sublethal DO concentrations (Bianchi et al., 2010; Ra-
balais and Turner, 2019). The rather smooth looking earlier
annual spatial maps obtained from monitoring data (e.g., Ra-
balais et al., 2001) are continually evolving into more irreg-
ular shapes with highly dynamic boundaries and patchiness
(Zhang et al., 2009; Obenour et al., 2013; Justić and Wang,
2014). Further, while we focus on the hypoxic waters, most
mobile organisms show avoidance behavior, making the dy-
namics of sublethal concentrations (often not avoided) highly
relevant ecologically. Hypoxia causes mortality, which is a
major consideration at the population level, but the popula-
tion effects also depend on the fraction of the population that
is exposed. Reduced growth, lowered fecundity, and indirect
effects from displacement may have a less obvious influence
on the population than mortality, but if a much larger percent
of the population are exposed, these sublethal effects can lead
to ecologically significant population-level responses that,
in some cases, can exceed the effects from direct mortal-
ity (Rose et al., 2009). Fish movement, spatial variability in
DO, and exposure to hypoxia and sublethal concentrations

https://doi.org/10.5194/bg-18-487-2021 Biogeosciences, 18, 487–507, 2021



498 E. D. LaBone et al.: Effects of spatial variability

Figure 10. Cumulative exposure (days) of each individual fish to
DO concentrations of 2–3 mg L−1 for good (left) and poor (right)
competency for each of the four snapshot DO maps with high sub-
lethal area and the dynamic version. Maps within the same AUC
category (the two “Min” maps) are shown with the same color.

are complicated. However, knowing exposure is critical in
order to make accurate predictions of the effects of low DO
on individuals, which then can be scaled to the responses
of populations and food webs (Rose et al., 2009, 2018b, a;
De Mutsert et al., 2016). In this paper, we are using simula-
tion methods to explore this issue of how spatial variability
in DO would affect exposure of fish to hypoxia and sublethal
concentrations of DO.

4.1 Exposure to sublethal DO

Our a priori intuitive thinking was that more spatially vari-
able DO would lead to higher exposure to hypoxia. A fixed
stable hypoxic area would allow most fish to avoid the area
and minimize exposure once they have adjusted to the initial
encounter. Patchy or clustered locations of hypoxia would
mean that fish would have to continually deal with possi-
ble exposure and there would be many more opportunities
for swimming into low DO water. We also assumed that be-
cause waters with sublethal DO levels would be associated
(loosely adjacent) with hypoxia, more avoidance of hypoxia
would also result in higher exposure to sublethal DO. If the
patchiness was also dynamic in time, then that would seem
to further increase the chances of encountering low DO wa-
ter and thereby increase exposure even more. Our analysis
reveals important details, nuances, and incorrect aspects of
this intuitive (conceptual-level) view of how spatial variabil-
ity in DO would affect fish exposure.

Our refined view of how spatial variability affects expo-
sure distinguishes between hypoxia and sublethal exposures
and shows that effects of spatial variability on sublethal ex-
posure can reverse depending on the areal extent of low DO
waters. Model simulations showed that exposure to hypoxia
was, as expected, greatly influenced by the swimming avoid-
ance competency assumed for the fish. Given other condi-
tions were the same, good competency (little randomness to
avoidance response) resulted in less exposure to hypoxia than
poor competency (left versus right panels in Figs. 8 and 9).
Further, good competency essentially eliminated exposure to
hypoxic conditions. Almost all exposure to hypoxia occurred
in the first 24 to 48 h, and this was generally low (Fig. 8a).
Beyond the initial exposures (i.e., using days 3–10), good
competency resulted in near-zero exposure to hypoxia (see
the Supplement). In contrast, exposure to hypoxia with poor
competency showed persistent and relatively high exposure
to hypoxia that occurred throughout the 10 d of the simula-
tions (results not shown). Such persistent exposure occurred
even when the effects of initial use of Sprint in the first 48
hours were eliminated (see the Supplement).

