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Abstract. Australia plays an important role in the global ter-
restrial carbon cycle on inter-annual timescales. While the
Australian continent is included in global assessments of the
carbon cycle such as the global carbon budget, the perfor-
mance of dynamic global vegetation models (DGVMs) over
Australia has rarely been evaluated. We assessed simulations
of net biome production (NBP) and the carbon stored in veg-
etation between 1901 to 2018 from 13 DGVMs (TRENDY
v8 ensemble). We focused our analysis on Australia’s short-
term (inter-annual) and long-term (decadal to centennial) ter-

restrial carbon dynamics. The TRENDY models simulated
differing magnitudes of NBP on inter-annual timescales, and
these differences resulted in significant differences in long-
term vegetation carbon accumulation (−4.7 to 9.5 PgC). We
compared the TRENDY ensemble to several satellite-derived
datasets and showed that the spread in the models’ simu-
lated carbon storage resulted from varying changes in car-
bon residence time rather than differences in net carbon up-
take. Differences in simulated long-term accumulated NBP
between models were mostly due to model responses to land-
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use change. The DGVMs also simulated different sensitivi-
ties to atmospheric carbon dioxide (CO2) concentration, al-
though notably, the models with nutrient cycles did not sim-
ulate the smallest NBP response to CO2. Our results sug-
gest that a change in the climate forcing did not have a large
impact on the carbon cycle on long timescales. However,
the inter-annual variability in precipitation drives the year-
to-year variability in NBP. We analysed the impact of key
modes of climate variability, including the El Niño–Southern
Oscillation (ENSO) and the Indian Ocean Dipole (IOD), on
NBP. While the DGVMs agreed on sign of the response of
NBP to El Niño and La Niña and to positive and negative
IOD events, the magnitude of inter-annual variability in NBP
differed strongly between models. In addition, we find that
differences in the timing of simulated phenology and fire dy-
namics are associated with differences in simulated or pre-
scribed vegetation cover and process representation. We fur-
ther find model disagreement in simulated vegetation carbon,
phenology, and apparent carbon residence time, indicating
that the models have different types and coverage of vegeta-
tion across Australia (whether prescribed or emergent). Our
study highlights the need to evaluate parameter assumptions
and the key processes that drive vegetation dynamics, such
as phenology, mortality, and fire, in an Australian context to
reduce uncertainty across models.

1 Introduction

Decadal variability in the growth rate of atmospheric carbon
dioxide (CO2) is strongly influenced by variability in the up-
take and release of carbon by the oceans and the terrestrial
biosphere (Ballantyne et al., 2012; Raupach et al., 2008). The
inter-annual variability (IAV) in the CO2 growth rate is dom-
inated by terrestrial processes (e.g. vegetation productivity,
respiration, and fire emissions) and their responses to both
temperature and precipitation, driven by modes of climate
variability (Ahlström et al., 2015; Zhang et al., 2018; Poul-
ter et al., 2014). The El Niño–Southern Oscillation (ENSO)
is the dominant mode of global variability (e.g. Ahlström
et al., 2015) and contributes around 26 % of the IAV in global
gross primary production (GPP; Zhang et al., 2019). Glob-
ally, ENSO has also been shown to explain more than 40 %
of satellite-derived net primary production (NPP) variabil-
ity, mainly driven by the response of Southern Hemisphere
ecosystems (Bastos et al., 2013) and in particular semi-arid
ecosystems (Zhang et al., 2018).

Around 70 % of the land in Australia is classified as ei-
ther arid or semi-arid (Brown et al., 2008). Oceania has been
found to contribute significantly to the uncertainty in global
and regional carbon budgets (Bastos et al., 2020), and the im-
portant role played by semi-arid ecosystems in explaining the
variability in the global carbon cycle was highlighted by the
2011 La Niña event. While on average,∼ 17 % of IAV in net

biome production (NBP) was attributable to Australia over
the historical period, during the 2011 La Niña event, Aus-
tralia contributed around 60 % of the global carbon sink (e.g.
Poulter et al., 2014). A recent study suggested that the Aus-
tralian terrestrial carbon sink may be enhanced due to more
extreme wet events projected for future decades (Ma et al.,
2016). This carbon uptake enhancement has been associated
with the asymmetric response of GPP to precipitation (i.e.
positive GPP anomalies tend to be larger than negative ones;
Haverd et al., 2017) in combination with vegetation expan-
sion linked to rainfall (based on a single dynamic vegeta-
tion model; Poulter et al., 2014). At the same time, a series
of studies have also identified evidence of rising CO2, lead-
ing to a marked greening of the Australian continent (Dono-
hue et al., 2009, 2013; Ukkola et al., 2016b; Trancoso et al.,
2017).

Dynamic global vegetation models (DGVMs) are com-
monly used to explore large-scale responses of the carbon cy-
cle to climate variability and climate change (Friedlingstein
et al., 2019; Le Quéré et al., 2018). However, comparing NBP
(the change in carbon stocks including carbon losses due to
disturbance) between different DGVMs shows a large model
spread with substantial variations in annual global NBP of
up to 3 PgCyr−1 when forced with the same meteorologi-
cal drivers (Le Quéré et al., 2018). This demonstrates large
uncertainties in the representation of the terrestrial carbon
cycle and the associated response to climate and land-use
change in DGVMs. Roxburgh et al. (2004) concluded from
an Australian-based evaluation of NPP that DGVMs were
unable to capture the interactions between terrestrial bio-
sphere and atmosphere (models simulated a fivefold varia-
tion in annual NPP), citing weaknesses related to the role
of water and nutrients in limiting productivity. A number of
more recent studies have improved our understanding of the
Australian terrestrial carbon cycle, employing flux tower data
(e.g Tarin et al., 2020), satellite-derived carbon fluxes (e.g.
Cleverly et al., 2016), and regional biospheric modelling (e.g.
Haverd et al., 2013, 2016b).

Nevertheless, while the Australian continent is included
in global assessments of the carbon cycle, DGVM perfor-
mance over Australia has rarely been evaluated. The need
for such an evaluation is emphasized by recent studies that
have used DGVM simulations to underline the importance
of Australia’s ecosystems to the inter-annual variability in
the global carbon cycle (Poulter et al., 2014; Ahlström et al.,
2015). DGVM studies have also previously highlighted veg-
etation responses to climate as critical to future projected
changes in water resources (Ukkola et al., 2016a) and an en-
hanced future carbon sink (Kelley and Harrison, 2014) across
Australia. Thus, evaluating DGVM skill is also equally im-
portant for assessing projected changes in Australia’s carbon
and water cycles.

In this study, we assessed the terrestrial carbon cycle
for Australia simulated by 13 DGVMs that are part of the
TRENDY v8 ensemble. We examined drivers of both the
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long-term (decadal to centennial timescales) and short-term
(inter-annual timescales) model responses of the carbon cy-
cle. With these timescales in mind, we expected that model
differences result from

– sensitivity to increasing CO2

– sensitivity to climate variability

– prescribed and simulated land cover and interpretation
of land-use change

– assumed and emergent functional representation of
Australian vegetation.

We therefore examined the contribution made by each of
these differences across the TRENDY v8 ensemble. Our goal
was to isolate, to the extent possible, the causes of differences
among the TRENDY v8 ensemble as a first step towards pri-
oritizing areas to focus on to resolve the differences among
the models.

2 Materials and methods

2.1 Models and simulations

We used the 13 dynamic vegetation models that are part
of the TRENDY v8 model ensemble (Friedlingstein et al.,
2019): CABLE–POP, CLASS–CTEM, CLM5.0, ISAM,
ISBA-CTRIP, JSBACH, JULES-ES, LPX-Bern, OCN, OR-
CHIDEE, ORCHIDEE-CNP, SDGVM, and VISIT. In these
models, vegetation cover is either dynamically simulated
(CABLE-POP, JULES-ES, LPX-Bern, and SDGVM) or pre-
scribed (CLASS-CTEM, CLM5.0, ISAM, ISBA-CTRIP, JS-
BACH, OCN, ORCHIDEE, ORCHIDEE-CNP, and VISIT).
All models used identical forcing inputs and followed a com-
mon simulation protocol over the period 1700–2018 (see
Fig. C1 and description in the Appendix A for more detailed
information). However, each model used a model-specific in-
terpretation of the land-use change forcing.

We remapped all model outputs and satellite datasets (see
below) to a common 0.5◦ grid using first-order conservative
regridding (except for the comparison with the data over the
North Australian Tropical Transect (NATT)). For this anal-
ysis, we defined a year as starting in July and ending in
June (except for the CVeg analysis, which followed calendar
years) to capture the Southern Hemisphere growing season
and capture full El Niño and La Niña events, which usually
start and end in austral winter. We expressed the change in
the variables as the difference to the 1901–1930 average and
processed the data with netCDF Operators (NCO; version
4.7.7. http://nco.sf.net, last access: 27 September 2021) and
Climate Data Operators (CDO; version 1.9.5. http://mpimet.
mpg.de/cdo, last access: 27 September 2021). The data anal-
ysis was conducted with Python version 3.

