
Biogeosciences, 18, 5669–5679, 2021
https://doi.org/10.5194/bg-18-5669-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Theoretical insights from upscaling Michaelis–Menten microbial
dynamics in biogeochemical models: a dimensionless approach
Chris H. Wilson1 and Stefan Gerber2

1Agronomy Department, University of Florida, Gainesville, FL 32611, USA
2Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, USA

Correspondence: Chris H. Wilson (chwilson@ufl.edu)

Received: 22 April 2021 – Discussion started: 19 May 2021
Revised: 16 August 2021 – Accepted: 25 August 2021 – Published: 21 October 2021

Abstract. Leading an effective response to the accelerating
crisis of anthropogenic climate change will require improved
understanding of global carbon cycling. A critical source of
uncertainty in Earth system models (ESMs) is the role of mi-
crobes in mediating both the formation and decomposition
of soil organic matter, and hence in determining patterns of
CO2 efflux. Traditionally, ESMs model carbon turnover as
a first-order process impacted primarily by abiotic factors,
whereas contemporary biogeochemical models often explic-
itly represent the microbial biomass and enzyme pools as the
active agents of decomposition. However, the combination
of non-linear microbial kinetics and ecological heterogene-
ity across space and time guarantees that upscaled dynamics
will violate mean-field assumptions via Jensen’s inequality.
Violations of mean-field assumptions mean that parameter
estimates from models fit to upscaled data (e.g., eddy covari-
ance towers) are likely systematically biased. Likewise, pre-
dictions of CO2 efflux from models conditioned on mean-
field values will also be biased. Here we present a generic
mathematical analysis of upscaling Michaelis–Menten kinet-
ics under heterogeneity and provide solutions in dimension-
less form. We illustrate how our dimensionless form facili-
tates qualitative insight into the significance of this scale tran-
sition and argue that it will facilitate cross-site intercompar-
isons of flux data. We also identify the critical terms that need
to be constrained in order to unbias parameter estimates.

1 Introduction

The current crisis of anthropogenic climate change is ex-
pected to accelerate during the 21st century. Despite con-
siderable effort to better constrain global biogeochemical
models, considerable uncertainty remains about how best to
represent emerging mechanistic understanding of soil ele-
ment cycling into process-based models (Wieder et al., 2015;
Todd-Brown et al., 2018). This is a critical gap in knowl-
edge because variations among models predict hugely vary-
ing responses to global change drivers such as temperature,
soil moisture, and CO2 enrichment. For example, a tradi-
tional first-order linear model forecasts no change or even
slight enhancement of soil organic carbon (SOC) pools by
2100 whereas one microbially explicit model forecasts a loss
of ∼ 70 Pg of carbon (C), depending on whether microbial
physiology acclimates to higher temperatures (Wieder et al.,
2013). In general, our understanding of how carbon (and
other elements) cycles in soil is undergoing significant re-
vision toward a more microbially centric paradigm. In con-
trast to traditional first-order linear models (e.g., CENTURY;
Parton et al., 1987), microbial explicit models feature non-
linear dynamics in which microbial biomass (or, similarly,
microbially driven enzyme pools) is responsible for decom-
position, in addition to providing substrate for synthesis of
potentially long-term SOC (Blankinship and Schimel, 2018;
Blankinship et al., 2018). While indisputably a better rep-
resentation of our scientific knowledge, non-linear micro-
bial models face several well-known challenges, including
less analytical tractability, greater computational challenges,
and uncertainty about structural formulation and dynamics
(Georgiou et al., 2017; Sihi et al., 2016; Wang et al., 2014).
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However, one critical consequence of non-linear microbial
models that has only recently begun to gain attention is their
implications for addressing the upscaling challenge.

While the fields of population and community ecology
have long confronted the challenges posed by non-linearity
and heterogeneity in spatiotemporal scaling of ecological dy-
namics (Chesson, 2009; Levin, 1992), ecosystem ecology
and biogeochemistry have tended to approach the challenge
of scale either by (1) utilizing mean-field assumptions or
(2) addressing the challenge of scaling via grid-based compu-
tational/numeric methods. While there is nothing inherently
wrong with either approach, they unfortunately cannot yield
theoretical insight into the consequences of non-linearity and
heterogeneity for scaling. Briefly, the combination of non-
linearity and heterogeneity means that aggregated behavior
differs systematically from mean-field predictions, a special
case of Jensen’s inequality. In mathematical notation:

E
[
f (x)

]
6= f (E [x]) . (1)

