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Abstract. Waters impounded behind dams (i.e., reservoirs)
are important sources of greenhouses gases (GHGs), espe-
cially methane (CH4), but emission estimates are not well
constrained due to high spatial and temporal variability, lim-
itations in monitoring methods to characterize hot spot and
hot moment emissions, and the limited number of stud-
ies that investigate diurnal, seasonal, and interannual pat-
terns in emissions. In this study, we investigate the tempo-
ral patterns and biophysical drivers of CH4 emissions from
Acton Lake, a small eutrophic reservoir, using a combina-
tion of methods: eddy covariance monitoring, continuous
warm-season ebullition measurements, spatial emission sur-
veys, and measurements of key drivers of CH4 production
and emission. We used an artificial neural network to gap
fill the eddy covariance time series and to explore the rel-
ative importance of biophysical drivers on the interannual
timescale. We combined spatial and temporal monitoring in-
formation to estimate annual whole-reservoir emissions. Ac-
ton Lake had cumulative areal emission rates of 45.6± 8.3
and 51.4± 4.3 g CH4 m−2 in 2017 and 2018, respectively, or
109± 14 and 123± 10 Mg CH4 in 2017 and 2018 across the
whole 2.4 km2 area of the lake. The main difference between
years was a period of elevated emissions lasting less than 2

weeks in the spring of 2018, which contributed 17 % of the
annual emissions in the shallow region of the reservoir. The
spring burst coincided with a phytoplankton bloom, which
was likely driven by favorable precipitation and temperature
conditions in 2018 compared to 2017. Combining spatially
extensive measurements with temporally continuous moni-
toring enabled us to quantify aspects of the spatial and tem-
poral variability in CH4 emission. We found that the rela-
tionships between CH4 emissions and sediment temperature
depended on location within the reservoir, and we observed
a clear spatiotemporal offset in maximum CH4 emissions as
a function of reservoir depth. These findings suggest a strong
spatial pattern in CH4 biogeochemistry within this relatively
small (2.4 km2) reservoir. In addressing the need for a bet-
ter understanding of GHG emissions from reservoirs, there
is a trade-off in intensive measurements of one water body
vs. short-term and/or spatially limited measurements in many
water bodies. The insights from multi-year, continuous, spa-
tially extensive studies like this one can be used to inform
both the study design and emission upscaling from spatially
or temporally limited results, specifically the importance of
trophic status and intra-reservoir variability in assumptions
about upscaling CH4 emissions.
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1 Introduction

Reservoirs are a globally important source of methane (CH4)
and other greenhouse gases (GHGs) to the atmosphere, with
recent estimates attributing 773 Tg carbon dioxide equivalent
(CO2 e) per year to reservoir surface emissions, nearly 80 %
(607 Tg CO2 e yr−1) as CH4 (Deemer et al., 2016). This is
roughly half the global CH4 burden from rice cultivation,
estimated as 1100–1360 Tg CO2 e yr−1 (Ciais et al., 2013).
The dominance of CH4 in reservoir GHG budgets is due
to the combination of gross CH4 emissions and methane’s
large warming potential relative to CO2. Inland waters (lakes,
rivers, and reservoirs) can be hot spots for the decomposition
of organic matter, and respiration from these waters globally
may offset the terrestrial carbon sink by up to 60 % (Cole
et al., 2007; Ciais et al., 2013). The carbon dynamics of
reservoirs are of special interest for several reasons. Reser-
voirs generally receive more sediment input (hence organic
C) from their watershed than comparable lakes as they tend
to be located lower in the landscape and have a larger ratio
of catchment area to surface area (Hayes et al., 2017). Reser-
voirs also tend to drain watersheds with more agricultural or
urban land use than the natural lake watersheds (Thornton et
al., 1990). The distribution of lakes and reservoirs across the
United States is such that in many parts of the country total
lentic surface area is dominated by reservoirs. Furthermore,
emissions from reservoirs are considered anthropogenic and
thus should be included in national GHG emission invento-
ries reported to the United Nations (Lovelock et al., 2019).

Emissions of GHGs from reservoirs are highly variable in
space and time, making reservoir GHG budgets difficult to
constrain. This is especially true for CH4, the production and
emission pathways of which are highly dynamic. One key
production pathway of CH4 in water bodies is methanogen-
esis in anoxic sediment. Some of this CH4 dissolves into the
water column where it may be oxidized into CO2 by methan-
otrophs or may diffuse to the atmosphere. Methane may also
accumulate as bubbles in the sediment until the buoyant force
of the gas bubble overcomes the overlying static pressure.
The rate of this CH4 bubbling, or ebullition, is affected by
several biological and physical factors including carbon sub-
strate availability, sediment temperature, oxygen availability,
turbulence, and overlying pressure (Tuser et al., 2017). Thus,
ebullition is highly variable in space and time (Wik et al.,
2016). Another potentially important source of CH4 is pro-
duction in oxic surface water, considered a “paradox” until
recently (Schmidt and Conrad 1993; Grossart et al., 2011;
Tang et al., 2014, 2016; DelSontro et al., 2018b). The rate of
diffusive flux from surface waters can be highly dynamic as
it depends on the balance between production and emission
(Hartmann et al., 2020).

Although the body of knowledge on CH4 emissions from
inland waters has grown considerably over the past decades,
the high degree of spatial and temporal variability in emis-
sions, coupled with limitations in monitoring methods, mean

that many questions about reservoir emission behavior re-
main. Recent studies have highlighted the importance of
interannual patterns (Room et al., 2014), seasonal patterns
(Yvon-Durocher et al., 2014), diurnal patterns (Podgrajsek
et al., 2014; Deshmukh et al., 2014), sub-daily pulse events
(Zhang et al., 2021), lake-zone spatial patterns (Juutienen
et al., 2009; DelSontro et al., 2011; Maeck et al., 2013;
McClure et al., 2020), and the relative contributions of hot
spots (Wik et al., 2016; Beaulieu et al., 2016), hot mo-
ments (Bastien et al., 2011; Demarty et al., 2011; Jammet
et al., 2015; Beaulieu et al., 2018; Harrison et al., 2018),
and food web dynamics (Bartosiewicz et al., 2021; Grasset et
al., 2018) in accurately characterizing lake and reservoir CH4
emissions. Under-sampling in irregular systems leads to un-
derestimation (Wik et al., 2016). The synthesis by Deemer et
al. (2016) showed that reservoir GHG emission studies using
spatially integrated methods reported higher FCH4 than stud-
ies using survey methods. Despite the need to better capture
the spatiotemporal dynamics of reservoir CH4 fluxes (FCH4 )
and its drivers, most monitoring studies to date have used
survey methods that are often short-term, intermittent, and/or
spatially limited.

Use of micrometeorological methods such as eddy covari-
ance (EC) to monitor reservoir FCH4 can address many of
the monitoring challenges by providing pseudo-continuous,
long-term, spatially integrated flux measurements. A low-
power open-path CH4 sensor capable of making measure-
ments for EC has only been available since circa 2011 (Mc-
Dermitt et al., 2011), and using micrometeorological tech-
niques to measure fluxes over open water (vs. land) can be
difficult due to siting, footprint, and boundary layer turbu-
lence considerations (Kenny et al., 2017; Higgins et al., 2013;
Sahlee et al., 2014). Thus, relatively few studies have used
EC to characterize FCH4 over inland waters (Jammet et al.,
2015, 2017; Deshmukh et al., 2014; Eugster et al., 2011;
Schubert at al., 2012; Podgrajsek et al., 2014a, b; Beaulieu et
al., 2018). Further highlighting the scarcity of studies using
this technique, the recent FLUXNET-CH4 synthesis (Knox
et al., 2019) of long-term (> 1 year) EC monitoring of FCH4

had only two open-water sites among the 60 included. To our
knowledge, this study is only the second to report pseudo-
continuous, multi-year FCH4 results over open water, and the
first to report long-term FCH4 over open water in a temperate
region, for a eutrophic system, and for a reservoir.

This study reports the results of 2 years of pseudo-
continuous (via EC and active funnel traps for ebullition),
spatially extensive (via spatially balanced CH4 emission sur-
veys) measurements of FCH4 and key drivers of CH4 pro-
duction and emission. We organize our findings around two
questions that can inform both the design of future moni-
toring studies and emission upscaling from limited results:
(1) How important can interannual and intra-lake variability
be in a single reservoir, and what causes it? (2) What does
this tell us about how limited monitoring resources can best
be used to constrain reservoir methane emissions?

Biogeosciences, 18, 5291–5311, 2021 https://doi.org/10.5194/bg-18-5291-2021



S. Waldo et al.: Key role of a spring burst 5293

Figure 1. Map of Acton Lake (a), showing the location of multiple monitoring methods: eddy covariance flux tower sites (red circles), active
funnel traps and biweekly chamber measurements (dark blue squares), spatially extensive survey sites (light blue circles), and the weather
station and thermistors operated by Miami University (purple triangles). The lake contour lines represent ∼ 1 m depth increments. Inset
image shows the location of Acton Lake in southwest Ohio. The Google Earth image (b) shows the 80 % cumulative footprint probability
distribution at each eddy covariance flux tower site at 10 % intervals.