2.2 Satellite data

To assess model simulations, we used several satellite-
derived datasets. We note that direct continental-scale mea-
surements of the variables below do not exist and that the
satellite products also rely on models themselves.

2.2.1 Gross primary production and phenology

We compared the simulated GPP phenology cycle to GPP
derived from solar-induced chlorophyll fluorescence (SIF)
(GOSIF-GPP; Li and Xiao, 2019). To ensure the GOSIF-
GPP phenology accurately captured phenology, we also com-
pared these data to a satellite-derived leaf area index (LAI)
product (modified Copernicus Service information, 2020; see
Fig. C2). GOSIF-GPP is based on the OCO-2-based SIF
product (GOSIF) and derived by assuming linear relation-
ships between SIF and GPP estimated from eddy covariances
sites. Uncertainties were accounted for by using eight differ-
ent SIF–GPP relationships (derived universally and biome-
specific, with and without intercept at both site and grid cell
levels). The 0.05◦ dataset covers the period 2000 to 2018 at
an 8 d temporal resolution that we aggregated to a monthly
time step.

2.2.2 Carbon stored in vegetation

Estimates of aboveground carbon biomass can be derived
from satellite estimates of vegetation optical depth (VOD;
related to the aboveground vegetation’s water content, den-
sity, and biomass). We used aboveground carbon biomass
to assess the carbon stored in vegetation in the TRENDY
models and note that the datasets are not directly compara-
ble since the satellite product does not account for below-
ground carbon. We used global estimates of the annual aver-
age aboveground biomass carbon for 1993–2012 with a 0.25◦

spatial resolution derived from a series of satellite passive mi-
crowave instruments (Version 1.0; Liu et al., 2015). Liu et al.
(2015) used an empirical approach to convert a harmonized
time series of VOD to aboveground biomass carbon.

2.2.3 Fire-related CO2 fluxes

We used two different satellite estimates of fire CO2
emissions: the Global Fire Emissions Database version 4
(GFED4s) described in van der Werf et al. (2017) and
the Copernicus Atmosphere Monitoring Service Global Fire
Assimilation System (CMAS-GFAS; Kaiser et al., 2012).
GFED4s has a spatial resolution of 0.25◦ with a monthly time
step and provides data from 1997–2020. We note that starting
from 2017, the GFED4s data are flagged as a beta version;
i.e. starting 2017, fire emissions are derived from active fire
detections instead of burned area. CAMS-GFAS covers the
years 2003–2020 on a 0.1◦ horizontal grid. The source for
both estimates is the MODIS satellite, but different variables
and methods are used to derive the fire CO2 emissions (for
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more detail, see e.g. van der Werf et al., 2017; Kaiser et al.,
2012; Li et al., 2019; and Pan et al., 2020).

2.2.4 Land-cover fraction

We used the MODIS/Terra Vegetation Continuous Fields
Yearly L3 Global 250 m SIN Grid V006 dataset for a com-
parison of satellite-derived and land cover in DGVMs. This
product estimated the global land-cover fraction using sur-
face reflectance, brightness temperature, and the MODIS
Global 250 m Land/Water Map (DiMiceli et al., 2017).

2.3 Flux sites and North Australian Tropical Transect
sites

We analysed the TRENDY models in the context of the
NATT gradient, which encompasses a precipitation gradient
ranging from ∼ 720 to 1650 mmyr−1. The NATT was es-
tablished to understand the function of savanna ecosystems,
the predominant landscape in northern Australia. We used
the four sites Howard Springs (AU-How), Daly Uncleared
(AU-DaS), Dry River (AU-Dry), and Sturt Plains (AU-Stp;
see Table B1 in Appendix B). We chose the simulations with
transient CO2 concentration, climate, and land-use change.
In order to compare the models to the flux sites, we isolated
the corresponding grid cells based on the site coordinates and
calculated the net ecosystem exchange (NEE) as a balance
between GPP and terrestrial ecosystem respiration (TER).
We further divided the data into the wet (November–April)
and dry (May–October) season.

Although we showed flux tower observations and simula-
tions of NEE, GPP, and TER together, we note that the spa-
tial scales of observed ecosystem fluxes (eddy covariance)
and simulations by a DGVM are not directly comparable
given that the flux tower footprint is ∼ 1 vs. ∼ 3000 km2

for a grid cell in a 0.5◦ grid. Consequently, DGVMs can-
not represent local features such as heterogeneous environ-
mental conditions and land cover or biogeographical feed-
backs with atmospheric conditions specific to the site (Piao
et al., 2013; Luo, 2007). However, given that the meteorology
recorded at the sites and the meteorology used to drive the
TRENDY simulations were highly correlated (see Fig. C3 in
Appendix C), we assumed the TRENDY models simulated
the vegetation in a similar climate as the observed. We also
note that due to data loss, some of the observed data con-
tained a high proportion of gap-filled data. This was partic-
ularly the case at the Howard Springs site and for the TER
flux across sites.

2.4 Vegetation classes

To group the analysis by regions, we classified Australia
into six vegetation classes (tropics, savanna, warm temper-
ate, cool temperate, Mediterranean, and desert; see Fig. C4)
following Haverd et al. (2012). These regions have distinct

climate and biophysical characteristics and are based on the
agro-climatic classification by Hutchinson et al. (2005).

2.5 Identification of modes of variability

Numerous studies highlighted the impact of different modes
of climate variability on Australian weather patterns (e.g.
Ummenhofer et al., 2011). The El Niño–Southern Oscilla-
tion (ENSO) and the Indian Ocean Dipole (IOD) drive vari-
ability in precipitation, which in turn is the main driver of
variability in the Australian carbon cycle (e.g Cleverly et al.,
2016; Haverd et al., 2013). We identified years correspond-
ing to the phase of ENSO and IOD events (see Table B2). We
used these different climate modes to group our analysis of
modelled carbon fluxes.

2.6 Apparent carbon residence time in vegetation

To understand model differences that are related to carbon
stored in vegetation (CVeg), we analysed the carbon residence
time in vegetation (τ ). We followed Friend et al. (2014) and
Pugh et al. (2020), who defined the change in CVeg over time
as
dCVeg

dt
= NPP−

CVeg

τ
. (1)

Consequently, we calculated the change in the carbon res-
idence time using annual time steps according to

τ =
CVeg

NPP− dCVeg
dt

. (2)

2.7 PFT groups

Each of the TRENDY models has its own vegetation clas-
sification. To compare simulated and prescribed vegeta-
tion cover between models, we grouped the model-specific
plant functional types (PFTs) into 10 PFT groups: evergreen
trees (“EVG”); deciduous, summergreen, and raingreen trees
(“DCD/SMG/RNG”); shrubs; savanna; C3 grass; C4 grass;
C3 agriculture and C4 agriculture (i.e. crops and pasture
PFTs); bare ground; and a group comprising the remain-
ing land-cover types, such as city, urban, or lakes. For each
model, we assigned the model-specific PFTs to these groups
and finally compared the fraction of land covered by each
PFT group. Note that not all models account for all the veg-
etation groups; i.e. only 4 out of the 10 PFT groups included
input from all of the models (EVG, DCD/SMG/RNG, C3
grass, and C4 grass).

3 Results

3.1 Net biome production and carbon stored in
vegetation

Summed over Australia, the TRENDY model ensemble sim-
ulated large inter-annual variability in NBP (see Fig. 1a)
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ranging from −0.9 to 1.4 PgCyr−1. Figure 1a also shows
a considerable model spread: the TRENDY models var-
ied on average by 0.5 PgCyr−1 with a difference of up to
1.26 PgCyr−1 between the most extreme models. Years with
extremely high or low NBP, such as in 1973 and 2010, were
associated with particularly large uncertainty amongst the
models. These large differences on inter-annual timescales
led to differences in cumulative NBP over 1901–2018, vary-
ing between −4.7 (OCN) and 9.5 PgC (LPX-Bern; see
Fig. 1b). Two of the DGVMs simulated a net carbon source
over the Australian continent from 1901–2018, while the re-
maining models simulated a net sink ranging from negligible
through to 9.5 PgC.