Although Jensen’s inequality is well-known from basic
probability theory (Ross, 2002) its implications for ecologi-
cal dynamics under heterogeneity were not well-appreciated
until the pioneering work of Peter Chesson in the 1990s
(Chesson, 1998). In the case of carbon cycle science, there
are a few immediate and critical applications. For instance,
most trace gas emission processes are well-known to be
non-linear functions of underlying drivers such as temper-
ature and soil moisture. For example, ecosystem respiration
is an exponential function of temperature (usually expressed
in Q10) and a unimodal function of soil moisture. Thus,
when matching observations of CO2 efflux (“F ”) to ecosys-
tems, variations in soil temperature and moisture could im-
ply that F differs systematically from a mean-field pre-
diction. Likewise, variations in biotic interactions between
microbes likely play a key role in biogeochemical cycling
(Buchkowski et al., 2017). In addition to missing critical an-
alytical insight, not accounting for this behavior might have
severe consequences for inverse modeling and estimation of
the parameters governing process-based models (Bradford et
al., 2021). Moreover, a significant advance in recent research
has focused not only on microbially explicit formulations but
also the role of microbe–substrate colocation in the complex
and heterogeneous soil environment in both the synthesis
and decomposition of organic matter (Schimel and Schaeffer,
2012; Lehmann et al., 2020). This spatial colocation itself has
very important implications for scale transitions in soil sys-
tems and thus requires specific theoretical attention from this
perspective. Overall, the basic consequences of Jensen’s in-
equality for estimation of trace gas emission (CH4 and N2O)
were first discussed by Van Oijen et al. (2017) but have not
been picked up on elsewhere, until the present work and by
Chakrawal et al. (2020).

Chakrawal et al. (2020) provide a detailed and compelling
first-pass application of scale transition theory to biogeo-
chemical modeling. Our contribution here complements their

laudable effort by providing a more generic mathematical
analysis of the scale transition, equally applicable to both for-
ward and reverse Michaelis–Menten microbial kinetics. As
in Chakrawal et al. (2020), we address the consequences of
heterogeneity in both substrate/microbes (“biogeochemical
heterogeneity”) and in the kinetic parameters (“ecological
heterogeneity”). However, we diverge from their approach
in that, rather than explore detailed simulation models, we
derive a completely non-dimensionalized expression for ag-
gregating non-linear microbial kinetics over both types of
heterogeneity simultaneously. We illustrate the clarity this
brings in several special cases of our full analysis. Alto-
gether, our approach provides new insight into the proper-
ties of the scale transition and enables clear conclusions to
be drawn across systems in terms of the role of spatial vari-
ances and covariances in shaping ecosystem carbon efflux.
Our work provides a simplified, yet systematic framework
around which to base subsequent empirical and simulation-
based studies.

2 Carbon efflux and the scale transition

A variety of microbially explicit process-based models have
been proposed in the literature, starting with the classic en-
zyme pool model of Schimel and Weintraub (2003). In order
to elucidate universal properties of the scale transition, we fo-
cus here on the CO2 efflux following decomposition of a sin-
gle substrate by a single microbial pool obeying Michaelis–
Menten (MM) dynamics:

F =−f (C,MB,θ) , (2)

where F is the CO2 flux, C is the carbon substrate, MB
the live microbial biomass, and θ is a vector of parame-
ters, specifically Vmax (the maximum reaction rate given sat-
uration of either C, in forward MM, or microbial biomass
(MB), in reverse MM), kh (the half-saturation constant), and
carbon-use efficiency, ε.

Our specific model for F is

F =−(1− ε)×C×
VmaxMB
kh+MB

. (3)

Following the terminology of Chesson (1998, 2012), the
above is our “patch” model, and our goal is to understand
how spatial variances and covariances impact the integrated
flux, which represents the spatial expectation or E[F ] (here-
after denoted F ), which represents

F =−C× (1− ε)×
VmaxMB
kh+MB

, (4)

where the bar over the expression represents the mean. The
incorrect approach to solving for E[F ] is to simply plug in
the mean-field solution:

F =−C× (1− ε)×
VmaxMB

kh+MB
. (5)
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Analytically, an exact solution would require specifica-
tion of a joint distribution for C, MB and parameters,
π(MB,C,θ ), and solution of the convolution integral:∫ ∫ ∫

−f (MB,C,θ)π (MB,C,θ)dMBdCdθ . (6)

However, following Chesson (2012) and Chakrawal et
al. (2019), we are free to approximate the solution for ar-
bitrary distributions using a Taylor series approximation ex-
panded to the second moment. Specifically, we take the ex-
pectation over a multivariable Taylor series expansion, cen-
tered around the mean-field values of all parameters θ (for
simplicity, the variables MB and C are included in the pa-
rameter vector θ ):

F ≈ E
[
f
(
θ
)
+

1
2
θT
θ−θ

Hθ

[
f (θ)

]
θθ−θ

]
, (7)

where H[f (θ)] represents the Hessian matrix of the function
that determines the CO2 efflux F (in this case Michaelis–
Menten), and θθ−θ represents the deviation from the mean at
each instance and for each of the parameters. It can easily be
seen that θT

θ−θ
× θθ−θ is the variance–covariance matrix and

that the first moment of the Taylor expansion cancels because
the first derivative of θθ−θ is zero.