Despite the differences in exposure to hypoxia with good
versus poor competency, both resulted in relatively high ex-
posures to sublethal DO concentrations. Roughly, 30 % to
50 % of the individuals were exposed to 2–3 mg L−1 and this
occurred, except for the 48 h that triggered Sprint, through-
out the 10 d of almost all of the simulations (Figs. 12 and
13). Interestingly, the percent of individuals exposed to 2–
3 mg L−1 was often somewhat higher (about 5 %–10 %) for
good competency compared to poor competency. The reason
is that good competency resulted in fewer individuals being
exposed to hypoxia and so more individuals were available
to be exposed to sublethal concentrations. If an individual
was successful at avoiding hypoxia, they likely were then
exposed to sublethal concentrations. Our results do not sup-
port the idea that fish with good avoidance behavior amelio-
rate the ecological effects of low DO. Rather, even fish with
good avoidance abilities are exposed to sublethal concentra-
tions and good avoidance may shift individuals from hypoxia
to sublethal exposures rather than to no-effects. Our results
also showed that this occurred when the fish were given the
option to swim vertically to avoid hypoxia (see the Supple-
ment). We need to accurately predict avoidance behavior in
order to quantify the effects of hypoxia exposure on mortal-
ity and the effects of exposure to sublethal concentrations on
growth and reproduction.

The effects of spatial variability in DO on sublethal expo-
sure were opposite depending on the degree of sublethal area.
Exposure to 2–3 mg L−1 decreased with increasing variabil-
ity for maps with high sublethal area but increased with vari-
ability for maps with moderate sublethal area (reverse order-
ing of line colors between Figs. 12 and 13). One possibility
is that our measure of spatial variability (Ripley’s K , Fig. 2)
did not capture variability but rather reflected some other fea-
ture of the DO concentrations (e.g., co-occurrence of sub-
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Figure 11. Cumulative exposure (days) of each individual fish to
DO concentrations of 2–3 mg L−1 for good (left) and poor (right)
competency for each of the four snapshot DO maps with moderate
sublethal area and the dynamic version. Maps within the same AUC
category (min and mean) are shown with the same color.

lethal with hypoxic areas) related to high versus moderate
sublethal areas. Spatial maps of DO for different degrees of
spatial variability did not show obvious and dramatic differ-
ences in the spatial patterns of sublethal DO concentrations
(Fig. 3). Furthermore, we used an aggregate measure (area
under the curve) to further summarize the Ripley’s K val-
ues, which generates a series of values for increasing spatial
neighborhoods (K versus r in Fig. 2). With our maps, show-
ing Ripley’s K values above the theoretical value for our
maps implies the “patches” of sublethal DO concentrations
are all more clustered than randomly distributed. If our sum-
marization of Ripley’s K values is valid, then higher AUC
values suggest that the patches of sublethal concentrations
are more clustered over a range of spatial scales. The sim-
ilarity of exposures for “replicate” maps (i.e., similar AUC
values) show that our patterns of exposure with variability
are robust. If the AUC values reflect overall spatial variabil-
ity, then our results clearly demonstrate that quantifying ex-
posure is a complicated overlaying of spatial DO with mov-
ing fish that depends on relatively subtle differences in the
amount of low DO area, its spatial distribution, and the avoid-
ance abilities assumed for the fish movement behavior.

We hypothesize that spatial variability in DO has opposite
effects on exposure depending on the degree of sublethal area
due to effects of how individuals encounter the patches of
sublethal concentrations as a result of avoidance of hypoxia.
With high sublethal area there is also high hypoxic area (Ta-
ble 1) and thus individuals frequently used avoidance. Nor-

Figure 12. The percentage of fish exposed to DO of 2–3 mg L−1 for
good (a) and poor (b) competency for the four snapshot maps with
high sublethal area and the dynamic version. Maps within the same
AUC category (“Min”) are shown with the same color.

moxia was always greater than 55 % of the area, compared
with 12 %–15 % for hypoxia and 23 %–30 % for sublethal.
These active individuals avoid hypoxia, but with higher clus-
tering of sublethal areas there are locations (refuge areas ad-
jacent to hypoxic areas) to move to that are normoxic (i.e.,
not sublethal). With relatively low Ripley’s K (lower spatial
variability), the patches of sublethal concentrations are more
evenly distributed, and thus fish avoiding hypoxia are more
likely to encounter a sublethal patch.