Across the 20th Century, the TRENDY models simulated
very different amounts of CVeg. For example, JSBACH sim-
ulated ∼ 2.5 PgC, while JULES-ES and ORCHIDEE-CNP
simulated more than ∼ 16 PgC (see Fig. 1c). We used an
estimate derived from vegetation optical depth (VOD; see
Fig. 1c) to put the model simulations into context. A total
of 9 of the 13 models predicted a higher amount of CVeg than
aboveground biomass estimated by the satellite. Uncertainty
in the VOD data was not available, but if we conservatively
assume ±30 %, at least 7 of the 12 models were outside
this range. However, we note that higher CVeg in compari-
son to aboveground biomass might also result from the fact
that CVeg includes above- and belowground biomass. The
models also showed very different long-term behaviour. For
example, some DGVMs simulated a steady-state CVeg (e.g.
JSBACH and LPX-Bern) through 1901–2018, while other
models displayed a strong decrease in CVeg until 1970 and
a subsequent slight increase (e.g. OCN and ISBA-CTRIP).
VISIT simulated a sudden jump in CVeg around 1975. Sim-
ilarly, CSoil varied strongly between the models, from 11.9
(JSBACH) up to 64.4 PgC (JULES-ES). Most of the mod-
els did not show a change over time, while three models
increased in CSoil (CABLE-POP, ISAM, and LPX-Bern).
In short, Fig. 1 shows that the 13 TRENDY models simu-
lated different inter-annual variability, contrasting cumula-
tive NBP and inconsistent short- and long-term CVeg and
CSoil.

3.2 Response to atmospheric CO2 concentration,
climate, and land-use change

We used three sets of TRENDY simulations (see Fig. C1)
to separate the effect of three drivers – land-use change, at-
mospheric CO2 concentration, and climate – on the Aus-
tralian carbon cycle. Figure 2 shows cumulative NBP over
1901–2018 for the three simulations CO2, CO2+CLIM, and
CO2+CLIM+LUC. Summed over the years 1901–2018, the
TRENDY models showed high variability in the response to
the different external drivers. The models agreed on the sign
of the response to atmospheric CO2 and the combined effect
of atmospheric CO2 and varying climate such that, by 2018,
all models accumulated NBP on both regional and continen-

tal scales. However, the response of cumulative NBP to in-
creasing atmospheric CO2 differed strongly among the mod-
els, with an increase in NBP ranging from 2.5 up to 10 PgC
over all of Australia. Varying climate in combination with
increasing atmospheric CO2 concentration led to stronger
increases in cumulative NBP for some models (e.g. LPX-
Bern and VISIT; see Fig. 2; all regions except tropics and
Mediterranean) or decreases (e.g. ISAM and ORCHIDEE-
CNP). Lastly, land-use change led to the greatest variation
among the TRENDY models, with differences in both sign
and magnitude (−3.3 to 8.5 PgC). A total of 8 out 13 mod-
els simulated a decrease in cumulative NBP compared to the
CO2+CLIM run for all regions. Imposed land use turned
positive cumulative NBP in the CO2+CLIM simulations into
negative cumulative NBP in the CO2+CLIM+LUC simu-
lation for OCN and ORCHIDEE-CNP. Only ISAM accumu-
lated more NBP in the CO2+CLIM+LUC simulation com-
pared to the CO2+CLIM run in most regions.

3.3 Response to modes of climate variability

The climate in Australia, especially the precipitation pat-
terns, is strongly influenced by different modes of variability
such as ENSO and the IOD. Therefore, the modes of vari-
ability can be expected to influence the IAV of the terres-
trial carbon cycle over Australia. To further understand the
response to the climate forcing, we decomposed the model
response to the different modes of variability (see Table B2),
specifically to positive and negative IOD events (see “pIOD”
and “nIOD” in Fig. 3) and El Niño and La Niña events (see
“El Niño” and “La Niña” in Fig. 3). Negative and positive
NBP values that are associated with neither ENSO nor the
IOD (see “other negative” and “other positive” in Fig. 3) as
well as the response of the models to the 10 driest and wettest
years (“driest years” and “wettest years”) are also shown in
Fig. 3.

In general, the individual models agreed on the sign of
NBP for the different climate modes of variability with neg-
ative NBP for positive IOD and El Niño events and positive
NBP for negative IOD and La Niña events. The two “other”
groups (negative and positive) covered a similar value range
compared to the modes of variability. For both IOD and
ENSO events as well as for the “other negative/positive” cat-
egories, the median values across years were similar among
the models. Interestingly, the model responses in the driest
and wettest years led to the largest range among the models in
both median and IAV compared to the other six panels. This
highlights the importance of looking beyond climate modes
of variability to understand responses of the Australian ter-
restrial carbon cycle.

3.4 Seasonal productivity and phenology

To examine differences in simulated carbon uptake, we eval-
uated the simulated seasonal cycle. Figure 4 shows that the
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Figure 1. Net biome production (NBP), carbon stored in vegetation (CVeg), and carbon stored in soil (CSoil) for the TRENDY model
ensemble for the CO2+CLIM+LUC run. Positive values in NBP represent a net carbon sink; negative values are a net carbon source. The
solid green line in (a) shows the ensemble mean of total annual NBP, and the shaded green area shows the range across models. Panel (b)
shows the cumulative net biome production for each model summed over Australia. Panels (c) and (d) show CVeg and CSoil respectively
summed over Australia for each model. The black line in (c) shows the a satellite-derived estimate (“VOD”; Liu et al., 2015). Note that we
define the first month of the year as July and the last month of the year as June for NBP and follow calendar years for the carbon pools.

TRENDY models varied in the timing and the magnitude of
peak productivity for the different vegetation regions. We
compared the TRENDY models to the GPP estimate de-
rived from solar-induced chlorophyll fluorescence (“GOSIF-
GPP”; Li and Xiao, 2019). We note that because direct mea-
surements of GPP at continental scales do not exist (i.e.
GOSIF-GPP is not directly observed GPP), we constrained
our comparison to an indicative evaluation of differences.
Most models simulated higher productivity for the tropics,
savanna, and warm temperate regions compared to GOSIF-
GPP. For all regions except the desert, most models were not
within the uncertainty band of the GOSIF-GPP satellite es-
timate (grey band). The timing of peak productivity varied
among the TRENDY models and GOSIF-GPP: most mod-
els matched peak productivity for the tropics, savanna, and
desert. In contrast, for the cool temperate and Mediterranean
regions, most models lagged peak productivity estimated by
GOSIF-GPP by 1 to 3 months. As the SIF–GPP relationship
was derived using a fixed relationship between eddy covari-

ance and satellite SIF, it is possible that the model data mis-
match implies a missing species sensitivity to water stress
in the SIF data. However, the consistent timing in peak SIF
and satellite LAI (see Fig. C2) tends to imply that the lags
in phenology relate to differences in assumed and emergent
vegetation cover (see below).

3.5 Apparent carbon residence time

Relative to the average over 1901–1930, all models simu-
lated a similar rate in increase in NPP (see Fig. 5a). The ap-
parent carbon residence time (τ ), i.e. the balance between
growth of plant tissues (leaves, wood, roots) and the turnover
of these tissues, varied between 2 and 14 years averaged
over Australia. Models that simulated high CVeg (compare
Fig. 1) also had high values for τ (e.g. ORCHIDEE-CNP
and JULES-ES) and vice versa (e.g. JSBACH and LPX-
Bern). Some models did not simulate changes in τ over time
(e.g. CLM5.0, JSBACH, JULES-ES, LPX-Bern), while other
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Figure 2. Cumulative net biome production (NBP) from 1901–2018. The first group in each panel shows the CO2 effect on accumulated
NBP (“CO2”; i.e. transient CO2 forcing, time-invariant climate and land-use mask). The second group (“CO2+CLIM”) shows the combined
effect of a transient CO2 and climate forcing (i.e. transient CO2 and climate forcing, time-invariant land-use mask). The third group (“CO2+
CLIM+LUC”) shows the combined effect of a transient CO2, climate forcing, and land-use change (i.e. transient CO2 and climate forcing
and land-use mask). Regions are defined according to Haverd et al. (2012) (see Fig. B4). We define the first month of the year as July, and
the last month of the year is defined as June. Note that the y axis limits differ between the panels.

models simulated decreases. In particular, the ISBA-CTRIP
and OCN models showed a strong decline – from ∼ 6 years
(1900) to 4 years (1960) – before levelling off (see Fig. 5c).
Even though NPP increased for ISBA-CTRIP and OCN,
CVeg significantly declined for these two models as well due
to the decrease in τ . The remaining models either balanced
increasing NPP and decreasing τ so that CVeg did not show a
strong trend (e.g. CLM5.0, JSBACH, JULES-ES, LPX-Bern)
or increased in CVeg because the effect of change in NPP
was greater than the decline in τ (e.g. CLASS-CTEM, OR-
CHIDEE, VISIT).