Non-dimensionalization

Expanding Eq. (7) out, we have five terms involving the vari-
ances of C, MB, 1− ε, Vmax, and kh and 10 terms involv-
ing covariances among the parameters. We can redistribute
the expectation operator over this approximation to see that
we are dealing with the contributions from the variance–
covariance terms, weighted by the second partial derivatives
evaluated at the mean for each parameter. However, the re-
sulting expression does not readily yield insight into the im-
pact of scale transition upon the dynamics, since second par-
tial derivatives and cross partial derivatives do not have easy
intuition. Moreover, variances and covariances depend arbi-
trarily upon the scale of units and measurements involved,
hindering both intuition and cross-site comparisons. There-
fore, we non-dimensionalize Eq. (7) for F as follows.

We define a dimensionless quantity λ as MB
kh

. λ thus repre-
sents a multiplicative factor expressing the ratio of the mean
microbial biomass over its half-saturation value, indicating
the microbial saturation for the decomposition.

We divide all of the terms in Eq. (6) by their mean-field
value and represent the whole equation as a product:

F ≈ f
(
θ
)
+ f

(
θ
)((

θ − θ
)T ∂2f

∂θ2 θ=θ

f
(
θ
) (

θ − θ
))

= f
(
θ
)(

1+
((

θ − θ
)T ∂2f

∂θ2 θ=θ

f
(
θ
) (

θ − θ
)))

. (8)

We notice that Var(θ)

θ
2 can be re-expressed as (SD(θ)

θ
)2,

which in turn is the square of the dimensionless coefficient of
variation (CV(θ))2. This enables us to reformulate the vari-
ance terms in Eq. (7).

Similarly, since the covariance terms can be rewritten as
COV(XY)= ρX,YSD(X)SD(Y ), where ρX,Y is the correla-
tion coefficient, we have the following equality:

COV(X,Y )
XY

= ρX,YCV(X)CV(Y ) . (9)

Applying steps 1–5 to all the terms in the equation, we end
up with a fully dimensionless equation:

F ≈ f
(
θ
)(

1+
λ

(1+ λ)2[
ρkh,MBCV(kh)CV(MB)−CV(MB)2

]
+

1

(1+ λ)2

[
CV(kh)

2
− ρkh,MBCV(h)CV(MB)

]
+

1
(1+ λ)

[
ρC,MBCV(C)CV(MB)

+ ρVm,MBCV(Vm)CV(MB)
+ ρε,MBCV(ε)CV(MB)+ ρC,khCV(C)CV(kh)

− ρVm,khCV(Vm)CV(kh)− ρkh,εCV(kh)CV(ε)
]

+ ρVm,CCV(Vm)CV(C)

+ ρC,εCV(C)CV(ε)+ ρε,Vm CV(ε)CV(Vm)

)
. (10)

Note that by symmetry, we have also solved for the case
of the forward Michaelis–Menten kinetics. This can be ex-
pressed simply by interchanging C and MB and by corre-
spondingly altering λ to represent the ratio of substrate avail-
ability over half saturation.

3 Discussion

Having fully non-dimensionalized Eq. (7), we are in a much
better position to gain analytical insight into the scale tran-
sition. To begin, we note the pivotal role played by the
quantity λ throughout this equation. λ scales the contribu-
tions of the parameter variation and correlation terms to the
deviation from mean field behavior according to the ratios
λ

(1+λ)2 , 1
(1+λ)2 , and 1

1+λ . All of the parameter variance terms

(which have become CV(θ)2 upon non-dimensionalization)
are scaled by one of these three λ ratios, alongside 7 out of
10 of the covariance terms. Overall, low λ (here /1) keeps
all the spatial correction terms in play, while increasing λ
tends to simplify matters. As noted by others (Sihi et al.,
2016; Buchkowski et al., 2017), as MB→∞ (equivalent
to MB� kh or λ→∞), reverse Michaelis–Menten kinetics
converge to first order, leaving

F =−C× (1− ε)×Vmax. (11)
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Accordingly, in our setup, the multiplicative factor for the
scale transition correction approaches a simplified expres-
sion, as λ→∞:

F → f
(
θ
)(

1+ ρVm,CCV(Vm)CV(C)

+ ρC,εCV(C)CV(ε)+ ρε,Vm CV(ε)CV(Vm)

)
. (12)

This is quite remarkable. Despite invoking the situation
where microbial biomass (and its enzyme supply) is effec-
tively infinite – thus linearizing the underlying patch models
– we cannot eliminate the possibility of a potentially sub-
stantial deviation from mean field when scaling decomposi-
tion kinetics. We note that in this resulting expression, we
have reduced the situation to a set of three critical correla-
tions involving two microbial physiological parameters (ε
and Vm) and substrate availability (C). Regardless of their
respective variabilities (CV terms), if these correlations are
close to zero, then the whole expression converges to mean
field.