The opposite pattern for moderate sublethal area is also
about encounters. Rather than clustering creating refuges
when there is high degree of sublethal area, clustering with
moderate sublethal area creates more opportunities for indi-
viduals to encounter the relatively rare sublethal concentra-
tions. With relatively low Ripley’s K values, the same mod-
erate sublethal area consists of dispersed patches. This cre-
ates many opportunities for individuals that avoid hypoxia to
locate in high DO cells. We might expect that higher spatial
variability in the case of moderate sublethal area results in
a subset of individuals inhabiting areas with hypoxia associ-
ated with sublethal concentrations, and thus some individuals
should show persistent exposure to sublethal concentrations.
Our hypothesis is speculative and should be investigated fur-
ther using designed simulation experiments and by follow-
ing the DO experienced over time across many individuals.
Additional statistical analysis of the spatial heterogeneity in
sublethal areas beyond Ripley’s K is also needed to better
understand the spatial features that drive the changes in ex-
posure between high and moderate sublethal area maps.
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Figure 13. The percentage of fish exposed to DO of 2–3 mg L−1 for
good (a) and poor (b) competency for the four snapshot maps with
moderate sublethal area and the dynamic version. Maps within the
same AUC category (min and max) are shown with the same color.

We initially considered that the dynamic map would gener-
ate exposure results acting as the most spatially variable map.
Not only were there differences among cells in the dynamic
maps, but the DO in each cell also changed every hour. Sub-
lethal exposure with the dynamic maps did, as expected, have
the lowest exposure for the high sublethal area (magenta lines
in Fig. 12) that continued the trend of decreasing exposure
with increasing variability. However, the sublethal exposure
for the dynamic maps with the moderate sublethal area was
inconclusive (Fig. 13). The line for the dynamic map crossed
several times with the lines for min and mean AUC maps
in both the good and poor competency simulations. When
viewed more generally, the sublethal exposures with the dy-
namic maps were all generally within the range of exposures
predicted over the static maps, confirming that our results for
static maps also apply to the more realistic situation of tem-
porally and spatially varying DO maps. Our results are not
sufficient to determine how temporally dynamic DO com-
bines with the spatial variability in DO to affect sublethal ex-
posures. However, it is encouraging that our results suggest
that knowing about spatial variability of low DO concentra-
tions can enable realistic estimation of exposure even under
temporally dynamic conditions. Additional simulations that
use DO seascapes with known combinations of spatial and
temporal variation are needed to further untangle the effects
of spatial and temporal variation in DO on exposure.

Another result from our analysis that complicates quanti-
fying exposure to hypoxia and sublethal DO concentrations
is the very high level of variability in exposure predicted

among individuals (Figs. 10 and 11). Given simulations were
for 10 d with individuals released within a region of the hy-
poxic zone and with static DO maps, one might expect expo-
sure (either low or high) would be similar among individu-
als. Yet, even under these conditions of exposure with an as-
sumed competency and static DO conditions, inter-individual
variation in exposure was substantial. The effects of con-
stant and time-varying exposures on growth and fecundity
can be nonlinear (e.g., threshold or accelerating effects) at
the level of individual (McNatt and Rice, 2004; Neilan and
Rose, 2014) and hypoxia effects can be interactive with other
factors and stressors (McBryan et al., 2013; Breitburg et al.,
2019). Thus, using an exposure averaged over individuals
(and/or averaged over time such as weekly) to assess eco-
logical responses will likely underestimate effects that occur
with exposures to low DO. Coiro et al. (2000) showed that
the growth reduction in grass shrimp with fluctuating expo-
sures was less than if the minimum DO of the cycle was used
but had larger effects than if the time-averaged DO concen-
tration was used.

Using our simulation results, we can illustrate the poten-
tial for spatial averaging to generate inaccurate predictions
of exposure that lead to underestimation of sublethal effects.
We selected the exposure of the 913 individuals for the 24 h
of day 5 for one of the 10 d simulations (high sublethal area,
good competency, Fig. 12a) to illustrate the effects of averag-
ing. We can link exposure to the sublethal effect of reduced
growth by using the equation from Neilan and Rose (2014):

f = 1.0− 110.78
(3.35−DOt )2

(3.35−DOt )2+ 21.062 , (20)