3.6 Northern Australian Tropical Transect (NATT)

To better understand differences in modelled carbon fluxes,
we examined simulations along a rainfall gradient: the North-
ern Australian Tropical Transect (NATT). Figure 6 shows the
probability density functions for NEE, GPP, and TER for
the wet (November–April) and dry (May–October) seasons
across the NATT. During the dry season, as the sites become
drier, the mean position of the GPP and TER distributions
shifted closer to zero, and the distribution spread narrows. By
contrast, the shape of the distributions varied strongly among
the models for all variables: some models (e.g ISAM as well
as LPX-Bern for dry season NEE and GPP) simulated high
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Figure 3. Net biome production (NBP) during positive IOD (“pIOD”), negative IOD (“nIOD”), El Niño, and La Niña events (see Table B2).
All negative NBP values that are associated with neither pIOD nor El Niño are classified as “other negative”; all positive NBP values that
are associated with neither nIOD nor La Niña events are classified as “other positive”. “Driest years” shows NBP values associated with the
10 driest years, and “wettest years” shows NBP values associated with the 10 wettest years (based on precipitation anomalies averaged over
Australia). We define the first month of the year as July, and the last month of the year is defined as June. Note that the y axis limits differ
between the panels.

peak probability densities and narrow distributions, while
others (e.g. JULES-ES and OCN) displayed a flatter distri-
bution. During the wet season, some models were more pro-
ductive than observed for all sites (CABLE-POP, JSBACH,
JULES-ES, and SDGVM). Overall, there was no clear sys-
tematic pattern in the arrangement of the models across the
NATT; even when models simulated similar distributions for
NEE, they often did so for different reasons (i.e. contrasting
trade-offs in carbon uptake and respiration).

3.7 Fire-related CO2 fluxes

Fire is an important component of the carbon cycle in many
of Australia’s ecosystems. At the monthly timescale, the
seven DGVMs that simulated fire dynamics significantly
underestimated the fire CO2 emissions associated with ex-
treme events compared to the GFED4s and CAMS-GFAS
satellite products. However, the timing of simulated peak
fire events was synchronized with the observations for some
models (see Fig. 7a). Fire weather can be associated with
ENSO cycles in Australia (e.g. Harris and Lucas, 2019);
Fig. 7a however did not indicate a clear connection be-
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Figure 4. Seasonal cycle for satellite-derived gross primary production (GOSIF-GPP; black) and the associated uncertainty (i.e. ±1 SD) as
well as the individual TRENDY models averaged over 2000–2017. Regions are defined according to Fig. C4. Note that the y axis limits
differ between the panels.

tween ENSO cycles and extreme fire events. The first two
peaks in observed fire emissions occur during El Niño
events; the two highest peaks in fire CO2 emission ac-
cording to CMAS-GFAS instead coincided with the 2011
La Niña event and with the ENSO-neutral year 2012/2013.
Figure 7b) shows that all models simulated lower variabil-
ity compared to the satellite-derived estimates, with simi-
larly wide but less peaked probability density functions. The
peak was shifted to the right of the observations for some
models (LPX-Bern, SDGVM, and VISIT; see Fig. 7b). On
monthly timescales, four TRENDY models capture some
features in the variability in the satellite-derived observations
with either weakly (ISBA-CTRIP and VISIT: both datasets;
JSBACH: GFED4s), moderately (JSBACH: CAMS-GFAS;
CLASS-CTEM: CAMS-GFAS), or highly (CLASS-CTEM:
GFED4s) significant correlation coefficients. The remaining
models do not show a significant relationship to either of the
datasets. Aggregated to annual values, the TRENDY models
generally underestimated the fire CO2 emissions and did not

capture the variability in, or timing of, extreme fire years (see
Fig. 7c). CLASS-CTEM, JSBACH, and ISBA-CTRIP cap-
tured some features of the variability in the satellite-derived
observations. CLASS-CTEM is moderately correlated with
both datasets (r > 0.5), ISBA-CTRIP shows a significant
moderate correlation with the GFED4s dataset only, and JS-
BACH is highly correlated with both datasets (r > 0.7; see
Table B3). The remaining models are not significantly linked
the satellite-derived observations.

3.8 Land-cover fraction

Figure 8 shows the vegetation fraction, either prescribed or
simulated dynamically, from the TRENDY models averaged
over Australia. We grouped the model-specific PFTs into 10
groups (see methods). In general, the average land cover
varied quite strongly among the models. The average frac-
tion of Australia covered by natural vegetation differed be-
tween 24.9 % (LPX-Bern) and 93.7 % (VISIT). The vegeta-
tion composition also displayed large differences, with some
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Figure 5. Change in net primary production (NPP) in comparison to the 1901–1930 average (a), total apparent carbon residence time in
vegetation τ (b), change in τ in comparison to the 1901–1930 average (c), and change in carbon stored in vegetation (CVeg) in comparison
to the 1901–1930 average (d). The solid lines in (b) and (c) show the 5-year moving average; the shaded lines are the original data.

models simulating high tree fractions around 40 % (OR-
CHIDEE and ORCHIDEE-CNP), while other models had
low fractions around 2 % (e.g. ISAM, and SDGVM). Mod-
els accounting for shrubs populated between 3.5 % (ISBA-
CTRIP) and 55 % (VISIT) of Australia with shrubs. Simi-
larly, land populated by grasses covered a large range be-
tween 4 % and 50 % (VISIT and OCN, respectively), and the
fraction of C3 grasses either exceeded land covered by C4
grasses or vice versa. Most models showed a relatively small
proportion of agricultural land cover except for LPX-Bern.
Lastly, models accounting for bare land-cover fraction (i.e.
bare ground or desert) defined 0.2 %–51 % of Australia as
bare (VISIT and SDGVM, respectively).

Figure 9 shows the spatial distribution of the fraction of all
herbaceous vegetation, the predominant vegetation in Aus-
tralia, averaged over 1989–2018 for the TRENDY models.
The models displayed different patterns in land covered by
grass and crops. For example, VISIT had a high grass frac-
tion in almost all regions, with values close to 1, whereas
other models showed dense grass cover fractions in the trop-
ics and around the east and west of Australia (e.g. ISAM,
ISBA-CTRIP, LPX-Bern, and SDGVM). Some models sim-

ulated a more even distribution of grass cover across Aus-
tralia with either relatively high (JSBACH) or low frac-
tions (CLASS-CTEM, JULES-ES, and ORCHIDEE-CNP).
In contrast, the grass cover fraction for ORCHIDEE gen-
erally increased, moving from the coastal areas to the inte-
rior of the continent. The tree fraction also varied strongly
across the models. Most models had high fractions along the
east coast and in the tropics and no significant tree growth
in other places, similar to the MODIS satellite-derived tree
cover fraction. In contrast, OCN had a low tree cover fraction
along the coastline, but this fraction increased towards the
interior of Australia, with a higher distribution in the south-
west and south-east (see Fig. C5).

4 Discussion

On average, Australia’s simulated contribution to the global
NBP anomaly was 17 %, with greater contributions when the
global sink (excluding Australia) was small or in years with
above-average precipitation in Australia (e.g. in a La Niña
years; Poulter et al., 2014). Depending on the model, Aus-
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Figure 6. Probability density functions for observed and modelled net ecosystem exchange (NEE), gross primary production (GPP), and
terrestrial ecosystem respiration (TER) for the for four flux sites: Howard Springs (AU-How), Daly Uncleared (AU-DaS), Dry River (AU-
Dry), and Sturt Plains (AU-Stp). These sites reflect a strong mean annual precipitation (MAP) gradient (provided for each row). We show the
monthly distribution of each variable for the wet (November–April) and dry (May–October) seasons. The observed variables originate from
eddy covariance data collected by the TERN-OzFlux facility. The probability density function is based on kernel density estimates using
Gaussian kernels with bandwidth selection following Scott (1992).

tralia’s share of global cumulative NBP could be as high
as ∼ 53 % (SDGVM). Given Australia’s significant contri-
bution to the global terrestrial carbon sink on inter-annual
timescales, our goal was to assess the skill of state-of-the-art
DGVMs applied to Australia.

Despite being forced with identical meteorology, the
13 DGVMs from the TRENDY v8 ensemble simulated
markedly different representations of Australia’s terrestrial
carbon cycle. The maximum difference in annual NBP
among the models reached up to 1.3 PgCyr−1 (see Fig. 1a).
Importantly, uncertainties associated with IAV in simulated
NBP accumulated over time, leading to large differences in
cumulative NBP among the models by 2018 (see Fig. 1b).
The TRENDY models also simulated very different quan-
tities of carbon stocks in vegetation (Fig. 1c). While the
satellite estimate of CVeg lies within the range simulated
by the models, individual model estimates of CVeg varied
widely (averaged over 1901–2018 from around 2.7 PgC for
JSBACH to 17.2 PgC for JULES-ES). Similarly, averaged

over 1901–2018, simulated CSoil differed strongly, from 11.9
(JSBACH) to 64.4 PgC (JULES-ES).

We identified the key reasons for model differences in
NBP related to the processes of land-cover and land-use
change, rising atmospheric CO2 concentration, climate and
climate modes of variability, apparent carbon residence time
in the vegetation, and fire processes.

