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Abstract. Accurately measuring the turbulent transport of re-
active and conservative greenhouse gases, heat, and organic
compounds between the surface and the atmosphere is crit-
ical for understanding trace gas exchange and its response
to changes in climate and anthropogenic activities. The re-
laxed eddy accumulation (REA) method enables measuring
the land surface exchange when fast-response sensors are not
available, broadening the suite of trace gases that can be in-
vestigated. The β factor scales the concentration differences
to the flux, and its choice is central to successfully using
REA. Deadbands are used to select only certain turbulent
motions to compute the flux.

This study evaluates a variety of different REA approaches
with the goal of formulating recommendations applicable
over a wide range of surfaces and meteorological conditions
for an optimal choice of the β factor in combination with a
suitable deadband. Observations were collected across three
contrasting ecosystems offering stark differences in scalar
transport and dynamics: a mid-latitude grassland ecosys-
tem in Europe, a loose gravel surface of the Dry Valleys of
Antarctica, and a spruce forest site in the European mid-
range mountains. We tested a total of four different REA
models for the β factor: the first two methods, referred to as
model 1 and model 2, derive βp based on a proxy p for which
high-frequency observations are available (sensible heat Ts).
In the first case, a linear deadband is applied, while in the
second case, we are using a hyperbolic deadband. The third
method, model 3, employs the approach first published by
Baker et al. (1992), which computes βw solely based upon
the vertical wind statistics. The fourth method, model 4, uses
a constant βp, const derived from long-term averaging of the

proxy-based βp factor. Each β model was optimized with re-
spect to deadband size before intercomparison. To our best
knowledge, this is the first study intercomparing these differ-
ent approaches over a range of different sites.

With respect to overall REA performance, we found that
the βw and constant βp, const performed more robustly than
the dynamic proxy-dependent approaches. The latter mod-
els still performed well when scalar similarity between the
proxy (here Ts) and the scalar of interest (here water va-
por) showed strong statistical correlation, i.e., during peri-
ods when the distribution and temporal behavior of sources
and sinks were similar. Concerning the sensitivity of the dif-
ferent β factors to atmospheric stability, we observed that
βT slightly increased with increasing stability parameter z/L
when no deadband is applied, but this trend vanished with in-
creasing deadband size. βw was unrelated to dynamic stabil-
ity and displayed a generally low variability across all sites,
suggesting that βw can be considered a site-independent con-
stant. To explain why the βw approach seems to be insensi-
tive towards changes in atmospheric stability, we separated
the contribution of w′ kurtosis to the flux uncertainty.

For REA applications without deeper site-specific knowl-
edge of the turbulent transport and degree of scalar similarity,
we recommend using either the βp, const or βw models when
the uncertainty of the REA flux quantification is not limited
by the detection limit of the instrument. For conditions when
REA sampling differences are close to the instrument’s de-
tection limit, the βp models using a hyperbolic deadband are
the recommended choice.
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1 Introduction

Trace gases play a significant role in the atmosphere because
of their relationship to human-induced climate change, their
wide variety of natural and anthropogenic sources, and their
impact on human and ecosystem health. Understanding their
source and transport behavior is needed to better quantify,
predict, and mitigate anthropogenic effects on the environ-
ment. The exchange of trace gases between the Earth’s sur-
face and the atmosphere is often the result of a combination
of several biophysical processes and mechanisms. Observing
the net turbulent exchange, i.e., the flux density of such gases
can help identify their sources and sinks, which in turn can
help identify their forcings. Micrometeorological techniques
can measure area-integrated fluxes at the ecosystem level and
are therefore suitable for computing atmospheric budgets of
trace gases and aerosol species.

The most direct method to measure flux density, hereafter
referred to as “flux”, between the surface and the atmosphere
is the eddy covariance (EC) technique, which requires fast
(≥ 10 Hz) response sensors to capture all scales of turbu-
lent eddies contributing to the flux. However, such sensors
are not available for all trace gases of interest, particularly
for reactive species with brief atmospheric lifetimes. In these
cases, disjunct eddy covariance (DEC; Rinne and Ammann,
2012), i.e., non-continuous sub-sampling of the concentra-
tion and wind data series, offers one alternative to overcome
this problem. Eddy accumulation (EA) methods provide an-
other solution for estimating the net flux of chemically more
stable atmospheric species existing at very low concentra-
tions. This technique was originally proposed by Desjardins
(1972, 1977): in EA, a system of fast switching valves col-
lects air into two separate reservoirs, i.e., one for upward
moving eddies (updrafts, w+) and one for downward mov-
ing eddies (downdrafts, w−). However, in true eddy accumu-
lation, the number of collected samples must be proportional
to the magnitude of the vertical wind speed. For systems with
switching valves that are not fast enough to accommodate the
shortest timescale of turbulent eddies and/or cannot perform
proportional sampling, a relaxation of the original true EA
technique is necessary by introducing a proportionality fac-
tor. The resulting indirect relaxed eddy accumulation (REA)
technique, as proposed by Businger and Oncley (1990), thus
samples the air with a constant flow rate, which is dependent
on the direction of vertical wind. While the first true EA sys-
tem is currently under construction (Siebicke, 2016; Siebicke
and Emad, 2019), REA approaches are a common and con-
venient alternative to the direct flux measurement of EC and
EA when fast-response analyzers for the gas species of inter-
est are unavailable.

For the REA technique, the concentration difference be-
tween the two sample reservoirs, 1s = (s+− s−), in which
s+ indicates the updrafts and s− the downdrafts, is linearly
related to the vertical net flux F of the species of interest.
Note that the term “concentration” refers to densities (ex-

pressed in, for example, mmol m−3) throughout this paper.
Due to the sampling relaxation, a linear proportionality fac-
tor, usually denoted by the Greek letter β, is required to com-
pute the flux:

FREA = β · 1s · σw, (1)

with σw being the standard deviation of the vertical wind
component w′ kurtosis. This approach resembles flux-
gradient similarity methods evaluated at a single height,
where β · σw can be interpreted as an efficiency measure,
relating the concentration difference of the scalar of inter-
est to its flux. For practical and scientific reasons, several
REA applications exclude samples associated with weak ver-
tical wind speeds that fall into a certain range of values
(“band”) leading to an unsampled (“dead”) region, which
effectively acts as a filter (Fig. 1). Deadbands are applied
with the intention of (i) increasing the concentration dif-
ference between updraft and downdraft reservoirs (Bowling
et al., 1998), (ii) avoiding rapid switching between reservoirs
due to small eddies and thus reduce the wear of valves, and
(iii) reducing the random noise in gas concentrations of sam-
pled air, which is mostly due to the small-scale short-lived
eddies with a minor flux contribution.

Since the choice of the β coefficient and the size and form
of the deadband are critical to deriving biophysically mean-
ingful flux measurements from REA, they have received
much attention in the literature: dependency of β on the
atmospheric stability z/L, where L is the Obukhov length
(Obukhov, 1946), turbulence, and scalar similarity has been
discussed, and approaches including fixed deadbands, con-
stant β vs. dynamically adjusting β, and/or the deadband to
atmospheric conditions have been proposed (Businger and
Oncley, 1990; Beverland et al., 1996; Katul et al., 1996; An-
dreas et al., 1998; Milne et al., 1999; Ammann and Meixner,
2002; Fotiadi et al., 2005; Ruppert et al., 2006; Held et al.,
2008; Grönholm et al., 2008).

The large number of potential combinations for the crit-
ical REA parameters and varying site conditions may often
seem overwhelming either to the first-time user focusing on
investigating the dynamics of a certain trace gas species or
even to the advanced user lacking a detailed understanding of
the site-specific turbulent flow conditions. To provide some
science-based guidance, our study aims at giving a compre-
hensive overview covering the most common parameteriza-
tions of the β factor and the deadband with the goal of pro-
viding a practical selection guide for choosing an optimal β
and deadband model by evaluating them across contrasting
ecosystem types. Our choice of contrasting ecosystems is ex-
pected to increase the robustness of the findings. We evaluate
the β models by simulating an idealized REA sampling ap-
plied to high-time-resolution data of wind components and
scalar concentrations from field campaigns carried out over
contrasting vegetated and non-vegetated surfaces: the Mc-
Murdo Dry Valleys of Antarctica, which represent an almost
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exclusively physically driven ecosystem predominately cov-
ered by loose gravel, a biologically active grassland in di-
rect vicinity to agricultural areas in Lindenberg, Germany,
and the Waldstein spruce forest site in Germany, where mea-
surements were carried out on a 33 m high tower. “Idealized”
REA sampling here means that any effects of instrument per-
formance are neglected to isolate the flux uncertainty solely
related to choosing the critical REA parameters, i.e., β factor,
and deadband size and type. We acknowledge that other chal-
lenges for measuring trace gas fluxes particularly of reactive
components exist, which may substantially add to the uncer-
tainty in REA flux estimates, including low detection lim-
its, high-precision demands, and other technical challenges
posed by short-lived chemical species. A discussion of these
sources of uncertainty are outside the scope of our study.
However, even if the latter dominate, selecting an optimal
β model for a specific type of surface can still minimize the
overall flux uncertainty.

2 Theory of REA and overview of β parametrizations

2.1 Proxy βp model

The most commonly employed REA variant is based upon
scalar–scalar similarity: observations of a scalar p, which is
measured with fast-response sensors thus enabling the com-
putation of the direct EC flux w′p′, are used as a proxy for
the scalar of interest s. The β factor needed for the simulated
REA flux of p to equal its measured EC flux is calculated
and used for the flux computation of scalar s. From this point
on, we will refer to it as βp to represent this proxy approach:

βp =
w′p′

σw ·1p
, (2)

where 1p is the proxy scalar concentration difference be-
tween updrafts (p(w > 0)) and downdrafts (p(w < 0)). Of-
ten, sonic temperature Ts is chosen as proxy scalar (e.g., Ren
et al., 2011; Osterwalder et al., 2016, 2017) due to its avail-
ability and negligible measurement uncertainty.

The βp method is based on the strong assumption that
the proxy scalar and the scalar of interest behave similarly
in their exchange mechanism, which requires the vertical
and horizontal distribution of the sinks and sources of both
scalars to be identical. A violation of this assumption will in-
evitably lead to large errors in the REA flux estimate (Katul
et al., 1995; Katul and Hsieh, 1999; Ruppert et al., 2006;
Riederer et al., 2014). The similarity between s and p can
be evaluated by examining the correlation coefficients be-
tween the high-resolution time series of the two scalars, if
available. The scalar–scalar correlation coefficients, rsp, as
used in other publications (e.g., Gao, 1995; Katul and Hsieh,
1999; Ruppert et al., 2006; Riederer et al., 2014), are defined

as follows:

rsp =
s′p′

σs · σp
. (3)

2.2 Vertical wind statistics βw model

An alternative REA method was originally derived by Baker
et al. (1992), and Baker (2000) provided a comprehensive
derivation. The technique rests upon the standard deviation
of the vertical wind and assumes a velocity–scalar correla-
tion. In brief, the flux is defined as follows:

w′s′ = m · σ 2
w, (4)

wherem is the regression-estimated slope of thew′ vs. s′ cor-
relation; m can be approximated, using conditional sampling
techniques, as

m=
1s

1w
. (5)

1w is the difference of the mean vertical wind while sam-
pling into the up- and downdraft reservoirs. This makes

FREA =
1s

1w
· σ 2

w, (6)

and thus

βw =
σw

1w
. (7)

The above equations show that the scalar flux is directly pro-
portional to the vertical wind speed’s variance σ 2

w and thus to
the turbulence statistics. This approach combines elements
of the flux-gradient and flux-variance similarity theories.

The requirements for this parameterization are (i) a linear
relationship between s′ and w′ through the origin, as well
as (ii) the Gaussian distribution of the vertical wind velocity
fluctuations. If both are fulfilled, βw = 0.63; however, usu-
ally smaller values of the βw parameter are measured (Katul
et al., 2018).

The statistical moments of the w′ distribution can be used
to investigate deviations from an ideally Gaussian distribu-
tion. The fourth moment, i.e., the kurtosis or tailedness, has
been explored by Katul et al. (1996), who found an increase
in βw with an increasing kurtosis of thew′ distribution. Apart
from excursions from an ideal Gaussian w′ distribution, the
s′–w′ correlation also affects βw. It was found that large
energy-containing eddies (i.e., eddies with large w′) are as-
sociated with smaller s′ than predicted by the linear 1s vs.
1w fit, resulting in the βw method overestimating the scalar
fluxes (Katul et al., 1996; Baker, 2000). Recently, Katul et al.
(2018) disentangled effects due to intermittency of the verti-
cal velocity and asymmetry of large coherent structures inw′

during the transport of s′, and they were able to explain that β
is smaller than the theoretical value of 0.63 when taking into
account the sweep and ejection phases of coherent structures,
which are subject to forcings other than those of the stochas-
tic isotropic homogeneous background turbulence.
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2.3 Dynamic deadband with constant βp,const

Grönholm et al. (2008) proposed that a constant value of β
can be used in REA flux calculations in combination with
a dynamic linear deadband scaled by σw. A more detailed
description of the deadband application can be found in
Sect. 2.4. The value of βp, const is derived by taking the me-
dian of βp, β̂p, over a period of several days:

βp,const = β̂p. (8)

This method has, for example, been used by Osterwalder
et al. (2016) to measure mercury fluxes at a peatland site.

2.4 Deadband models

Deadbands are widely used in REA applications. The use of
a deadband can provide improved resolution of concentration
differences by selectively sampling eddies with a larger con-
tribution to the trace gas exchange. The turbulence charac-
teristics can differ greatly across different ecosystems, there-
fore, an optimal deadband size must be chosen carefully. In
the βw approach, they can limit the impact of weak “distort-
ing” eddies, which contribute little to the flux. Thus, dead-
bands help improve the linearity of the s′–w′ relationship
leading to a well-defined m (see Eq. 6).

When applying a linear deadband to w′ (Fig. 1a), no sam-
ple is taken if the magnitude of w′ is below a certain thresh-
old. This threshold can be held constant or adjusted dynami-
cally in time. Dynamical adjustments are often done by scal-
ing with the standard deviation of the vertical wind σw. The
linear deadband appears as two horizontal lines in the quad-
rant plot in Fig. 1b, defined by the linear equation

a · σw+ 0, (9)

where a is a constant.
This approach offers the advantage of the deadband be-

ing proportional to the integral strength of the turbulent dif-
fusive process transporting the trace gas of interest. During
field sampling, the size of the deadband is dynamically ad-
justed by applying a back-looking running time window of
fixed length to compute a · σw. Baker (2000) recommends a
linear deadband with a width of a = 0.9 to obtain the best
estimate of the slope m in the βw approach.

Hyperbolic deadbands are specifically designed to exclude
eddies with little flux contribution and maximize the concen-
tration difference between the two sampling reservoirs. The
exclusion of up- or downdrafts is in this case not only based
on vertical wind velocity but also on the fluctuations of a
proxy scalar. Hyperbolic deadbands are defined by the di-
mensionless factor H (“hole size”), which is defined as in
Bowling et al. (1999):

H =

∣∣∣∣(w′σw

)(
p′

σp

)∣∣∣∣ . (10)

Plotting such a defined function in velocity–scalar space
demonstrates that an area in the shape of two hyperbolas
is excluded (Fig. 1b). The REA method using a hyperbolic
deadband is often referred to as the hyperbolic REA (HREA)
technique. Here, we only consider symmetrical deadbands,
presuming symmetrically distributed flow and concentration
statistics. Effects of non-Gaussian distributed w′ and p′ can
be gleaned from investigating higher central statistical mo-
ments.

The use of large deadbands must be done with caution be-
cause they exclude a significant fraction of the data from be-
ing sampled. As a result, the random sampling error, which
is related to 1/

√
n, can be increased due to the decreased

sample size n. In addition, the time period between open-
ing and closing a sampling valve is reduced for large dead-
bands, which may introduce additional errors because of
the increased difficulty of sampling short-lived events pre-
cisely. An estimate for random error can be derived from
the asymmetry of the sample distribution. Considering the
quadrant plot of the data points sampled in one averaging
period, the distribution can be represented by two points:
(s(w > 0)), (w(w > 0)) and (s(w < 0)), (w(w < 0)). Con-
sidering the example in Fig. 1b, these points are drawn for
the largest deadband size (red dots). Ideally, these two points
fall into a unique linear relationship intersecting the coordi-
nate system’s origin (white dot). However, the use of large
deadbands can introduce large asymmetry between up- and
downdrafts. The asymmetry is shown as a dashed white line
in Fig. 1b, containing a bend. This bend, which can be ex-
pressed as an angle different from 180◦, is one measure for
the asymmetry of the sample distribution.

2.5 Selected models and evaluation metrics

In this study, we compare β and deadband approaches used
in the literature and evaluate their performance for the predic-
tion of the latent heat flux over different terrestrial surfaces.
The following four REA methods have been chosen for the
analysis.

– Model 1. βT (Eq. 2) uses the sensible heat as proxy and
a dynamically adjusted linear deadband scaled with σw
(Eq. 9).

– Model 2. βT (Eq. 2) uses the sensible heat as proxy and a
dynamically adjusted hyperbolic deadband scaled with
σw (Eq. 10).

– Model 3. βw (Eq. 7) uses a dynamically adjusted linear
deadband scaled with σw (Eq. 9).

– Model 4. βT, const (Eq. 8; median over the complete field
experiments) uses sensible heat as a proxy and a dynam-
ically adjusted linear deadband scaled with σw (Eq. 9).

For each of the models, four different deadband widths are
examined both for linear (0.2, 0.5, 0.9, and 1.2σw) and hyper-
bolic (H = 0.2,H = 0.5,H = 0.9, andH = 1.2) deadbands.
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Figure 1. Schematic quadrant plots to visualize the application of linear (a) and hyperbolic (b) deadbands. Different colored lines show
which data points are included for different deadband sizes. The white dot marks the origin in both panels. In the (b), solid red dots mark the
mean w′/σw and mean T ′s /σTs for up- and downdrafts when a hyperbolic deadband with H = 1.2 is applied (red). The dashed white lines in
(b) connect the red dots with the coordinate system origin. The deviation from 180◦ of the angle spanned between these lines is a measure
for the asymmetry of the sample distribution.

One simulation was run as a control with a null deadband.
To dynamically adjust deadband size, back-looking windows
of 60 and 300 s duration were tested. The comparison of
these two window sizes yielded only negligible differences
between the computed fluxes for the three data sets; hence
we chose to present results from the 300 s window only.

In the next steps, we proceed as follows: each of the above
models is first optimized with respect to the deadband size.
To do so, the accuracy of each β model is assessed by com-
paring the median ratio of the modeled flux, FREA, and the
corresponding direct EC-measured flux, FEC, FREA

FEC
: If this

ratio is greater than 1, then the flux is overestimated by the
model, and if it is < 1, the flux is underpredicted. In ad-
dition, the variability in this ratio is inferred using the root
mean square error (RMSE), which provides a measure of the
precision of each model. It is computed using the difference
between the modeled REA flux and the measured EC flux.

RMSE=

√√√√√ n∑
i=1
(FREA,i −FEC,i)

2

n
(11)

The deadband width, which is found to yield the most accu-
rate water vapor flux (taking into account relative error and
RMSE) is then further evaluated. Table 2 summarizes the dif-
ferent model setups tested, along with the optimal deadband
sizes.

3 Sites and data processing

3.1 Site descriptions

We selected three sites with strongly contrasting vegetation
cover and surface roughness, vegetation architecture, and

biogeochemical processes governing the vertical exchange
of CO2, water vapor, and sensible heat to test the different β
models (Table 1). Using sites with stark differences provides
robust recommendations for REA users choosing an optimal
β for their site.

The grassland data (Thomas et al., 2021) were collected in
Falkenberg, Germany at the German Meteorological Service
(Meteorological Observatory Lindenberg; see Table 1 for de-
tails). The central part of the field site is a flat meadow of
dimensions 150× 250 m covered by short grass (vegetation
height < 20 cm). This area is surrounded by grassland and
agricultural fields in the immediate vicinity, a small village
is situated about 600 m to the southeast, and a small but het-
erogeneous forest area lies to the west and northwest at about
1 to 1.5 km distance. Within the flux footprint of the tower,
the main vegetation cover consisted of grassland and recently
harvested maize. The soil type distribution in the area around
Lindenberg is dominated by sandy soils covered by a layer of
loam, which is typically found at a depth of between 50 and
80 cm. Lindenberg represents moderate mid-latitude climate
conditions at the transition between marine and continental
influences. Monthly mean temperatures (1961–1990) vary
between 1.2◦C (January) and 17.9◦C (July), and the mean
annual precipitation sum is 563 mm (Beyrich et al., 2002;
Neisser et al., 2002). In contrast, the McMurdo Dry Valleys
(Thomas and Levy, 2021) span 4800 km2 of ice-free land in
Antarctica and are covered by rocks and glacial till (Linhardt
et al., 2019). The area ranges from sea level to 2000 m in
elevation and is composed of ice-covered lakes, short-lived
streams, and rocky ice cemented soils that are surrounded
by glaciers. The mean annual temperature in the Dry Valleys
ranges between −17 and −20◦C. The low precipitation rel-
ative to potential evaporation, low surface albedo, and dry
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Table 1. Description of the three data sets used in this study: numbers from quality-screened data, aggregated to 30 min temporal resolution.
IQR signifies interquartile range.

Surface type Grassland Loose gravel Spruce forest

Site Falkenberg site, Lindenberg,
Germany

McMurdo Dry Valleys,
Antarctica

Waldstein site, ridge in the
Fichtelgebirge Mountains
in Bavaria, Germany

Estimated canopy height (m) 0.3 0 19

Measurement height (m) 2 2 33

Measurement period 2015-09-22 to 2015-10-01 2012-12-26 to 2013-01-26 2016-06-18 to 2016-07-17

Lat/long 52.17◦ N, 14.12◦ E 77.57◦ S, 163.48◦ E 50.13◦ N, 11.87◦ E

Elevation above sea level
(a.s.l.) (m)

73 35 775

Estimated surface roughness
length (z0) (m) according to
Panofsky (1984)

0.18 0.06 4.87

Dynamic stability range (zL−1) −1.95 to 9.38 −9.61 to −0.01 −6.74 to 3.96

Horizontal wind speed u

(m s−1)
0.06 to 3.67 0.11 to 6.44 0.32 to 6.50

IQR of friction velocity u∗
(ms−1)

0.047 to 0.205 0.126 to 0.256 0.371 to 0.730

katabatic winds descending from the Polar Plateau result in
extremely arid conditions (Clow et al., 1998).

Finally, we use a data set acquired at a spruce forest site in
the German Fichtelgebirge (Thomas and Babel, 2021) that
spans ca. 1000 km2 of northeastern Bavaria, Germany. Its
summits reach 1053 m a.s.l. (above sea level; Schneeberg)
and 1023 m a.s.l. (Ochsenkopf). The Waldstein hillsides
comprise a mountainous ridge reaching up to 877 m a.s.l.
(Gerstberger et al., 2004). The measurement site is located at
about 800 m a.s.l. The prevailing tree species at the Waldstein
site is Norway spruce (Picea abies, L.) with a mean canopy
height of 19 m. The EC flux instrumentation (2 m high) was
installed on top of a 31 m high scaffolding tower reaching
above the highest tree tops, resulting in a total measurement
height of 33 m above ground. Monthly mean temperatures
(1961–1990) vary between −4.2◦C (January) and 14.1◦C
(July), and the mean annual precipitation sum is 1156 mm
(Foken, 2003).

The comparison of the kinematic heat, moisture, and CO2
fluxes in the three ecosystems highlights the diverse ex-
change behavior trace gases can exhibit depending on the
environments (Fig. 2): the differences in albedo and length
of daylight are reflected in the variation in the sensible heat
fluxes. The heat flux at the loose-gravel-covered site in the
Dry Valleys of Antarctica particularly stands out due to the
perpetual sunlight experienced during the campaign period.
A diel course is still observed, but the flux is constantly di-
rected away from the surface, as indicated by the positive val-

ues. The diel patterns visible at both the forest and the grass-
land site are similar, showing positive sensible heat flux dur-
ing daytime and negative at nighttime. The difference in flux
magnitude between forest and grassland can be attributed
to the distinct differences in vegetative canopy properties.
The tall dark canopy with low surface albedo is consider-
ably different from the shorter and more reflective grassland
canopy. The range in latent heat and CO2 fluxes displays
the impact of the vegetation. The loose-gravel site, which
is the most extreme site void of vegetation, shows a net ex-
change of CO2 equal or close to zero between the surface
and the atmosphere, whereas both forest and grassland sites
display an expected pattern of dominant CO2 uptake during
the daytime and respiration during the nighttime. The larger
leaf area index in the forest of around 5 m2 m−2, compared
to 3 m2 m−2 for typical grassland areas, like in Lindenberg,
causes a greater magnitude of latent heat flux because of the
transpiration and concurrent greater exchange of CO2.

3.2 Instrumentation and post-field data processing

The turbulence observations consisted of the three-
dimensional wind vector and sonic temperature collected by
a sonic anemometer (Lindenberg: CSAT3, Campbell Scien-
tific Ltd., Logan, UT, USA; Dry Valleys: 81000 VRE, R.M.
Young Company, Traverse City, Michigan, USA; Waldstein
forest: USA 1-FHN, Metek, Elmshorn, Germany) and wa-
ter vapor and carbon dioxide molar densities measured by
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Figure 2. Ensemble-averaged diurnal fluxes of kinematic heat flux (a), moisture flux (b), and CO2 flux (c) at each of the three sites. The
traces where the sign of the flux changes are filled to the zero line for clarity.

an open path analyzer (LI-7500, LI-COR Inc., Lincoln, NE,
USA) both recorded by a data logger (CR3000, Campbell
Scientific Ltd., Logan, UT, USA). The sampling rate was
20 Hz. Spikes and outliers in raw turbulence time series were
discarded according to Vickers and Mahrt (1997) with an ini-
tial 5σ criterion. Resulting gaps in the high-frequency time
series were linearly interpolated. Covariances were maxi-
mized by shifting the scalar time series relative to that of
the vertical velocity by a dynamically determined lag. This
means that, for each sampling period, the scalar time series
were shifted to achieve maximum cross-correlation with the
vertical wind time series (Foken, 2008). For the Reynolds
decomposition, a perturbation and averaging timescale of
300 s was chosen. Using this shorter than the common 30 min
timescale is motivated by the intention to filter out the effects
of longer-lived motions, as described in Vickers et al. (2009).

Raw velocities were rotated using the first two steps in the
common three-dimensional rotation method ensuring that the
mean crosswind and vertical wind components equal zero. A
spectral correction was applied to EC fluxes following Moore
(1986) to account for flux losses resulting from the sensor de-
sign and data collection. Quality assurance and quality con-
trol flags were applied to the computed REA and EC fluxes
by testing for stationarity and developed turbulence follow-
ing Foken et al. (2004). All data with flags > 1 were dis-
carded from subsequent analysis. Since the flags do not cap-
ture all unphysical flux estimates, additional hard threshold-
ing was applied. To minimize the substantial random error
in turbulent flux estimates over short averaging intervals, six
subsequent 300 s intervals were block-averaged to yield one
30 min flux estimate for both the REA and EC methods fol-
lowing Vickers et al. (2009).

Since simulating REA sampling requires selecting individ-
ual high-frequency data from a continuous time series and
computing density-corrected scalar higher-order moments,
an ad hoc density correction was applied to the water va-
por and carbon dioxide molar densities (Detto and Katul,
2007) prior to flux computations. To this end, molar densities

were multiplied by the ratio of the instantaneous mean den-
sity of dry air ρaρa

−1. This correction removes the density
fluctuations due to changes in external conditions. EC fluxes
were computed using the common post hoc density correc-
tion (Webb et al., 1980). Even though open-path observations
in cold environments such as the McMurdo Dry Valleys suf-
fer from sensor heating artifacts not captured by either our
ad hoc or the common post hoc Webb, Pearman, and Le-
uning (WPL) correction (Burba et al., 2008), we decided to
not apply this additional correction in this study since we are
interested in the relative flux error (FREA−FEC)F

−1
EC only.

Instead, we applied a constant offset of 0.35 µmol m−2 s−1 to
the CO2 flux densities to force them through zero for illustra-
tive purposes. This choice has no effect on the study results.

For the REA flux estimation, hyperbolic and linear dead-
bands of varying sizes were tested. The linear deadband size
was scaled by increasing fractions of σw computed over
a back-looking running window of length 300 s (e.g., Ren
et al., 2011; Arnts et al., 2013; Movarek et al., 2014). It must
be noted that the deadbands are applied only to the w′−−s′

statistics to compute 1s and 1w (see Eq. 6). In contrast, the
entire population of vertical velocities observed in an aver-
aging period were used to compute σ 2

w. Applying the dead-
bands for computing also the vertical velocity variance leads
to significant flux overestimation since σw increases with in-
creasing deadband size. In the final step, the same thresholds
for physical plausibility which were applied to the computed
EC fluxes were also used to remove unplausible REA flux
estimates from the data sets. These thresholds were chosen
individually for each scalar and each data set due to the wide
range of meteorological and biochemical conditions covered
in this study.

This study evaluates estimates of the latent heat flux w′q ′
obtained using different REA techniques. The approaches re-
quiring a proxy scalar rely on the sensible heat flux w′T ′,
which is a common choice since it can be measured with a
higher precision compared to, for example, CO2 in certain
low-flux conditions.
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Figure 3. Diurnal course of scalar–scalar correlation coefficients rsp at the meadow site (a), the loose-gravel-covered Dry Valleys site (b),
and the Waldstein forest site (c); ± 1 standard deviation σ is drawn as a semi-transparent area around the mean curves of rsp.

4 Results and discussion

We structured this section as follows. First, scalar correla-
tion coefficients for the different ecosystems are presented in
Sect. 4.1. In Sect. 4.2, we describe the choice of an optimal
deadband size for each REA model based on both FREA

FEC
and

the RMSE. The optimized REA models are then evaluated in
Sect. 4.3 with respect to the effects of the diurnal course and
atmospheric stability. To test the applicability of our findings
to other scalars, we are including an evaluation of simulated
CO2 REA fluxes for all four models, using Ts as proxy for
models 1 and 2, in Appendix A. Here, the same deadband
sizes are used, which were previously chosen as the optimum
for the water vapor flux in Sect. 4.2 .

4.1 Scalar similarity across land surfaces

Scalar similarity is an important assumption for the βT mod-
els (models 1 and 2) and can be used as one evaluation metric
for the method.

To assess whether a scalar can serve as a viable proxy p
for the trace gas of interest s, the similarity in source and sink
strength of two can be represented by their correlation coef-
ficient rsp (Eq. 3). We first analyze the temporal dynamics of
scalar similarity across the different land surfaces: the diur-
nal courses of the correlation coefficients of w′c′ and w′T ′,
w′c′ and w′q ′, and w′T ′ and w′q ′, ensemble-averaged over
the complete field campaigns, are presented in Fig. 3. Pro-
nounced temporal changes in scalar similarity within the di-
urnal cycle at the grassland and forest sites are in strong con-
trast to the constant values observed for all analyzed rsp in
the Dry Valleys. The patterns can be explained by the in-
fluence of radiative forcing, which governs both the physical
heat exchanges and biological photosynthesis and evapotran-
spiration, highlighting the constant daylight observed during
the measurement period in the Dry Valleys. All three corre-
lation coefficients change sign at the grassland site around
14:00 local time, associated with the expected change in dy-
namic stability resulting from the change in the direction of
the sensible heat flux. A similar diurnal pattern is observed
in the forest site; however, the change in sign of the corre-

lation coefficient happens approximately 2 h later in the day.
In contrast, the correlation between w′c′ and w′q ′ is positive
throughout the nocturnal period in the forest site and nega-
tively correlated in the grassland site, where regular dew for-
mation occurs (which can be also observed in Fig. 2). The
scalars tend to be poorly correlated at nighttime compared to
daytime as a result of weak turbulence and associated dimin-
ished scalar transport efficiency for both sites.

4.2 Determining the optimal deadband size for each of
the β methods

Figure 4 summarizes the effects of deadband size on the wa-
ter vapor concentration difference between up- and down-
draft reservoirs 1q and the fraction of samples used for flux
computation, along with the asymmetry measure introduced
in Sect. 2.4. As expected,1q increases with increasing dead-
band size for both linear and hyperbolic deadbands at all
three sites. This increase is more pronounced for hyperbolic
deadbands compared to the linear deadbands (Fig. 4a and b).
The hyperbolic deadbands have the desired effect of max-
imizing the concentration difference between the two sam-
pling reservoirs. For H = 1.2, almost a factor of 3 increase
in water vapor concentration difference between updraft and
downdraft sampling reservoirs can be achieved. The HREA
technique therefore has the potential to provide concentra-
tion differences detectable by instrumentation with high de-
tection limits or when measuring chemical species with very
low mixing ratios. However, as mentioned above, large dead-
bands can introduce a large random error because they ex-
clude a large portion of the sample data points. The decrease
in sample size with increasing deadband size is similar across
all three sites (Fig. 4c and d) and should be considered when
choosing an optimal deadband. For example, for a hyperbolic
deadband withH = 0.2, approximately 40 % of the sampling
period is excluded, which results in an increased asymmetry
(Fig. 4d). This effect is more pronounced for the forest and
meadow surfaces than for the gravel site, possibly caused by
a larger heterogeneity in scalar sink and source distribution.

In the next step, we evaluate each REA model individu-
ally and select an optimal deadband size with respect to se-
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Figure 4. Effect of deadband size on the concentration difference and measures of the random error. Panels (a) and (b) show the concentration
difference between up- and downdraft reservoir as a function of deadband size (linear deadbands in panel a and hyperbolic deadbands in
panel b). (c, d) The bars show the fraction of samples used for flux computation, and the overdrawn circles show the asymmetry between up-
and downdraft vectors in the quadrant plot. The asymmetry is calculated as the absolute deviation in the angle between a straight line and a
bent line constructed using the center points of up- and downdrafts and the origin in the quadrant plots. See Fig. 1 and accompanying text
for details.

lected uncertainty metrics of the β model: we chose to in-
clude measures of the precision and the accuracy of the meth-
ods by comparing FREA

FEC
and RMSE for the simulated dead-

bands. The ratio FREA
FEC

and RMSE obtained for different linear
deadband widths using the βT model (model 1) are shown in
Fig. 5. Results strongly vary across the different ecosystem
types: while the REA water vapor flux at the Antarctic gravel
site is very similar to that obtained from the EC technique,
as indicated by negligible RMSEs, the estimates obtained at
the forest and meadow sites feature a much larger RMSE.
This difference can be explained by the differences in the de-
gree of scalar–scalar similarity between the latent and sensi-
ble heat fluxes of the purely physically driven site as opposed
to the biologically active sites. The scalar fluxes are modu-
lated by a varying degree of vegetation responses adding to
the complexity of the scalar–scalar correlation rq,T and diur-
nal changes in sign (Fig. 3). The use of no deadband (dead-
band width= 0) leads to an overall small underestimation of
the EC fluxes (4 % to 8 %) across all sites. This underesti-
mation is reduced with the use of a deadband at the gravel
site; however, the systematic bias is not resolved by apply-
ing a deadband at the other two sites, but in contrast it in-
creases this underestimation. Such a systematic bias could in
theory be corrected for in post-processing, but the magnitude

of the correction would have to be determined for each site
defying our intention of providing general recommendations.
This flux bias varies more between sites than with deadband
width; therefore, this correction method should only be ap-
plied if the user knows the transport characteristics and scalar
sink and source distribution well. Based on the flux bias and
RMSE, a linear deadband with 0.5σw width is chosen as the
optimized deadband size for further comparisons with the
linear βT approach.

The results for the βT model using a hyperbolic deadband
(model 2) are shown in Fig. 6. Both median FREA/FEC and
RMSE are of the same order of magnitude compared to the
linear deadband approach for βT (Fig. 5, model 1). How-
ever, the hyperbolic deadband offers an increase in concen-
tration difference that is considerably larger in comparison,
which led to its use in several studies (e.g., Held et al., 2008;
Movarek et al., 2014).

Interestingly, the observed underestimation of the latent
heat flux is lessened for the forest and gravel sites when hy-
perbolic deadbands are applied, whereas it becomes larger
for the meadow site. For the gravel site, the bias even changes
sign for large hyperbolic deadbands. The RMSE shows no
significant improvement when the small-scale eddies with
small flux contributions are excluded irrespective of ecosys-
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Figure 5. Errors as a function of dynamic linear deadband width. The x axis is the scaling factor a multiplied by the vertical wind standard
deviation σw in Eq. (9) to define the deadband threshold. (a) Median FREA/FEC (latent heat flux simulated with sensible heat as a proxy)
ratio for each of the simulated dynamic deadband widths; (b) RMSE for each of the simulated dynamic deadband widths.

tem. Based on Fig. 6, a hyperbolic deadband of H = 0.5 is
chosen for further analysis as it offers an increase in 1q by
100 % (Fig. 4).

When applying a linear deadband to model 3 using βw de-
rived from the wind statistics alone, a positive flux bias (5 %–
10 %) becomes evident when no deadband is applied (Fig. 7).
This observation confirms the findings of Katul et al. (1996):
eddies characterized by a large vertical perturbation (w′) are
known to contain smaller perturbations in sensible heat (T ′s )
than predicted by the linear fit of 1w and 1Ts, whose slope
is dominated by the many small-scale eddies characterized
by a greater T ′s . The use of deadbands puts more weight on
large eddies; thus deadbands are convenient to improve the
estimate of the w′ vs. T ′s , resulting in a smaller slope m for
this model. The choice of deadband size has clear implica-
tions for how well the βw model performs. The RMSE for
this method is significantly smaller than the values observed
in the two βT models. Overall, the pattern in relative and
absolute error is more consistent for the βw model across
the three ecosystems compared to the βT models. The op-
timal deadband width 0.9σw, which was proposed by Baker
(2000), provides low systematic bias, high precision, and the
minimum in RMSE for all sites in Fig. 7. However, the use
of this deadband size excludes more than 60 % of the avail-
able data (see Fig. 4), so we chose a linear deadband width
of 0.5σw instead. This choice yields a similarly high accu-
racy and precision and therefore was our optimal choice for
model comparisons.

The performance of the constant βT, const (model 4) is il-
lustrated in Fig. 8, in which the FREA/FEC and RMSE was
calculated using a constant β and dynamic linear deadbands
of different sizes. FREA/FEC is close to 1 for all deadband
sizes in this model. The RMSE is, similarly to that of the
βw (model 3, Fig. 7), constantly low for all ecosystems. Fol-
lowing Grönholm et al. (2008), we chose a deadband size of
0.5σw for further comparison.

Table 2 summarizes the chosen optimum deadband widths
for each of the four methods and gives the medians of the
respective β parameters for each of the three sites. The values
for model 1 and model 4 are equivalent because the medians
over the whole considered period are shown, which results in
the definition of model 4.

4.3 Evaluation of optimized β models

After choosing an optimal deadband size for each REA
model, we now proceed to analyzing the effects of the diurnal
light variability and atmospheric stability on flux estimates.

4.3.1 Effect of the diurnal course

Data were binned according to the hour of day, and the
RMSE was computed for each hour. Each panel in Fig. 9
shows the result for the different models 1–4 at the optimal
deadband size. All four REA models successfully capture the
flux at the loose gravel site; however, discrepancies between
FREA and FEC become obvious for the meadow and forest
sites. Here, the RMSE for model 1 and model 2 (Fig. 9a and
b) is significantly larger compared to the REA methods ap-
plied by models 3 and 4 (Fig. 9c and d). The constant βT, const
(model 4) and the βw method (model 3), both utilizing a dy-
namic linear deadband, feature a negligible RMSE for the
gravel and the meadow sites, as well as a small RMSE below
unity for the forest site. The βT models have a distinct peak
in RMSE at the meadow site around 14:00 local time, which
coincides with a low scalar–scalar correlation of water vapor
and heat (Fig. 3). At the forest site, the uncertainty in FREA is
large throughout the diurnal course for both βT models due
to the large variability in rq,T. During times of strong vari-
ability, the difference FREA−FEC can be of the same order
of magnitude as the absolute evapotranspiration. This occa-
sional poor performance of the βT model does not change
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Figure 6. Errors as a function of dynamic hyperbolic deadband size. The x axis is the H parameter in Eq. (10), which defines the deadband
size. (a) Median FREA/FEC (latent heat flux simulated with sensible heat as a proxy) ratio for each of the simulated dynamic deadband sizes;
(b) RMSE for each of the simulated dynamic deadband sizes.

Figure 7. Errors as a function of dynamic linear deadband width. The x axis is the scaling factor a multiplied by the vertical wind standard
deviation σw in Eq. (9) to define the deadband threshold. (a) Median FREA/FEC ratio (latent heat flux simulated using the REA approach
described in Baker, 2000) for each of the simulated dynamic deadband widths; (b) RMSE for each of the simulated dynamic deadband
widths.

significantly across the range of tested linear and hyperbolic
deadbands. Filtering out small-scale eddies therefore does
not improve flux estimates. However, hyperbolic deadbands
still increase the concentration difference 1c if the detection
limit is of concern. Applying models 1 or 2 for observing the
diurnal variation in the exchange of a trace gas must be done
carefully when choosing a proxy that exhibits a pronounced
diurnal cycle. The key assumption in these approaches is that
the proxy and trace gas of interest have similar temporal or
spatial dynamics, which introduces large uncertainties if the
temporal dynamics of the scalar of interest remain unknown
or are not known a priori.

So far, only one proxy–scalar combination was investi-
gated in this study. However, showing that the presented re-
sults are also valid for other scalars is critical for their appli-
cability. The data sets allow for including CO2 for additional

validation. The CO2 flux was simulated with the optimized
models 1–4 (using the deadband sizes summarized in Ta-
ble 2), with sensible heat as the proxy for models 1, 2, and 4.
The comparison of FREA/FEC ratio and RMSE indicated that
the optimum deadband sizes found for H2O (Table 2) are
also valid for CO2. The hourly RMSEs are included in Ap-
pendix A in Fig. A1. A similar pattern in the diurnal RMSE
as observed for the H2O flux also emerges for CO2: models 1
and 2 both yield higher RMSEs than models 3 and 4, the for-
est site exhibiting larger RMSEs than the meadow site. These
findings suggest that the results presented here for the H2O
flux are also valid for the CO2 flux and possibly other atmo-
spheric compounds. However, we cannot arrive at a final con-
clusion for other (including reactive) scalars, for which REA
is often applied since fast-response analyzers are missing.
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Figure 8. Errors as a function of dynamic linear deadband width. The x axis is the scaling factor a multiplied by the vertical wind standard
deviation σw in Eq. (9) to define the deadband threshold. (a) Median FREA / FEC ratio (latent heat flux simulated using constant βT, const and
dynamic linear vertical wind deadband) for each of the simulated dynamic deadband widths; (b) RMSE for each of the simulated dynamic
deadband widths.

Table 2. Median β parameters for the chosen optimum deadband sizes for each of the four models and each of the three sites.

Model β, deadband Meadow Gravel Forest

Model 1 βT, linear deadband width σw = 0.5 0.38 0.39 0.42
Model 2 βT, hyperbolic deadband width H = 0.5 0.25 0.26 0.27
Model 3 βw, linear deadband width σw = 0.5 0.43 0.43 0.44
Model 4 βT, const, linear deadband width σw = 0.5 0.38 0.39 0.42

Answering this question is beyond the scope of this study
and should be considered in future research.

4.3.2 Effect of atmospheric stability

The observed relationship between the βT model bias and
changes in scalar–scalar similarity suggests a dependence
from shortwave radiative forcing leading to changes in at-
mospheric dynamic stability. A dependence of the βT factor
on atmospheric stability has been shown in previous studies.
Here, we extend this analysis to the effects of deadband type
and size in addition to the βw method. For comparison rea-
sons, we evaluate the dependence of the β on dynamic sta-
bility (z/L) similar to Ammann and Meixner (2002) (their
Fig. 3), who first documented a relationship between βT
and atmospheric stability. Figure 10 shows the models for
time-varying β binned into logarithmically spaced classes of
dynamic stability. These classes were defined such that the
range of dynamic stability spanned by each bin is equally
sized in the logarithmic space. For the two dynamic proxy
models (models 1 and 2; Fig. 10a and b), βT without dead-
band approximately follows the relationship found by Am-
mann and Meixner (2002), i.e., a constant βT for unstable
conditions, and an increase from neutral and stable condi-
tions of z/L≥ 0.06. However, this increase is associated
with large statistical uncertainty and only due to the data

from the forest site (please note that Fig. 10 combines the
observations from all three sites). We therefore recommend
exercising caution when using stability-dependent parame-
terizations of βT. Variability in βT generally decreases with
increasing deadband size. Model 3 (right panel in Fig. 10)
shows a very different behavior: βw is apparently unrelated to
atmospheric stability and displays a generally lower variabil-
ity than βT. This finding explains why the results in Figs. 5,
8, and 9 for the βw and constant β applying a dynamic linear
deadband are so strikingly similar: βw for the selected opti-
mal deadband width of 0.5σw shows little variability, which
makes this approach similar to applying a constant β factor.

It was pointed out in previous REA studies that βw scales
with the fourth central statistical moment of the vertical ve-
locity perturbations’ distribution by altering thew′ vs. c′ rela-
tionship. We therefore investigated the impact of the w′ kur-
tosis on the βw factor for different linear deadband sizes.
Katul et al. (2018) found that two different factors, which
both depend on z/L, contribute to βw and whose impacts
can cancel out if their magnitudes are similar. The first ef-
fect, leading to an decrease in βw with increasing (positive)
z/L, depends on the excess kurtosis or flatness factor of the
w′ distribution. The second effect, resulting in an increase in
βw with increasing z/L, is a result of the transport efficiency
eT (Wyngaard and Moeng, 1992), as well as source strength
and asymmetry in the w′ distribution. The superimposition
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Figure 9. Flux RMSE as a function of the hour of day (local time) for each of the optimized β models. Panel (a) shows the RMSE of the
proxy-based model using a dynamically adjusted linear deadband (model 1), scaled with 0.5σw. In this panel, there is one extreme value
with RMSE> 3, which is outside of the plot boundaries. Panel (b) shows the proxy-based model using a dynamically adjusted hyperbolic
deadband (model 2) with H = 0.5. Panels (c) and (d) show the RMSE of the βw REA model (model 3) and the constant βT, const approach
(model 4), respectively, both with a dynamically adjusted linear deadband of width 0.5σw.

Figure 10. Dependence of the βT and βw factors on the atmospheric stability z/L. Data were binned in logarithmic, evenly spaced stability
classes. The markers are drawn at the median β of each bin, and the bars mark the interquartile range (IQR). This figure combines valid data
points from all three sites.

of these two processes could be an explanation of why there
is no clear dependence of βw on dynamic stability visible in
Fig. 10.

The relationship between thew′ distribution’s kurtosis and
the βw factor is illustrated in Fig. 11: consistent with Katul
et al. (1996, 2018) the βw factor without deadband increases

as a function of w′ kurtosis (Fig. 11a). The plot collapses
data from all three ecosystems into a single linear relation-
ship. This finding suggests that the turbulence statistics, in-
cluding the βw factor, are site-independent despite the signif-
icant differences in climate and surface characteristics across
the three ecosystems (canopy height, roughness, etc.). This
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Figure 11. This figure only presents results from REA model 3 (βw). (a) βw as a function of w′ kurtosis for different deadband widths (not
binned). Valid data points from all three sites are combined in this panel. (b) The stability parameter z/L as a function of the w′ kurtosis.
Data were binned into eight kurtosis bins with an equivalent number of data points. Only bin medians are displayed, and bars mark the IQR.
(c) Median FREA by FEC as a function of w′ kurtosis for the optimal deadband widths, 0.9σw and 0.5σw, which were determined by Baker
(2000) and in this study. Data were grouped into the same kurtosis bins as in (b). The grey area marks the ±10 % range, which is the error
assumed in EC applications.

Table 3. Summary of the REA models compared in this study, along with main findings.

Model no. Model 1 Model 2 Model 3 Model 4
βT + linear deadband βT + hyperbolic deadband βw + linear deadband constant βT, const

+ linear deadband

Optimal deadband
size

0.5σw H = 0.5 0.5σw 0.5σw

Site-specific
effects

Magnitude of underestima-
tion differs between sites

Positive or negative bias
differs between sites

No strong site-
dependent implications
found; intermittent
turbulence could have
a weak effect on the
accuracy of the method

No strong site
effects

Accuracy Within 8 % Within 5 % Within 5 % Within 5 %

Precision RMSE≈ 1 mmol m−2 s−1

for biologically active sites
RMSE ≈ 1 mmol m−2 s−1

for biologically active sites
RMSE below
0.3 mmol m−2 s−1

RMSE below
0.3 mmol m−2 s−1

Diel dependency Strong correlation with rsp Strong correlation with rsp None None

Remarks Recommended when detec-
tion limit is an issue

Robust method Robust method

is confirmed by the nearly identical average βw values found
for the three sites in Table 2 of 0.43–0.44. In connection with
the small spread of βw values in Fig. 11 and the strikingly
similar RMSE for models 3 and 4 (Fig. 9), our results suggest
that βw can be considered a both site- and time-independent
constant.

Kurtosis is in turn expected to be related to dynamic sta-
bility when changes in turbulence statistics and diabatic con-
ditions lead to a non-Gaussian distribution of w′. As a result,
the kurtosis of the w′ distribution becomes different from 3,
which is the value for a Gaussian distribution. In Fig. 11b,w′

kurtosis is plotted against the stability parameter z/L. Fig-
ure 11c displays the resulting median FREA

FEC
as a function of

w′ kurtosis. Only the model results for REA applying a linear
deadband with widths of 0.5 and 0.9σw are displayed here
for improved visibility. While no clear trend is observed at
the grassland site and only a slightly negative trend is vis-
ible for the gravel site, we can detect a strong decrease in
the median FREA

FEC
as a function of w′ kurtosis for the forest

site. However, as indicated by the shaded area in Fig. 11c,
most points lie within the boundaries of ±10 %. Only the
bins with the highest and lowest kurtosis classes at the forest
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site are outside of this range. These error bounds are of the
magnitude as the error assumed in EC applications. We sus-
pect that the large excursions from Gaussian statistics for the
forest site are caused by coherent structures forcing cross-
canopy vertical exchange, which are a dominant flow mode
in the forest flows documented for this site (Thomas and Fo-
ken, 2007a, b).

At first sight, it is puzzling why the βw model without
deadband (deadband size 0.00) in Fig. 11 shows a consid-
erable variation with the kurtosis, which in turn is related to
stability, but basically no dependence of the βw factor on sta-
bility can be seen in Fig. 10. This effect is due to the binning:
the values in Fig. 10b are bin medians of the kurtosis, while
in Fig. 10a, the unbinned 30 min data are shown. Compar-
ing the ranges of the w′ kurtosis in these panels, it becomes
apparent that the range between 3 and 4 (Fig. 10b) is much
smaller compared to the range between 2 and 5 displayed in
Fig. 10a. Within the approximate bounds of 3 and 4 (where
most of the data are for all three sites), the βw for zero dead-
band also has a much smaller systematic variability. Com-
bining these insights with Fig. 10, it means that the bin me-
dian value of the w′ kurtosis exaggerates the stability depen-
dence since the within-bin variability is very large, leading
to its effect disappearing in the effective βw (Fig. 10c) and
FREA / FEC (Fig 11c) results. Our findings indicate that the
variation in the βw factor with the turbulence statistics seems
to have no significant impact on the flux estimate.

5 Conclusions and practical recommendations

This study has compared the performance of four differ-
ent conditional sampling models to compute the water va-
por flux. The tested REA models included the following
methods: two approaches relying on the sensible heat Ts as
a proxy, using linear (model 1) and hyperbolic deadbands
(model 2), a parameterization of the βw factor first intro-
duced by Baker et al. (1992) (model 3), and an approach us-
ing a constant βT factor described in Grönholm et al. (2008)
(model 4). Models 3 and 4 both use linear deadbands. All
deadbands were adjusted dynamically and simulated using a
300 s back-looking window to determine the standard devi-
ation of the vertical wind σw and, for the hyperbolic dead-
bands, the standard deviation of the proxy scalar Ts, σT. Ta-
ble 3 summarizes the REA models investigated, along with
the main results of this study.

The dynamic scalar proxy (βT) REA models (model 1
and 2) performed well during conditions when the proxy
scalar (Ts) and scalar of interest (water vapor) were strongly
correlated, i.e., during periods when sources and sinks were
similarly spatially distributed and temporally synchronized.
Median ratios FREA

FEC
over the campaign length were close

to unity, indicating a generally high accuracy of these two
methods. However, during times of low proxy–scalar corre-
lation, the variability in this ratio, measured by the RMSE,

was large. This happened particularly at those times of the
day when the direction (sign) of the flux changed. Users are
strongly cautioned when using the dynamic proxy-dependent
REA techniques; the diurnal dynamics of the proxy scalar
and trace gas of interest is of central importance. This is
also true for scalars subject to both biological and physical
forcings driven by time- and space-variant source–sink dis-
tributions. Concerning models 1 and 2, choosing the opti-
mal proxy scalar is critical for the method’s success. Hyper-
bolic deadbands, which also require the use of a proxy scalar,
are well suited to maximize the concentration difference be-
tween up- and downdraft reservoirs more effectively than lin-
ear deadbands. The effects of linear and hyperbolic dead-
bands on the flux estimates were found to be strongly site-
dependent for models 1 and 2, i.e., the two dynamic scalar
proxy approaches.

For the βw (model 3) and constant βT, const (model 4) ap-
proaches, an optimum deadband size was found at 0.5σw. At
this deadband size, the variation in βw over time and be-
tween the considered sites became very small, making this
method almost equal to applying a constant β factor. This
finding suggests that βw is a site-independent constant. Over-
all, models 3 and 4 yielded flux estimates as accurate as mod-
els 1 and 2 and even performed significantly better in terms
of RMSE.

The dependence on atmospheric stability conditions was
evaluated for each method and deadband size. No universal
behavior of any stability-dependent (z/L) β model for either
site was observed. We therefore cannot recommend its use.

Based on the findings obtained in this study, we attempt
to formulate the following general recommendations. We
overall recommend using either the βw or βT, const approach
(model 3 or model 4) using a linear deadband with 0.5σw
width. These two models have been shown to perform ro-
bustly and be less sensitive to changes in proxy–scalar sim-
ilarity than models 1 and 2. For applications for which the
detection limit is of concern, we propose using the dynamic
proxy-dependent approach in connection with a hyperbolic
deadband (model 2). Model 2 yielded very similar results to
model 1 with respect to the precision and accuracy measures
considered in this study. However, hyperbolic deadbands are
better suited to maximize the concentration difference be-
tween up- and downdraft reservoirs, which is an advantage
when investigating fluxes of compounds with very low at-
mospheric concentrations. For this application it is advan-
tageous to have a well-known site, including scalar–scalar
similarity, if possible.
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Appendix A: Simulated CO2 REA fluxes

Figure A1 shows the diurnal course of the RMSE for mod-
els 1–4 for the CO2 flux. The same deadband sizes which
were found to be optimal for the estimation of the water
vapor flux were applied. Both proxy approaches (models 1
and 2; panels a and b) result in higher values of the RMSE
than the βw (model 3, panel c) and the constant βT, const
(model 4, panel d) methods. The RMSE for the gravel site
is included in this figure even though the magnitude of the
CO2 flux is close to 0 throughout the daily course, and thus
no conclusions should be drawn from its RMSE.

Figure A1. Same as Fig. 9 but for the CO2 flux. The gravel site results (solid black lines) should be regarded with caution as the magnitude
of the CO2 flux at this site is close to zero (compare to Fig. 2).

Biogeosciences, 18, 5097–5115, 2021 https://doi.org/10.5194/bg-18-5097-2021
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