Returning to the situation where λ is not large, if we ignore
the correlation terms (temporarily setting to zero), we see that
there are direct contributions to the scale transition from the
variability in MB and kh that may, to some extent, balance
each other:

F = f (θ)

(
1+

1(
(1+ λ)2

) [CV(kh)
2
]

−
λ

(1+ λ)2

[
CV(MB)2

])
. (13)

Focusing on the offsetting correction terms, we can re-write
as

λ

(1+ λ)2

[
CV(kh)

2

λ
−CV(MB)2

]
, (14)

and for the case of λ= 1, this becomes

1
4

[
CV(kh)

2
−CV(MB)2

]
. (15)

Thus, variability in the factors of soil protection that impact
upon kh in practice can offset the impact of variability in mi-
crobial biomass itself.

More generally, starting with our dimensionless Eq. (10)
puts modelers and empiricists in a better position to assess
the quantitative significance of the scale transition correction
across systems compared to expressions with opaque second
partial derivatives and cross derivatives and arbitrarily scaled
variance terms. By re-expressing F in terms of dimension-
less coefficients of variation, correlation coefficients and λ,
we can plug in realistic values for variability in any rele-
vant parameter and assess the percent effect on F in terms
of deviation from mean field behavior. We argue that this

formulation possesses significant advantages not only in un-
derstanding how to scale flux estimates (F ) within a site,
but also going forward will help facilitate intercomparison
among sites in terms of their scale-free variability. In partic-
ular, we explore variation in dominant environmental drivers
of inter-site variation (temperature and soil moisture) below.
But first, we analyze how the scale transition sheds new light
on microbe–substrate colocation.

3.1 Spatial colocation of microbes and substrate

To illustrate these advantages in interpretability, we first
take the special case of a model where we treat all param-
eters as constant (and known) except substrate and micro-
bial biomass. This corresponds to setting the other CV and
ρ terms to 0. In this case, we are isolating the impact of the
spatial colocation of substrate and decomposers. Our equa-
tion becomes

F ≈ f (θ)

(
1−

λ

(1+ λ)2
CV(MB)2

+
1

(1+ λ)

(
ρC,MBCV(C)CV(MB)

))
. (16)

In the case of this formulation, there is a very clear dual con-
vergence as λ increases:

1. deviation from mean-field behavior declines, and

2. first-order kinetics are approached.

Indeed, our Eq. (16) reveals the exact speed of this conver-
gence in terms of dimensionless λ and a balance of CV(MB),
CV(C) and their correlation.

We illustrate the scale transition solutions to Eq. (16) as a
function of λ for various choices of CV(C), CV(MB) and ρ
in Fig. 1.

In the case of pure spatial colocation, with no variation in
the kinetic parameters, the scale transition correction factor
varies from a maximum of 1.5 to a minimum around 0.75
and in all cases indeed converges to 1 as λ increases. The
variability assumed for C and MB impacts only the scale of
the correction factor not the qualitative behavior as λ and
ρ vary. One benefit of having a simplified, generic dimen-
sionless equation of this sort is that it enables us to think
in a unit-free/scale-free manner about the plausible range of
the scale transition correction given transparent assumptions
about variability and correlations.

Another benefit is that it is mathematically tractable to
see how the variance and covariance terms can balance each
other and to solve for where they are equal. If we intro-
duce a new term λ2 representing the relationship between
CV(MB) and CV(C) as follows CV(MB)= λ2CV(C), we
can re-express the deviation of the mean-field correction
from 1 as

CV(MB)2
[

1
1+ λ

(
ρλ2−

λ

(1+ λ)

)]
. (17)
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Figure 1. Scale transition correction for models given spatial colocation between microbes and substrate across a gradient of λ values and
for a variety of correlation ρ values (0–1), with CV(SOC) held constant at 0.5, (a) CV(MB)= 0.25, (b) CV(MB)= 0.5 and (c) CV(MB= 1.
Note that in panel (c) the system appears to converge on a value lower than 1. However, as λ increases, convergence to 1 does occur, albeit
slowly, as it must according to Eq. (16).

Thus, whether the correction is positive or negative depends
crucially on the product of the colocation correlation coef-
ficient ρ and the extent of variability in substrate relative to
variability in microbes.