Atmospheric CO2 concentration

All the models simulated an increase in cumulative NBP in
response to increasing CO2 but with very different magni-
tudes (+2.46–10.13 PgC from 1901–2018). This was in line
with studies that have identified increasing CO2 as the main
driver of change in the global terrestrial carbon sink and find
that model disagreement was largest due to differing sensitiv-
ities to CO2 in cumulative NBP (e.g. Huntzinger et al., 2017;
Arora et al., 2020; Walker et al., 2020). The incorporation of
nutrient cycles in models and DGVMs in particular tends to
result in a reduced sensitivity to CO2 (e.g. Smith et al., 2014;
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Figure 7. Monthly (a, b) and annual (c) fire CO2 emissions of seven TRENDY models and two satellite-derived estimates (CMAS-GFAS
and GFED4s). Shaded blue areas show La Niña events; shaded red areas show El Niño events. Panels (a) and (c) show the total fire CO2
emissions; (b) shows the probability density function based on kernel density estimates using Gaussian kernels with bandwidth selection
following Scott (1992) of the normalized monthly fire CO2 emissions. Note that the satellite-derived estimates have a different y axis for the
monthly fire CO2 emissions than for the TRENDY models.

Zaehle, 2013; Thomas et al., 2013; Meiyappan et al., 2015;
Meyerholt et al., 2020). In a global analysis, Huntzinger
et al. (2017) found that models incorporating a nitrogen cycle
tended to have a lower net carbon sink than models without
nitrogen constraints. Similarly, two model-based analyses in
the context of CO2 manipulation experiments found lower
simulated net primary productivity responses in models that
incorporated nitrogen and phosphorus cycles (Medlyn et al.,
2016; Fleischer et al., 2019). Interestingly, this finding does
not hold for our study: the three models with the highest cu-
mulative NBP all included a nitrogen cycle. A possible ex-
planation may be that Australian soils are considered to be
phosphorus- rather than nitrogen-limited (Du et al., 2020;
Lambers et al., 2015) due to weathering processes and high
phosphorus sorption capacities (Beadle, 1966; Wild, 1958).
Results from an ecosystem-scale CO2 manipulation experi-
ment (Ellsworth et al., 2017) showed that phosphorus avail-
ability limited biomass growth in an Australian woodland,
although leaf-level photosynthesis was observed to have con-
sistently increased (Jiang et al., 2020; Ellsworth et al., 2017;

Yang et al., 2020). Despite the importance of phosphorus
availability in Australia, only two of the TRENDY ensem-
ble models incorporated an interactive phosphorus cycle, and
these models (CABLE-POP and ORCHIDEE-CNP) did not
show consistent behaviour. It is likely that improved mod-
elling of the phosphorus cycle and in particular the relative
“openness” of this cycle and the flexibility of the plant tis-
sue stoichiometry will remain key to accurately simulating
the time evolution of Australia’s carbon cycle (Medlyn et al.,
2016).

Climate and modes of climate variability

Variability in Australia’s climate can influence the terrestrial
carbon sink directly (e.g. fire, droughts or increased water
availability; Keenan and Williams, 2018; Ma et al., 2016) or
indirectly via interactions with nutrient availability or fire.
For example, models that include interactive fire modules
might directly (e.g. wind speed driving fire spread, temper-
ature threshold to allow for fire) and indirectly (fuel avail-
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Figure 8. Land-cover fraction in per cent averaged over 1989–2018 over Australia. EVG is the sum of all evergreen tree plant functional types
(PFTs); DCD/SMG/RNG is the sum of all deciduous, summergreen, and raingreen tree PFTs; shrubs is the sum of all shrub PFTs; savanna
represents the savanna PFT; C3 grass and C4 grass include all natural C3 and C4 grasses, respectively; C3 agriculture and C4 agriculture
represent all C3 and C4 crops and pasture PFTs, respectively; bare is the sum of bare and desert land-cover types; and other includes land-
cover types that are not captured by the above group, such as cities and urban areas as well as lakes. The numbers in brackets represent the
land covered by natural vegetation (sum of EVG and RNG, DCD and SMG, shrubs, savanna, and C3 grasses, and C4 grasses). Note that not
all models account for shrub, savanna, and agriculture PFTs or for explicit bare and desert PFTs.

ability and moisture) depend on climate variables, and al-
tered fire patterns could further affect the simulated terres-
trial carbon sink. Overall, we found that the effect of climate
on inter-annual NBP was relatively small, with the excep-
tion of the Mediterranean region (see Fig. 2). This is in gen-
eral agreement with Huntzinger et al. (2017), who found that
long-term trends in climate were too small to significantly
alter the simulated terrestrial carbon sink on long timescales
and was a less important factor than CO2 fertilization, nitro-
gen deposition (depending on whether the models include an
interactive nitrogen cycle), and land-use change. While cli-
mate variability might not influence Australian carbon cycle
trends on long timescales, inter-annual weather variability,
especially the amount and timing of precipitation, is a strong
control on inter-annual variability in NBP.

Australia’s weather is influenced by different modes of
variability, with El Niño and pIOD events tending to result in
below-average precipitation in south-eastern Australia (e.g.
Ummenhofer et al., 2011). The reduced water availability can
be expected to reduce NBP or even turn Australia from a car-
bon sink to a carbon source (e.g. Ma et al., 2016). In con-
trast, nIOD and La Niña events are associated with above-
average rainfall and consequently an enhanced carbon sink
(e.g. Ma et al., 2016; Bastos et al., 2013). The TRENDY

models mostly agreed on sign of the NBP anomaly and sim-
ulated negative median values for both pIOD and El Niño
events and positive median values for nIOD and La Niña
events. The sign of the NBP flux was not unambiguously
driven by either ENSO or IOD but was also influenced by
other variability (see Fig. 3 “other negative” and “other pos-
itive”). The interquartile range for the category “other neg-
ative” was similar to those for the pIOD and El Niño cat-
egories and displayed more negative outliers than the other
modes of variability. This implies that years with extremely
low NBP were not necessarily associated with pIOD or El
Niño but instead driven by other modes of climate variability
and/or periods that did not reach the threshold to be defined
as an ENSO or IOD event. Especially for the nIOD, La Niña,
and other positive categories, the models varied strongly in
the interquartile range, indicating that the individual mod-
els simulated different responses to the modes of variability.
Studies showed that other modes of variability, such as the
Southern Annual Mode (SAM), can influence the Australian
weather patterns and consequently the terrestrial vegetation
(e.g. Cleverly et al., 2016). We did not include an analysis
of SAM because these events are short-lived (1–2 weeks),
but future work may examine the resulting impacts. We note
that selecting years based on ENSO and IOD events does not
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Figure 9. Land-cover fraction of non-tree vegetation averaged over 2001–2018. Non-tree vegetation here shows the sum of all natural C3 and
C4 grasses as well as C3 and C4 pasture and agriculture and savanna PFTs in the TRENDY models. The MODIS panel shows the non-tree
fraction variable from the MODIS/Terra Vegetation Continuous Fields dataset. White areas are missing values.

completely isolate the effect of ENSO or IOD events on the
terrestrial carbon cycle as these modes of variability are not
independent and could have legacy impacts that last more
than 1 year. Further, years where both an IOD and an ENSO
event occur were accounted for in both the IOD and ENSO
categories and therefore double-counted. An additional limi-
tation of our approach was that we compiled the occurrence
of ENSO and IOD events from different sources based on the
sea surface temperature. Observations of sea surface temper-
ature prior to 1960 however are associated with large uncer-
tainty given that they were mostly based on ship data (e.g.
Deser et al., 2010). In addition, the Southern Hemisphere
tends to be less well observed, and spurious trends in reanal-
yses do occur (e.g. Hines et al., 2000), leading to an overall
increased uncertainty in the sampling of data based on modes
of variability.

Overall, dry and wet extremes in precipitation led to the
largest differences among the models (see “driest years” and
“wettest years” in Fig. 3), suggesting that the models’ sensi-
tivities to wet and dry extremes vary strongly. About half of
the TRENDY ensemble had a stronger response to wet than

to dry extremes. This is in line with studies that have noted
an increased carbon uptake resulting from the asymmetry in
the inter-annual distribution of rainfall as well as the asym-
metry in the response of GPP to precipitation (e.g. Haverd
et al., 2017). The ecosystem in Australia largely consists of
vegetation that is adapted to drought (e.g. Cleverly et al.,
2016; Li et al., 2018; De Kauwe et al., 2020). About half of
the TRENDY ensemble displayed greater divergence during
dry extremes, implying that models did not accurately cap-
ture process responses as water becomes limiting. This result
is consistent with a model intercomparison at an Australian
woodland site, which showed that disagreement was greatest
in low-rainfall years (Medlyn et al., 2016). The TRENDY
models simulated not only different carbon uptake sensitiv-
ities to precipitation but also different seasonal phenology
(see Fig. 4), suggesting that differing model sensitivities to
rainfall may result as much from the underlying simulated
vegetation as the different mechanisms at play in wet and
dry extremes. We further looked at the TRENDY output in
the context of the NATT, defined by a strong rainfall gradi-
ent (∼ 720 to 1650 mmyr−1). We found that for dry-season
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GPP, the mean position of the distributions shifts closer to
zero, and the distribution narrows as the sites become more
arid, implying that vegetation is only productive following
rain (Whitley et al., 2016). By contrast, there was no clear
systematic pattern in the responsiveness of simulated produc-
tivity during the wet and dry seasons.