2 Methods

2.1 Site description

Acton Lake is a small hypereutrophic reservoir located in
southwest Ohio (39.57◦ N, 84.74◦W; 262 m a.s.l.; Fig. 1a).
The dam was constructed in 1956, and the reservoir and sur-
rounding state park have been managed by the Ohio Depart-
ment of Natural Resources since 1957. The reservoir’s sur-
face area is 2.4 km2, it has a maximum depth of ∼ 8 m, and
the area near the dam undergoes thermal stratification in the
summer. Although Acton Lake is immediately surrounded by
a forested state park, land use in its watershed is> 80 % agri-
cultural, with the majority used for intensive row cropping
(Renwick et al., 2018). We used four main methods to mon-
itor CH4 fluxes (FCH4 ) from Acton Lake during 2017 and
2018: (1) the EC technique, (2) continuous ebullition mon-
itoring with active funnel traps, (3) biweekly chamber mea-
surements of diffusive emissions, and (4) spatially extensive
surveys. The locations of the EC tower sites, active funnel
trap and biweekly chamber measurement sites, and spatially
extensive survey sites are depicted in Fig. 1a; the cumulative
footprint probability distribution of the two flux tower sites
is shown in Fig. 1b. The EC instrumentation was sited in the

shallow region of Acton Lake due to logistical constraints
related to both tower installation and boat traffic in the reser-
voir. How the methods were used in this study is summarized
in Table S1. We used auxiliary meteorological and limnolog-
ical measurements from stream gauging stations, a weather
station, and thermistor string maintained by the Miami Uni-
versity (Renwick et al., 2018; Andersen et al., 2020), the lo-
cations of which are also shown in Fig. 1a.

2.2 Eddy covariance flux measurements

This site is registered as AmeriFlux site US-Act; informa-
tion about the site and the flux data presented in this study
are available online (https://ameriflux.lbl.gov/sites/siteinfo/
US-Act, last access: 28 August 2021). The EC instrumenta-
tion consisted of an ultrasonic anemometer to measure three-
dimensional wind speed and direction (Model 81000, R.M.
Young Company, Traverse City, MI, USA) and open path
infrared gas analyzers (IRGAs) for measuring the number
density of CH4 (LI-7700), as well as CO2 and water vapor
(LI-7500A, LI-COR Biosciences, Lincoln, NE, USA). The
EC data streams were recorded at 10 Hz by a data logger
(LI-7550, LI-COR Biosciences, Lincoln, NE, USA), which
was also equipped with a temperature sensor and a pressure
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transducer. The EC system was deployed from a dock pil-
ing 20 m from the northwestern shore of Acton Lake from 1
February 2017 through 14 April 2018 (“EC S-1” in Fig. 1).
The instruments were brought to the lab for calibration and
maintenance on 15 April 2018, then redeployed on a tower
installed into the reservoir sediment in the northeast corner
of the reservoir on 5 May 2018 (“EC S-2” in Fig. 1). The
system was shut down on 1 December 2018. Images of the
EC system at each deployment location are included in the
Supplement (Fig. S1). In addition to the EC setup, the flux
tower was equipped with a net radiometer (NRLite2, Kipp
and Zonen, Delft, The Netherlands), a cellular modem for re-
mote communication (AirLink, Campbell Scientific, Logan,
UT, USA), and a time-lapse camera (WCT-00125 Timelapse-
Cam, Wingscapes, Calera, AL, USA). The time-lapse cam-
era was used to determine periods of ice cover. The system
was powered by solar panels and a battery bank regulated
via a solar charge controller (SunSaver, Morningstar Corpo-
ration, Newtown, PA, USA). All components of the EC sys-
tem were run on a 12 V system until relocation to the aquatic
tower, when the EC setup (LI-7700, LI-7500A, and LI-7500
infrared gas analyzers; Model 81000 sonic anemometer) was
retrofitted to run on 24 V.

The raw 10 Hz EC data were processed into 30 min fluxes
using the software EddyPro v. 6.2 (LI-COR Biosciences,
Lincoln, NE, USA). We used measurements of water depth
from the Miami University weather station to determine in-
strument height above water surface on an hourly time step,
integrated into the flux processing as a dynamic metadata
file. Additional processing steps followed community stan-
dards and included filtering the 10 Hz CO2 measurements
when CO2 signal strength was < 70, double coordinate ro-
tation, block averaging, time lag compensation using covari-
ance maximization, WPL density correction (Webb et al.,
1980), and correction for high-pass and low-pass filtering ef-
fects (Moncrieff et al., 2004, 1997). The area contributing to
the measured flux was characterized for both sites using the
online two-dimensional flux-footprint prediction tool (Kljun
et al., 2015). We used R for postprocessing, and the code
is available on GitHub (https://github.com/USEPA/actonEC,
last access: 28 August 2021). The 30 min fluxes were re-
jected when the period did not pass the tests for stationar-
ity and developed turbulent conditions (quality control, QC,
level 2 per the integrated scale of Foken et al., 2004). EC S-
1 fluxes were further filtered for periods when winds were
from the shore (between 195◦ and 330◦); at EC S-2 we fil-
tered for periods of low turbulence using a friction velocity
(ustar) threshold of 0.07 m s−1, based on the site-specific re-
lationship between ustar and fluxes of CH4 and CO2 (Aubi-
net et al., 2012). We did not use ustar filtering at EC-S1 be-
cause the temporal coverage was insufficient to determine a
ustar threshold. We define “acceptable” data or “acceptance
rate” as those data meeting the EC QA/QC (quality assur-
ance/quality control) requirements, while “data coverage” in-
cludes non-operability due to power or instrument failures.

The overall EC FCH4 data acceptance rate for the 2-year
monitoring period (26 January 2017–13 November 2018)
was 31.3 % (Fig. S2). In 2017, the data acceptance rate was
lower, 23.4 %, due to power issues and the need to filter for
wind direction at the near-shore EC S-1 site where the instru-
mentation was located for the whole year vs. 39.8 % in 2018
when the instrumentation was relocated in the spring to the
mid-reservoir EC S-2 site. The data coverage for the period
of monitoring from EC S-2 (May through November) was
52.8 %. Re-siting removed the need to filter periods based
on wind direction and coincided with an improvement to the
battery system that reduced incidences of power failure. At
EC S-1, non-operability of the LI7700 due to power loss or
other issues caused the majority of data rejection (40.4 % of
total monitoring periods), followed by filtering for wind di-
rection (28.1 %), and quality control filtering (7.8 %). At EC
S-2, power loss caused the majority of gaps (36.3 %), fol-
lowed by quality control filtering (16.6 %).

2.3 Active funnel trap ebullition measurements

The active funnel traps (AFTs) were based on the design
of Varadharajan et al. (2010) and have been previously de-
scribed by Beaulieu et al. (2018). Briefly, they consisted of a
0.3 m2 funnel attached to a rigid tubing gas collection cham-
ber equipped with a differential pressure sensor to monitor
accumulated gas volume on a 5 min time step. We modi-
fied the Varadharajan et al. (2010) design by incorporating
siphons that auto-purge the collected bubble gas and refill the
tubing volume with water. This modification keeps the AFTs
from becoming filled with gas, allowing them to make useful
measurements for longer periods of time. Trap gas samples
were collected biweekly and analyzed via a gas chromato-
graph equipped with a flame ionization detector (Bruker 450
GC, USA) to determine the composition of the bubble gas.
The active trap data reduction followed the method described
in Varadharajan et al. (2010) and Varadharajan and Hemond
(2012). Circuit calibration to determine the relationship be-
tween voltage and height was performed pre- and post-trap
deployment in the 2017 field season and post-deployment in
the 2018 field season. The volume of gas in the trap is calcu-
lated as follows:

AFTvol = (Circvolt×m+ b)×π
AFTd

2

2
, (1)

where AFTvol is the volume of gas in the funnel trap, Circvolt
is the voltage output from the differential pressure sensor, m
and b are the sensor-specific laboratory calibration multiplier
and offset coefficients, and AFTd is the diameter of the fun-
nel tubing. We used a 12-point moving average (60 min) to
smooth the gas volumes and minimize noise. Periods with
known issues were filtered out of the dataset (e.g., power is-
sues, trap drift from target location, etc.), as were large neg-
ative fluxes that reflected siphon purges. Following Varad-
harajan and Hemond (2012), we calculated fluxes on multi-
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ple time-bin widths (30 min, 1, 2, 6, 12, 24, 48 h) but used the
2 h rolling time step for calculating the flux used in our final
analysis:

FCH4eb =
AFTvol[CH4]

(Tf− Ti)AF
, (2)

where AFTvol is the volume of gas in the trap (m3), [CH4] is
the CH4 concentration in the bubble gas (mg CH4 m−3), Tf–
Ti is the elapsed time (s), and AF is the cross-sectional area
of the funnel (m2). The AFT data reduction was performed
in R, and the scripts are available online (https://github.com/
USEPA/actonEC, last access: 7 September 2021).

The AFTs were deployed in late spring and retrieved in
the fall each year. The shallow AFT (U-14) monitored ebul-
lition from 9 May to 3 October in 2017 and from 6 June to
11 December in 2018. The deep AFT (U-12) monitored ebul-
lition from 10 May to 30 October in 2017 and from 24 May
to 9 November 2018.

2.4 Chamber diffusion measurements

Diffusive FCH4 was measured with a floating chamber bi-
weekly at two sites during the field season. We used a
rectangular, round-ended aluminum chamber with external
polyvinyl chloride floats and a headspace fan, based on the
CSIRO chamber described in Zhao et al. (2015). An ultra-
portable greenhouse gas analyzer (UGGA; PN: 915-0011,
ABB, Los Gatos, CA) monitored the change in CH4 mixing
ratio in the chamber headspace over the duration of the cham-
ber deployment (> 1–5 min), measuring at 1Hz and record-
ing an averaged measurement every 5 s. We monitored the
real-time UGGA time series to prevent ebullitive emissions
from overwhelming the diffusive emission measurements. If
a spike in CH4 concentration was detected, we re-set the
chamber. The floating chamber data reduction method has
been described in detail in Beaulieu et al. (2016). Briefly,
we used the following equation to calculate diffusive fluxes
(moles m−2 s−1):

FgasD =
dχgas

dt

(
V

A

)(
P

RT

)
, (3)

where dχgas/dt is the rate of change in the mixing ratio of
CH4 in the chamber headspace (ppm s−1), V is the cham-
ber volume (m3), A is the chamber surface area (m2), P
is the pressure in the chamber headspace, R is the univer-
sal gas constant, and T is the temperature in the chamber
headspace. The rate of change dχgas/dt for each chamber
deployment was determined via fitting linear and nonlinear
models to the dataset and using Akaike information criterion
(AIC) to choose the more appropriate model. Only models
with an r2 > 0.9 were retained. Data analysis and reduction
was performed using R, and the scripts are available online
(https://github.com/USEPA/actonEC, last access: 7 Septem-
ber 2021).