If we fix λ to unity, as done in our Fig.1, our mean-field
deviation simplifies to

CV(MB)2
[

1
2

(
ρλ2−

1
2

)]
. (18)

In general, the scale transition correction is larger to the ex-
tent that microbial variability exceeds substrate variability
under reverse Michaelis–Menten kinetics (the opposite re-
lation holds for forward Michaelis–Menten by symmetry).
Thus, variability in microbial biomass is not only important
by itself in driving Jensen’s inequality, but also with respect
to variability in substrate supply. Our analysis thus highlights
another route of convergence back to the mean field beyond
the simple increase in λ: variability in substrate increasing
to match variability in microbes in the presence of a positive
spatial colocation factor. We also note that the magnitude of
the scale transition correction scales as the square of the co-
efficient of variation in microbial biomass. Quadratic scaling
means that at low to moderate levels of variability, the devi-
ation from mean field behavior is likely to be minimal, but
at moderately high to high levels of variability, severe de-
viations can be expected. Finally, we note that throughout,
our development of these kinetics assumes proportionality to
microbial biomass, but it is really the live/active fraction that
matters. Since the active fraction varies considerably with en-
vironmental conditions (e.g., soil temperature and moisture

explored below), we believe it is reasonable to expect large
coefficients of variation overall in most real-world ecosys-
tems.

3.2 Environmental heterogeneity

So far, we have analyzed in depth the role of variability in
microbes and their substrate but not in the ecological drivers
underlying maximal reaction rates (i.e., Vmax) or half satura-
tion (i.e., kh). We start with the observation that both linear
first-order and non-linear microbial models will show char-
acteristic scale transitions given heterogeneity in temperature
and soil moisture. Consider the asymptotic convergence of
the reverse MM to first order:

dC
dt
=−VmaxC. (19)

This is mathematically equivalent to the more standard way
of writing these models down as

dC
dt
=−kC. (20)

In the analysis that follows, we will consider both tempera-
ture and soil moisture as factors that could drive variations in
Vmax over space or time.

3.2.1 Scale transition over temperature heterogeneity

To make matters clear, we re-express the rate limiting maxi-
mal reaction velocity Vmax first as a function of temperature

https://doi.org/10.5194/bg-18-5669-2021 Biogeosciences, 18, 5669–5679, 2021
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Figure 2. Scale transition correction for Q10 temperature response
scaling given coefficient of variation CV(Temp) from 0 to 0.5.

(assuming all else constant):

Vmax = e
aT . (21)

In this case, our integrated flux equation will be

dC
dt
=−eaT × (1− ε)×C. (22)

Allowing for variability in T , this integrated equation will
show characteristic scale transitions given the convex (expo-
nential) relationship with T .

Using the Taylor expansion again to second order, we have

Vmax ≈ e
aT

(
1+

1
2
a2Var(T )

)
. (23)

The critical scale transition correction term here is again
multiplicative, and we re-express it into a function of a di-
mensionless coefficient of variation parameter more suited
to ready interpretation. First, the exponential dependence of
respiration on temperature is canonically codified in terms of
Q10 scaling. We substitute a = log(Q10)

10 and end up with

1+
1
2
a2Var(T )= 1+

1
2

(
log(Q10)

10

)2

Var(T )

= 1+
1

200
(log(Q10))

2(SD(T ))2

= 1+
1

200
(log(Q10))

2(TCV(T )
)2
. (24)

For a “typical” Q10 of 2.5 and a T of 25, we see the multi-
plicative scale transition correction in Fig. 2.

As is clear in Fig. 2, the scale transition for temperature
is extremely convex. Integration of fluxes over ecosystems
with significant heterogeneity in temperature invokes sub-
stantial deviation from a mean-field model. For instance, at
a CV of 0.2, the scale transition correction is 1.10, but by a
CV of 0.5 it is 1.66. Obviously, the significance of this de-
pends on the scale and heterogeneity over which an accurate

flux model is desired. For a smaller footprint eddy covari-
ance tower (e.g., Gomez-Casanovas et al., 2018) over a uni-
form habitat type, soil (and near surface) temperatures prob-
ably do not vary by much more than 20 %. Regardless, our
general mathematical analysis quantifies and clarifies exactly
how the scale of variation influences the degree of the scale
transition correction.

Notably, the only difference between the scale transition
correction for first-order and for reverse Michaelis–Menten
kinetics is that in the latter there would be additional correla-
tion terms to consider, e.g., the correlation between temper-
ature and Vmax, temperature and kh, and temperature and C
and MB.