Apparent carbon residence time in vegetation

The capacity of the terrestrial vegetation to store carbon de-
pends on the magnitude of the input carbon flux and the car-
bon residence time in plant tissues (τ ; Luo et al., 2003). All
models simulated increases in NPP at similar rates compared
to their initial NPP (1901–1930 average; see Fig. 5). As the
other models simulated a similar change in the rate of car-
bon uptake throughout the period, divergence in the change
in CVeg instead resulted from differences in the change in
τ . τ depends on the turnover of plant tissues, the simulated
mortality rates, and mortality induced by competition. Each
of these processes can be affected indirectly through shifts in
vegetation composition (Friend et al., 2014). Previous stud-
ies have found that τ was a key source of model uncer-
tainty shared amongst DGVMs (Friend et al., 2014; Pugh
et al., 2020). In an analysis of CMIP5 models, Carvalhais
et al. (2014) found that fewer than a quarter of the mod-
els were within the range of observed τ in tropical Australia
and parts of the north-eastern savannas. Similarly, we found
that τ in the TRENDY models was associated with large
uncertainty: between 2 and up to 14 years over Australia.
Models that simulated high vegetation carbon storage also
had comparably long τ and vice versa. These differences in
modelled τ imply that the TRENDY models assume differ-
ent parametrizations associated with their PFTs, mortality,
and/or simulated different vegetation compositions, and this
is an area requiring future evaluation.

Fire-related CO2 fluxes

The seven TRENDY models that included fire outputs
consistently underestimated satellite-derived peak monthly
emissions and did not accurately capture the timing of peak
fire CO2 emissions. Importantly, we found that DGVMs did
not always accurately capture fire dynamics in Australia,
even when aggregated annually (which should reduce tim-
ing biases). While land-use change has been identified to be
a significant driver of global burned area (Teckentrup et al.,
2019), we found that the effect of land-use change on fire
CO2 emissions in Australia was small (see Fig. C7). Models
either increase or decrease in fire CO2 emissions due to land-
use change, but these changes were mostly smaller than 1 %.
All models simulated fire with varying degrees of complex-
ity and derive fire CO2 emissions based on model-specific
burned area using emission factors based on Andreae and
Merlet (2001) and Akagi et al. (2011). Consequently, model

disagreements must originate from differences in simulated
burned area.

Biases in burned area have been found to be associ-
ated with underlying vegetation composition (which deter-
mines fuel load; Teckentrup et al., 2019) and how vegetation
cover changes with rising CO2 and land-use change (through
the conversion of natural vegetation to agriculture; Tecken-
trup et al., 2019). Model evaluations suggest that fire mod-
els broadly capture first-order patterns of emissions under
present-day conditions (e.g. Li et al., 2019; Hantson et al.,
2020), but simulations of seasonality and inter-annual vari-
ability are associated with high uncertainty due to differ-
ences in process representation. We did not find evidence
that models linked extreme fire events with ENSO as sug-
gested by Harris and Lucas (2019). However, the limited
availability of “observed” fire CO2 emissions makes it dif-
ficult to draw firm conclusions. In addition, while Harris and
Lucas (2019) found that El Niño-like conditions can be asso-
ciated with extreme fire weather, they also emphasized that
this depends on the regions and is most pronounced in east-
ern Australia, whereas our analysis focused on all of Aus-
tralia. Lastly, global fire emission estimates based upon satel-
lite observations are still associated with substantial uncer-
tainty, as reflected by the considerable differences in spatial
and temporal patterns between different data products (e.g.
Li et al., 2019). To account for satellite-derived uncertainty,
we included two satellite products, the GFED4s (van der
Werf et al., 2017) and the CAMS-GFAS (Kaiser et al., 2012)
datasets, that are derived based on different variables (burned
area until 2016 and subsequently active fire detections for
GFED4s, fire radiate power for CAMS-GFAS). However,
since both products rely on the MODIS sensor, they are not
independent and consequently only capture the uncertainty
associated with satellite-derived fire CO2 emission estimates
to a limited extent.

Land-cover and land-use change

We found that the models either prescribed or simulated
very different fractions of woody and herbaceous cover (see
Figs. 9 and C5) and that these discrepancies likely explained
a large proportion of the model divergence in simulated CVeg
and τ (see below). Notably, the two models with the low-
est CVeg had a comparably low tree cover (JSBACH and
LPX-Bern; see Fig. 8) and a high proportion of bare land. In
contrast, the two models with the highest CVeg (JULES-ES
and ORCHIDEE-CNP) simulated a high tree cover fraction.
However, Fig. 8 also implies that seemingly similar PFTs
were parametrized in different ways in the individual models.
For example, CLM5.0 and JSBACH simulated a similar frac-
tion of land covered by natural vegetation, with a compara-
ble vegetation composition comprising trees, shrubs, natural
grass, agriculture, and bare land. However, CLM5.0 stored
around 4 times more carbon in vegetation compared to JS-
BACH.
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Land-use and land-cover change is one of the major
drivers of the terrestrial carbon sink on global and regional
scales (e.g. Pugh et al., 2019; Huntzinger et al., 2017). Over
Australia, the largest divergence in cumulative NBP was as-
sociated with the implementation of land-use change (LUC;
see Fig. 2). Overall, the TRENDY models simulated different
magnitudes of cumulative NBP in response to LUC, ranging
from −15.5 (OCN) up to 2.9 PgC (ISBA-CTRIP). For two
models, accounting for LUC turned almost all regions from
a carbon sink to a carbon source (OCN, ORCHIDEE-CNP).

Whilst DGVMs were developed to understand the inter-
actions between natural vegetation and the atmosphere, the
insight that land-use is a major driver of the terrestrial car-
bon sink has driven efforts to incorporate land-use change
into DGVMs (Marquer et al., 2018; Pongratz et al., 2018).
Differences in the models’ response to LUC result from pro-
cess inclusions, parametrizations, and the model-specific in-
terpretation of the land-use forcing (e.g. change in vegetation
composition as well as wood and crop harvest). Although
LUC information was taken from the Land-Use Harmoniza-
tion 2 (LUH2) guidelines, the modellers had to decide how
to implement it. For example, the LUH2 suggests that all
natural vegetation should be cleared for the conversion to
managed pasture, while the conversion to rangeland only re-
quires the transformation of forest to (managed) grassland.
Other natural vegetation, such as grass- or shrubland, was
used for animal browsing without any transformation of the
land-cover type (Ma et al., 2020). Furthermore, the fraction
of croplands reconstructed by LUH2 increased markedly in
south-western Australia and south-eastern Australia. This in-
crease in crop fraction was associated with increased harvests
and consequently expected to reduce NBP. Some models ex-
hibited this feature to varying degrees (JULES-ES, OCN,
and ORCHIDEE-CNP), while other models barely increased
the crop fraction and impact on NBP (CABLE-POP, OR-
CHIDEE, and VISIT; see Fig. C6). These different represen-
tations of LUC led to emergent differences (e.g. in physiol-
ogy as the models transition between PFTs and agricultural
management) when harvesting was imposed on model simu-
lations.

5 Future directions

Our analysis highlights that considerable work is still re-
quired to improve our capacity to simulate the dynamics of
Australian vegetation and the resulting terrestrial carbon cy-
cle. This finding is consistent with previous model evalua-
tions of NPP (Roxburgh et al., 2004), carbon flux responses
to rainfall (Whitley et al., 2016, 2017), and responses to ele-
vated CO2 (Medlyn et al., 2016).

When DGVMs are applied to Australia, the assumed plant
traits are not adjusted to reflect differences in observed phys-
iology (e.g. Bloomfield et al., 2019; Cernusak et al., 2011),
investment in plant tissues (e.g. Togashi et al., 2015), how

moisture limits plant function (e.g. De Kauwe et al., 2020;
Li et al., 2018), or responses of photosynthesis and growth to
temperature (Drake et al., 2015). For example, models typi-
cally assume much lower values for the key model parameter
Vcmax (the maximum rate of carboxylation by the enzyme
rubisco; Rogers, 2013) than is commonly observed in Aus-
tralia (e.g. Bloomfield et al., 2019; Cernusak et al., 2011),
implying that DGVMs miss key carbon and water trade-offs.
Whitley et al. (2017) previously stressed the importance of
improving process representation of phenology, root-water
uptake, rooting depth, and fire to improve the representa-
tion of savanna ecosystem dynamics in DGVMs. These sa-
vanna ecosystems cover around 20 % of the Australian land-
scape, but as this study implies (see Fig. 6), progress has
been limited, although recent model developments incorpo-
rating competing rooting strategies and dynamic root growth
(Sakschewski et al., 2020) may help this process. Australia
has a high fraction of endemic vegetation (> 90 %; Chap-
man, 2006), structurally distinct vegetation including open-
canopy forests and woodlands (predominately Eucalyptus)
and hummock grasslands, and a dominance of sclerophyll
leaves (Box, 1996). Thus, there remains a significant op-
portunity in future work to directly test the current hypoth-
esis implicitly embedded in DGVMs, i.e. that Australia’s
vegetation is not distinct from other continents. The forth-
coming AusTraits (https://ardc.edu.au/project/austraits-a-
curated-plant-trait-database-for-the-australian-flora/, last ac-
cess: 8 March 2021) database presents one possibility to
examine how the use of Australia-specific plant traits may
change DGVM simulations.