Biweekly chamber monitoring was conducted from
10 May to 11 December in 2017, and from 18 May to Oc-
tober to 13 December in 2018. Note that the chamber moni-
toring began earlier and ended later than the AFT monitoring
each year due to technical issues with the AFTs.

2.5 Water measurements

Water temperature depth profiles were recorded continuously
at two sites close to U-14 and U-12 (Fig. 1) using thermis-
tors. At the shallow site (U-14) a string of seven thermistors
(RBRsoloT, RBR Ltd., Ottawa, ON, Canada) were deployed
at 0.1, 0.25, 0.5, 0.75, 1, and 1.5 m below the air–water inter-
face and at the sediment–water interface. We used this tem-
perature profile to characterize water column stability in the
footprint of the EC flux measurements based on the Brunt–
Väisälä buoyancy frequency using the R package rLakeAn-
alyzer (Winslow et al., 2019). The Brunt–Väisälä buoyancy
frequency was used to indicate water column stability. It rep-
resents the frequency at which a parcel of fluid will oscillate
when displaced vertically, a measure of resistance to mix-
ing. A high oscillation frequency indicates strong resistance
to mixing, whereas a low frequency indicates little resistance
to mixing. At the deep site (U-12), sondes measuring tem-
perature (ProODO, YSI Incorporated, Yellow Springs, OH,
USA) were deployed at 0.1, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, and
8 m below the air–water interface. Water temperature, spe-
cific conductivity, dissolved oxygen, pH, and chlorophyll a
(chl a) were measured biweekly with a YSI multiparame-
ter sonde at 0.1 and 1.5 m below surface at the shallow site
(U-14) and 0.1, 1, 2, 3, 4, 5, 6, 7, and 8 m below surface
at the deep site (U-12). Water samples for chlorophyll anal-
ysis were collected by Miami University near the reservoir
inlet. Water samples were collected with an integrated tube
sampler from the water surface to the euphotic zone depth.
Chlorophyll samples were collected on 1.0 µm glass fiber
filters and frozen at −20 ◦C in opaque containers until pro-
cessed. They were extracted in 95 % ethanol for 24 h and an-
alyzed with a TD-700 (Turner Designs, San Jose, CA, USA).

Dissolved gas surface and profile samples were collected
biweekly from both U-12 and U-14 using the headspace
equilibration method. We collected water samples at depths
of 0.1, 2, 4, 6, and 7 m at U-12 and at 0.1, 0.75, and 1.3 m at
U-14. Using a 140 mL plastic syringe with a two-way stop-
cock, we added 25 mL of ultra-high-purity helium to a sy-
ringe, then added 115 mL of sample water, and agitated all
samples for 5 min. We then transferred the headspace gas
to pre-evacuated 12 mL glass vials topped with a silicone-
coated Teflon septum stacked on top of a chlorobutyl sep-
tum (Labco Ltd., UK). The headspace gas samples were
analyzed using gas chromatography (see Sect. 2.3) to de-
termine the CH4 composition, and the dissolved CH4 con-
centrations were calculated using measured headspace com-
position and the temperature-specific Bunsen solubility co-
efficients (Yamamoto et al., 1976). Full documentation of
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the calculations is available at the National Ecological Ob-
servatory Network’s GitHub repository (https://github.com/
NEONScience/NEON-dissolved-gas, last access: 7 Septem-
ber 2021).

2.6 Whole-reservoir surveys

We conducted six surveys of Acton Lake over the sum-
mers of 2017 and 2018 to estimate whole-reservoir FCH4 .
The 15 sample collection sites (Fig. 1, light blue circles),
were determined using a generalized random tessellation sur-
vey (GRTS) design (Stevens and Olsen 2004; Olsen et al.,
2012), a probability design that has been shown to reduce
uncertainty relative to other designs (Beaulieu et al., 2016).
At each site, we measured CH4 diffusion, CH4 ebullition,
and surface water quality parameters. Survey measurements
of diffusive FCH4 were conducted with floating chambers in
the same manner as described in Sect. 2.4. Survey measure-
ments of ebullitive FCH4 were conducted with passive funnel
traps (PFTs) deployed overnight (> 15 h). The PFTs are a
simplified version of the AFTs described in Sect. 2.3: they
consist of a 0.3 m2 funnel attached to a section of tubing for
gas collection but do not have a pressure sensor or siphon.
Upon retrieval, the total time of deployment and total volume
of gas in the tubing were recorded, and three 25 mL samples
of the gas were collected for gas composition analysis via a
gas chromatograph (see Sect. 2.3). Ebullitive FCH4 from the
PFTs was also calculated using Eq. (2) (Sect. 2.3), but the
trap volume was determined by direct measurement of the
collected gas, and Tf–Ti is defined as the deployment period.
Dissolved gas sample collection and depth profiles of water
quality parameters were taken at one deep site (U-12) and
one shallow site (U-14) during each whole-reservoir survey.
The surveys were initiated on 10 July, 31 August, and 4 Oc-
tober 2017 and 10 July, 14 August, and 20 September 2018
and concluded the following day.

2.7 Gap filling and upscaling

We use the term “gap filling” to refer to our method to de-
termine values for missing observations in our measurement
time series, while “upscaling” refers to the best estimate of
whole-reservoir FCH4 . For this analysis, we separated the
year into different seasons, categorizing November through
March as “winter”, or the cold season, and May through
September as “summer”, or the warm season. We refer to
April and October as the “shoulder” season. The spring burst
period is defined as 24 May through 4 June. For the EC time
series, we developed an artificial neural network (ANN) to
gap fill 30 min FCH4 using predictor variables with biophys-
ical links to CH4 production and emission: sediment tem-
perature (sedT), air temperature, latent heat flux (LE), sensi-
ble heat (H ), wind speed, ustar (friction velocity, a measure
of turbulence), photosynthetically active radiation, overlying
static pressure, and change in static pressure, in which static

pressure is the sum of overlying atmospheric and hydrostatic
pressure. We also included indicators for the tower location,
hour of day, and day of year as drivers. Gaps in the sedT,
air temperature, wind speed, wind direction, and static pres-
sure time series were filled using observations from a nearby
weather station. Gaps in LE, H, and ustar were gap filled us-
ing the mean diurnal course function from the R package
REddyProc (Wutzler et al., 2019) on the 30 min time step. We
used k-means clustering to assign 10 clusters before select-
ing the training, testing, and validation datasets. The cluster
assignments allowed us to select subsets with probabilities
proportional to the clusters, ensuring that the clusters were
not over- or underrepresented as a result of the splits. We em-
ployed a selective ensemble approach to optimize the ANN
model performance using the R package nnet (Venables and
Ripley, 2020). Each ANN ensemble included models with 5–
20 layers and 50 different starting weights, for a total of 800
model results. The top 100 models were selected based on
the testing R2 results, and then the median CH4 value from
the best 100 models was used as the predicted flux. To char-
acterize both sampling and model uncertainty, we replicated
this procedure with 20 resamplings of the data. For each half
hourly FCH4 we calculated the median predicted value of the
best 100 models in each of the 20 ensembles of 800 models
(cf. Knox et al., 2016). Missing half hourly FCH4 values were
gap filled using the median of the medians from the 20 en-
sembles. ANN modeling and gap filling was performed in R,
and the scripts are available online (Barnett et al., 2021).

We gap filled short gaps in the AFT continuous datasets
using linear interpolation and calculated annual emissions
via summing the daily observations. We gap filled the bi-
weekly chamber measurements of diffusive FCH4 via linear
interpolation. For periods at the start and end of the monitor-
ing seasons with chamber measurements but no AFT mea-
surements, we used the typical ratio between diffusive and
ebullitive FCH4 to estimate total FCH4 for the site. We gap
filled the spatial survey measurements by interpolating be-
tween each of the three annual surveys. To estimate annual
emission, we applied the FCH4 value determined by the first
survey of the year to every day between 1 May and the first
survey and the FCH4 value determined by the last survey of
the year through 15 October. We assumed an FCH4 of zero
between 15 October and 1 May for both the spatial survey
dataset and the AFT plus chamber datasets.

To upscale to whole-reservoir FCH4 , we used a hybrid
approach, combining results from EC, the deep site (U-12)
AFT, and the spatial surveys. We stratified Acton Lake into
shallow (< 3 m) and deep (≥ 3 m) areas and used reservoir
bathymetry to determine the surface area for the shallow and
deep portions: 0.8 and 1.6 km2, respectively. The depth cut-
off of 3 m roughly corresponds to the greatest depth of the
EC footprint. We then used FCH4 measured by EC to char-
acterize the shallow portion of the reservoir. For the deep
portion, we calculated the ratio (reservoir ratio, or RR) be-
tween the measured FCH4 (ebullitive+ diffusive) at the U-12
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AFT (hereafter, deep AFT FCH4 ) and the mean of FCH4 mea-
sured at the other deep sites (U-01, U-04, U-05, U-08, U-11,
U-12, U-13, U-15, U-16, U-17, and U-18; see Fig. 1). We
calculated this RR for each of the six spatial survey dates.
To characterize FCH4 in the deep portion of the reservoir, we
applied the RR from the first survey to the deep AFT FCH4

continuous time series data collected before 10 July 2017 and
likewise applied the RR from the last survey to the time se-
ries data collected after 20 September 2018. For the periods
in between, we used linear interpolation to produce a daily
RR and applied that to the deep AFT FCH4 continuous time
series. We weighted the cumulative shallow and deep CH4
areal emissions by the shallow and deep fraction of the reser-
voir to determine the whole-reservoir CH4 emissions. We re-
fer to this estimate of whole-reservoir emissions as the “hy-
brid” upscaled estimate.