3.2.2 Scale transition over soil moisture heterogeneity

Unlike soil temperature, we expect heterotrophic respira-
tion to respond in a unimodal fashion to soil moisture. At
low levels of soil moisture, microbes are moisture limited,
and at high levels they are oxygen limited, with some opti-
mum range of values in the middle. Although a considerable
amount of work has gone into developing soil moisture func-
tions, including both empirical and theoretical derivations
(Yan et al., 2018; Tang and Riley, 2019), there is no clear
consensus on an optimal representation. Moreover, many
of the candidate functions complicate analysis considerably
by virtue of stepwise formulation (Linn and Doran, 1984).
Therefore, to study the implications of the scale transition,
we proceed via a powerful simplifying abstraction and sim-
ply represent the soil moisture response as a quadratic of the
form

Vmax = βφ−βφ
2, (25)

where φ represents the soil moisture content. We normalize
our function in two senses: first in output space we assume
that it has a maximum of 1 (i.e., represents heterotrophic res-
piration relative to a maximum value of 1) and second that
the soil moisture content φ is itself bounded between 0 and
1, with a peak in the middle at 0.5. Thus, our function cap-
tures the unimodal abstraction in a symmetric form. Given
these conditions, there is a unique solution at β = 4.

We seek the scale transition:

Vmax = 4φ− 4φ2. (26)

As before, we can approximate this as a mean-field plus a
correction to the mean field, which after some re-writing be-
comes

Vmax ∼= 4
(
φ − φ

2
−Var(φ)

)
. (27)

We then substitute Var(φ) = φ2CV(φ)2 and re-express

Vmax ∼= 4
(
φ − φ

2
(

1+CV(φ)2
))
. (28)
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Figure 3. (a) Heterotrophic respiration as a function of soil mois-
ture given the solution in Eq. (25). Note that soil moisture is nor-
malized with a maximum response at 0.5, where 1 represents com-
plete waterlogging, and respiration is normalized to a maximum
of 1. (b) Scale transition approximate solution for respiration as a
function of the dimensionless coefficient of variation in soil mois-
ture where mean field soil moisture is either 0.5 (top curve) or 0.25
(bottom curve, equivalent to 0.75 by symmetry).

As shown in Fig. 3, where mean field soil moisture is
close to the optimal value, scale transition effects are ex-
pected to be quite large. For instance, by the time the coef-
ficient of variation is 0.5, efflux would only be 75% and de-
clines rapidly to 0 as the coefficient of variation approaches
1. Clearly, this latter outcome is not necessarily biologically
realistic, and a more detailed numerical experiment should be
done to explore scenarios with that much variation. However,
our abstractions yield the simple insight that mean-field solu-
tions invariably overestimate the real flux, and this overesti-
mation can be considerable. In our experience, soil moisture
varies tremendously both over space, especially given con-
trasts in topography, relief and underlying soils, and perhaps
even more so over time, including within a small area, due to
day-to-day and even hour-by-hour variations in precipitation,
evapotranspiration and drainage. To the extent that ecosys-
tems deviate from a stable, consistent soil moisture regime,
we should expect strong scale transition effects.

Our results on soil moisture relate to the argument by Tang
and Riley (2019) that heterotrophic respiration arises from
a two-step process whereby substrate must diffuse into the
vicinity of microbes and then be taken up – the latter by a
Michaelis–Menten kinetic. However, microscale variations
in soil moisture mediate and regulate the first step of the pro-
cess, so that the “effective substrate affinity” (the kh term in
the Michaelis–Menten model) deviates from the base sub-
strate affinity of the second step. Tang and Riley (2019) point
out that the effective substrate affinity therefore reflects mi-
croscale heterogeneity, and they argue that experimentalists
should account for this when fitting efflux data to models. But
what about scaling up in the field from small plots to fields
to larger ecosystem units? Fortunately, our analytical frame-
work can be readily queried to account for heterogeneity in
substrate affinity (kh).

3.2.3 Heterogeneity in substrate affinity

We proceed by first holding all terms constant except allow-
ing the half-saturation constant kh to vary, reflecting vari-
ations in soil moisture, or frankly any other factor reg-
ulating microbial access to substrate (e.g., soil aggrega-
tion, organomineral complexes, etc.; Schmidt et al., 2011;
Lehmann et al., 2020). As usual, we seek the scale tran-
sition over VmaxMB

kh+MB = f (kh). We can recover this transition
quickly from Eq. (10) by extracting only the term with (kh),
or rederive from scratch holding everything else as constant.
The result is that the dimensionless scale transition correc-
tion term is

1 +
1

(1+ λ)2
CV(kh)

2. (29)

Intriguingly, this result shows that heterogeneity in substrate
affinity per se results in a convex correction term, implying
that mean-field models will underestimate rather than over-
estimate the resulting fluxes. Given that the correction is pro-
portional to the inverse of the square of λ, this correction
converges rapidly to 1 (no scale transition) as mean microbial
biomass increases (Fig. 4). Nevertheless, where heterogene-
ity is high and λ is around 1 or lower, the correction could be
substantial.