where DOt is the exposure DO concentration of an individ-
ual at time t . This equation is used for DO concentrations
less than 3.35 mg L−1, above which f equals 1. The equa-
tion was estimated using laboratory experiments on low DO
effects on growth and generates the reduction from normoxic
growth from the DO concentration experienced by an indi-
vidual. We used this equation in earlier simulations of hy-
poxia effects on croaker (Rose et al., 2018b, a). Using the
first 15 min time step of hour 1 of day 5 only, we grouped
fish into increasingly larger cells (and used averaged DO and
f values for each cell) to mimic the spatial resolution typi-
cal of population and food web models. High resolution data
(100 m to 1 km cells) show similar exposure DO concentra-
tions and f values (mean, median, percentiles) as compared
to using each fish as an individual value because the DO
maps showed spatial correlation on the kilometer scale and
nearby fish had similar exposures. At 10 km by 10 km res-
olution, we obtained 285 values with cells having between
0 and 10 individuals. The 25th percentile exposure DO was
2.64 versus 2.54 mg L−1 and the 5th percentile was 2.11 ver-
sus 2.05 mg L−1. The 25th percentile for the f value was
0.88 versus 0.84 and the 5th was 0.62 versus 0.58. This ef-
fect increased as we used coarser resolutions. For example,
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for 50 km resolution (31 cells with fish), the 5th percentile of
the f values becomes 0.8 versus 0.58 for all fish treated sep-
arately. Another way is to summarize the underestimation is
the percent of fish (each individual or individuals averaged
by cell) below an f value of 0.75: 18 % for all individu-
als, 16 % for 10 km cells, and 3 % for 50 km cells. Simi-
lar mis-estimation can occur with temporal averaging. Mod-
els that attempt to scale hypoxic and sublethal DO effects
to higher levels such as the population must carefully con-
sider the effects of aggregation (e.g., modeling total biomass
rather than individuals), the spatial scales of variation in the
DO map, and the effects of temporal and spatial averaging of
DO within cells that then determine exposure.

4.2 Design of simulation experiment

The most direct approach to a simulation experiment de-
signed to evaluate the effects of spatial variability in DO on
fish exposure would be to define the levels of variability in
DO explicitly by doing known manipulations (e.g., adding
1 mg L−1 to all cells) of the DO spatial maps. This conforms
to an ANOVA-like experimental design, with factors and lev-
els of each factor (Kelton and Barton, 2003; Kleijnen, 2018;
Peck, 2004); in our case, the factors are the degree of spa-
tial variability in sublethal DO and the total area of sublethal
DO. Such an experimental design allows for attributing dif-
ferences in model predictions of fish exposure to specific
aspects of how spatial variability in sublethal DO was ad-
justed across the levels. There are many examples of such
designed simulation experiments, such as using a new aver-
age temperature or adding or subtracting a fixed temperature
from the historical temperature inputs (often month-specific,
sometimes with forced daily variability) as part of climate
change scenarios used with fish-related models (Wilby et al.,
2004; Clark et al., 2003; Hare et al., 2010; Hardiman and
Mesa, 2014; Chambers et al., 2017). Despite the attraction
of the simplicity of using simple adjustments like offsets,
there has been much discussion about how to alter or main-
tain properties (e.g., spatial and temporal variability) beyond
the average temperature (Kreyling and Beier, 2013; Katz and
Brown, 1992; Vasseur et al., 2014), as many ecological re-
sponses are nonlinearly related to the mean, extremes, and
variance of temperature and other environmental variables
(Monaco and Helmuth, 2011; Rosenfeld, 2017; Harley et al.,
2017). Cowan et al. (1993) used a design with four factors,
with each at either at two or three levels, which also included
combinations of factors together that generated the most ex-
treme responses, to analyze a model of striped bass recruit-
ment responses to multiple environmental variables. Belarde
and Railsback (2016) examined pikeminnow survival (June
to December) with an individual based model (IBM) under
all possible combinations of six levels of flow fluctuations
(within-day pattern systematically altered) and six levels of
the density of the invader species red shiner.

In our situation, we opted for an alternative to a manipu-
lation design, and we used many spatial maps of DO gener-
ated by the FVCOM-WASP model to find a subset that pro-
vided contrasting values of variability (as measured by Rip-
ley’sK) in combination with different levels of the total area
of sublethal DO. We screened 240 hourly DO spatial maps
to identify the eight used in our analysis (Table 1). Because
the spatial variability in sublethal DO and how avoidance of
hypoxia also affected sublethal exposure was our main focus,
it was critical to define different levels of spatial variability
and total sublethal area that realistically captured the com-
plicated spatial patterns among hypoxia, sublethal DO, and
normoxic concentrations. These spatial patterns of DO are
not amenable to simple manipulation. Simply adding an off-
set to the mean DO concentrations on our maps would not
result in realistic spatial distributions of hypoxia, sublethal,
and normoxic concentrations. One could apply a geospatial
model to the spatial maps from FVCOM-WASP and try to
manipulate the coefficients in the statistical model in a sys-
tematic manner. But the few models fit to date to such spa-
tial data are quite complicated in order to capture the spatial
variability (Obenour et al., 2013), and therefore not easily
manipulated (via their coefficients) in an intuitive manner to
control spatial variability and total sublethal area.

