

Supplement of

Spatial and temporal variability of $p\text{CO}_2$ and CO_2 emissions from the Dong River in south China

Boyi Liu et al.

Correspondence to: Lishan Ran (lsran@hku.hk)

The copyright of individual parts of the supplement might differ from the article licence.

Contents of file

Text S1

Table S1–S2

Figure S1–S4

5

Introduction

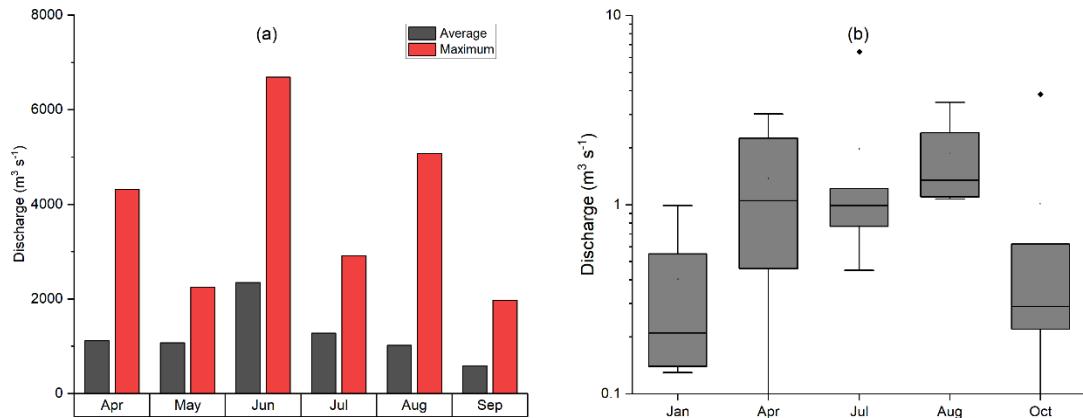
This document contains: Text S1, Comparative analysis of the syringe and bottle headspace method; Table S1, Seasonal variation in stream width for streams from first to seventh order; Table S2, Comparison of measured $p\text{CO}_2$ using two headspace extraction methods; Figure S1 (a) Wet season discharge in Boluo

10 station, based on data provided by the Hydrological Bureau of Guangdong Province. (b) discharge in first order streams; Figure S2 Measured $p\text{CO}_2$ in headspace after shaking for 1-5 min; Figure S3, Forest, cropland, and urban cover respectively as a percentage of catchment area. The box mid-lines represent medians; the interquartile range (IQR) is represented by top and bottom of the box, respectively; whiskers indicate the range of 1.5 IQR; the white square symbols represent means, and the other symbols represent

15 Forest, cropland, and urban cover respectively as a percentage of catchment area; Figure S4, Forest, cropland, and urban cover respectively as a percentage of the total area of forest, cropland and urban.

Text S1 Comparative analysis of the syringe and bottle headspace method

Both large volume bottle and small volume syringe were used in headspace equilibration method (Yoon et al., 2016). In this study, a 625 mL reagent bottle and a 100 ml syringe equilibrator were chosen for headspace extraction to investigate the impact of headspace volume and shaking time on the result of $p\text{CO}_2$ measurement. For the bottle equilibrator, 400 ml of sample water was collected with 225 ml ambient air, while 50 ml of sample water was collected with 50 ml of ambient air for the syringe equilibrator. According to Hope et al. (1995), equilibrium in the headspace could be achieved after 1 min of vigorous shaking when adapting the rapid headspace analysis technique developed by Kling et al. (1991). However, 5–10 min were also used for $p\text{CO}_2$ determination (Abril et al., 2015). Therefore, we measured the $p\text{CO}_2$ value in the headspace after shaking the equilibrator for 1–5 min at the one-minute interval. The average of triple replicates was then calculated for comparative analysis (Table S2). The experiment showed that syringe and bottle equilibrator gave very consistent results. Overall, the average $p\text{CO}_2$ value of syringe headspace was 1.2% larger than that of the bottle headspace, which was less than the 1.5% error of Li-850. However, it could take more time for a large volume equilibrator to achieve equilibrium. The $p\text{CO}_2$ results of the small volume syringe headspace are not significantly different after more than two minutes of shaking, while it took the large volume bottle equilibrator three minutes to achieve a similar $p\text{CO}_2$ value. Therefore, for rapid field measurement of surface water $p\text{CO}_2$, shaking for two minutes when using syringe headspace and three minutes when using the bottle headspace could yield reliable test results (Figure S3). In this study, we vigorously shake the bottle equilibrator for at least 1 minute (usually 1–3 minutes), which might cause a 1–5% underestimate of the $p\text{CO}_2$ result. Furthermore, Koschorreck et al. (2021) found that reducing the headspace ratio could significantly increase the accuracy of the headspace method. Therefore, a large volume equilibrator might be more suitable for the field measurement since a low headspace ratio could be easier to achieve.