One core area in which model development should be
focused relates to the processes that govern the vegetation
cover. In these models vegetation cover is either dynami-
cally simulated (CABLE-POP, JULES-ES, LPX-Bern, and
SDGVM) or prescribed (CLASS-CTEM, CLM5.0, ISAM,
ISBA-CTRIP, JSBACH, OCN, ORCHIDEE, ORCHIDEE-
CNP, and VISIT). Our study has highlighted major differ-
ences across models under historic forcing (see Figs. 8 and
9), implying that future simulations need to be interpreted
cautiously. Haxeltine et al. (1996) demonstrated a realistic
simulation of Australia’s potential vegetation cover with the
BIOME2 model, and yet, 25 years later, it is not clear that
DGVMs have made significant progress. One explanation for
this apparent discrepancy may simply relate to the focus of
the modellers. In the Haxeltine et al. (1996) study, the model
explicitly aimed to reproduce Australia’s potential vegetation
cover, whereas the current TRENDY models are instead fo-
cused on global applications.

Nevertheless, our results imply that a one-size-fits-
all approach does not appear to work for Australia.
Australia’s National Vegetation Information System
(https://www.environment.gov.au/land/native-vegetation/
national-vegetation-information-system, last access:
8 March 2021) generates maps of both vegetation dis-
tribution and structure, which could be used to evaluate
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and develop DGVM predictions of potential vegetation.
However, a direct comparison to observed vegetation dis-
tributions still requires model-specific rules to transform
simulated foliar projected cover and height to vegetation
classes. Our results also showed that imposing land-use
change adds further uncertainty to the vegetation distri-
bution. Despite the importance of improving simulated
vegetation type, as Fisher et al. (2015) highlighted, it is
not necessarily a straightforward task, but overreliance on
bioclimatic boundaries is not preferable moving forwards.
Emergent differences in cover type may also originate from
parameter assumptions, which determine carbon uptake
and loss, additional hypotheses that govern demography
and responses to fire. Haverd et al. (2016a) demonstrated
promise in accurately predicting tree-grass partitioning in
Australian savannas using optimality theory to determine
daily carbon allocation. However, this approach has yet
to be incorporated into any of the Australian land models
(e.g. CABLE-POP), so a fuller evaluation is still required,
including the resulting interactions with a nutrient cycle.
Kelley et al. (2014) demonstrated significant progress in
both the simulation of fires in Australia and the resulting
grass-tree cover fractions by incorporating PFT-specific fire
(adaptive bark thickness) resistance and post-fire epicormic
resprouting into a DGVM. However, these features have yet
to be incorporated into any current DGVMs when applied to
Australia.

In conclusion, there is a major opportunity in evaluating
DGVMs using Australia as a laboratory. The strong inter-
annual variability in precipitation offers an opportunity to
evaluate the simulated response of the Australian ecosystems
to both extreme wet events and droughts. Similarly the re-
peated frequency of heat extremes (van der Horst et al., 2019;
van Gorsel et al., 2016; Mitchell et al., 2014) offers important
tests of underlying physiology assumptions. It is likely that
insights gained from model evaluation in Australia’s environ-
ment of longer-duration and high-intensity climate extremes,
including droughts, heatwaves, and floods, will help under-
stand how Northern Hemisphere systems will respond to ex-
tremes and in particular events that may intensify in the fu-
ture (IPCC, 2012). Finally, our study focused on Australia’s
carbon cycle, but the carbon and water cycle are intimately
linked, and divergence between model simulations of the car-
bon cycle implies further work may also be needed to evalu-
ate DGVM simulation of the hydrological cycle.

Appendix A: Forcing data and simulation protocol

A1 Climate forcing

The modelling groups chose either the 0.5◦ Climatic Re-
search Unit (CRU) monthly historical forcing over 1901–
2018 (Harris, 2019a) or the 0.5◦ CRU-JRA55 6-hourly his-
torical forcing over 1901–2018 (Harris, 2019b) regridded to

the CRU 0.5◦ grid. The variables temperature, downward so-
lar radiation flux, specific humidity, and precipitation in JRA-
55 are aligned to temperature, cloud fraction, vapour pres-
sure, and precipitation in CRU TS (v4.03), respectively. At-
mospheric pressure, downward long-wave radiation flux, and
the meridional and zonal components of wind speed are not
modified. JRA-55 is used for the years from 1958 to 2018.
For years between 1901 and 1957, random (but fixed) years
from JRA-55 for 1958–1967 are used to fill.

A2 CO2 concentration

The atmospheric CO2 concentration is derived from ice core
CO2 data merged with NOAA data from 1958 onwards.
The forcing covers the years 1700–2018 incremented an-
nually (Le Quéré et al., 2018). The data from March 1958
are monthly averages from the Mauna Loa (MLO) and
the South Pole Observatory (SPO) provided by NOAA’s
Earth System Research Laboratory (http://www.esrl.noaa.
gov/gmd/ccgg/trends/, last access: 8 March 2021). When no
SPO data are available (including prior to 1975), SPO is con-
structed from the 1976–2017 average MLO–SPO trend and
average monthly departure. Data for 2016–2018 are prelim-
inary values. Data prior to March 1958 are estimated with a
cubic spline fit to ice core data from Joos and Spahni (2008).

A3 Land use

The land-use datasets are based on updated data from HYDE
for the years 1960–2019 as well as the latest wood har-
vest data provided by the Food and Agriculture Organiza-
tion (FAO). The land-use states and transitions are identical
to the LUH2 v2h dataset (Hurtt et al., 2020) for the years
from 1700 to 1949 (i.e. consistent with the input for CMIP6).
Starting in 1950, the land-use forcing is based on new inputs
from HYDE and new FAO data for the national wood harvest
demands. This leads to differences in comparison to LUH2
v2h, primarily in Brazil.

In order to convert natural vegetation to managed pas-
ture, the LUH2 guidelines suggested all natural vegetation
is cleared. The conversion of natural vegetation to range-
land only requires the clearance of forests. However, each
modelling group developed model-specific land-use forcings
leading to inter-model differences. We show the change in
agricultural land cover in Fig. C6.

A4 Nitrogen deposition and fertilization

For the years from 1850 to 2014, the TRENDY models were
forced with the historical nitrogen deposition database and
then transitioned to the future RCP8.5 nitrogen deposition
databases for the years from 2015 to 2018. Details are avail-
able at https://esgf-node.llnl.gov/search/input4mips/. Nitro-
gen fertilizer input datasets are available via the N2O Model
Intercomparison Project (“NMIP”; Tian et al., 2018). NMIP
assumes that the nitrogen input data remain unchanged in the
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years 2015, 2016, 2017, and 2018. Manure is not included for
the TRENDY simulations.

A5 Simulation protocol

The TRENDY models either simulated or prescribed vege-
tation cover. All models prescribed land-use change accord-
ing to the LUH2 guidelines. All models used the atmospheric
CO2 concentration from the year 1700 (276.6 ppm) and recy-
cled the climate mean and variability from the years 1901–
1920 for the spin-up. Land-use change was constant during
the spin-up and the crops, and pasture distribution was set
constant to the 1700 set-up. Depending on the simulation,
different drivers became transient starting in 1701.

We use three simulations of the TRENDY experiment (see
Fig. C1; Friedlingstein et al., 2019): the run with transient
atmospheric CO2 concentration and time-invariant climate
forcing and land-use (“CO2”); the run with transient atmo-
spheric CO2 concentration and climate forcing and time-
invariant land-use (“CO2+CLIM”); and finally the run with
transient atmospheric CO2 concentration, climate forcing,
and land-use change (“CO2+CLIM+LUC”).

A5.1 Spin-up

For the spin-up, the atmospheric CO2 concentration and land
cover were set to the pre-industrial values of the year 1700.
During the spin-up, the years from 1901 to 1920 from the
climate forcing were recycled.