2.8 Uncertainty analysis

We parameterized the uncertainty in the EC time series of
FCH4 using three different measures: the random measure-
ment error, the bias error of the gap-filled dataset, and the
95 % confidence intervals of the gap-filled dataset. The ran-
dom measurement error is calculated from the variance of the
covariance (Finkelstein and Sims, 2001) and reflects instru-
ment noise, variation in footprint over a given 30 min flux
integration period, and the stochastic nature of turbulence.
As described in Jammet et al. (2017), the random error de-
creases with increasing dataset size and is negligible at the
resolution of cumulative annual fluxes but can be substantial
for individual flux measurements (Richardson et al., 2006;
Moncrieff et al., 1996). The random error was calculated as
part of the EddyPro processing, and we report the summary
statistics in Sect. 3.2. Unlike random errors, systematic bi-
ases can accumulate to affect the cumulative seasonal or an-
nual flux. Although the measurement bias cannot be quanti-
fied, we calculated the systematic bias in the annual fluxes
due to gap filling following Moffat et al. (2007) and Jammet
et al. (2017):

BE=
1
N

∑
(pi − oi), (4)

whereN is the number of values in the validation time series,
p is the values predicted by the ANN, and o is the observed
values in the validation time series. The bias error was mul-
tiplied by the total number of gap-filled values to obtain the
total annual bias. We calculated the 95 % confidence interval
of the gap-filled dataset using the distribution of the 20 ANN
medians extracted from the 20 resamplings, which consider
both sample and model uncertainty (Knox et al., 2016).

We used root-sum-squared error propagation of the error
in AFTvol and [CH4] to characterize the uncertainty in ebul-
litive FCH4 measured by the AFTs. Compared to error in
AFTvol, the error contribution from other terms in Eq. (2)
was negligible. As described in Varadharajan et al. (2010),

we propagated the error in m, offset, and electronic noise
through Eq. (1), adding a 2 mL dead volume error each time
the AFTs flushed to account for gas that could be trapped in
the fittings at the top of the collection chamber. Our mean
slope and slope error were similar to those reported in the
methods of the Varadharajan et al. (2010) paper (31 and 0.31,
respectively, compared to 28 and 0.5); the mean (Vzero) and
standard deviation (1Vzero) of the offset terms we used were
slightly larger: 0.51 and 0.071 V for the shallow site and
0.41 and 0.045 V for the deep site (compared to 0.15 and
0.015); our calculated electronic noise (1Vout) was smaller
(0.4 mV vs. 3 mV in Varadharajan et al., 2010), so we de-
faulted to their value. The standard deviation between the
multiple trap gas samples was used as the uncertainty in
[CH4]. This term was generally small compared to the un-
certainty due to AFTvol error. The cumulative errors were
propagated by summing in quadrature.

The whole-reservoir surveys provide an estimate of FCH4

integrated across the entire reservoir surface area and a 95 %
confidence interval range (Beaulieu et al., 2016). Variance
estimates calculated from GRTS incorporate spatial autocor-
relation, if present, resulting in smaller uncertainty ranges
than survey approaches that ignore spatial autocorrelation
(Stevens and Olsen, 2003). The GRTS design and data re-
duction were executed in R using the spsurvey package (Kin-
caid et al., 2019). We propagated the cumulative uncertain-
ties across 2017 and 2018 by taking the 95 % confidence in-
terval of each survey and summing them in quadrature.

The uncertainty in the hybrid approach to the upscaled
cumulative whole-reservoir emissions was also determined
by error propagation, combining the uncertainty in the deep
AFT measurements, the spatial surveys, and the EC measure-
ments.

2.9 Statistical and quantitative analysis

For these analyses, we used the non-gap-filled measurement
time series. We quantified the relationship between sediment
temperature (sedT) and FCH4 usingQ10 and breakpoint anal-
yses. The concept of an “ecological Q10” (DelSontro et al.,
2016) follows from the physiological exponential relation-
ship between metabolic processes and temperature. In con-
trast to physiological Q10 values, ecological Q10, hereafter
“ecoQ10”, values are muddied by time lags and competing
rate enhancers and inhibitors (e.g., that temperature affects
both methanogens and methanotrophs; Segers, 1998; Duc
et al., 2010; Lofton et al., 2014). While the physiological
Q10 value for methanogenesis converges around 4 (Yvon-
Durocher et al., 2014), ecoQ10 values for methane fluxes
have been reported to range from 1 to 35 (e.g., DelSontro
et al., 2016; Wik et al., 2014; Duc et al., 2010). We calcu-
lated the ecological Q10 (DelSontro et al., 2016) using the
following equation:

ecoQ10= 1010b, (5)
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where b is the slope of the regression between temperature
and FCH4 .

We also used a two-dimensional Kolmogorov–Smirnov
test (2DKS; Garvey et al, 1998) to quantify the tempera-
ture breakpoint distinguishing winter conditions when FCH4

is near zero and unrelated to temperature from warm weather
conditions when FCH4 is elevated and positively correlated
with temperature. The 2DKS test is a non-parametric statis-
tic that uses measures of disagreement to define the largest
difference between cumulative distribution functions, that is,
a threshold or breakpoint (Lopes et al., 2008). We applied
the 2DKS test to each of the continuous FCH4 monitoring
datasets: EC, shallow AFT, and deep AFT, each for 2017 and
2018 for a total of six 2DKS tests.

We looked at diurnal patterns on monthly and daily
timescales. For the monthly timescales we binned 30 min pe-
riods and took the median. For daily timescales we adapted
the methods used by Podgrajsek et al. (2014) to quantify
“strong” diurnal patterns. For 24 h periods with at least eight
nighttime and eight daytime non-gap-filled 30 min flux mea-
surements, we compared the median of daytime FCH4 to
nighttime FCH4 . The period was defined as having a strong
diurnal pattern both if the difference between daytime vs.
nighttime FCH4 median was > 50 % and if the contiguous
points in the 30 min time series were smooth, i.e., more simi-
lar than points separated in time. We determined smoothness
using visual inspection.

We compared the cumulative FCH4 measured from Acton
Lake during each year of this study to output from the size-
productivity model (DelSontro et al., 2018a). This model re-
lates total CH4 emissions to chl a levels per the following
equation:

log10(totalCH4+ 1)= C1× log10(chl a)+C2, (6)

where the coefficients C1 and C2 are equal to 0.778± 0.118
and 0.940± 0.122, respectively. Although the equation is
unitless, it relates total CH4 in units of milligrams C per
square meter per day (mg C m−2 d−1) to chl a in units of mi-
crograms per liter (µg L−1).

3 Results

3.1 Temporal patterns in FCH4

We observed a consistent pattern of elevated FCH4 during the
warm season across all measurement methods (Fig. 2). In
both monitoring years, the majority of cumulative total CH4
emissions (> 85 %) occurred in the 5 months between 1 May
and 30 September, when air and sediment temperatures
were warmer (Fig. 4a), and latent heat fluxes were elevated
(Fig. 4b). We observed larger-magnitude CH4 emissions in
2018 relative to 2017 at Acton Lake across each observa-
tion type except for the deep site (Table 1). The EC and
spatial survey results indicated similar warm-season mean

fluxes in 2017: 9.73± 0.67 and 9.98± 6.2 Mg CH4 m−2 h−1.
Results from both methods indicated larger-magnitude mean
FCH4 in 2018: 17.5± 0.38 Mg CH4 m−2 h−1 per the EC sys-
tem and 13.0± 6.6 Mg CH4 m−2 h−1 per the spatial surveys
(Table 1). Both the shallow site results also indicated elevated
FCH4 in 2018 relative to 2017, while the deep site results
were effectively the same (Table 1). The lower-magnitude
mean FCH4 measured at the shallow site compared to the
mean FCH4 measured by EC is likely due to the under-
representation of hot spots (Wik et al., 2016). The winter-
time FCH4 measured by EC indicates that during the win-
ter months FCH4 dropped by more than an order of magni-
tude to a baseline close to zero: between 1 November and
1 April FCH4 was 0.60± 0.69 Mg CH4 m−2 h−1. The sur-
face of Acton Lake was frozen for several periods during the
2017–2018 winter: 27 December 2017–10 January; 13–21
January; and 5–15 February 2018, during which FCH4 was
0.08± 0.46 Mg CH4 m−2 h−1.

The non-gap-filled, quality-filtered 30 min FCH4 measure-
ments had a mean random error (±SD) of 1.3± 1.9 and
1.8± 1.7 Mg CH4 m−2 h−1 in 2017 and 2018, respectively,
or 15.5 % and 13.7 % of the mean annual fluxes. The frac-
tional errors were larger in the winter months when FCH4 was
small (mean winter random error: 23 %) and smaller during
the warmer months when FCH4 was larger (mean summer
random error: 15 %). Both the magnitudes and patterns in
the random errors are similar to those observed by Jammet
et al. (2017) in a subarctic aquatic ecosystem. Similarly, we
found gap filling our FCH4 time series with ANN worked
well with a few exceptions. The median R2 value for the
20 extractions was 0.79, and the cumulative bias error was
minimal: the 20 ANN extractions yielded a median bias of
0.25 (range of −3.7 to 3.5) g CH4 m−2 or up to 3.3 % of cu-
mulative emissions over the 2-year monitoring period. The
ANN establishes nonlinear predictive power to each of the
driver inputs, defined as a “variable importance factor” (VIF)
in terms of a percent importance to the predictive power of
the model. The median VIFs from the 20 ANN extractions
are plotted in Fig. 3; a consistently high ranking across runs
indicates a strong relationship with FCH4 . The biophysical
drivers with the highest variable importance were static pres-
sure (the sum of water pressure and air pressure), change in
static pressure, and sediment temperature.