Table S1 Seasonal variation in stream width for streams from first to seventh order.

Stream	Stream	Stream width (m)								
		size	order	January	April	July	August	October	Wet season	Dry season
<i>small</i>				13.5 ± 9.9	16.9 ± 10.1	17.1 ± 10.6	15.1 ± 9.7	14.5 ± 10.9	16.3 ± 10.0	14.0 ± 10.3
	1			2.9 ± 1.5	4.7 ± 2.7	6.0 ± 2.1	5.6 ± 2.7	4.7 ± 2.0	5.4 ± 2.4	3.8 ± 1.9
	2			8.3 ± 5.2	12.7 ± 7.8	12.5 ± 7.2	10.1 ± 2.8	8.4 ± 3.2	11.8 ± 6.1	8.4 ± 4.1
	3			21.1 ± 7.4	24.7 ± 5.5	24.6 ± 8.5	22.1 ± 8.8	22.2 ± 10.3	23.8 ± 7.6	21.7 ± 8.8
<i>large</i>				173.9 ± 161.7	184.4 ± 164.0	187.2 ± 158.5	181.1 ± 162.4	175.1 ± 165.1	184.2 ± 159.1	174.5 ± 161.4
	4			67.6 ± 38.5	73.0 ± 47.1	87.0 ± 54.7	82.3 ± 64.4	66.2 ± 54.3	80.7 ± 54.2	66.9 ± 45.8
	5			164.3 ± 46.4	187.7 ± 69.6	166.6 ± 37.6	157.0 ± 54.9	164.6 ± 45.4	170.4 ± 53.2	164.5 ± 43.3
	6			226.5 ± 23.3	235.5 ± 37.5	241.3 ± 45.7	231.5 ± 44.5	243.9 ± 38.4	236.1 ± 33.4	235.2 ± 27.6
	7			425.2 ± 207.3	433.4 ± 200.0	436.5 ± 192.3	433.3 ± 196.8	426.2 ± 206.8	434.4 ± 177.6	425.7 ± 191.7

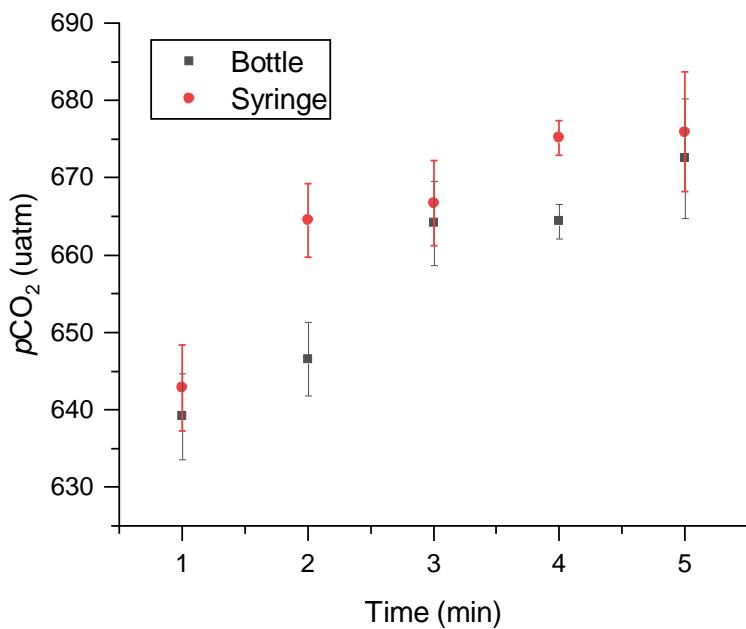

45

Table S2 Comparison of measured *p*CO₂ using two headspace extraction methods.