A5.2 CTRL

After the spin-up, the atmospheric CO2 concentration re-
mained time-invariant for the years 1701–2018. The simu-
lation continued to recycle the 1901–1920 climate forcing,
and the land-use was prescribed to the distribution of the year
1700.

A5.3 CO2

After the spin-up, the CO2 run used a transient atmospheric
CO2 forcing. The simulation continued to recycle the 1901–
1920 climate forcing, and the land-use was prescribed to the
distribution of the year 1700 (as in the “CTRL” run).

A5.4 CO2 + CLIM

After the spin-up, the CO2+CLIM run used a transient at-
mospheric CO2 forcing. The simulation continued to recycle
the 1901–1920 climate forcing until the year 1900, and the
land-use was prescribed to the distribution of the year 1700.
Starting from 1901, the climate forcing became transient.

A5.5 CO2 + CLIM + LUC

After the spin-up, the CO2+CLIM run used a transient at-
mospheric CO2 and land-use forcing, while the simulation
continued to recycle the 1901–1920 climate forcing until the
year 1900. Starting from 1901, the climate forcing became
transient as well.

The TRENDY protocol required all participating mod-
els to be in equilibrium for the CTRL simulation after the
spin-up. Further, all models had to simulate the net annual
land flux as a carbon sink over the 1990s and/or 2000s for
the CO2+CLIM+LUC run as constrained by global at-
mospheric and oceanic observations (Keeling and Manning,
2014). Lastly, the global net annual land-use flux (ELUC)
had to be a carbon source over the 1990s (based on the
CO2+CLIM and CO2+CLIM+LUC simulation).
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Appendix B: Tables

Table B1. Information for the four flux sites located in the Northern Australian Tropical Transect (NATT). This includes the mean annual
precipitation (MAP), mean annual temperature (MAT), and the vegetation classification following the International Geosphere–Biosphere
Programme (IGBP). The observed variables originate from eddy covariance data collected by the TERN-OzFlux facility. Further details of
the site vegetation are available in Whitley et al. (2016).

Howard Springs Daly Uncleared Dry River Sturt Plains
(AU-How) (AU-DaS) (AU-Dry) (AU-Stp)

Years 2002–2018 2008–2019 2009–2018 2009–2018
(2002–2019) (2008–2018) (2008–2019) (2008–2018)

Latitude −12.4952 −14.1592 −15.2588 −17.1507
Longitude 131.15005 131.3881 132.3706 133.3502
MAP [mmyr−1] 1662 1324 925 719
MAT [◦C] 26.8 26.8 27.0 26.3
Vegetation Woody Savannas:

herbaceous and other
understorey systems,
30 %–60 % forest canopy

Savannas: herbaceous
and other understorey
systems, 30 %–60 %
forest canopy

Savannas: herbaceous
and other understorey
systems, 30 %–60 %
forest canopy

Grasslands: herbaceous
types of cover; tree and
shrub cover is less than
10 %

Table B2. Years from 1901–2017 identified as El Niño, La Niña, positive Indian Ocean Dipole (“pIOD”), negative Indian Ocean Dipole
event (“nIOD”), and remaining years that are both ENSO- and IOD-neutral based on the analysis by the NOAA (for the ENSO events) and
Bureau of Meteorology (IOD events). Note that we define a year as starting in July and ending in June so that for example the 1991–1992
El Niño appears in this table as the 1991 El Niño. We follow Ummenhofer et al. (2011), the Bureau of Meteorology Australia (Bureau of
Meteorology, Commonwealth of Australia, 2016), and the National Weather Service Climate Prediction Center (Climate Prediction Center
Internet Team, 2021) for the identification of ENSO and IOD events.

El Niño La Niña pIOD nIOD ENSO and IOD
neutral

1902 1972 1903 1964 1902 1963 1906 1974 1901 1951
1905 1976 1906 1970 1913 1972 1909 1975 1904 1952
1911 1977 1909 1973 1919 1982 1915 1980 1907 1953
1914 1982 1910 1974 1923 1983 1916 1981 1908 1959
1923 1986 1916 1975 1926 1995 1917 1985 1912 1962
1925 1987 1917 1988 1935 1997 1930 1989 1920 1966
1930 1991 1922 1989 1944 2002 1933 1992 1921 1967
1940 1994 1924 1993 1945 2006 1942 1996 1927 1971
1941 1997 1928 1998 1946 2012 1958 1998 1929 1978
1957 2002 1933 1999 1957 2015 1960 2010 1931 1979
1963 2004 1938 2000 1961 1964 2014 1932 1984
1965 2006 1942 2007 1934 1990
1968 2009 1949 2008 1936 2001
1969 2015 1950 2010 1937 2003

1954 2011 1939 2005
1955 2012 1943 2013
1956 1947 2016

1948

https://doi.org/10.5194/bg-18-5639-2021 Biogeosciences, 18, 5639–5668, 2021



5658 L. Teckentrup et al.: Assessing the representation of the Australian carbon cycle in global vegetation models

Table B3. Fire CO2 emissions for Australia averaged over 2003–2018 and the Pearson correlation coefficients between the TRENDY models
and the respective observation data. Bold numbers indicate a significant statistical relationship (p value< 0.05).

Model Fire CO2 emissions R (CAMS-GFAS, R (GFED4s,
(PgCyr−1) model) model)

Monthly Annual Monthly Annual

CLASS-CTEM 0.010± 0.006 0.68 0.55 0.78 0.61
CLM5.0 0.014± 0.013 0.12 0.21 0.08 0.27
ISBA-CTRIP 0.028± 0.021 0.35 0.50 0.41 0.53
JSBACH 0.012± 0.007 0.50 0.84 0.43 0.84
LPX-Bern 0.006± 0.002 0.05 0.41 0.04 0.39
SDGVM 0.048± 0.011 0.10 0.14 0.09 0.20
VISIT 0.026± 0.010 0.21 0.17 0.26 0.18

CAMS-GFAS 0.043± 0.049
GFED4s 0.030± 0.029

Appendix C: Figures

Figure C1. Simulations conducted by the TRENDY models (Friedlingstein et al., 2019). Italic forcing datasets are not used by all models.
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Figure C2. Seasonal cycle for satellite-derived gross primary production (GOSIF-GPP; black) and satellite-derived leaf area index data (LAI;
Copernicus Global Land Service; green). Shaded areas indicate the according uncertainty (i.e.± 1 SD.).
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Figure C3. Monthly temperature, precipitation, and incoming short-wave radiation data that are observed (blue) and the corresponding
data from the reanalysis product CRU-JRA (orange) for the four flux sites located in the Northern Australian Tropical Transect (NATT):
Howard Springs (AU-How), Daly Uncleared (AU-DaS), Dry River (AU-Dry), and Sturt Plains (AU-Stp). The figure titles display the Pearson
correlation coefficient between observation and reanalysis (ρmon). The bottom panels show observed monthly NEE (black) and simulated
NEE by the individual TRENDY models.
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Figure C4. Different vegetation classes in Australia according to Haverd et al. (2012).

Figure C5. Land-cover fraction of tree vegetation averaged over 2001–2018. Tree vegetation here shows the sum of tree, forest, and shrub
PFTs in the TRENDY models. The MODIS panel shows the tree fraction variable from the MODIS/Terra Vegetation Continuous Fields
dataset. White areas are missing values.
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Figure C6. Cumulative NBP for all TRENDY models over 1901–2018. Land-use change based on Hurtt et al. (2020): increase in C3 and C4
crops, rangeland, managed pasture, and urban areas in 2018 compared to 1901.

Figure C7. Difference between CO2+CLIM+LUC and CO2+CLIM simulations for monthly (a) and annual (b) fire CO2 emissions of
six TRENDY models.
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Code and data availability. All eddy covariance data are available
from http://www.ozflux.org.au/ (OzFlux, 2017). The Global Above-
ground Biomass Carbon (version 1.0) dataset (Liu et al., 2015)
is freely available from http://wald.anu.edu.au/global-biomass/,
and the GOSIF-GPP product (Li and Xiao, 2019) can be ob-
tained from https://globalecology.unh.edu/data/GOSIF-GPP.html.
Fire CO2 emissions were provided by the Copernicus Atmosphere
Monitoring Service Global Fire Assimilation System (CAMS
GFAS; https://apps.ecmwf.int/datasets/data/cams-gfas/, ECMWF,
2021), and the Global Fire Emissions Database version 4 (GFED4s)
described in van der Werf et al. (2017) is available from https:
//globalfiredata.org/pages/data/. The MODIS/Terra Vegetation Con-
tinuous Fields dataset was provided by NASA’s Land Processes Dis-
tributed Active Archive Center (https://lpdaac.usgs.gov/products/
mod44bv006/, DiMiceli et al., 2017). The TRENDY v8 model out-
put is available upon request (https://sites.exeter.ac.uk/trendy, last
access: 27 September 2021). All analysis scripts are accessible on
https://doi.org/10.5281/zenodo.5570974 (Teckentrup, 2021).
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