Our approach has been used by others in a similar situa-
tion as ours when the levels of a factor involved complicated
patterns that are not amendable to simple manipulation. For
example, Kimmerer and Rose (2018), rather than attempting
to systematically manipulate the daily densities of six zoo-
plankton groups over a year in 12 spatial boxes that show
a complicated spatial and temporal covariance, used early
years of daily zooplankton densities (with the covariance
maintained) to substitute into an IBM of delta smelt. Goto
et al. (2015) used 17-year daily hydrological and tempera-
ture records as input to the sturgeon IBM and then grouped
results according to years of low, normal, and wet conditions
to compare the effects of discharge on sturgeon recruitment,
population abundance, and mean length. The challenge with
these simulation experiments that opportunistically use his-
torical information as levels of a factor is in the interpretation
of the results because the levels of the factor are not simple
differences. In our analysis here, we partially addressed this
issue by using two maps with similar total sublethal area and
similar measures of spatial variability for most of the lev-
els so that we got an idea of how the spatial variability we
considered to be similar (like replicates) affected model pre-
dictions of exposure.

4.3 Generality of results

Our results should be generally applicable to many situ-
ations of fish exposure to low DO and to other spatially
varying environmental variables (e.g., temperature, contam-
inants). First, our spatial maps of DO can be considered
to have a high degree of realism, as we used a well-tested
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hydrodynamics–water quality model (Wang and Justic, 2009;
Justić and Wang, 2014; Fennel et al., 2016) with fine spa-
tial and temporal resolution that is specifically designed and
tested for its ability to generate spatial distributions of DO
concentrations. Also, such spatial variation of DO on the
scale of tens of meters, as simulated here, has been observed,
to various degrees, in freshwater and other marine systems
(Tortell, 2005; Atkinson et al., 1987; Stanev et al., 2014;
Crawford and Winslow, 2015). Our FVCOM-WASP gener-
ated maps that look very similar to bottom DO maps gener-
ated by applying geostatistical analysis to the multi-transect
cruise data for the end of July in the GOM (Obenour et al.,
2013). Muller et al. (2016) also used geospatial statistics to
generate meter-scale weekly DO maps of two shallow es-
tuaries in the Chesapeake Bay system and confirmed the
highly irregular edges of various oxyclines characteristic of
our maps.

Second, while we used a specific set of movement algo-
rithms in our analysis, the results apply to many other sit-
uations. With the historical and continued use of random
walk-based algorithms (Tang and Bennett, 2010; Smouse
et al., 2010; Bailey et al., 2018) and the rapidly advanc-
ing cognitive algorithms from movement ecology (Nathan
et al., 2008; DeAngelis and Diaz, 2019), summarizing how
specific algorithms fit into the broader arena of movement
approaches is challenging. Our movement algorithms were
a mix of random walk-based and simple behavioral algo-
rithms (neighborhood search) that represent, in a general
way, many presently used algorithms (McLane et al., 2011;
McClintock et al., 2012; DeAngelis and Diaz, 2019; Non-
aka and Holme, 2007). Our earlier analyses using the identi-
cal FVCOM-WASP grid and movement algorithms showed
that the choice of the default algorithm did not affect expo-
sure (LaBone et al., 2017), and that exposure was also insen-
sitive to how vertical avoidance was done in 3-D (LaBone
et al., 2019). However, our approach of using event-based
approach based on an individual’s past experience with DO
concentrations as way to dynamically switch among differ-
ent behaviors was not typical of many movement modeling
analyses whose algorithms were more often fixed or switched
with simple rules (e.g., foraging versus predator avoidance if
a predator is nearby). Event-based methods were originally
developed by Anderson (2002) for fish foraging and used
by Goodwin et al. (2006) for simulating fine-scale move-
ments of fish around hydropower dams. In addition to our
earlier analyses (LaBone et al., 2017, 2019), a similar ap-
proach was also used for simulating fine-scale movement re-
sponses to spatial and temporal variation in salinity (Rose
et al., 2014) and event-based algorithms showed good perfor-
mance that was comparable to other algorithms when tested
with fixed and dynamic 2-D maps with single and multiple
cues (Watkins and Rose, 2013, 2014, 2017). Because the dy-
namic selection of alternative algorithms with event-based
methods is not typical, it should be examined further, and re-
sults with fixed rules for selecting behaviors (which is more

typical) should be used in simulations to confirm the general-
ity of the results using event-based selection. In addition, un-
like some other movement modeling, we did not include any
social interactions among individuals (DeAngelis and Diaz,
2019; Bonnell et al., 2013) and did not consider the energet-
ics involved in individuals using different behaviors such as
different swimming costs (Brady et al., 2009).