The most substantial difference between the two monitor-
ing years is the period of elevated emissions in late May to
early June observed by the EC monitoring in 2018 but not
2017 (hereafter “spring burst”). We define the spring burst as
the period from 24 May through 4 June, in which the daily
average FCH4 observed by EC was ≥ 25 Mg CH4 m−2 h−1.
Maximum FCH4 of 62.0 Mg CH4 m−2 h−1 occurred on 29
May 2018. While the 2017 EC monitoring does indicate a
small burst in FCH4 of 20.4 Mg CH4 m−2 h−1 on 5 June, over-
all FCH4 was much smaller: mean FCH4 for 24 May–4 June
2017 was 3.6± 1.8 Mg CH4 m−2 h−1. Although the AFT at
the shallow site was not operational during the spring burst,

Biogeosciences, 18, 5291–5311, 2021 https://doi.org/10.5194/bg-18-5291-2021



S. Waldo et al.: Key role of a spring burst 5299

Figure 2. Time series of FCH4 monitored via multiple methods: eddy covariance (violet), the sum of the shallow AFT and interpolated
chamber measurements (blue, site U-14), the sum of the deep AFT and interpolated chamber measurements (green, site U-12), and via the
spatially integrated lake-wide surveys (yellow). The error bars for the lake surveys indicate the 95 % confidence interval of the mean. Error
margins for the other measurements are omitted for figure legibility. The spring burst period was 24 May–4 June 2018.

Table 1. Seasonal methane fluxes reported as mean fluxes and cumulative areal emissions from Acton Lake characterized by different
measurement techniques. The eddy covariance method measures total (diffusive+ ebullitive+ other) fluxes.

Warm season∗ mean flux Cumulative annual
(mg CH4 m−2 h−1) emissions

(g CH4 m−2)

Observation type Diffusive Ebullitive Total Total

2017 Eddy covariance – – 9.73± 0.67 40.7± 5.9
Shallow site 3.2 4.47± 0.63 7.67± 0.63 29.3± 2.2
Deep site 0.89 5.76± 0.54 6.67± 0.54 29.0± 2.0
Lake surveys 1.28± 0.52 8.71± 6.1 9.98± 6.2 37.4± 5.6
Hybrid upscaled – – 10.3± 1.9 45.6± 8.3

2018 Eddy covariance – – 17.5± 0.38 71.4± 4.2
Shallow site 3.55 5.68± 0.11 9.74± 0.11 41.9± 0.36
Deep site 0.96 6.65± 0.05 7.57± 0.05 30.8± 0.25
Lake surveys 1.87± 1.2 11.1± 6.1 13.0± 6.6 49.2± 3.7
Hybrid upscaled – – 12.9± 0.96 51.4± 4.3

∗ “Warm season” is defined as 1 May–30 September.

diffusive FCH4 measurements indicate that FCH4 was ele-
vated at that site compared to the deep site. Although none
of the spatial surveys coincided with the spring burst period,
the deep site monitoring indicates that the spring burst did
not extend to the deeper parts of the reservoir. The cumu-
lative CH4 emission over the 2018 12 d spring burst period
was 10.8 g CH4 m−2 which is 15 % of the cumulative annual
emissions measured by EC in 2018 (Table 1) and which ac-

counts for 59 % of the difference in the EC cumulative annual
emissions between 2017 and 2018.

The differences between the 2017 and 2018 monitoring
years continue past the early summer (Figs. 2, 4). During
2017, FCH4 increased to a maximum in late summer, and then
declined back to the winter baseline. Maximum emissions at
the deep site in 2017 lagged and were dampened compared to
the shallow site. In contrast, the 2018 summer and fall in the
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Figure 3. Median variable importance ranking for the drivers of the
artificial neural network gap-filling model in terms of percent im-
portance to the predictive power of the model. This ranking is based
both on intra-model variability (i.e., the effect of model architec-
ture and random seed selection) and on intermodel variability (i.e.,
the effect of data selection for the training, testing, and validation
datasets). DOY= day of year, Delta Static P is change in overlying
static pressure, sedT is sediment temperature, LE is latent heat flux,
Static P is static pressure, Wind Dir is wind direction,H is sensible
heat flux, uStar is friction velocity, PAR is photosynthetically active
radiation, and HOD is hour of day.

shallow portion of the reservoir (EC and shallow site) were
characterized by episodic emission pulses and declines be-
fore tapering down to the winter baseline. The deep site emis-
sions were in phase with the shallow site but did not have the
same pulses. There was a late season pulse at the deep site in
2018 that coincided with reservoir turnover (Fig. 4g) and a
drop in dissolved CH4 below the thermocline at the deep site
(Fig. S3).

We used the EC measurements of FCH4 to look for di-
urnal patterns in emissions. We found that Acton Lake did
not have a clear overarching diurnal pattern when aggregated
over monthly timescales, (Fig. S4), but out of the 168 d with
adequate data coverage for diurnal analysis, 18.5 % (31 d)
displayed strong diurnal patterns: 16 with elevated daytime
emissions and 15 with elevated nocturnal emissions. Very
few of these strong diurnal pattern days were contiguous:
there were only four instances of strong diurnal patterns per-
sisting for 2 or more consecutive days. The periods with
strong diurnal patters when FCH4 peaked during the day were
correlated with latent heat flux (Figs. S5, S6), while periods
when FCH4 peaked at night were correlated with air pres-
sure (Figs. S5, S6). While we looked for evidence of synoptic
patterns in FCH4 due to changes in overlying pressure from
frontal systems (cf. Liu et al., 2016) and due to underwater

turbulence (Fig. S7), we did not see evidence of impact on
FCH4 from these drivers during the study period.

3.2 Cumulative FCH4

There are notable differences in the cumulative annual areal
emissions across methods and years (Table 1, Fig. 5). The
impact of the spring burst is evident in the interannual
difference between the EC cumulative emissions, which
were 40.7± 5.88 and 71.4± 4.2 g CH4 m−2 in 2017 and
2018, respectively. The cumulative areal emission measured
by EC from 1 October 2017 through 1 May 2018 was
6.66± 3.1 g CH4 m−2, on the same order as the uncertainty
range in the annual values. As follows from the patterns in
the mean fluxes discussed above, the results from the spa-
tial surveys and the shallow trap also indicate elevated cu-
mulative annual emissions in 2018 compared to 2017, while
the results from the deep site indicate similar emissions
over both years. The implications of the spring burst for
whole-reservoir upscaled total annual CH4 emissions is dis-
cussed below, but the best estimate of reservoir-wide cumu-
lative annual areal emissions from the hybrid approach yields
45.6± 8.3 and 51.4± 4.3 g CH4 m−2 for 2017 and 2018, re-
spectively (Fig. 5). Scaling up to the 2.4 km2 area of Acton
Lake, the hybrid approach indicates that this reservoir was a
source of 109± 14 and 122± 10 Mg CH4 to the atmosphere
in 2017 and 2018, respectively.

3.3 Spatial patterns in FCH4

The results from the six spatial surveys indicate an inconsis-
tent spatial pattern in FCH4 that differs from previous find-
ings on CH4 emissions from temperate, eutrophic reservoirs
which have shown that the river–reservoir transition zone
near the tributary inlets tends to be a hot spot for emissions
compared to the lacustrine zone (Beaulieu et al., 2014, 2016;
DelSontro et al., 2011; Tuser et al., 2017). The survey results
from Acton Lake indicate relatively similar rates of FCH4

across most of the reservoir surface area (Fig. 6) and a weak
but significant (n= 90, R2

= 0.1, p < 0.005) positive rela-
tionship between ebullition and reservoir depth (Fig. S8).

At the whole-reservoir scale, ebullition was a dominant
emission pathway for CH4 relative to diffusion, accounting
for 82 %–94 % of total FCH4 . However, at certain sites dif-
fusive FCH4 contributed a larger proportion of the total flux
(Fig. S9). The four sites with mean ebullitive to total FCH4

ratios less than 0.8 are also the four shallowest sites (see
Fig. 1): U-09, U-14, U-07, and U-06, with mean observed
depths of 1, 1.3, 1.5, and 2 m respectively. This pattern from
the spatial surveys is also reflected in the results from the
more frequent measurements made at the shallow and deep
site: ebullition accounted for 58 % of the total FCH4 at the
shallow site in both 2017 and 2018, while ebullition ac-
counted for 86 % and 88 % of total FCH4 at the deep site in
2017 and 2018, respectively. Emission behavior at sites U-
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Figure 4. Meteorological and limnological conditions over the study period: (a) daily mean of air (red) and sediment (black) temperature;
(b) daily mean latent and sensible heat fluxes (LE: black; H : red); (c) daily cumulative precipitation (mm); (d) stream inflow (m3 s−1);
(e) water depth in the footprint of the flux tower (m); (f) Brunt–Väisälä frequency, a measure of water column mixing potential (s−1); and
(g) the water temperature profile at the deep site (U-12). Grey bars indicate the time frame of the 2018 spring burst of CH4 emissions.