More broadly, our analysis highlights that, under non-
linear Michaelis–Menten kinetics for representing carbon
processing, the impact of environmental heterogeneity acting
on the substrate affinity parameter is opposite of when it acts
on the Vmax parameter. Thus, if we represent soil moisture as
a modifier to the Vmax in the numerator, heterogeneity in soil
moisture should result in lower carbon efflux than mean field,
whereas if we represent soil moisture heterogeneity by way
of substrate affinity it is the opposite. At first glance, this find-
ing appears inconsistent with Tang and Riley (2019). How-
ever, we note that their full kinetic formulations include soil
moisture acting in both roles ultimately and therefore result-
ing in the familiar unimodal soil moisture–respiration rela-
tionship. For instance, their application of “dual Monod” ki-
netics includes soil moisture driving effective substrate affin-
ity terms for both carbon and water, as well as an effective
fraction of active microbes (which modifies the numerator).

Thus, for the analysis of upscaling fluxes in the presence
of soil moisture heterogeneity, we expect the concave correc-
tions of Fig. 3b to hold, regardless of the fine-scale details of
the soil moisture function used.

3.3 Lessons for scientific inference

We close our discussion by considering the implications of
the scale transition for advancing the state of biogeochemi-
cal modeling. Critically, the representation of non-linear (mi-
crobial driven) kinetics is a crucial modeling choice with
large implications for long-term SOC forecasts. Traditional
first-order process-based models dodge explicit representa-
tion of these kinetics but nonetheless have worked well in
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Figure 4. Scale transition factor for variations in the substrate affin-
ity (“kh”) parameter in Michaelis–Menten kinetics as a function of
dimensionless λ (the ratio of mean-field microbial biomass over
mean-field kh), for two scenarios of variability in affinity, one where
coefficient of variation= 1 (top curve) and the other where coeffi-
cient of variation= 0.5 (bottom curve).

practice. This state of affairs persists because both non-linear
and linear kinetics are capable of representing coarse-scaled
biogeochemistry reasonably well, at least in certain respects.
Since first-order kinetics are known to be a crude approxi-
mation, the crucial question for practice is not whether they
are “true”, but rather whether there is significant, systematic
information loss inherent to their use. Fortunately, the scale
transition offers a clear, clean path to discriminate between
these alternative model formulations.

As noted throughout, the dimensionless term λ plays a crit-
ical role in linking the non-linear (Michaelis–Menten) kinet-
ics to the first-order kinetics. As λ increases, the non-linear
kinetics converge to first order. Thus, in seeking to infer
where the non-linear kinetic models provide substantial ad-
vantages, ensuring that λ is not too large (� 1) is the first
priority.

Previous work (Sihi et al. 2016) has approached this ques-
tion theoretically, from first principles. Here, we point out
that demonstrating substantial deviation from the mean-field
model when fitting non-linear kinetics to data is both a nec-
essary and sufficient condition for inferring that λ is not
too large. Thus, we recommend that time series of flux data
be fit to both a first-order and a non-linear kinetic model,
where crucial covariates including substrate (SOC), micro-
bial biomass and possibly environmental parameters such as
temperature have been measured sufficiently well to quan-
tify the relevant variances and covariances. Where predictive
performance and forecasting are the primary goals, we rec-
ommend careful consideration of model parameterizations
(i.e., based on leave-one-out cross validation) and model
combination via “stacking” where it is difficult to infer a de-

cisive “winner” (Yao et al., 2018), acknowledging that carry-
ing this out is a significant enterprise.

In addition to the role of λ, our analysis also cleanly shows
the contribution of other terms to the scale transition, and
thus alternative metrics to assess. First and foremost, account
for the spatial colocation of microbial biomass and substrate
(according to Eq. (16) above) or the various correlation terms
between microbial biomass and kinetic/environmental fac-
tors in Eq. (10). Moreover, recent theoretical developments
offer quantitative insights into the interpretation of the half-
saturation constant (or the substrate affinity parameter) and
thus λ (Tang and Riley, 2019). Tang and Riley (2019) decom-
pose microbial access to substrate into a two-step process,
which is often strongly modified by soil moisture. More-
over, conceptual advances suggest that colocation is a poten-
tially important factor in organic matter decomposition vs.
stabilization (Schimel and Schaeffer, 2012; Lehmann et al.,
2020). Here, we show that both affinity and colocation are
co-dependent in their effects on scale transition.

In addition to fitting fully parameterized flux models (as
above), simpler statistical models could be fit examining the
role of variations in microbial biomass, or colocation of mi-
crobial biomass and SOC, in explaining across-site variations
in ecosystem respiratory fluxes (F ). A substantial role for
either correlation of MB and C or their variability would
constitute ipso facto evidence of the preferability of well-
formulated non-linear kinetic models. On the other hand,
small roles for colocation or evidence of large values of λ
in practice would suggest a minimal advantage to abandon-
ing first-order models in favor of more complex microbial
models. A meta-analytical approach across sites will benefit
greatly from our formulation in terms of dimensionless quan-
tities like λ and the various coefficients of variation.