Third, certain aspects of the modeling important in deter-
mining exposure were also indicative of many fish species
and demonstrated the robustness of our results. Our as-
sumed swim speeds will affect exposure and our use of 1–
3 BL (body length) s−1 (sso= 0.23 m s−1; typical length is
250 mm; 2× in avoidance and 3× in Sprint) is representative
of prolonged (∼ 200 min) swim speeds of many juvenile and
adult fish (Videler and Wardle, 1991; Peake, 2008; Wolter
and Arlinghaus, 2004). Use of a hard threshold of 2.0 mg L−1

to trigger avoidance, while having inter-species and inter-
individual variability, is a good approximation for many
species (Bell and Eggleston, 2005; Hrycik et al., 2017; Eby
and Crowder, 2002; Craig, 2012). In addition, we showed
that 2-D and 3-D (allowing for vertical movement) versions
and temporally dynamic versions of our spatial maps also
generated similar results.

Finally, our simulated exposures of fish to sublethal DO
are realistic based on the limited information available on ex-
posure of fish from other analyses and thus should be gener-
ally applicable to other species and systems. Most examples
under field conditions use indirect measurements to show ex-
posure of fish to hypoxia at some time in the past. These
indirect methods include chemical tracers (Limburg et al.,
2015; Altenritter and Walther, 2019), molecular indicators
(Brouwer et al., 2005), and biomarkers (Thomas et al., 2007).
Relatively few analyses report on the detailed recording of
exposure of fish as they move within dynamic DO fields.
Some empirical evidence for the within-day fluctuating oxy-
gen exposures predicted in our modeling was described by
Priede et al. (1988) using telemetry transmitters. Brady and
Targett (2013) overlaid tracks of fish with DO spatial maps
(upstream–downstream versus time) under diurnal DO cy-
cling and also showed hourly scale variation of ±1 mg L−1.
Hasler and Tufts (2009) showed that largemouth bass in a
lake avoided habitats with oxygen less than 2 mg L−1 but
were found in places where DO was between 2 and 5 mg L−1.
Zhang et al. (2009) used field data maps of DO and spatial
maps of zooplankton and fish detected with acoustic meth-
ods along four transects in the GOM and showed that fish
generally avoided very low DO but were co-located on the
maps where DO was greater than 2.0 mg L−1. Ludsin et al.
(2009) used similar methods and also showed fish located in
sublethal waters for Chesapeake Bay.
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5 Conclusions

We used 2-D and 3-D simulations of individual fish move-
ment within a FVCOM-WASP coupled hydrodynamics–
water quality model to show how spatial variability in DO
affects exposure of fish to hypoxia and to sublethal DO con-
centrations. Our results showed that accurate estimation of
exposure depends on both the degree of clumpiness of sub-
lethal DO concentrations and the total area of sublethal DO.
Exposure to sublethal concentrations occurred under all con-
ditions examined regardless of the fish’s ability to avoid hy-
poxia, including good and poor competency of fish for avoid-
ance and allowing for vertical avoidance movement (3-D).
Accurate estimation of exposure, especially to sublethal DO
concentrations, is critical for assessing how increasing or re-
ducing hypoxic zones in coastal waters will affect ecological
effects of low DO (e.g., reduced growth) on fish. Simulating
individual fish within high-resolution 3-D coupled hydrody-
namic biogeochemical models enables the movement behav-
ior of fish to be combined with spatially and temporally vary-
ing DO concentrations to obtain a realistic estimation of ex-
posures. As the measurement methods for documenting fish
movement trajectories and estimation of DO exposure of fish
in the field continue to be refined, we will very soon be able
to rigorously challenge the realism and skill of coupled bio-
physical models such as those used here with empirical data.
Isolated testing of fish movement using short-term static DO
maps is necessary for understanding how the movement algo-
rithms operate and provides the basis for then using these al-
gorithms in more complicated population dynamics and food
web models that simulate dynamic environmental and bio-
logical conditions.
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