09 and U-06 was substantially different than at other sites:
these two sites had consistently low FCH4 and tended to have
higher rates of CH4 diffusion than ebullition. Much of this
behavior is likely explained by the proximity of these sites to
Acton Lake’s swimming beach, which has a sandy substrate
that likely inhibits methanogenesis at these sites. These sites
were included as part of the random GRTS sampling design.

4 Discussion

4.1 Comparison with other systems and methods

The hybrid upscaling approach we used in this study lever-
ages the best available information from our measurements
to characterize both the spatial and temporal variability of
Acton Lake: EC monitoring for the shallow portion of the
reservoir and the continuous deep site monitoring scaled by

the spatial survey site measurements for the deep portion of
the reservoir. If we used the EC monitoring results alone
to upscale to whole-reservoir emissions, that would assume
the spring burst pattern affected the whole reservoir (Fig. 5).
However, we know the spring burst did not affect the deep
site (Fig. 2). Thus, a key uncertainty around this upscaling
method is estimating what portion of the reservoir was af-
fected by the spring burst of emissions in 2018. The cumu-
lative FCH4 measured by EC was 77 % greater in 2018 than
2017, compared to a difference of only 11 % per the hybrid
approach. Adding one or more AFT sites along the depth
gradient of the reservoir would be one way to decrease un-
certainty in the extent of the spring burst and improve confi-
dence in upscaled FCH4 estimates.

Comparing cumulative annual areal emissions
from the hybrid upscaling approach (45.6± 8.3 and
51.4± 4.3 g CH4 m−2 for 2017 and 2018, respectively) to
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Figure 5. Cumulative areal emissions in 2017 and 2018 from EC, sum of AFT and chamber, spatial survey monitoring, and hybrid upscaling
results (g CH4 m−2). Vertical lines intersecting the lake survey trace represent the 95 % confidence interval of the lake-wide FCH4 estimate.

other reservoir CH4 emission rates reported in the literature
is not straightforward due to differences in monitoring meth-
ods and temporal coverage. One important reason earlier
studies of reservoir FCH4 may be biased low is that they
only measured CH4 diffusion: Deemer at al. (2016) found
that the mean FCH4 reported in studies measuring ebullition
and diffusion was over double that of diffusion-only FCH4

studies. Another potentially important source of bias is
temporal coverage. Most studies that report FCH4 from
inland waters monitor during the warm season, with less
than 6 months of measurements (cf. Deemer et al., 2016;
DelSontro et al., 2018a; Bastviken et al., 2011), and the mean
FCH4 value is then extrapolated to annual total emissions.
However, we measured very low (on the same order as the
warm-season uncertainty) wintertime FCH4 in this study. On
the other hand, the spring burst phenomenon we observed
demonstrates the importance of continuous monitoring of
midlatitude eutrophic reservoirs during the full warm season
to capture hot moments of FCH4 . A related consideration is
a method’s ability to capture spatial and temporal variability
in FCH4 during the study period. Deemer et al. (2016) noted
that studies using the eddy covariance method reported
substantially higher values of FCH: ∼ 92.5 g CH4 m−2

yr−1 (Deshmukh et al., 2014) and ∼ 160 g CH4 m−2 yr−1

(Eugster et al., 2011), which are on the same order as the
Acton Lake cumulative annual emissions (Table 1). The two
open-water sites included in the CH4 EC meta-analysis by
Knox et al. (2019) were natural lakes in temperate regions
with cumulative annual emissions of ∼ 15 g CH4 m−2 yr−1.

This difference in FCH4 speaks to the need for building a
representative dataset across both methods and ecoregions.

Nevertheless, Acton Lake’s annual FCH4 is relatively high
compared to other reservoirs. It falls in the fourth quintile
(> 60 %) of the reservoir emission rates that included ebul-
lition reported in Deemer et al. (2016); the warm season
FCH4 falls in the upper quintile (> 80 %) of those reser-
voirs. The warm season FCH4 also falls into the upper quar-
tile (> 75 %) of the 32 temperate reservoirs surveyed by
Beaulieu et al. (2020). This result strengthens the finding that
midlatitude, eutrophic reservoirs in the midwestern USA can
support high CH4 emission rates (cf. Beaulieu at al., 2014,
2016) than would be predicted by age and latitude alone
(Barros et al., 2012). The high annual FCH4 also supports the
emerging body of knowledge around the importance of reser-
voir productivity as a key indicator for FCH4 (cf. Deemer et
al., 2016; West et al., 2012; DelSontro et al., 2018b).

4.2 Implications for upscaling

The key question in upscaling any set of measurements to
characterize an ecosystem is “what is representative of re-
ality?”. This study leveraged a combination of continuous
and spatially extensive monitoring methods to investigate the
spatial and temporal variability in a reservoir. The results
from the six spatial surveys indicate an inconsistent spatial
pattern in FCH4 that differs from previous findings on CH4
emissions from temperate, eutrophic reservoirs which have
shown that the river–reservoir transition zone near the tribu-
tary inlets tends to be a hot spot for emissions compared to
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Figure 6. Total (ebullitive+ diffusive) FCH4 measured during mid-summer, late-summer, and fall spatial surveys at Acton Lake during
2017 (a, b, c) and 2018 (d, e, f). Dots indicate magnitude of FCH4 per the z-axis scale, and vertical black lines connect red dots to their
corresponding sampling location. Dot color indicates whether a sampling site is in the shallow (< 3 m, lavender) or deep (> 3 m, royal purple)
area of the reservoir.

the lacustrine zone (Beaulieu et al., 2014, 2016; DelSontro
et al., 2011; Tuser et al., 2017). The spring burst of elevated
emissions that we observed in 2018 but not 2017, and in the
shallow portion of the reservoir but not at the deep site, is
the largest contributor to the spatial and temporal variability
in this study. In this section we will analyze the spring burst
and factors that could have contributed to it. Other patterns
in intra-reservoir spatial and temporal variability linked to
sediment temperature and other biophysical drivers are also
discussed.

4.2.1 Spring burst

Differences in phytoplankton populations and sediment tem-
perature, partially driven by precipitation differences, pro-
vide insight into why the spring burst of emissions occurred
(1) in 2018 but not 2017 and (2) in the littoral area of the
reservoir but not the deeper areas. Chlorophyll a (chl a) lev-
els measured a few days before the spring burst period show
elevated levels in the shallow portion of the reservoir in 2018
compared to 2017, while levels near the outflow were sim-
ilar between the two years (Fig. 7a). This increase in chl a
levels coincided with an increase in shallow sedT to 27 ◦C,

(Fig. 7b). These differences in chl a and sedT near the in-
flow can be tied to differences in precipitation between the
two years: spring of 2017 was relatively wet, with 31.0 cm of
rainfall and 20.9× 106 m3 of stream inflow in May (Fig. 4c,
d) which drove substantial fluctuations in reservoir water lev-
els (Fig. 4e). These rain events also led to a decrease in sedT
from 22.5 to 18 ◦C prior to the onset of the spring burst time-
frame (Fig. 7b) due to the inflow of cooler stream water and
the cooling of ambient air temperature. In contrast, May of
2018 was relatively dry, with 12.3 cm of rain, 9.45× 106 m3

of stream inflow (Fig. 4c, d), and stable reservoir water levels
(Fig. 4e). The phytoplankton bloom in the shallow portion of
the reservoir leading up to the spring burst period was likely
catalyzed by the conducive water temperature, turbidity, and
water level stability. Elevated levels of dissolved ammonium
(NH4), total phosphorous (TP), soluble reactive phosphorus
(SRP), and particulate organic carbon (POC) near the inflow
during the 2018 spring burst support our understanding that
the conditions in the littoral area in 2018 were different than
those in 2017 and that this interannual difference did not oc-
cur in the deep portion of the reservoir (Table 2).

There are at least two established mechanistic connec-
tions between phytoplankton blooms and enhanced CH4 pro-
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Figure 7. Daily air and sediment temperature (a, left) and chlorophyll a (an indicator for algal biomass, b, right) in 2017 and 2018. The grey
bar indicates the spring burst period of elevated FCH4 in 2018, likely supported by elevated sediment temperature and algal biomass levels
that year.

Table 2. Dissolved nutrient and carbon data for the inflow and outflow during the study period, reported as the mean of weekly samples taken
between April and October and as the value measured for the week of the 2018 spring burst (24 May–4 June). Dissolved nutrient data include
total nitrogen (TN), ammonium (NH4), nitrate (NO3), total phosphorus (TP), and soluble reactive phosphorus (SRP). Dissolved carbon was
measured as particulate organic carbon (POC).