Equilibrator		Shaking time				
		1 min	2 min	3 min	4 min	5 min
Bottle	Test 1	637.9	642.3	669.1	664.6	673.1
	Test 2	645.3	651.7	658.2	666.5	680.0
	Test 3	634.4	645.8	665.2	662.1	664.6
	Average	639.2	646.6	664.2	664.4	672.6
Syringe	Test 1	640.6	662.7	664.9	681.5	681.5
	Test 2	639.5	670.4	670.4	674.8	680.3
	Test 3	648.4	660.5	664.9	669.3	666.0
	Average	642.8	664.5	666.7	675.2	675.9

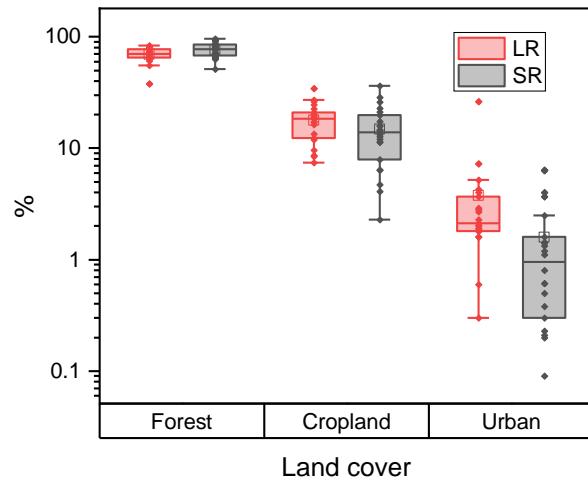
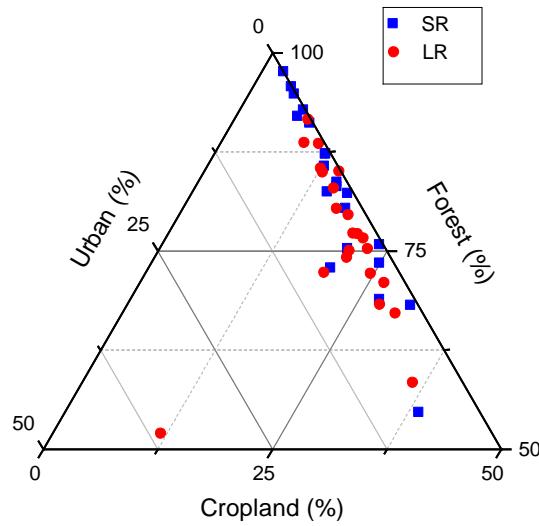


Figure S1 (a) Wet season discharge in Boluo station, based on data provided by the Hydrological Bureau of Guangdong Province. (b) discharge in first order streams.



50

Figure S2 Measured $p\text{CO}_2$ in headspace after shaking for 1-5 min.

55 **Figure S3** Forest, cropland, and urban cover respectively as a percentage of the catchment area. The box mid-lines represent medians; the interquartile range (IQR) is represented by top and bottom of the box, respectively; whiskers indicate the range of 1.5 IQR; the white square symbols represent means, and the other symbols represent Forest, cropland, and urban cover respectively as a percentage of catchment area.

60 **Figure S4** Forest, cropland, and urban cover respectively as a percentage of the total area of forest, cropland, and urban.

References

65 Abril, G., Bouillon, S., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Ochieng Omengo, F., Geeraert, N., Deirmendjian, L., Polsenaeere, P., and Borges, A. V.: Technical Note: Large overestimation of $p\text{CO}_2$ calculated from pH and alkalinity in acidic, organic-rich freshwaters, Biogeosciences, 12, 67-78, <https://doi.org/10.5194/bg-12-67-201510.5194>, 2015.

70 Hope, D., Dawson, J. J. C., Cresser, M. S., and Billett, M. F.: A method for measuring free CO_2 in upland streamwater using headspace analysis, Journal of Hydrology, 166, 1-14, [https://doi.org/10.1016/0022-1694\(94\)02628-O](https://doi.org/10.1016/0022-1694(94)02628-O), 1995.

Kling, G. W., Kipphut, G. W., and Miller, M. C.: Arctic Lakes and Streams as Gas Conduits to the Atmosphere: Implications for Tundra Carbon Budgets, Science, 251, 75 298-301, <https://doi.org/10.1126/science.251.4991.298>, 1991.

75 Koschorreck, M., Prairie, Y. T., Kim, J., and Marcé, R.: CO_2 is not like CH_4 – limits of and corrections to the headspace method to analyse $p\text{CO}_2$ in fresh water, Biogeosciences, 18, 1619-1627, <https://doi.org/10.5194/bg-18-1619-2021>, 2021.

80 Yoon, T. K., Jin, H., Oh, N. H., and Park, J. H.: Technical note: Assessing gas equilibration systems for continuous $p\text{CO}_2$ measurements in inland waters, Biogeosciences, 13, 3915-3930, <https://doi.org/10.5194/bg-13-3915-2016>, 2016.