We further note that the scale transition presented here is
closely related to global sensitivity analysis (GSA; Saltelli
et al., 2010). In its fundamental setup, a GSA tests effects
of variability in parameters. While GSA has been typically
used towards characterizing the uncertainty of parameters,
it is directly applicable to spatial and temporal variability.
For example, the first-order results of a GSA (or the result
of one at a time parameter substitution) provide the contri-
bution of that parameter to the scale transition. Similarly, the
“all but one” perturbation offers insights into how the net ef-
fect of all parameters (and variables) violates the mean field
approximation. Therefore, a computationally expensive GSA
can be leveraged to garner further insights on top of sensi-
tivity effects, allowing for the characterization of the scale
transition. Indeed, a computationally intensive approach to
simulating scale transitions was utilized by Chakrawal et
al. (2020) to good effect. However, we suggest future com-
putational studies build off of the dimensionless approach
studied here, including those extended to multiple micro-
bial populations which would result in multiple dimension-
less lambdas and corresponding multiplicative contributions
to the scale transition. Obviously, the parameter space needs
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to be properly chosen (or subsetted) to reflect appropriate
means, variabilities and perhaps most challenging – corre-
lations. Equation (10) would then provide analytical, albeit
approximate, insight into the scale transition effects, while
the GSA would enable study of any shortcomings from ap-
proximation and also allow for quantification of individual
variable importance for those parameters that enter into the
dynamics in multiple places.

Finally, our analysis of environmental factors including
temperature and soil moisture leads to readily testable pre-
dictions. For temperature, the scale transition is convex, and
thus, ceteris paribus, variation in soil temperature should lead
to greater effluxes than mean field models would predict. The
implications of this for climate feedback should be studied in
greater detail. For soil moisture, which varies considerably
across both space and especially time, our analysis based on
an idealized quadratic representation yields a concave scale
transition correction, i.e., the mean-field soil moisture will
overestimate efflux. Likewise, when represented in both sub-
strate affinity and multiplicative active microbial biomass
fraction terms, as in Tang and Riley (2019), the scale tran-
sition remains concave. However, environmental factors that
act only through substrate affinity would result in a convex
correction as in Fig. 4. Once again, we highlight that the na-
ture of scaling corrections, wherever it is possible to be stud-
ied empirically, can provide insight into the most productive
representations of our models.

4 Conclusions

Here, we have illustrated how the spatial scale transition can
be expressed in dimensionless form, yielding insight into the
systematic operation of Jensen’s inequality in upscaling mi-
crobial decomposition kinetics. Our analysis has identified
the central role of the dimensionless quantity λ – represent-
ing the ratio of mean-field microbial biomass over its half-
saturation value – in governing the extent of the scale tran-
sition correction, expressed here in multiplicative form best
facilitating comparison among systems. For somewhat sim-
plified scenarios – such as restricting to spatial colocation of
substrate and microbes – as λ→∞, the mean-field correc-
tion goes to 0, and the model converges to first order.

This dual sense of convergence also provides opportunity
to empirically test for the presence of significant non-linear
microbial dynamics in upscaled field data: to the extent that
upscaled fluxes deviate from the flux estimated at mean-
field conditions, we have ipso facto evidence for the impor-
tance of formulating our biogeochemical models with these
non-linear terms. Conversely, where there is close agreement
between mean-field and upscaled fluxes, there are arguably
stronger reasons for retaining first-order process model for-
mulations.

In closing, we would like to point out how this mathemat-
ical analysis illustrates the challenge of scaling quite nicely.

Figure 5. Model complexity grows exponentially with number of
spatially varying parameters. We argue to keep models as simple as
possible for both analytical and computational tractability.

In the context of non-linear models, for each parameter that
is allowed to vary in space, there is not only a new variance
parameter, but also a number of new covariance terms are in-
duced, growing as the factorial of the number of varying pa-
rameters

(
5
2

)
(Fig. 3). Thus, in the case of the five-parameter

function considered here, the full approximation has 5 mean
field terms, 5 coefficients of variation, 10 correlation coeffi-
cients and the dimensionless quantity λ.

Even with a maximally generic and simplified expression,
fitting such non-linear time series models to field data still
represents quite a challenge, especially while adequately ac-
counting for and propagating uncertainty. Modelers and theo-
reticians should appreciate the complexity of the task at hand.
Fortunately, our analysis has identified a potentially robust
route to limiting model complexity: screen systematically for
the importance of various correlations in explaining varia-
tions in fluxes. Accordingly, we recommend that research fo-
cus first upon spatial colocation of MB and C, which is read-
ily measured, and then to thoughtfully and carefully expand
models with additional terms as needed.
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