2017 2018

Mean Spring burst Mean Spring burst

Analyte (units) Inflow Outflow Inflow Outflow Inflow Outflow Inflow Outflow

TN (mg N L−1) 5.69 5.30 8.27 8.12 2.05 1.78 3.39 3.03
NH4 (mg N L−1) 0.05 0.07 0.02 0.02 0.05 0.05 0.17 0.07
NO3 (mg N L−1) 0.97 0.89 1.69 1.62 0.25 0.22 0.47 0.43
TP (µg P L−1) 115 99.9 98.6 76.6 141 80.4 254 110
SRP (µg L−1) 20.2 24.4 2.66 5.35 11.5 9.69 15.7 2.81
POC (mg L−1) 3.53 2.69 3.42 2.96 4.09 2.74 4.48 3.06

duction and emission, and either or both could have driven
the spring burst observed in this study. One mechanistic
connection between autochthonous organic carbon (autoOC,
i.e., phytoplankton-derived) and FCH4 is the stimulation of
methanogenesis from the input of this labile C source as
the phytoplankton die and settle on the sediment. Several
lab studies have demonstrated that the addition of autoOC
can lead to enhanced CH4 production rates (Schwartz et al.,
2008; West et al., 2012, 2015; Grasset et al., 2018). A re-
cent study using in situ measurements found that heat-wave-
induced cyanobacterial blooms and subsequent input of au-
toOC to the sediment could lead to pulses of CH4 emissions
up to an order of magnitude larger than baseline levels (Bar-

tosiewicz et al., 2021). The 2018 crash in phytoplankton that
coincided with the spring burst (as indicated by chl a mea-
surements; Fig. 7a) evidences a large input of autoOC to the
sediment during the spring burst. A second possible mech-
anistic connection is production of CH4 by phytoplankton
in the oxic surface water. A recent study by Hartmann et
al. (2020) combined in situ measurements of phytoplankton
communities, CH4, and CH4 isotopes with lab incubations
and demonstrated that all major phytoplankton classes could
produce CH4 under oxic conditions. Phytoplankton CH4 pro-
duction in the surface mixed layer supersaturates the up-
per water column with CH4 and leads to enhanced diffusive
emissions, and phytoplankton biomass has been found to be
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the primary driver of diffusive FCH4 in some reservoir sys-
tems (McClure et al., 2020). Strong diurnal patterns in FCH4

surrounding the spring burst correlated with latent heat flux
(LE), an indicator of warm, windy, convective conditions of
enhanced air–water gas exchange (Figs. S5, S6). This sug-
gests that during the spring burst the surface waters were
supersaturated with CH4 and diffusive emissions were the
dominant pathway during that time. Including measures of
phytoplankton CH4 production in the surface mixed layer in
future studies would be helpful in differentiating which pro-
duction pathway led to elevated dissolved CH4.

The difference in hydrologic regimes and subsequent
availability of autoOC vs. allochthonous OC (alloOC, i.e.,
particulate or dissolved C derived from terrestrial plant tis-
sue) may also shed light on interannual differences beyond
the spring burst. The lab study by Grasset et al. (2018) found
that while additions of autoOC led to pulses of FCH4 , alloOC
took longer to decompose, and additions led to more grad-
ual but sustained FCH4 . Thus, the wet spring of 2017 may
have loaded the reservoir with slow-burning alloOC, which
could partially explain the smaller magnitude of FCH4 pulses
in 2017 compared to 2018 (Fig. 2).

The impact, or lack thereof, of the spring burst on
reservoir-wide cumulative FCH4 has implications for the
value of higher-resolution measurements. This is analogous
to the question of whether the increased complexity of
process-based models improves prediction over empirical
models (cf. Adams et al., 2013). While the EC monitoring re-
sults almost doubled from 2017 to 2018, the hybrid upscaled
estimate had only an 11 % difference (Table 1, Fig. 5). Fur-
thermore, the cumulative FCH4 determined via the lake-wide
surveys was closer to the hybrid upscaled estimate than the
EC results in 2018 (Fig. 5). Using the recent size-productivity
model (DelSontro et al., 2018a) to predict FCH4 at Acton
Lake based on mean annual chl a levels (Eq. 7, Fig. 7) yields
estimates of 11.1 and 10.3 Mg CH4 m−2 h−1 for 2017 and
2018, respectively. These values are in the same range as
the warm season mean fluxes determined via the hybrid ap-
proach for Acton Lake (Table 1). However, the model results
contrast with measured results in terms of which year had
higher FCH4 . Furthermore, the model results would overesti-
mate cumulative annual FCH4 for Acton Lake as they do not
take low wintertime emissions into account.

Sub-annual climatic patterns and productivity dynamics
may become more important in understanding and pre-
dicting reservoir FCH4 . Recent research demonstrates how
warmer springs have increased the frequency and intensity
of cyanobacterial blooms in midwestern US reservoirs over
the past two decades (Smucker et al., 2021), and continued
warming will likely intensify this phenomenon. There is also
a burgeoning body of knowledge that points to the impor-
tance of phytoplankton ecology on lake and reservoir CH4
production in terms of both the amount (Hartman et al., 2020;
McClure et al., 2020; Zhang et al., 2021) and type (Bar-
tosiewicz et al., 2021). Furthermore, the underlying factors

that led to the 2018 spring burst at Acton Lake may be more
common in the future and have a greater effect on the reser-
voir CH4 budget.

4.2.2 Additional intra-lake variability

Beyond the spring burst, we observed additional patterns
of intra-lake spatiotemporal variability in FCH4 related to
sediment temperature (sedT). Temperature is an important
control on metabolic processes such as methanogenesis, but
other signals can complicate the relationship between tem-
perature and FCH4 at the scale of ecosystem fluxes. Nev-
ertheless, sedT emerged as a key predictor of FCH4 in this
study. The ANN model used to gap fill the EC monitoring
ranked sedT as one of the most important biophysical pre-
dictors of FCH4 along with absolute static pressure, change
in static pressure, and latent heat flux (Fig. 3). A strong in-
dication of the intra-lake patterns in drivers and emissions is
that maximum ebullitive FCH4 observed by the AFTs coin-
cided with maximum sedT at both the shallow (U-14) and
deep (U-12) monitoring sites in 2017 (Fig. 8). This maxi-
mum occurs in early August at U-14 vs. mid-September at
U-12, a phase shift that reflects the time delay in heat trans-
fer to the deeper sediment. This phase shift could also (spec-
ulatively) have been affected by the time delay in nutrient
and OC transfer from the inlets. This pattern was not as pro-
nounced in 2018 (Fig. S10) perhaps due to differences in the
precipitation regime that affected reservoir metabolism.

We used ecoQ10 and 2DKS threshold analysis to fur-
ther investigate the role of sediment temperature on regu-
lating FCH4 in both the deep and shallow portions of Acton
Lake. Both of these quantitative analyses of the relationship
between FCH4 and sedT yielded statistically significant re-
sults (Table 3), and each monitoring method had consistent
ecoQ10 values and 2DKS threshold temperatures across the
two study years (Table 3, Fig. S11). The EC method had
a much lower ecoQ10 value than the AFT sites, the latter
of which were comparable to maximum ecoQ10 values re-
ported in other studies (DelSontro et al., 2016). The relatively
low ecoQ10 value for the EC method may be due to the dif-
ferent temperature response of ebullitive vs. diffusive emis-
sion pathways or to a spatial mismatch between the measured
sedT and the EC flux footprint. For these reasons, we focus
on the AFT sites in interpreting the ecoQ10 and threshold
temperature results in terms of intra-lake spatial variability.
The ecoQ10 values indicate a stronger relationship between
sedT and ebullitive FCH4 at the shallow site than the deep site.
Despite a greater ecoQ10 value, ebullitive FCH4 at the shal-
low site did not respond to warming in the spring until wa-
ter temperatures reached a threshold of ∼ 22.5 ◦C, whereas
ebullitive FCH4 at the deep site responded to warming at a
much lower temperature threshold (13–18 ◦C; Table 3). Fur-
thermore, mean ebullitive FCH4 was very similar between the
two sites (Table 1) despite a 6◦C difference in maximum sed-
iment temperature. These patterns suggest that methanogens
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Figure 8. Time series of sedT and ebullition in 2017 at the shallow (solid green line) and deep (dashed blue line) sites. The light grey bar
highlights the period of maximum ebullition and sedT at the shallow site; the dark grey bar highlights the corresponding period at the deep
site.

Table 3. Summary statistics describing the relationship between FCH4 and sediment temperature per the ecoQ10 analysis and the two-
dimensional Kolmogorov–Smirnov test (2DKS) threshold analysis.

Eddy covariance AFT shallow AFT deep

ecoQ10 2017 value 6.96 35.1 30.4
2017 R2 0.85 0.48 0.60
2018 value 5.64 35.8 30.7
2018 R2 0.83 0.85 0.38

Threshold (2DKS) 2017 sedT threshold 14.1 22.2 17.9
2017 test statistic 0.226 0.166 0.204
2018 sedT threshold 17.4 23.0 13.3
2018 test statistic 0.234 0.190 0.138

at the deep site may be better adapted to the consistently
cooler conditions found in the hypolimnion of Acton Lake,
which has important implications for predictive models em-
ploying ecoQ10 or threshold values to parameterize FCH4 as
a function of sedT. Alternatively, the differences in tempera-
ture sensitivity between the deep and shallow site may reflect
differences in substrate quality and/or quantity related to spa-
tial patterns in sedimentation and productivity (Berberich et
al., 2019). Regardless of the underlying mechanism, these
patterns illustrate strong spatial patterning in CH4 biogeo-
chemistry within this 2.4 km2 reservoir.

5 Conclusions

In this study we investigated temporal patterns and biophys-
ical drivers of CH4 fluxes from a eutrophic temperate reser-
voir using multiple methods including eddy covariance. Sed-
iment temperature and the overlying static pressure were the
most important biophysical drivers of FCH4 per the ANN
model results. Water chemistry and chl a measurements in-
dicate that the spring burst of elevated FCH4 coincided with a
phytoplankton bloom. Comparing the two observation years
indicated that the climatic conditions of precipitation and
temperature were more conducive to a phytoplankton bloom
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in 2018 than 2017. In contrast to previous studies, we saw a
weak positive correlation between FCH4 and reservoir depth,
we did not find a strong relationship between FCH4 and un-
derwater turbulence, nor did we observe consistent diurnal
patterns in FCH4 .

We found that Acton Lake had cumulative annual CH4
areal emissions of 45.6± 8.3 and 51.4± 4.3 g CH4 m−2 in
2017 and 2018, respectively. These levels of emissions place
Acton Lake in the upper quartile of emission rates reported
from reservoirs (Deemer et al., 2016), further supporting
the concept that highly productive midlatitude reservoirs can
have higher-magnitude CH4 emission rates than would be
predicted by age and latitude alone (DelSontro et al., 2018a).
A spring burst of FCH4 observed over a 2-week period in
2018 but not 2017 accounted for 59 % of the difference in cu-
mulative emissions between years. This difference between
consecutive years highlights the importance of multi-year
studies (cf. Room et al., 2014) and the importance of char-
acterizing temporal variability in open-water systems, which
Williamson et al. (2020) illustrated exceeded spatial variabil-
ity for several physical, chemical, and biological metrics.

The EC technique holds much promise for improving our
understanding of the biophysical drivers of gaseous fluxes,
with a few caveats. In addition to the pseudo-continuous tem-
poral coverage, the EC measurement footprint encompasses
a much larger area than traditional gas flux measurement
techniques (e.g., dissolved gas sampling, chambers, inverted
funnel traps), increasing the likelihood of integrating fluxes
over a distribution of hot spots. However, care must be taken
in the siting, quality control, and interpretation of results. The
authors reemphasize the recommendation given by Vesala
et al. (2012): for best results, close collaboration is needed
between biometeorologists and limnologists to understand
what is going on both above and below the water. For future
studies of reservoir FCH4 using EC, we recommend siting the
monitoring tower in the area of the reservoir with the highest
variability in CH4 emissions, likely near the inlet, and setting
up multiple AFTs across the reach of the reservoir to con-
strain spatial patterns. Future studies that incorporate more
direct measurements of phytoplankton dynamics would also
be useful to improve our understanding of drivers of CH4
production and emission that may be more common with fu-
ture warmer springs and extremes in precipitation patterns.

The EC results in this study further our understanding
of the interaction between precipitation, sediment tempera-
ture, algal productivity levels, and FCH4 . This study adds to
our understanding of open-water flux processes at appropri-
ate spatial and temporal scales while highlighting a way to
present and compare EC and whole-reservoir survey data in
appropriate contexts.
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Frouzová, J.: Seasonal and Spatial Dynamics of Gas Ebullition

Biogeosciences, 18, 5291–5311, 2021 https://doi.org/10.5194/bg-18-5291-2021

https://doi.org/10.1007/s10750-013-1663-x
https://doi.org/10.1021/es4003907
https://doi.org/10.1051/hydro/2015006
https://doi.org/10.1007/s00340-010-4307-0
https://doi.org/10.1007/s00340-010-4307-0
https://doi.org/10.1016/j.agrformet.2007.08.011
https://doi.org/10.1111/j.1365-2486.1996.tb00075.x
https://doi.org/10.1016/S0022-1694(96)03194-0
https://doi.org/10.1002/2014JG002750
https://doi.org/10.1515/intag-2017-0042
https://doi.org/10.1515/intag-2017-0042
https://doi.org/10.5194/bg-11-4225-2014
https://doi.org/10.1002/2013JG002327
https://doi.org/10.2134/jeq2018.04.0162
https://doi.org/10.1016/j.agrformet.2006.01.007
https://CRAN.R-project.org/package=nnet
https://CRAN.R-project.org/package=nnet
https://doi.org/10.1016/j.jhydrol.2014.09.011
https://doi.org/10.1007/s10546-013-9868-0
https://doi.org/10.1021/es203465x
https://doi.org/10.4319/lo.2008.53.1.0113
https://doi.org/10.1023/A:1005929032764
https://doi.org/10.1111/gcb.15618
https://doi.org/10.1002/env.606


S. Waldo et al.: Key role of a spring burst 5311

in a Temperate Water-Storage Reservoir, Water Resour. Res., 53,
8266–8276, https://doi.org/10.1002/2017WR020694, 2017.

Varadharajan, C. and Hemond, H. F.: Time-series anal-
ysis of high-resolution ebullition fluxes from a strati-
fied, freshwater lake, J. Geophys. Res.-Biogeo., 117, G2,
https://doi.org/10.1029/2011JG001866, 2012.

Varadharajan, C., Hermosillo, R., and Hemond, H.
F.: A low-cost automated trap to measure bubbling
gas fluxes, Limnol. Oceanogr.-Meth., 8, 363–375,
https://doi.org/10.4319/lom.2010.8.363, 2010.

Vesala, T., Eugster, W., and Ojala, A.: Eddy Covariance Mea-
surements over Lakes, in Eddy Covariance, Dordrecht: Springer
Netherlands, 133–157, 2012.

Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of
flux measurements for density effects due to heat and wa-
ter vapour transfer, Q. J. Roy. Meteor. Soc., 106, 85–100,
https://doi.org/10.1002/qj.49710644707, 1980.

Webb, J. R., Hayes, N. M., Simpson, G. L., Leavitt, P. R., Baulch,
H. M., and Finlay, K.: Widespread nitrous oxide undersaturation
in farm waterbodies creates an unexpected greenhouse gas sink,
P. Natl. Acad. Sci. USA, 116, 9814–9819, 2019.

West, W. E., Coloso, J. J., and Jones, S. E.: Effects of algal and
terrestrial carbon on methane production rates and methanogen
community structure in a temperate lake sediment, Fresh. Biol.,
57, 949–955, https://doi.org/10.1111/j.1365-2427.2012.02755.x,
2012.

West, W. E., McCarthy, S. M., and Jones, S. E.: Phytoplankton lipid
content influences freshwater lake methanogenesis, Freshwater
Biol., 60, 2261–2269, https://doi.org/10.1111/fwb.12652, 2015.

Whalen, S. C.: Biogeochemistry of Methane Exchange between
Natural Wetlands and the Atmosphere, Environ. Eng. Sci., 22,
73–94, https://doi.org/10.1089/ees.2005.22.73, 2005.

Wik, M., Thornton, B. F., Bastviken, D., MacIntyre, S., Varner,
R. K., and Crill, P. M.: Energy input is primary controller of
methane bubbling in subarctic lakes, Geophys. Res. Lett., 41,
555–560, https://doi.org/10.1002/2013GL058510, 2014.

Wik, M., Thornton, B. F., Bastviken, D., Uhlbäck, J., and Crill, P.
M.: Biased sampling of methane release from northern lakes: A
problem for extrapolation, Geophys. Res. Lett., 43, 1256–1262,
https://doi.org/10.1002/2015GL066501, 2016.

Williamson, T. J., Vanni, M. J., and Renwick, W. H.: Spa-
tial and Temporal Variability of Nutrient Dynamics and
Ecosystem Metabolism in a Hyper-eutrophic Reservoir Dif-
fer Between a Wet and Dry Year, Ecosystems, 24, 68–88,
https://doi.org/10.1007/s10021-020-00505-8, 2021.

Winslow, L., Woolway, R., Brentrup, J., Leach, T., Zwart, J., Albers,
S., and Collinge, D.: rLakeAnalyzer: Lake Physics Tools, avail-
able at: https://CRAN.R-project.org/package=rLakeAnalyzer
(last access: 7 September 2021), 2019.

Wutzler, T., Reichstein, M., Moffat, A. M., and Migliavacca,
M.: REddyProc: Post Processing of (Half-)Hourly Eddy-
Covariance Measurements, R package version 1.2.2., avail-
able at: https://CRAN.R-project.org/package=REddyProc (last
access: 7 September 2021), 2020.

Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gu-
dasz, C., St-Pierre, A., Thanh-Duc, N., and del Giorgio, P.
A.: Methane fluxes show consistent temperature dependence
across microbial to ecosystem scales, Nature, 507, 488–491,
https://doi.org/10.1038/nature13164, 2014.

Zhang, L., Liu, C., He, K., Shen, Q., and Zhong, J.: Dramatic tem-
poral variations in methane levels in black bloom prone areas
of a shallow eutrophic lake, Sci. Tot. Environ., 767, 144868,
https://doi.org/10.1016/j.scitotenv.2020.144868, 2021.

Zhao, Y., Sherman, B., Ford, P., Demarty, M., DelSontro, T.,
Harby, A., Tremblay, A., Øverjordet, I. B., Zhao, X., Hansen,
B. H., and Wu, B.: A comparison of methods for the mea-
surement of CO2 and CH4 emissions from surface water reser-
voirs: Results from an international workshop held at Three
Gorges Dam, June 2012, Limnol. Oceanogr.-Meth., 13, 15–29,
https://doi.org/10.1002/lom3.10003, 2015.

https://doi.org/10.5194/bg-18-5291-2021 Biogeosciences, 18, 5291–5311, 2021

https://doi.org/10.1002/2017WR020694
https://doi.org/10.1029/2011JG001866
https://doi.org/10.4319/lom.2010.8.363
https://doi.org/10.1002/qj.49710644707
https://doi.org/10.1111/j.1365-2427.2012.02755.x
https://doi.org/10.1111/fwb.12652
https://doi.org/10.1089/ees.2005.22.73
https://doi.org/10.1002/2013GL058510
https://doi.org/10.1002/2015GL066501
https://doi.org/10.1007/s10021-020-00505-8
https://CRAN.R-project.org/package=rLakeAnalyzer
https://CRAN.R-project.org/package=REddyProc
https://doi.org/10.1038/nature13164
https://doi.org/10.1016/j.scitotenv.2020.144868
https://doi.org/10.1002/lom3.10003

	Abstract
	Introduction
	Methods
	Site description
	Eddy covariance flux measurements
	Active funnel trap ebullition measurements
	Chamber diffusion measurements
	Water measurements
	Whole-reservoir surveys
	Gap filling and upscaling
	Uncertainty analysis
	Statistical and quantitative analysis

	Results
	Temporal patterns in FCH4
	Cumulative FCH4
	Spatial patterns in FCH4

	Discussion
	Comparison with other systems and methods
	Implications for upscaling
	Spring burst
	Additional intra-lake variability


	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

