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Abstract. Mediterranean ecosystems are particularly vulner-
able to climate change and the associated increase in cli-
mate anomalies. This study investigates extreme ecosystem
responses evoked by climatic drivers in the Mediterranean
Basin for the time span 1999–2019 with a specific focus on
seasonal variations as the seasonal timing of climatic anoma-
lies is considered essential for impact and vulnerability as-
sessment. A bivariate vulnerability analysis is performed for
each month of the year to quantify which combinations of
the drivers temperature (obtained from ERA5-Land) and soil
moisture (obtained from ESA CCI and ERA5-Land) lead
to extreme reductions in ecosystem productivity using the
fraction of absorbed photosynthetically active radiation (FA-
PAR; obtained from the Copernicus Global Land Service) as
a proxy.

The bivariate analysis clearly showed that, in many cases,
it is not just one but a combination of both drivers that
causes ecosystem vulnerability. The overall pattern shows
that Mediterranean ecosystems are prone to three soil mois-
ture regimes during the yearly cycle: they are vulnerable to
hot and dry conditions from May to July, to cold and dry con-
ditions from August to October, and to cold conditions from
November to April, illustrating the shift from a soil-moisture-
limited regime in summer to an energy-limited regime in
winter. In late spring, a month with significant vulnerability
to hot conditions only often precedes the next stage of vul-
nerability to both hot and dry conditions, suggesting that high
temperatures lead to critically low soil moisture levels with
a certain time lag. In the eastern Mediterranean, the period
of vulnerability to hot and dry conditions within the year is
much longer than in the western Mediterranean. Our results

show that it is crucial to account for both spatial and tempo-
ral variability to adequately assess ecosystem vulnerability.
The seasonal vulnerability approach presented in this study
helps to provide detailed insights regarding the specific phe-
nological stage of the year in which ecosystem vulnerability
to a certain climatic condition occurs.

1 Introduction

Drought frequency and intensity are increasing in the
Mediterranean, accompanied by rising temperatures and heat
wave intensities (Perkins-Kirkpatrick and Gibson, 2017;
Samaniego et al., 2018; IPCC, 2019; Tramblay et al., 2020).
These climatic changes are linked to vulnerability of ecosys-
tems in various ways, e.g. to reductions in forest growth
and increasing tree mortality (Sarris et al., 2007, 2011) as
well as extended fire risk (Sarris et al., 2014; Ruffault et al.,
2018) and declining agricultural yields (Peña-Gallardo et al.,
2019; Fraga et al., 2020). Furthermore, the ability to provide
ecosystem services is impaired due to alterations in function-
ing and structure of Mediterranean ecosystems (Ogaya and
Peñuelas, 2007; Peñuelas et al., 2017). Broad-scale vegeta-
tion shifts and replacement of species are projected, and ul-
timately desertification is expected in many Mediterranean
regions (Gao and Giorgi, 2008; Zdruli, 2011; Feng and Fu,
2013; Liu et al., 2018).

The Mediterranean climate is characterised by great spa-
tial and temporal variability, which makes the investiga-
tion of ecosystem impacts challenging. The Mediterranean
Basin is marked by complex topography and is influenced
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by several large-scale atmospheric patterns (Lionello et al.,
2006, 2012). Furthermore, the Mediterranean climate has an
intricate seasonal cycle, alternating between water-limited
conditions in summer and energy-limited conditions in win-
ter (Spano et al., 2013). An assessment of ecosystem vulner-
ability in the Mediterranean therefore needs to account for
both its spatial and temporal variability.

In this study, we build on the ecosystem vulnerability anal-
ysis proposed by van Oijen et al. (2013, 2014) and Rolinski
et al. (2015), adapted with a focus on seasonal and multi-
variate impacts using remote sensing and reanalysis data. We
enhance the ecosystem vulnerability concept with a focus on
the seasonal timing of impacts. Ecosystem responses differ
depending on the seasonal timing of the event (de Boeck
et al., 2011; Smith, 2011; Sippel et al., 2016). Shifts of only
a few weeks in drought occurrence can make the difference
between negligible and detrimental impacts (Denton et al.,
2017; Sippel et al., 2017, 2018). Even though accounting
for seasonality is crucial in investigating climatic impacts
on ecosystems, it is still often neglected (Piao et al., 2019).
Studies are frequently limited to particular periods of interest
within the year – usually a period of up to half a year centred
around summer – when investigating seasonality (van Oi-
jen et al., 2014; Baumbach et al., 2017; Nicolai-Shaw et al.,
2017; Karnieli et al., 2019) but rarely investigate the sea-
sonality year-round. In addition, combinations of climatic
events in the seasonal cycle are seldom addressed (Smith,
2011; Hatfield and Prueger, 2015). Due to the pronounced
land–atmosphere feedback mechanisms in the Mediterranean
(Seneviratne et al., 2006; Green et al., 2017; Tramblay et al.,
2020), it is particularly important to analyse the impacts of
climatic anomalies in soil moisture and temperature jointly
rather than in isolation (Mueller and Seneviratne, 2012).
Such joint impacts of multiple stressors on ecosystems are
still little researched (IPCC, 2019). Relationships between
climatological and ecological variables at the tails of the dis-
tribution can show distinctly different behaviour compared to
the findings based on conventional linear correlation, which
makes it especially important to investigate the impact of
climate anomalies on ecosystems, not only their mean be-
haviour (Jentsch et al., 2007; Reyer et al., 2013; Baumbach
et al., 2017; Ribeiro et al., 2020).

Soil moisture is a particularly relevant variable for as-
sessing the state of ecosystems as it is directly related to
plant activity, biomass and agricultural yields (McWilliam,
1986; Sherry et al., 2008; Seneviratne et al., 2010; Zscheis-
chler et al., 2013), especially in seasonally water-limited ar-
eas such as the Mediterranean (Szczypta et al., 2014). How-
ever, large-scale soil moisture data covering long time spans
are scarce. Therefore, soil moisture proxies are applied in
most cases, e.g. land surface models or drought indicators
such as the standardised precipitation index (SPI) (Dorigo
et al., 2017; Nicolai-Shaw et al., 2017). However, the SPI
is primarily an indicator for meteorological droughts, which
do not necessarily propagate into soil moisture droughts

(de Boeck et al., 2011). Only a few studies use soil mois-
ture data derived from satellite imagery because long-term
coverage was not available until recently. Individual satellites
do not cover sufficiently long time spans, but long-term cov-
erage can be achieved by merging soil moisture data from
several satellites. The European Space Agency’s Climate
Change Initiative (ESA CCI) soil moisture data set provides
a unique, globally consistent multi-decadal time series based
on several active and passive microwave sensors (Dorigo and
de Jeu, 2016; Dorigo et al., 2017). It was first published in
2012 and has continuously improved since (Dorigo et al.,
2017). It has proven capability to assess land–vegetation–
atmosphere dynamics (de Jeu and Dorigo, 2016; Dorigo and
de Jeu, 2016; Nicolai-Shaw et al., 2017; Gruber et al., 2019).
So far, satellite-based soil moisture data are still rarely used
in ecosystem research (Dorigo et al., 2017), and Rolinski
et al. (2015), for example, point out the need to use obser-
vational data in the assessment of ecosystem vulnerability.
Therefore, we seek to put greater emphasis on the possibil-
ities arising from newly available remote sensing products
within the last years. In addition, we also performed the anal-
ysis using the soil moisture product from the ERA5-Land re-
analysis data set. The fraction of absorbed photosynthetically
active radiation (FAPAR) is used as an indicator of ecosystem
productivity in our study. The FAPAR is crucial for monitor-
ing climatic impacts on terrestrial ecosystems and is directly
related to the photosynthetic activity of vegetation and thus
to its greenness and health (Potter et al., 2003; Gobron et al.,
2010; Ivits et al., 2016). Vegetation indices such as the nor-
malised difference vegetation index (NDVI) are closely re-
lated to the FAPAR and can be seen as proxies (Myneni and
Williams, 1994; Pinty et al., 2009).

This study aims to quantify ecosystem vulnerability by as-
sessing which combinations of climatic drivers lead to ex-
treme reductions in ecosystem productivity in the Mediter-
ranean Basin using a bivariate vulnerability analysis with
a specific focus on seasonal variations. Soil moisture and
temperature are investigated as climatic drivers, and the
FAPAR is used to assess the ecological response. Further-
more, ecosystem vulnerability is calculated separately by
land cover class and subregion to account for the spatial com-
plexity of the Mediterranean Basin.

2 Methods

2.1 Study area

The study area is constrained to all grid points in the Mediter-
ranean Basin belonging to the Köppen–Geiger classes Csa
(“warm temperate climate with dry and hot summer”) and
Csb (“warm temperate climate with dry and warm summer”;
cf. Fig. 1) to ensure a certain level of comparability within
the study area. Furthermore, the study area is subdivided into
land cover classes and subregions. The land cover classes
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Figure 1. Study area in the Mediterranean Basin: the Köppen–Geiger climate categories “Mediterranean hot summer climate” (light green)
and “Mediterranean warm summer climate” (dark green) are included in this study. The study area was divided into six subregions: the
Iberian Peninsula (IBE), Italy and France (IAF), the Balkan Peninsula (BAL), Turkey and Cyprus (TAC), the south-eastern Mediterranean
(SEM), and north-western Africa (NWA)

were aggregated according to Table B1 using the ESA CCI
land cover classification map of 2018. Grid points where the
land cover changed between 1999 and 2018 were excluded in
this study as well as grid points belonging to the land cover
classes “water bodies’’ and “urban areas’’. The countries be-
longing to each subregion are listed in Table B2.

2.2 Data

Daily satellite-based soil moisture data from ESA CCI were
obtained at a resolution of 0.25◦ from 1978–2019 (Gruber
et al., 2019). The merged data set (v04.7), containing data
from both active and passive sensors, is used. The quality
of this data set has continuously improved over the years
due to the incorporation of an increasing number of satel-
lites (Dorigo et al., 2017). The data set is representative of
the topsoil surface layer of up to 2 cm thickness (Kidd and
Haas, 2018). Monthly air temperature and soil moisture re-
analysis data are retrieved from ERA5-Land produced by
the European Centre for Medium-Range Weather Forecasts
(ECMWF) at a resolution of 9 km from 1981–2019 (Muñoz-
Sabater, 2019). The three soil moisture layers correspond-
ing to the depths 0–7, 7–28 and 28–100 cm are used in the
analysis. This study is conducted using the ESA CCI soil
moisture data set as well as the ERA5-Land soil moisture
data set to verify the robustness of our results. The FAPAR is
obtained from the Copernicus Global Land Service (CGLS)
(Baret et al., 2013; Verger et al., 2014). It is derived from
SPOT/VGT from 1999–2013 and PROBA-V from 2014–
2019 and is provided in 10 d steps (Verger et al., 2019). Fur-
thermore, the ESA CCI land cover classification for the years
1999 and 2018 with a spatial resolution of 300 m (v2.1.1)
was used (ESA, 2017). The Köppen–Geiger classification
map was acquired from Kottek et al. (2006) and Rubel et al.
(2017).

2.3 Data preprocessing

All data sets are resampled to a common spatial and temporal
resolution of 0.25◦ and a monthly time step, respectively. The
investigated time span encompasses 21 years from 1999–

Figure 2. Percentage of available monthly soil moisture values from
1999–2019. All grid points excluded from this study are marked
with a dot.

2019. Grid points with more than 60 months of missing soil
moisture data within the period from 1999–2019 were ex-
cluded from this study (see Fig. 2). These are primarily grid
points located close to the coast. In a next step, all variables
are deseasonalised by subtracting the annual cycle to account
for extremeness relative to the respective time of the year.
The variables are z-transformed by subtracting the monthly
mean and dividing by the year-round standard deviation of
the deseasonalised time series (Eq. 1); z-score transforma-
tion allows for a direct comparison of values despite their
different physical units (Orth et al., 2020).

zi =
Xi −µi,month

σi
(1)

The impact of environmental drivers on ecosystems may
show a time lag of up to a few months – so-called “legacy
effects” (von Buttlar et al., 2018; Piao et al., 2019). Hence, a
moving average of 3 months n= 3 is applied to the environ-
mental driver variables env temperature and soil moisture;
i.e. the preceding 2 months are included with equal weight
for each monthly time step i in the time span ofm= 21 years
(Eq. 2) to account for lagged effects.

envi =
1
n

i∑
k=i−2

envk for i ∈ (1, . . .,m× 12) (2)
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2.4 Derivation of ecosystem vulnerability

In the context of our study, ecosystem vulnerability depicts
if ecosystems are susceptible or sensitive to a certain haz-
ard. It allows states of low ecosystem productivity to be at-
tributed to certain climatic conditions by linking such states
to corresponding deviations in temperature and soil mois-
ture. The terminology on ecosystem vulnerability is confus-
ing since several partially ambiguous terms exist due to the
concept being still rather new in ecological research (van Oi-
jen et al., 2013; Weißhuhn et al., 2018). Following the defini-
tion by Rolinski et al. (2015), “ecosystem vulnerability VE
is the average deviation of the environmental variable un-
der hazardous ecosystem conditions from values under non-
hazardous ecosystem conditions” in our approach. Here, the
environmental variable env is either temperature or soil mois-
ture, respectively, and the ecosystem variable sys is the FA-
PAR. Ecosystem vulnerability VE is calculated according to
Eq. (3) as the difference in the expectation value Enonhaz of
the environmental variable env under non-hazardous condi-
tions of the ecosystem variable sys and the respective value
Ehaz under hazardous conditions of the ecosystem variable
sys (van Oijen et al., 2013; Rolinski et al., 2015).

VE = E(env|sysnonhaz)−E(env|syshaz), (3)

with conditional expectational values defined following
Eq. (4):

E(env|◦)=
∫

envP(env|◦)denv, (4)

where P is the probability of env under the specified con-
dition ◦ (sysnonhaz or syshaz). The probability of hazard
occurrence PH is given by the number of data points under
hazardous conditions Nhaz divided by the total number of
data points N, which gives PH =Nhaz/N . The discrimination
threshold between non-hazardous and hazardous ecosystem
conditions is set as the 10th percentile of the FAPAR values
for each grid point individually; i.e. P(sys haz) is fixed to 0.1
in this study. Such a threshold is commonly used in ecocli-
matological studies (Ahlström et al., 2015; Baumbach et al.,
2017; Nicolai-Shaw et al., 2017). To investigate the robust-
ness of our results, we also performed the analysis using the
5th and 15th percentile for discrimination of hazardous and
non-hazardous ecosystem conditions. The spatial and tempo-
ral patterns for these cases were in agreement with the 10th
percentile chosen in our study (results not shown), which in-
dicates that our results are not sensitive to the choice of the
percentile. Every grid point has the same number of months
with hazardous ecosystem conditions; i.e. the same risk of
exceeding the threshold is assumed uniformly for all grid
points.

We used the Mann–Whitney U test to investigate signifi-
cant deviations in climatic conditions during non-hazardous
and hazardous ecosystem conditions, which was adjusted for

Figure 3. Illustration of the vulnerability to all potentially occurring
climatic conditions.

multiple testing using the Benjamini and Hochberg (1995)
correction. Significant positive values indicate ecosystem
vulnerability VE to cold (dry) conditions for the climatic
driver temperature (soil moisture). Similarly, significant neg-
ative values are associated with vulnerability to hot (wet)
conditions. In the case of two climatic drivers, this leads to
nine possible vulnerability conditions (see Fig. 3). The cor-
responding p values are not shown throughout the article
due to the large number of data. A schematic display of the
calculation of ecosystem vulnerability VE is given in Fig. 4
for an exemplary grid point with vulnerability to hot and
dry conditions for the month of July. The two drivers tem-
perature and soil moisture are assessed for their effects on
ecosystem vulnerability. In this example, the average tem-
perature in July during non-hazardous ecosystem conditions
Enonhaz is lower than the average during hazardous ecosys-
tem conditions Ehaz, leading to a negative vulnerability to
temperature, i.e. vulnerability to hot conditions (Fig. 4a).
For soil moisture, the average soil moisture during non-
hazardous ecosystem conditions Enonhaz is higher than soil
moisture during hazardous conditions Ehaz; therefore vul-
nerability is positive, indicating vulnerability to dry condi-
tions (Fig. 4b). Our approach is impact-based; i.e. it focusses
on the extremeness of the impact rather than the extreme-
ness of the driver as this enables relating multiple drivers
to a single outcome (Zscheischler et al., 2014, 2018). Ac-
cording to the framework by Smith (2011), vulnerability to
extreme climatic events is defined as a climate extreme lead-
ing to an extreme ecological response. Therefore, our defi-
nition differs in that regard in that it comprises extremeness
only for the ecological response, not necessarily for the cli-
matic driver. The definition used here is broader than the one
by Smith (2011) because it includes significant deviations in
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the driver variable in general, not only extremes. In our case,
ecosystem vulnerability rather shows if the ecosystem vari-
able is susceptible to certain climatic conditions (which do
not need to be extreme). The analysis was carried out using
R version 3.6 and Climate Data Operators (CDO) version 1.9
(Schulzweida, 2019; R Core Team, 2020).

3 Results

3.1 Ecosystem vulnerability by land cover

Figure 5 displays the ecosystem vulnerability to soil moisture
and temperature for each land cover class and each month
of the year as well as the corresponding statistical signifi-
cance indicated by the background colour (see explanation
in Fig. 3). The vulnerability to temperature and soil mois-
ture can be summarised into three major regimes during the
course of the year (see Fig. 5). From May to July, the veg-
etation is especially prone to hot and dry conditions. From
August to October, there is a shift to a vulnerability to cold
and dry conditions in general. Finally, from November to
April cold and wet conditions are usually associated with
high vulnerability of the vegetation. There are sharp tran-
sitions in ecosystem vulnerability from April to May, from
July to August, and from October to November for most land
cover classes.

In the period from November to March the vast major-
ity of land covers are vulnerable to cold conditions. From
March to May there is a transition phase from cold to hot
conditions. While in March almost all land covers are vul-
nerable to cold conditions, in April only four of them still
remain vulnerable (“forest (broadleaved)”, “forest (needle-
leaved)”, “ mixed” and “shrubland”), and none are vulner-
able in May, when the majority shift to vulnerability to hot
conditions. In summer, a period with significant vulnerability
to hot conditions only precedes the next phase of vulnerabil-
ity to both hot and dry conditions, e.g. for “crops (rainfed)”
and “grassland”, indicating that the heat desiccates the soil
first until it reaches critically low soil moisture levels in the
following months. The cycle reverses around July and Au-
gust. While four land cover classes are still vulnerable to hot
conditions in July, none of the classes are in August. Vul-
nerability to high temperatures is almost entirely restricted
to the period from May to July. From August to October,
most land cover classes exhibit vulnerability to cold and dry
conditions, and from midsummer to the beginning of autumn
almost all land cover classes are prone to drought. In the fol-
lowing period from November to March, cold and wet condi-
tions prevail on average. The vulnerability to wet conditions
is highest from November to January, whereas many land
cover classes are insensitive to soil moisture during most of
the time from February to May. Exemptions are, for exam-
ple, “ forest (broadleaved)”, “crops (rainfed)” and “mixed”,

where low ecosystem productivity coincides with wet condi-
tions, e.g. in March to April.

The vulnerability to hot conditions of “grassland” is 1
month ahead of most other land classes, starting already in
April. This could indicate a faster response of this land cover
class to environmental drivers than other land cover classes.
Sparse vegetation is probably well adapted to high tempera-
tures as it never shows vulnerability to hot conditions, which
means that temperature during extreme ecosystem conditions
is not significantly higher than during non-extreme ecosys-
tem conditions. It also never coincides with significantly wet
conditions, which might point out that transpiration in these
areas is never so high that it could contribute substantially
to the desiccation of the soil, and thus its influence on soil
moisture is negligible.

3.2 Ecosystem vulnerability by subregions

Similarly to Fig. 5, ecosystem vulnerability for each subre-
gion is shown in Fig. 6. There is more variability than re-
garding land cover classes, and the general pattern of most
land cover classes with a “hot and dry” regime followed by a
“cold and dry” regime and subsequently by a “cold and wet”
regime does not hold true for most of the Mediterranean sub-
regions. The vulnerability to soil moisture usually peaks dur-
ing summer or autumn and reaches a minimum in spring or
winter – exceptions are Italy and France as well as the south-
eastern Mediterranean. The yearly development of vulnera-
bility to temperature is characterised by a minimum around
late spring or summer.

There is an extended period of time in which ecosystems
are prone to hot conditions from March to October in Turkey,
whereas in other regions this period often only lasts for 2 to
3 months in spring and summer. North-western Africa and
the south-eastern Mediterranean are prone to dry conditions
9 and 8 months of the year, respectively, indicating that these
regions are usually soil-moisture-limited. Italy and France
have the lowest sensitivity to soil moisture, with only small
deviations from zero. Nevertheless, these deviations are sig-
nificant for half of the months in the year. Interestingly, the
Balkan Peninsula is never prone to hot conditions. Outside of
the summer season, wet conditions particularly coincide with
low ecosystem productivity in Italy and France, the Balkans,
and the Iberian Peninsula.

The number of events per month is not equally distributed
throughout the year. There is a decline from June to Novem-
ber with a minimum usually around September in which only
few events are detected. This reflects the time span of the
dormant season since these months are usually too dry for
ecosystem activity. There are some notable exceptions for
land covers involving trees (“forest (broadleaved)”, “forest
(needleleaved)”, ‘mixed” and “crops (irrigated)”) (see Fig. 5)
as well as the northernmost subregions of the Mediterranean,
Italy and France, and the Balkan Peninsula (see Fig. 6),
where the number only decreases slightly during this period.
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Figure 4. Schematic display of ecosystem vulnerability VE for an exemplary grid point for (a) temperature and (b) soil moisture as environ-
mental drivers for the month of July.

These land cover classes and subregions are less affected by
the characteristic dry period in summer. Forests have better
access to soil moisture because they develop deeper roots
(Bréda et al., 2006; Zhang et al., 2016), whereas irrigated
areas obviously have an external water supply. The northern
subregions are also moister than the southern Mediterranean.

Satellite-derived soil moisture data sets are prone to uncer-
tainty, even though there have been considerable improve-
ments in the last years (Gruber et al., 2019). Therefore,
ecosystem vulnerability was also assessed for all land cover
classes and subregions using soil moisture layers at 0–7, 7–
28 and 28–100 cm depth from the ERA5-Land reanalysis
data set and compared to results obtained from the ESA CCI
soil moisture product to verify the robustness of our results
and whether specific biases are apparent (see Appendix A).
Furthermore, certain land cover classes and subregions en-
compass a relatively small subset of grid points, and thus
non-significant ecosystem vulnerability might be related to
data scarcity in some of these cases.

The spatial patterns of ecosystem vulnerability are dis-
played for four exemplary months of the year (see Fig. 7),
whereas all 12 months can be found in the Appendix (see
Fig. B1). In March in most western Mediterranean regions,
low FAPAR values are associated with cold and wet condi-
tions (blue colouring), whereas in the eastern Mediterranean
vulnerability to hot conditions (purple and orange colouring)
are already emerging at this time of the year. In June, al-
most all regions are vulnerable to hot conditions and often
also to dry conditions (purple and orange colouring), with
exceptions in the northernmost regions such as the French
Riviera as well as mountainous regions such as the Pelo-
ponnese in Greece and the High Atlas in central Morocco.
In September, there are often no low FAPAR anomalies oc-

curring (black colouring), particularly in southern and inland
regions, which are the hottest regions of the Mediterranean.
The reason for this is that this time usually corresponds to
the dormant season in these areas. In regions where events
are detected during this time of the year, vulnerability to cold
and dry conditions (green colouring) prevails in most of the
Mediterranean. In December, in most areas in the central
Mediterranean, low FAPAR values coincide with cold and
wet conditions (blue colouring), whereas in central Turkey
and the southern Iberian Peninsula, vulnerability to hot con-
ditions (purple and orange colouring) occurs. It is noteworthy
that for a given grid point at a given month, only 21 obser-
vations are available. Therefore, the robustness of the mag-
nitude of ecosystem vulnerability of individual grid points is
limited and should thus be interpreted with care. The maps
in Figs. 7 and B1 primarily aim to identify large-scale spatial
patterns but do not provide information on statistical signifi-
cance at a grid point scale.

4 Discussion

4.1 Interpretation of temporal and spatial patterns in
the Mediterranean

Our findings are in accordance with the characteristics of the
Mediterranean climate regime, which is primarily energy-
limited during winter and soil-moisture-limited during sum-
mer (Schwingshackl et al., 2017). The vulnerability analy-
sis allows a more detailed investigation of the changes in
ecosystem vulnerability to soil moisture and temperature
throughout the course of the year for different land cover
classes and subregions. In a wet regime, ecosystem activ-
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Figure 5. Median monthly ecosystem vulnerability per land cover: vulnerability to temperature (ERA5-Land) is shown in white, and vulnera-
bility to soil moisture (ESA CCI) is shown in black for each month of the year (columns) for each land cover (rows). Months with statistically
significant deviation in climatic drivers during non-hazardous and hazardous ecosystem conditions according to the Mann–Whitney U test
based on a significance level α = 0.05 are shown in colour (see legend); all other months are shown in grey. The number of grid points in
which an event has occurred in this month and land cover within the period 1999–2019 is shown in the upper left corner of each panel.

ity is energy-limited, depending primarily on temperature
and radiation, whereas in a transitional or dry system, soil
moisture content is reduced, and thus ecosystem activity is
water-limited (Seneviratne et al., 2010; Zscheischler et al.,
2015). From May to July, the Mediterranean is often vul-
nerable to hot and dry conditions, which is a typical feature
of a soil-moisture-limited regime (Seneviratne et al., 2010).
Heat waves are a frequent characteristic of the Mediterranean
summer (Conte et al., 2002) and are often connected to
persistent anti-cyclonic regimes and droughts (Mueller and
Seneviratne, 2012; Ulbrich et al., 2012). The vulnerability to
dry conditions in autumn indicates that moisture reservoirs
are often still depleted after the summer, impairing the on-
set of the next vegetation cycle. By contrast, plant growth

is inhibited by too-low temperatures in autumn, which dis-
tinguishes it from the antecedent summer period. The gen-
eral transition to vulnerability to cold conditions already in
August is astonishing. However, it should be noted that es-
pecially for the warmer regions – e.g. north-western Africa,
Turkey and the interior of Spain – either vulnerability to hot
conditions prevails or no FAPAR anomalies are detected dur-
ing this time (see Figs. 6 and B1) because August is out-
side of the growing season and the FAPAR values are usu-
ally at their annual minimum at this time of the year. During
the phase of the water-limited regime, soil moisture deple-
tion in combination with high atmospheric evaporative de-
mand leads to plant water stress and can ultimately cause
plant mortality due to hydraulic failure or carbon starvation

https://doi.org/10.5194/bg-18-5903-2021 Biogeosciences, 18, 5903–5927, 2021
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Figure 6. Median monthly ecosystem vulnerability per subregion: vulnerability to temperature (ERA5-Land) is shown in white, and vulnera-
bility to soil moisture (ESA CCI) is shown in black for each month of the year (columns) for each land cover (rows). Months with statistically
significant deviation in climatic drivers during non-hazardous and hazardous ecosystem conditions according to the Mann–Whitney U test
based on a significance level α = 0.05 are shown in colour (see legend); all other months are shown in grey. The number of grid points in
which an event has occurred in this month and subregion within the period 1999–2019 is shown in the upper left corner of each panel.

(van der Molen et al., 2011; Vicente-Serrano et al., 2020).
As a coping strategy, plants, for example, reduce stomatal
conductance to avoid hydraulic failure due to water loss by
leaf transpiration, which consequently leads to reduced car-
bon uptake and thus decreased photosynthetic activity (van
der Molen et al., 2011; Reichstein et al., 2013; Piao et al.,
2019; Vicente-Serrano et al., 2020). The vulnerability to cold
conditions in most months from November to April confirms
that ecosystems are energy-limited in this period and is prob-
ably related to frost damage during cold spells. Related to the
Cyprus Low, cold spells often co-occur with heavy precipi-
tation in the eastern Mediterranean during this time (de Luca
et al., 2020). Presumably, wet conditions only coincide with
cold conditions but are not damaging ecosystems as such.
However, vulnerability of crops to wet conditions in win-
ter was observed, for example, on the Iberian Peninsula in
a study by Páscoa et al. (2017). While ecosystem activity in
the northern Mediterranean is low during winter, this does
not hold true for the southern Mediterranean; e.g. for some
regions in Tunisia the NDVI peaks as early as December
(Le Page and Zribi, 2019). Cloudiness during precipitation
leads to reduced solar radiation and consequently lower sur-

face temperature (Berg et al., 2015). This way, cold and wet
conditions can lead to low transpiration rates of plants ac-
companied by low photosynthetic activity, leading to reduced
extraction of soil moisture during that time period (Zscheis-
chler et al., 2015). This highlights the bidirectional relation
between vegetation and soil moisture; i.e. not only is the
state of the vegetation dependent on soil moisture but also
vice versa. This mutual linkage is neglected in many studies
(Dorigo et al., 2017).

Energy-limited regimes merge gradually into water-
limited regimes from Scandinavia southwards to the Mediter-
ranean in Europe (Teuling et al., 2009). Karnieli et al. (2019)
investigated the relationship of the NDVI and land surface
temperature at the European scale, hypothesising that a pos-
itive relationship indicates an energy-limited condition and
a negative one a water-limited condition. Our results are
mostly in agreement with the findings of their study that tem-
perature and the NDVI are comprehensively negatively re-
lated in summer in Mediterranean Europe, whereas in spring
this is only the case in the southernmost regions of Mediter-
ranean Europe, while in other areas either neutral or nega-
tive relationships prevail. According to Le Page and Zribi
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Figure 7. Average monthly vulnerability to soil moisture (ESA CCI) and temperature (ERA5-Land) in the Mediterranean Basin for (a) March,
(b) June, (c) September and (d) December. Grid points without any events during the respective month are displayed in black.

(2019), temperature and the NDVI are always negatively cor-
related in north-western Africa, while soil moisture and the
NDVI are positively correlated. This indicates that this region
is soil-moisture-limited year-round, which is in good agree-
ment with our results obtained using the ESA CCI soil mois-
ture data set. However, the ERA5-Land soil moisture data
set exhibits vulnerability to wet conditions in north-western
Africa in several months of the year, which might indicate
lower suitability of this reanalysis data set to represent the
soil moisture conditions in this region (see Figs. 6 and A2).

Extreme ecosystem impacts are not always connected to
climatic extremes but can also be caused by a combination
of concurrent moderate climatic drivers (Pan et al., 2020;
van der Wiel et al., 2020). Furthermore, extreme ecosys-
tem impacts are not solely related to soil moisture and tem-
perature anomalies. Other potential causes are, for exam-
ple, windthrow, pest outbreaks and fires, which often exhibit
synergistic effects in combination with droughts and heat
waves (Gouveia et al., 2012; Reichstein et al., 2013; Batl-
lori et al., 2017; Ruffault et al., 2018). Furthermore, many
ecosystems are managed, which also affects ecosystem pro-
ductivity (Smit et al., 2008). These additional drivers should
be taken into consideration when interpreting the results of
this study.

The impact of climate extremes on ecosystems depends
highly on their timing (Smith, 2011; Wolf et al., 2016; Piao
et al., 2019). The sensitivity to heat varies with phenophase
(Hatfield and Prueger, 2015), and the effect on the carbon
cycle can differ seasonally. High temperatures might, for ex-
ample, increase carbon uptake by advancing spring onset but
may lead to uptake reductions in summer (Piao et al., 2019).
In the same way, droughts can either accelerate the pheno-
logical cycle or inhibit plant productivity, and their impact on
vegetation is strongly connected to the seasonal variations in

the water balance (Spano et al., 2013; Gouveia et al., 2017).
The highest detrimental impacts on ecosystems by droughts
in the Mediterranean have been reported at the beginning of
the year at the peak of the growing season (Ivits et al., 2016;
Peña-Gallardo et al., 2019). The drought and heat wave in
2003 were comparably not that harmful to Mediterranean
ecosystems as they occurred in August, which is outside the
main growing season (Ivits et al., 2016). The approach pre-
sented in this study helps to gain a better understanding of
which stages of the year are vulnerable to which climatic
condition. To our knowledge, none of the previous studies
which applied the framework for ecosystem vulnerability ac-
counted for the effects of seasonality so far. However, ecosys-
tem responses are highly sensitive to the timing of events;
therefore, it is crucial to consider this.

Climate change leads to seasonal shifts, which already
becomes apparent in the strong phenological changes in
the Mediterranean (Menzel et al., 2006; Gordo and Sanz,
2009, 2010). For example, higher temperatures lead to in-
creased ecosystem productivity and subsequently higher
evapotranspiration earlier in the growing season. Due to this,
soil moisture is depleted faster, and therefore more energy
is transferred into sensible heat instead of latent heat. As
a consequence of these hot and dry conditions, the grow-
ing season might end prematurely (Seneviratne et al., 2010;
Lian et al., 2020). The time series used here encompasses
21 years and is thus still too short for analysing long-term
trends. Nevertheless, our approach can potentially be used
to monitor how vulnerability changes in future for all 12
months of the year by comparing vulnerability during dif-
ferent multi-year time spans if time series of sufficient length
are available. Hot and dry days are getting more persistent
in summer, and unprecedented heat waves associated with
Saharan warm air intrusions have occurred within the last
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years (Sousa et al., 2019; de Luca et al., 2020). