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Abstract. Land use and management practices affect the re-
sponse of soil organic carbon (C) to global change. Process-
based models of soil C are useful tools to simulate C dynam-
ics, but it is important to bridge any disconnect that exists be-
tween the data used to inform the models and the processes
that they depict. To minimise that disconnect, we developed
a consistent modelling framework that integrates new spa-
tially explicit soil measurements and data with the Rotham-
sted carbon model (Roth C) and simulates the response of
soil organic C to future climate change across Australia. We
compiled publicly available continental-scale datasets and
pre-processed, standardised and configured them to the re-
quired spatial and temporal resolutions. We then calibrated
Roth C and ran simulations to estimate the baseline soil
organic C stocks and composition in the 0–0.3 m layer at
4043 sites in cropping, modified grazing, native grazing and
natural environments across Australia. We used data on the
C fractions, the particulate, mineral-associated and resistant
organic C (POC, MAOC and ROC, respectively) to repre-
sent the three main C pools in the Roth C model’s struc-
ture. The model explained 97 %–98 % of the variation in
measured total organic C in soils under cropping and graz-
ing and 65 % in soils under natural environments. We opti-
mised the model at each site and experimented with different
amounts of C inputs to simulate the potential for C accumu-
lation under constant climate in a 100-year simulation. With
an annual increase of 1 Mg C ha−1 in C inputs, the model
simulated a potential soil C increase of 13.58 (interquartile
range 12.19–15.80), 14.21 (12.38–16.03) and 15.57 (12.07–
17.82) Mg C ha−1 under cropping, modified grazing and na-

tive grazing and 3.52 (3.15–4.09) Mg C ha−1 under natu-
ral environments. With projected future changes in climate
(+1.5, 2 and 5.0 ◦C) over 100 years, the simulations showed
that soils under natural environments lost the most C, be-
tween 3.1 and 4.5 Mg C ha−1, while soils under native graz-
ing lost the least, between 0.4 and 0.7 Mg C ha−1. Soil under
cropping lost between 1 and 2.7 Mg C ha−1, while those un-
der modified grazing showed a slight increase with temper-
ature increases of 1.5 ◦C, but with further increases of 2 and
5 ◦C the median loss of TOC was 0.28 and 3.4 Mg C ha−1,
respectively. For the different land uses, the changes in the
C fractions varied with changes in climate. An empirical as-
sessment of the controls on the C change showed that cli-
mate, pH, total N, the C : N ratio and cropping were the most
important controls on POC change. Clay content and climate
were dominant controls on MAOC change. Consistent and
explicit soil organic C simulations improve confidence in the
model’s estimations, facilitating the development of sustain-
able soil management under global change.

1 Introduction

Soil carbon (C) represents the most abundant terrestrial C
pool (Batjes, 1996). It can be a significant source or sink of
atmospheric CO2 (Scharlemann et al., 2014). Sequestration
of soil organic C, via the adoption of innovative land manage-
ment strategies, offers opportunities for improving soil and
ecosystem health, sustaining food production, and mitigating
climate change (Lal, 2016; Paustian et al., 2019; Smith et al.,
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2020). However, these opportunities depend on regional in-
teractions between soil, climate, land use and management
(Viscarra Rossel et al., 2019). A better understanding of the
effect of these interactions on soil C is needed to assess the
potential for those opportunities.

Biogeochemical models represent our mechanistic under-
standing of processes such as organic C cycling in soil and
can serve different purposes. They can be used to simulate
soil C cycling under various combinations of soil, climate,
land use and management (Conant et al., 2011) to evaluate
the potential for C sequestration or loss and to assess the
impacts of environmental and human-induced change in the
soil C cycle. In conjunction with long-term measurements,
models can estimate the effects of management practices
and climate change on soil C, as well as subsequent feed-
backs. Therefore, the simulation of soil organic C with bio-
geochemical models has received much attention in the lit-
erature (Campbell and Paustian, 2015; Falloon and Smith,
2000).

The Rothamsted carbon model (Roth C) (Jenkinson, 1990;
Coleman and Jenkinson, 1996) and the Century model (Par-
ton et al., 1987) are widely used to simulate soil organic
C dynamics in cropping, grassland and forest systems. Al-
though developed under Northern Hemisphere conditions,
since their inception in the 1980s, these models have been
used for many different applications worldwide (Campbell
and Paustian, 2015; Wang et al., 2016). They are the soil
biogeochemical component in Earth systems models (Todd-
Brown et al., 2013). They do not explicitly represent cur-
rent theories around the mechanisms of microbial decompo-
sition and physicochemical protection (Lehmann and Kleber,
2015), but they are still being used because they capture the
general principle of soil organic C dynamics. In essence, the
flow of C in the models occurs through a cascading of C via
several conceptual pools turning over at different rates, ac-
cording to first-order kinetics and modified by climate and
soil texture. Other reasons for their continued use might be
that there is ample documentation on them; they are rela-
tively robust and well tested.

The Roth C model has been adjusted and tested for use
under Australian conditions (Janik et al., 2002; Skjemstad
et al., 2004). Skjemstad et al. (2004) showed that the size of
the main conceptual C pools in Roth C, the resistant plant
material, and humic and inert organic matter pools can be
initialised with measurements of the particulate, mineral-
associated and resistant organic C fractions (POC, MAOC
and ROC, respectively). Roth C can be initialised with mea-
sured C fractions. Skjemstad et al. (2004) calibrated the de-
composition rate constants under Australian conditions, and
Janik et al. (2002) assessed a sensitivity of the C pools to
model parameters to highlight the potential complexity in the
implementation of Roth C. Since then, researchers in Aus-
tralia have used Roth C in different studies (e.g Paul and
Polglase, 2004; Lee and Viscarra Rossel, 2020). Roth C is a
sub-model of the Fully Integrated Carbon Accounting Model

(FullCAM) (Richards and Evans, 2004), used in Australia’s
National Greenhouse Gas Inventory System. Together, they
are the core of the Australian model-based Emission Re-
duction Fund (ERF) methodology, which allows farmers
and landholders to generate extra income by storing C in
their soils and thereby reducing emissions (England and Vis-
carra Rossel, 2018; Paustian et al., 2019). However, the soil
and environmental conditions required to maintain current
soil organic C stocks and composition are poorly understood.
This hampers the reliable estimation of C stock and seques-
tration potentials at a large scale.

Despite the development of new models with updated rep-
resentations of current understanding (Abramoff et al., 2018;
Robertson et al., 2019; Wieder et al., 2014), there remains a
disconnect between measurements and datasets used to in-
form the models and the theories represented in them, partic-
ularly for simulations over large extents (Blankinship et al.,
2018; Harden et al., 2018). In practice, a lack of data restricts
model parameterisation and optimisation, and missing tem-
poral datasets limit our ability to simulate and verify long-
term changes in soil C stocks and composition (Smith et al.,
1997). Hence, there is also little agreement on how input
datasets should be synthesised, processed and used (Manzoni
and Porporato, 2009), leading to inconsistent model calibra-
tions (Conant et al., 2011; Seidel et al., 2018) and inaccurate
model estimations (Shi et al., 2018). In this context, the de-
velopment of robust frameworks for soil organic C modelling
and simulation to synthesise and integrate measurements and
datasets with models is critical (Harden et al., 2018; Ogle
et al., 2010; Paustian et al., 1997; Smith et al., 2020). Their
development should also allow for their efficient updating,
with new measurements, data and models, as they become
available (Viscarra Rossel and Brus, 2018; England and Vis-
carra Rossel, 2018; Smith et al., 2020) and enable a more
systematic approach for calibration and validation, making
simulations more reliable and reproducible.

Here, we report on simulations of the organic C stocks in
Australian soils with Roth C using a standardised approach
that synthesises and processes measurements and data for
prediction at the required scale. Our motivation for devel-
oping this research is to help answer questions around soil
C dynamics that are pertinent to Australian soils in different
ecosystems and under different land uses and management.
Our aims are to (i) derive baseline estimates of soil organic
C stock and composition by site-specifically initialising the
model with measurements of POC, MAOC, and ROC and
an optimised ratio of decomposable plant material (DPM) to
resistant plant material (RPM), which represents the decom-
posability of incoming biomass; (ii) simulate over a 100-year
period, with constant and changing climate and a plausible
range of C inputs, the potential to increase organic C stocks
as well as the potential vulnerability to C loss across Aus-
tralia; and (iii) identify the soil and environmental controls
of the change in soil C stocks.
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2 Materials and methods

2.1 The Rothamsted carbon model (Roth C)

Roth C is a soil process model for the turnover of organic C
in non-flooded soils (Jenkinson, 1990; Coleman and Jenkin-
son, 1996). The model partitions total organic C (TOC) into
pools that represent decomposable plant material (DPM), re-
sistant plant material (RPM), microbial biomass (BIO), hu-
mified organic matter (HUM) and inert organic matter (IOM)
(Coleman and Jenkinson, 1996). The model simulates on a
monthly time step changes in its active pools, in response
to climate, soil type, land use and management. Annual C
inputs from crops and manure represent different land-use
and management regimes. We used the Roth C model version
26.3, which is the version that was re-calibrated for a range
of Australian soils (Skjemstad et al., 2004). The decompo-
sition rate constants for the DPM, BIO, RPM and HUM
pools are 10, 0.66, 0.15 and 0.02 yr−1, respectively (Skjem-
stad et al., 2004). The decomposition rate constants for the
original formulation of the model are reported by Jenkinson
and Rayner (1977). The decomposition of each active pool
is assumed to increase, following first-order kinetics, with
air temperature but is reduced by soil water deficits and the
presence of vegetated soil cover. Temperature effects on soil
organic matter decomposition increase following a sigmoid
function, while the topsoil moisture deficit reduces the ef-
fect by a factor of 0.2 to 1 (no moisture stress). The soil
cover factor is 1.0 for bare soil and 0.6 when soil is vege-
tated to slow organic matter decomposition. The main con-
ceptual pools RPM, HUM and IOM are replaced with the
measured particulate, mineral-associated (also referred to as
humus in other research, but essentially measurements of or-
ganic C in the fine fraction with particle sizes ≤ 50 µm) and
resistant organic C fractions (POC, MAOC and ROC, respec-
tively) (Skjemstad et al., 2004). The POC fraction includes
any DPM available in the soil at the time of measurement.
The BIO pool was initially set to zero (Sparling, 1992).

2.2 Standardised soil C simulations

We simulated soil C dynamics across Australia (Fig. 1), us-
ing a framework that enabled us to efficiently standardise and
then integrate measurements and publicly available data on
soil properties and environmental controls with Roth C for
simulation at the scale of interest. The approach encompasses
five stages as follows (Fig. 1): (1) data compilation and syn-
thesis, (2) data pre-processing and standardisation, (3) con-
figuration of data on management regimes, and (4) model
simulation supported by consistent initialisation and verifi-
cation and (5) prediction.

2.3 Soil C simulations

2.3.1 Data compilation and synthesis

Roth C requires POC, MAOC, ROC, clay content and sam-
pling depth (in our case 0–0.3 m). The available water ca-
pacity (AWC) of the soil to a soil depth of 1 m is needed
to calculate evapotranspiration from pan evaporation when a
plant is present and to run a crop model (see below). We se-
lected a total of 4431 out of 5721 sites across Australia (Vis-
carra Rossel et al., 2019) (Fig. 2). The selected sites were
under one of the dominant land uses: cropping, grazing of
modified pastures and native vegetation, and natural conser-
vation and protected areas (which includes deserts). Forests
and production forestry were excluded because we lack ad-
equate data to support simulations under these land uses.
The C fractions, clay content and AWC were estimated with
visible–near-infrared spectra (Viscarra Rossel and Webster,
2012; Viscarra Rossel et al., 2015). Maximum air tempera-
ture, minimum air temperature, precipitation and pan evapo-
ration are also required to run the model. We obtained grid-
ded daily climate data (approximately 5 km resolution) from
the SILO database of Australian climate data (SILO, 2021).
We used the Australian Bureau of Agricultural and Resource
Economics and Sciences land-use map (ABARES, 2016) to
determine detailed land cover across Australia. Agricultural
activity data from Unkovich et al. (2017) provided data for
croplands and modified pastures at Statistical Area Level 2
(SA2) (ABS, 2016), which are functional areas that repre-
sent socially and economically coherent communities. Cur-
rent and historical events and agricultural practices, such as
crop type and harvest, can be specified from 1970 to 2014.
The other data required to run the model include an estimate
of the decomposability of incoming biomass, soil cover, and
monthly inputs of plant C and farmyard manure. These C in-
put variables, if not measured, must be estimated at each site
(see below).

2.3.2 Data pre-processing and standardisation

The datasets were pre-processed and configured to provide
consistent values and units of measurement. Daily weather
was extracted at each of the 4431 sites for the 20 years from
1991 to 2010. The mean of the minimum and maximum daily
temperatures derived the average daily temperatures. Aggre-
gation of the daily weather data produced monthly average
temperature, precipitation and pan evaporation.

We used the Australian land-use map (ABARES, 2016) to
re-classify each site into the following broad land uses: crop-
ping, modified grazing, native (unmodified) grazing and nat-
ural environments. We defined cropping as land under broad-
acre crops. Modified grazing was defined as land used for
livestock grazing on improved pastures with exotic vegeta-
tion cover. Native grazing was defined as land used for graz-
ing on native pastures. Natural environments include the ar-
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Figure 1. Soil carbon (C) simulation under a framework enables explicit standardisation and better connection between datasets and a soil
process model at the appropriate scale.

Figure 2. Location of 4431 sites across Australia selected for this
study. A total of 1261 sites were under cropping, 2269 sites under
grazing modified pastures, 807 sites under grazing of native vegeta-
tion and 94 sites in natural environments, mostly under minimal use
or managed resource protection in semi-arid and arid climates.

eas for nature conservation, indigenous uses and other mini-
mal uses but exclude woodland and forest. We used the grid-
ded Köppen climate classification from the Bureau of Me-
teorology (BOM, 2016) to identify sites under natural envi-
ronments in semi-arid and arid climates. The areas of crop-
ping, modified grazing, native grazing and natural environ-
ments occupy 292 104 km2 (or 3.8 %), 706 099 km2 (9.2 %),
3 439 468 km2 (44.8 %) and 1 507 616 km2 (19.6 %) of Aus-
tralia, respectively. Data on agricultural practices at the SA2
level obtained from Unkovich et al. (2017) were used to se-
lect a crop or grass to represent typical management regimes
in the sites under cropping and modified grazing.

2.3.3 Configuration of land management regimes and
initial estimation of C inputs to soil

Roth C does not calculate plant growth or the quantity of soil
C inputs. Therefore, we estimated monthly plant C returns
and farmyard manure added to the soil (e.g. managed or de-
posited by animals grazing on pasture) using the following
approach. The initial estimate was made to set the starting
values of the C inputs and to match the timing of C inputs to
the crop or grass grown.

We assumed that crops were grown in rotations, but at
sites under modified pastures, only a single grass species was
considered. We used the activity data from Unkovich et al.
(2017) to determine crop rotations and a representative grass
species for each site during the baseline period from 1991
through 2010. For each of the periods, 1990–1994, 1995–
1999, 2000–2004, 2005–2009 and 2010–2014, we calculated
the cumulative frequency by regime. We used it to randomly
select the crop or grass species (both annual and perennial)
through time with a probability approach. The probability of
having a certain crop was dependent on the cumulative fre-
quency assigned to each crop type and regime. The crops
grown in all years were selected and then used to determine
the most dominant crop species. For the sites under native
grazing, we considered a native perennial grass only.

For annual plant species, we used a crop model (Unkovich
et al., 2018) that uses the amount of water available to the
plant (derived from the measured AWC) to calculate a poten-
tial dry matter increment that is water-limited (WLDM) in
kg ha−1:

WLDM= ((ET× Ts)+ (DD× Td))×TE,

where ET is the evapotranspiration (mm) from pan evapora-
tion, DD is any deep water drainage (mm) that occurs during
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the fallow season, Ts is a fraction of ET that goes through
the transpiration, Td is a fraction of deep water drainage that
goes through the transpiration, and TE is the transpiration
efficiency that is the amount of biomass produced per unit
of water transpired (kg mm−1) of a cropping or grazing sys-
tem. Daily evapotranspiration was estimated by multiplying
pan evaporation with a ratio of soil water content over plant
AWC and the maximum evapotranspiration by crop or grass.
The maximum dry matter production (DMmax) is the sum of
dry matter increments over the growing season. This model
then back calculates dry matter accumulation (kg ha−1) over
the season (DMacc):

DMacc =
DMmax(

1+ e
−

Day−a×Daysmax
b×Daysow×Daysmax

) ,

where Day is the current day as the season progresses,
Daysmax is the number of total growing days, Daysow is the
day of planting, and a and b are growth coefficients specific
for the plant. For a perennial system, daily growth (G) in
kg ha−1 is calculated as

G=WLT×TI×TE,

where WLT is the amount of water-limited transpiration
(mm) that is evapotranspiration multiplied by vegetation
cover, TI is the temperature index function (Nix, 1981)
and TE is the transpiration efficiency of a perennial system
(kg mm−1). The perennial plant growth is used to calculate
dry matter accumulation over the season. The model esti-
mates root biomass using a fixed root-to-shoot ratio of 0.3
(Bolinder et al., 1997).

For both modified and native pastures, we assumed graz-
ing to occur if the grass accumulated 1.2 Mg ha−1 of shoot
dry matter, with no grazing effect on its growth (DPIRD,
2021). The start of grazing was set to optimise the pasture
growth throughout the year, based on recommendations for
efficient green pasture utilisation in Australia (MLA, 2019).
We also assumed that grazing animals consumed 50 % of
daily shoot growth, returned 50 % of the consumption to the
soil as dung and shed 50 % of daily root growth. When the
available soil water fell to < 15 % of water holding capacity,
1 % and 0.5 % of the shoot dry matter and the root dry matter
were assumed to die daily. The C content of above-ground
and below-ground residues was 42 % by mass, which is the
value used in the FullCAM (Richards and Evans, 2004).

For the sites under natural environments, however, we did
not use the plant model because we had no data on plants
in this region. Instead, we assumed small but consistent C
inputs from plant residues only (Wang and Barrett, 2003),
which we set to 0.049 Mg ha−1 per month. No soil cover was
assumed because in these regions vegetation cover is typi-
cally sparse.

2.3.4 Simulation: optimisation of C inputs to the
baseline soil organic C

We initialised the stocks of POC, MAOC and ROC pools us-
ing the measured data at 4431 sites. We assumed that the
initial soil organic C stocks were at equilibrium and ran the
model to reproduce their equilibrium condition. We based
our assumption on data from the National Carbon Account-
ing System (NCAS) that include temporal soil organic C
changes at 73 sites in Australia, recorded from 1911 to 2000
(Skjemstad and Spouncer, 2003). The DPM / RPM ratio de-
termines the decomposability of incoming biomass. By de-
fault, the recommended DPM / RPM ratio is 1.44 for most
crops and improved pastures and 0.67 for unimproved grass-
lands (Coleman and Jenkinson, 1996). The DPM / RPM ratio
depends on the quality of C in plant residues and manure. It
is site-specific, differs with land use (Post and Kwon, 2000),
and is unknown for Australian native grazing or natural en-
vironments (including deserts).

We tested six different DPM / RPM ratios (0.67, 0.96,
1.17, 1.44, 1.78 and 2.23) to estimate baseline C inputs and to
assess the sensitivity of the simulated TOC, POC and MAOC
to this parameter. These chosen ratios correspond to alloca-
tions of incoming plant material to DPM in the range 40 %–
69 % and proportionally to RPM in the range 60 %–31 %.
For each DPM / RPM ratio, we run the simulations at each
of the 4431 sites for 100 years. Specifically, for each ratio at
each location, we performed the simulations iteratively up to
1000 times (or less if the model achieved equilibrium) by re-
initialising the POC and MAOC pools with the measured C
fractions and with a change in monthly input of plant residues
and farmyard manure equivalent to 1/100 of their initial val-
ues. We considered only monthly C inputs in the simulations.
The weather data used in the simulations represent the condi-
tions of the baseline period between 1991–2010, which were
repeated over the 100-year period.

Equilibrium condition occurred when (1) both POC and
MAOC did not significantly change over time (P > 0.05) or
(2) we observed an absolute change of < 0.0025 Mg C ha−1

in both POC and MAOC. We used a time series linear model
with a trend and seasonality to fit the change in POC and
MAOC over time. An equilibrium condition was also as-
sumed if the direction of the trend (positive or negative) in ei-
ther pool changed. This condition prevented unrealistic simu-
lations because both POC and MAOC showed the same trend
in response to C inputs. Depending on the DPM / RPM, at 12
to 14 out of the 4431 sites, the model was not able to simu-
late the equilibrium condition. We note that, for the sites that
failed, changing C inputs only is insufficient for making both
the POC and MAOC pools reach equilibrium simultaneously.

We report the stocks of TOC, POC and MAOC at the
end of the 100-year simulation. The difference between the
measured and the simulated TOC stock provided an esti-
mate of the model deviation. We also calculated the range
of monthly variation in simulated TOC stocks. For each
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site, we selected the DPM / RPM ratio based on the min-
imum deviation of TOC. Three hundred and eighty-eight
sites had a model deviation and range of monthly change
in TOC stock ≥ 10 Mg C ha−1, so we excluded them. We
based the 10 Mg C ha−1 threshold on the range of measured
annual changes in TOC. The median TOC stock at these
sites was 75.04 Mg C ha−1 (range 52.58–111.44 Mg C ha−1),
and mostly they occurred under modified grazing (data not
shown). Finally, we optimised the amount of monthly C in-
put and the DPM / RPM ratio at 4043 sites and used them
as the baseline. We determined the dominant values of the
DPM / RPM ratio for each land use across Australia, based
on their relative frequency.

2.3.5 Simulation: the potential for C sequestration
under changing C inputs

Using the calibrated model, we simulated potential changes
in soil organic C over 100 years, in response to changes in
C inputs. We selected different rates of C input to the soil
by multiplying the optimised baseline with the factors 0 (no
input), 0.25, 0.5, 0.75, 1.25, 1.5 and 2. These rates were se-
lected to represent a wide range of C input levels that would
be either physically achievable or manageable (e.g. manure
addition) (Maillard and Angers, 2014). The increase in C in-
put was restricted to a maximum of 2 times the baseline C
inputs. Scenarios that varied the timing or quality of C in-
puts were not considered because we already calculated the
timing of C inputs and the sensitivity to the DPM / RPM ra-
tio. We chose 100 years in order to simulate the long-term
response of TOC, POC, and MAOC and calculated 11-year
moving averages of the stocks of TOC, POC and MAOC, as
well as the potential vulnerability of soil C to decomposition
(POC / (MAOC+ROC), Viscarra Rossel et al., 2019). We
calculated changes in soil organic C by changing C inputs
and report the median stocks and lower and upper 95 % con-
fidence intervals (Conover, 1998) for the last 11 years of the
simulation, when it reached a new equilibrium.

2.3.6 Simulation: the potential for C sequestration
under a changing climate

We simulated the potential changes in soil organic C in re-
sponse to projected changes in climate and using the esti-
mated baseline C inputs (as described in Sect. 2.3.4). To do
this, the baseline weather data were modified by adding tem-
perature increases of 1.5, 2 and 5 ◦C, respectively, which fall
within the likely range of mean annual temperature change
from the Coupled Model Inter-comparison Projects sixth as-
sessment report (CMIP6) (Tebaldi et al., 2021). To account
for the CMIP6 projected changes in precipitation (Tebaldi
et al., 2021), we also used changes of −5 %, −10 % and
−15 %, respectively. As the projections of pan evaporation
are also needed to run the model, we calculated these using
the Hargreaves approach combined with class-A pan coef-

ficients (Hargreaves and Samani, 1982). Changes in soil or-
ganic C by changing climate were calculated, and the median
stocks and the first and third quartiles were reported for the
last 11 years of the simulation.

2.3.7 Empirical assessment of controls on the
simulated C change

There are soil and environmental controls on organic C that
are not accounted for by Roth C. To gain a better understand-
ing of the controls on the change in soil organic C under
changing C inputs, we modelled the change in TOC, POC
and MAOC as a function of the four land-use classes and a
set of environmental variables. The environmental variables
included (i) soil properties, such as total nitrogen (N), to-
tal phosphorous (P) and C : N (Viscarra Rossel et al., 2015);
(ii) climate; (iii) clay minerals (illite, kaolinite and smec-
tite) (Viscarra Rossel, 2011); and (iv) potassium (K), thorium
(Th) and uranium (U) from gamma radiometrics, which rep-
resent mineralogy and parent material (Minty et al., 2009).
For the modelling, we used the machine learning method Cu-
bist (Quinlan, 1992). Briefly, Cubist uses a recursive parti-
tioning of the predictor variable space and divides the data
into subsets that are more similar with respect to the pre-
dictors in the data (Quinlan, 1992). A series of rules derived
from if–then conditions define the partitions, and each condi-
tion is based on a threshold for one or more of the predictors.
When the conditions in each rule are satisfied, piecewise lin-
ear least squares regressions are used to model the response
within each partition. To build precise and stable models, we
tested combinations of committees (1, 2, 5, 10 and 20) and
the number of neighbours (0, 2, 5 and 9) using 10-repeated
cross-validation (Hastie et al., 2009). We used the minimum
root mean squared error (RMSE) to select the best model. We
then assessed the relative importance of each variable based
on the usage of each variable in the rule conditions and the
models for Cubist.

3 Results

3.1 Effect of different quality of C inputs on soil
organic C

The median stocks of TOC, POC and MAOC in the 0–0.3 m
soil layer, calculated across Australia, are 26.01, 3.43 and
16.10 Mg C ha−1, respectively (Fig. 3). The measured TOC
stocks under natural environments, native grazing, modified
grazing and cropping are 15.45 Mg C ha−1 (interquar-
tile range 11.89–18.11 Mg C ha−1), 24.61 Mg C ha−1

(18.96–34.17), 51.48 Mg C ha−1 (39.01–74.60) and
35.38 Mg C ha−1 (25.39–43.55), respectively. The POC
and MAOC fractions consist of 11 % and 68 % of the mea-
sured TOC stocks under natural environments (including
deserts), 11 % and 67 % under native grazing, 18 % and 52 %
under modified grazing, and 16 % and 53 % under cropping.
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With each of the DPM / RPM ratios tested, the model
simulated the measured TOC, POC and MAOC stocks at
equilibrium (Supplement Table S1), but the amount of an-
nual C input needed to maintain the soil organic C stocks
was sensitive to the varying quality of incoming plant ma-
terial. The C inputs increased from 1.47 to 1.83 Mg C ha−1

when the DPM / RPM ratio increased from 0.67 (low de-
composability) to 2.23 (high decomposability). With those
changes, the rate of C inputs into DPM rose from 0.59
to 1.26 Mg C ha−1 yr−1, while the rate into RPM decreased
from 0.88 to 0.57 Mg C ha−1 yr−1. The addition of biomass C
with different qualities affected the levels of POC and MAOC
at equilibrium (Supplement Table S1).

With an optimised DPM / RPM ratio at each location,
the model was able to explain 97 %–98 % of the measured
variation in TOC at sites under native grazing, modified
grazing and cropping. RMSE values ranged from 2.45 to
3.55 Mg C ha−1 (Fig. 3). At locations under natural environ-
ments, the model explained only 65 % of the variation in
TOC but with a similar RMSE of 3.22 Mg C ha−1. The model
could explain less of the variation in POC (55 %–89 %) com-
pared to TOC and MAOC. Also, the model did not perform as
well for POC in the soils under cropping. Across Australia,
the most frequent DPM / RPM ratio was 2.23 (1773 sites),
followed by the value 0.67 (for 829 sites) and 0.96 (415 sites)
(Fig. 3).

The simulated median and total TOC, POC and MAOC
stocks for each land-use class and overall were similar to the
measured data (Table 1).

3.2 Effect of changing C inputs on soil organic C

The TOC, POC and MAOC stocks at equilibrium were
positively related to the level of C inputs (Fig. 4). An-
nual C inputs to the soil under natural environments, na-
tive grazing, modified grazing and cropping were 2.38,
0.77, 1.86 and 1.60 Mg C ha−1, respectively. Therefore, the
model estimated the largest amount of C inputs required to
maintain soil organic C under natural environments com-
pared to the other land uses. The corresponding interquar-
tile range was 1.11–3.57 Mg C ha−1 for natural environ-
ments. In comparison, there was a wider range of C inputs
for native grazing (0.57–1.13 Mg C ha−1), modified grazing
(1.37–3.01 Mg C ha−1) and cropping (1.20–2.18 Mg C ha−1)
(Fig. 4). For the agricultural soils, clay affected the relation-
ship between soil organic C stocks and C inputs as soil with
more clay (predominantly in eastern Australia) could hold
more organic C (Fig. 4). Under grazing and cropping land
uses, the response of MAOC and TOC to increasing C inputs
appears to depend on clay content. This pattern was not evi-
dent for POC as this pool is not directly associated with clay
in the model.

The model explained 78 %, 80 % and 50 % of the variation
in TOC, MAOC, and POC by increasing C input under crop-
ping (Fig. 4). The relationship was poorer under native and

modified grazing (r2
= 0.54–0.69) (Fig. 4). There was a rel-

atively weak and divergent relationship between soil organic
C stocks and C inputs to the soil under natural environments
(r2
= 0.35–0.40), mostly due to differences in precipitation.

We found that soil organic C was more responsive to C in-
puts at the sites with less annual precipitation (approximately
170 mm).

After 100-year simulation, the TOC, POC and MAOC
stocks (at or near a new equilibrium) responded linearly to
changing soil C inputs from the baseline (Fig. 5a). The me-
dian changes in POC and MAOC over the last 11 years of
simulation (Fig. 5b) show that, with increasing C inputs, the
soils under native grazing, modified grazing and cropping,
respectively, were the most potentially vulnerable to C loss
(Viscarra Rossel et al., 2019) because in these soils there was
a larger proportional increase in POC relative to MAOC. Soil
under natural environments was the least vulnerable to C loss
because of the smaller increase in POC relative to MAOC.

With an annual increase of 1 Mg C ha−1 in C inputs from
the baseline and under current climatic conditions, soils
under natural environments can potentially increase TOC
stocks by 3.52 Mg C ha−1. In this case, the stocks of POC
and MAOC increased by 0.92 and 2.48 Mg C ha−1, respec-
tively. Soils under the other land use were more sensitive
to increasing C inputs, when added to soil with less in-
tensive management. Under native grazing, TOC, POC and
MAOC stocks changed by 15.57, 5.49 and 9.18 Mg C ha−1,
respectively, and at the same rate as the C inputs in the sim-
ulation. Under modified grazing, TOC stocks changed by
14.21 Mg C ha−1, and POC and MAOC accounted for 5.34
and 8.12 Mg C ha−1 of the change, respectively (Fig. 5b).
Changes in TOC, POC and MAOC stocks under cropping
were 13.58, 4.69 and 8.35 Mg C ha−1, respectively. When C
inputs decreased, POC and MAOC were depleted in native
grazing systems at a rate about 2 times greater than the other
land-use types.

3.3 Effect of changing climate on soil organic C

By the end of the 100-year simulation, the median TOC
stocks under natural environments decreased by 3.1–
4.5 Mg C ha−1 with temperature increases of 1.5–5 ◦C, re-
spectively (Fig. 6). This loss corresponds to around 21 %–
32 % of the baseline stocks, and the proportion of POC and
MAOC lost was similar (Table 2).

Soil under cropping lost between 1.0 and 2.7 Mg C ha−1

with temperature increases of 1.5–5 ◦C, respectively (Fig. 6),
corresponding to around 2.5 %–6.8 % of the baseline stocks
(Table 2). With temperature increases of 1.5 and 2 ◦C soil
under cropping lost more MAOC than POC; however, with
a 5 ◦C change, the loss of POC was greater than the loss
of MAOC (Table 2). The loss of TOC under native grazing
ranged from 0.4 to 0.7 Mg C ha−1 with temperature increases
of 1.5–5 ◦C, respectively (Fig. 6). The loss of POC was larger
than the loss of MAOC with temperature increases of 1.5 and
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Figure 3. Simulation of equilibrium soil organic C levels after optimisation, based on its sensitivity to the changes in the allocation of
incoming plant and manure C into the decomposable plant material (DPM) and resistant plant material (RPM) components (n= 4043). The
map shows the geographic distribution of DPM / RPM values, where high values correspond to faster decomposition.

2 ◦C; however, with a temperature increase of 5 ◦C the loss
of both POC and MAOC was large and proportionally similar
(Table 2). Under modified grazing, warming by 1.5 ◦C pro-
duced an increase in TOC of 0.2 Mg C ha−1, but with further
increases of 2 and 5 ◦C, the median loss of TOC was 0.28
and 3.4 Mg C ha−1, respectively. The proportion of POC lost
was greater than the loss of MAOC (Table 2).

3.4 The controls on the simulated soil organic C change

Climatic variables, particularly temperature and potential
evaporation, controlled the changes in TOC, POC and
MAOC (Fig. 7). Clay content had a dominant effect on the
changes in MAOC because in Roth C clay determines the ra-
tio of CO2 released to MAOC formed during decomposition.
Total N, the C : N ratio and pH were important controls for
the changes in POC (Fig. 7) and might be related to a capac-

ity of the soil to form POC. Cropping affected the changes in
POC, possibly because of the crop-specific distribution of C
inputs. The controls on POC were similar to those on TOC
because their changes were proportional. The land use in nat-
ural environments affected the changes in MAOC (Fig. 7),
suggesting that we need a greater understanding of the po-
tential for C sequestration in low clay content soils in hot
and dry climates.

4 Discussion

4.1 Current estimates for soil organic C stocks in
Australia

We used Roth C because it requires few parameters, it ini-
tialises its main pools with measured C fractions, it was
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Table 1. The simulated stocks of total, particulate and mineral-associated organic C (TOC, POC and MAOC) under different land uses and
in Australia. The total stocks of soil organic C were calculated from the median with the uncertainties expressed as an approximate 95 %
confidence interval (CI).

Land use Median First quantile Third quantile Total Lower 95 % CI Upper 95 % CI
(Mg ha−1) (Mg ha−1) (Mg ha−1) (Gt) (Gt) (Gt)

Cropping TOC 40.01 29.71 46.43 1.18 0.87 1.15
(n= 1182) POC 7.68 6.30 9.23 0.22 0.18 0.27

MAOC 21.91 16.51 25.43 0.64 0.48 0.74

Grazing modified TOC 51.84 42.77 67.58 3.74 3.02 4.77
(n= 2008) POC 9.93 7.86 13.04 0.70 0.55 0.92

MAOC 27.29 22.91 35.34 1.93 1.62 2.50

Grazing native TOC 23.15 18.00 32.34 8.12 6.19 11.12
(n= 777) POC 3.71 2.65 5.60 1.28 0.91 1.93

MAOC 13.59 10.83 18.14 4.67 3.73 6.24

Natural environments TOC 12.40 10.21 17.54 2.12 1.54 2.64
(n= 76) POC 2.09 1.63 3.04 0.31 0.25 0.46

MAOC 7.29 5.53 10.27 1.10 0.83 1.55

Australia∗ TOC 25.45 19.37 34.94 19.82 14.63 24.52
(n= 4043) POC 4.46 3.23 6.44 3.43 2.24 4.64

MAOC 14.22 10.75 19.10 10.91 8.37 12.52

∗ The Australian-wide estimates were the area-weighted averages of the medians for the four land-use classes. The areas of cropping, modified grazing, native grazing
and natural environments (including deserts) occupy 3.8 %, 9.2 %, 44.8 % and 19.6 % of Australia (total area 7 673 138 km2), respectively.

adjusted to suit Australian conditions (Janik et al., 2002;
Skjemstad et al., 2004) and it has been shown to perform
well over a wide range of conditions worldwide (Farina et al.,
2013; Poeplau and Don, 2015). Further, the model is in Aus-
tralia’s National Greenhouse Gas Inventory System and the
ERF, and so we thought it useful to comply. The climatic and
soil property inputs needed to run Roth C are readily avail-
able from publicly available datasets (see Methods) or are
relatively easily measured, for instance, with proximal sen-
sors (England and Viscarra Rossel, 2018).

The main soil C pools of Roth C can be initialised with
measured C fractions (POC, MAOC, ROC); there is no
need for spin-up simulations (i.e. simulations until the model
reaches equilibrium), making it possible to run the model
site-specifically at any location in Australia. Further, using
measured C fractions in the model allows for the assignment
of the primary pool structure, and the measurements serve
as internal verification of the model. In our case, we empiri-
cally assessed how well the baseline simulations matched the
model’s corresponding dynamic pools, which suggest that
the model is able to represent Australian soils. Such data-
driven model initialisation helps with the selection and site-
specific estimation of “unknown” model parameters, such as
the amount and quality of C inputs, which is important for
a more consistent calibration of the model (Aber, 1997; Sei-
del et al., 2018). Our simulations successfully optimised both
the amount and the quality of C inputs to maintain the current
baseline soil organic C stocks.

The model explained 73 %–98 % of the variation in the
size of the C pools in soils that are under cropping and 86 %–
98 % of that under grazing, while the simulation under nat-
ural environments in semi-arid and arid climates needs im-
proving. Together with the relatively large C inputs, required
to maintain baseline TOC (9.61 to 17.05 Mg C ha−1), this
poor performance suggests that the model did not represent
well the complex decomposition processes described by the
(hot and dry) climate and soil under natural environments.
We hope to address this in subsequent research because soil
C in semi-arid and arid climates might represent a crucial C
sink in Australia and other similar regions of the world (Fa-
rina et al., 2013).

The simulated baseline estimate of the total TOC stock in
Australia is 19.52 Gt, which is less than the 24.97 Gt estimate
of Viscarra Rossel et al. (2014), as soils under land uses that
contain more carbon, e.g. forests, were not included in this
study. Our estimates for soil under natural environments and
native grazing are 1.96 Gt (with 95 % confidence intervals
of 1.65–2.30 Gt) and 8.02 Gt TOC (7.90–8.54 Gt), respec-
tively. The soil under native grazing has the largest organic
C stocks compared to the other land uses. The contribution
of native grazing to the national soil organic C budget is con-
siderable due to the large extent of land that it covers. This
estimate was well within the confidence intervals derived by
Viscarra Rossel et al. (2014), although slightly larger. Esti-
mates of the total TOC stocks for soils under modified graz-
ing and cropping are 3.79 Gt (with 95 % confidence inter-
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Figure 4. Changes in total, particulate and mineral-associated organic C (TOC, POC and MAOC) with C inputs by land use (n= 4043).

vals 3.72–3.86 Gt) and 1.18 Gt (1.16–1.20 Gt), respectively.
These estimates were also somewhat larger than those of Vis-
carra Rossel et al. (2014). Our estimates of the total POC and
MAOC stocks across all four land uses are 3.43 and 10.91 Gt,
which are smaller than the 7.8 and 27.3 Gt, respectively, esti-
mated and derived by Viscarra Rossel et al. (2019). However,
our estimates are within the range of their confidence inter-
vals. A reason for the differences between our estimates and
those of Viscarra Rossel et al. (2014, 2019) might be that
our estimates from the simulations are based on a relatively
sparse sample (Fig. 1), while theirs are from a complete enu-
meration of Australia with spatial machine learning models.
Nevertheless, the results from our simulations suggest that
the Roth C model can explain the soil processes under differ-
ent land uses tested, which are important for estimating the
baseline total stocks of soil organic C and its composition.

4.2 Possible future change in the organic C stocks of
Australian soils

There are few quantitative assessments of soil C dynamics
in Australia. Primarily they are for cropping regions (Luo
et al., 2014; Lam et al., 2013; Wang et al., 2016), some
present local case studies (Hoyle et al., 2013), and some
report estimates that are uncertain because of the lack of
comprehensive surveys and scarcity in data (Gifford, 2010).
Here, we simulated soil organic C at 4043 sites across Aus-
tralia to estimate changes in C stocks from a range of plau-
sible changes in C inputs to the soil. With an annual in-
crease of 1 Mg C ha−1 in C inputs, the model estimated the
largest potential soil C increase in soil under native graz-
ing (12.07–17.82 Mg C ha−1), followed by modified grazing
(12.38–16.03 Mg C ha−1). The potential increase in soils un-
der cropping was smaller (12.19–15.80 Mg C ha−1), possibly
due to the effect of soil disturbances and cultivation on de-
composition. However, the difference between grazing and

Biogeosciences, 18, 5185–5202, 2021 https://doi.org/10.5194/bg-18-5185-2021



J. Lee et al.: Simulating soil C dynamics in Australia 5195

Figure 5. (a) The 100-year simulations showing the changes in total organic C (TOC) in the topsoil (0–0.3 m) following changes in C
input (n= 4043). At each site, baseline C input was multiplied by the factor 0, 0.25, 0.5, 0.75, 1.25, 1.5 and 2 to derive different C input
levels. (b) Median changes in TOC and its fractions, consisting of the particulate and mineral-associated organic C (POC and MAOC),
calculated over the last 11 years of the simulation (at the new or near new equilibrium).

Table 2. After 100-year simulations, median change (%) in the stocks of total, particulate and mineral-associated organic C (TOC, POC and
MAOC) from baseline as a result of climate change, represented by temperature increases of 1.5, 2 and 5 ◦C.

Temperature Cropping Grazing Grazing Natural
increase (◦C) modified native environments

1.5 −2.54 0.38 −1.67 −21.87
TOC 2 −3.44 −0.53 −2.13 −21.66

5 −6.75 −6.46 −3.12 −31.65

1.5 −0.06 −3.78 −2.62 −19.51
POC 2 −0.34 −3.94 −3.26 −22.03

5 −11.29 −10.32 −5.74 −36.35

1.5 −1.98 −0.42 −1.33 −18.28
MAOC 2 −2.69 −1.28 −1.78 −19.94

5 −5.79 −7.50 −6.22 −32.79

cropping is small as the effects of climate and soil texture on
organic matter and its decomposition are likely to be similar
over the large areas that these land uses occupy. Soils in nat-
ural environments had the smallest potential to accumulate C
(3.15–4.09 Mg C ha−1), because they occur over large areas
with semi-arid to arid climates characterised by low precipi-

tation, generally below 500 mm yr−1, and high temperatures
up to 50 ◦C (ABS, 2016).

The simulations that account for climate change suggest
that Australian soils will become more vulnerable to C loss.
The changes in climate also mean that opportunities for man-
aging TOC (and C composition) will be affected by the feed-
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Figure 6. After 100-year simulations, differences in total organic C stock under a warming climate, showing median values and the 10th and
90th quantiles. A changing climate is represented by adding 1.5, 2 and 5 ◦C to the baseline temperatures (1991–2010) and then repeating
over the 100-year period.

Figure 7. Importance of the environmental variables that contribute
to potential changes in total, particulate and mineral-associated C
organic C (TOC, POC and MAOC) by changing C inputs. Climatic
variables, i.e. mean annual temperature (MAT), mean annual total
precipitation (MAP) and potential evapotranspiration (PET), are av-
eraged over a period of 1991–2010. CEC is the cation exchange ca-
pacity of a soil. The importance of each soil variable was assessed
based on the usage of each individual variable in the rule conditions
and the model for Cubist.

backs on plant productivity and hence C inputs (Pareek et al.,
2020; Paustian et al., 2019). Compared to the other land uses,
soil that is under natural environments appeared to be the
most sensitive to climate change, showing a potential de-
crease of 3.1–4.5 Mg C ha−1 (or 22 %–32 % of their stock)
with temperature increases of 1.5–5 ◦C. Although these soils
hold the smallest median C stocks, they hold a relatively
large total stock (e.g. compared to cropping soils) because
natural environments cover a large extent, and a larger pro-
portion of the C is in the more stable, MAOC fraction (Ta-
ble 1). The model predicted that these soils need a large
amount of C inputs to maintain current C stocks; however,
in these areas primary productivity is small and will be fur-
ther limited by the predicted warmer and drier future cli-
mates (Haverd et al., 2016). Our results also show that soil
that is under native grazing, which requires less C inputs to
maintain stocks than soil that is under natural environments,
has less sensitivity to the same temperature increases, with
decreases in TOC of 0.4–0.7 Mg C ha−1 or 1.7 %–3.1 % of
their total stock. In more managed systems, such as crop-
ping and modified grazing, the potential loss of organic C
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in soil due to climate change will, to some extent, be com-
pensated for by management and additional C inputs into
the soil. For example, our results indicate that in cropping
systems with annual additions of 1 Mg C ha−1 more than the
baseline annual C input, temperature increases of 1.5, 2.0 and
5 ◦C will offset around 6 %, 9 % and 20 %, respectively, of in-
creased TOC stocks. We note the need to understand better
the mechanisms of C stabilisation and its interaction with cli-
mate change and to develop management strategies that store
new C sequestered in these soils.

4.3 Carbon inputs

We did not use net primary productivity (NPP) as a proxy
for C inputs to the soil. Although large-scale estimates of
NPP might be a good proxy for the C inputs in natural en-
vironments, they would be inadequate for managed systems
(Haverd et al., 2013). To derive estimates of NPP for man-
aged land uses, such as croplands, one needs fine-spatial-
resolution land cover data with crop-specific information
(Li et al., 2014; Turner et al., 2006). These are not read-
ily available continentally. Large-scale (global, continental
or regional) estimates of NPP, such as those available from
coarser-resolution remote sensing, would not be suitable for
agricultural environments, also because depending on the
method used to derive NPP the estimates would be largely
uncertain (Roxburgh et al., 2005; Ciais et al., 2010). There-
fore, using NPP as an estimate of C inputs for all four land
uses would have made our simulations more uncertain. We
thought it important to maintain a consistent approach for de-
riving the C inputs, so we used a wide but plausible range of
values to represent the C inputs across the whole of Australia.
The range of C inputs that we used is representative of val-
ues that might be expected from management practices that
enhance rates of primary production and C input to the soil,
including manure addition (Lal, 2016; Paustian et al., 2019).
Our results suggest that the baseline rate of C inputs is site-
specific, and managing its rate locally is needed to avoid soil
C loss from land-use change. Importantly, these estimates of
C inputs are useful to locate soils where C capture is possi-
ble under limited availability of water resources and nutrients
(Baldock et al., 2012).

The long-term changes in organic C are primarily deter-
mined by the C inputs into the soil, and the sensitivity of the
change can be affected by local conditions. The results from
the empirical modelling suggest that simulations might im-
prove if we can modify the environmental effects on decom-
position separately for each of the pools. For example, clay
content did not importantly affect the changes in POC, but
it did affect the changes in MAOC, otherwise known as the
mineral-associated carbon (MAOC) (Lavallee et al., 2020).
In contrast, other studies have shown that clay has a direct
effect on both C inputs and the C pools in Australian soils
(Krull et al., 2003; Luo et al., 2017). Of course, this might
be due to the inability of the model to simulate textural con-

trols on POC. Total N and the C : N ratio contribute more
to the changes in POC than in MAOC. POC appears to be
also affected by pH and more under cropping. These results
demonstrate the difficulty that Roth C has in simulating the
more labile POC dynamics and the need to represent such ad-
ditional environmental factors to better explain TOC change.

4.4 Simulating soil C dynamics using a standardise
approach

There is a functional disconnect between measurements, data
and biogeochemical models (Blankinship et al., 2018), but
by simulating under a framework, like we did here, we can
bridge that disconnect. A framework provides a standardised
and consistent approach for organising and processing input
datasets from different sources, to facilitate calibration, veri-
fication, estimation and prediction at an appropriate scale and
resolution, depending on the study. The input data may orig-
inate from field or laboratory measurements, remote sens-
ing, digital soil maps or other data from various sources. Us-
ing a standardised approach, soil C simulations can be more
versatile. They can be performed on points, areas or pixels,
even when few or no site-specific data are available. In the
latter case, by using fine-spatial-resolution information (Vis-
carra Rossel et al., 2014, 2015, 2019), or like we have shown
here, one can use measurements together with publicly avail-
able continental-scale datasets and process them consistently
for the simulations. When site-specific data are available,
then under the framework they are processed appropriately
for the local simulations, as we have shown in Lee and Vis-
carra Rossel (2020).

Simulating soil organic C in a standardised manner also
facilitates consistent pre-processing, quality checks and ex-
plicit definition of the simulation unit. This is important be-
cause often datasets have different formats and resolutions,
which must be standardised and harmonised before running
the simulation (Batjes et al., 2020). Datasets may need to be
aggregated or disaggregated over space and time, depending
on the data and the need. For example, if the need is to run the
simulations over a large-scale and over grids, finer-resolution
data, e.g. soil property data, will require aggregation to match
the coarser resolution of the simulation unit. Similarly, re-
classification of categorical data, e.g. land-use data, may be
performed, like we have done here, to set the spatial extent of
the simulations. We used the model Roth C; however, by us-
ing our approach, one could accommodate other soil C mod-
els, with only small changes to the workflow (Fig. 1). This
versatility is essential for extending our theoretical under-
standing of C cycling and its response to human-induced and
environmental change at appropriate scales (Grunwald et al.,
2011; Metting et al., 2001). Of course, with other multi-pool
C models, it will be important to explore further the initialisa-
tion requirements and the baseline state for the simulations.
The reason is that each soil C pool could be at a different
state. Other models may also drive decomposition based on
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different assumptions, e.g. soil enzyme kinetics or microbial
growth (Smith et al., 2020).

4.5 Future needs

Plant biomass production and subsequent C inputs to the soil
are critical determinants of the quantity of organic matter in
soil C models. The simulations that we presented estimated
the potential of soil C sequestration in response to changing
C inputs and climate under the main land uses in Australia.
However, we will need data on plant growth properties, sea-
sonal biomass data, and residue and grazing management to
better represent management practices under these land uses.
Without such datasets, it is difficult to verify the balance be-
tween C inputs and the stocks and composition of soil or-
ganic C under different land-use and management combina-
tions, except for a few cropping systems (Wang et al., 2016).
For the soils under native grazing, we need new research on
the specific growing conditions of plants (e.g. nutrient avail-
ability) and how they affect the amount and timing of C in-
puts.

The machine learning could identify some other factors
that contribute to the changes in soil organic C and determine
their relative importance. Although there is no direct mech-
anistic understanding gained from those analyses, some of
those variables are important predictors of soil C change, and
they might need accounting in future model development. In
practice, statistical modelling can be incorporated in the sim-
ulations to help identify the balance of C flows between the
soil, plant and atmosphere at the scale of interest. However,
research to combine mechanistic and statistical modelling is
still at an early stage, and more research is needed to connect
data with models (O’Rourke et al., 2015; Vereecken et al.,
2016), in a consistent manner and across scales, for example,
Viscarra Rossel et al. (2019). With new measurements and
subsequently growing datasets, we expect to identify new
processes and controls from statistical modelling and to fur-
ther account for these in a standardised modelling approach.

5 Conclusions

Our results show that the site-specific initialisation of the C
pools with measurements of the C fractions (POC, MAOC,
ROC) is essential for accurately representing baseline soil
organic C stocks and composition under different land uses.
The source and scale of these C data and other inputs
drive the overall simulation process of soil C dynamics.
We showed that, with a site-specific optimisation of the
DPM / RPM ratio, the model could explain 97 %–98 % of
the variation in TOC under native grazing, modified graz-
ing and cropping, respectively, and 65 % under natural en-
vironments. The 100-year simulations showed that, with an
annual increase of 1 Mg C ha−1, and under constant climate,
the potential for C sequestration in Australian soils is small-

est in soils under natural environments, larger under crop-
ping and modified grazing, and the greatest in the soils un-
der native grazing. The simulations also show that the ef-
fects of climate change on C sequestration will be largest
in soils under natural environments and smallest in soils un-
der native grazing. Our simulations of soil organic C across
Australia with Roth C were performed under a standard-
ised approach that establishes a much-needed connection be-
tween measurements, datasets and models. It enabled consis-
tent processing of measurements and datasets from different
sources, as well as standardisation and configuration of the
model for calibration, verification, estimation and prediction
under global changes.
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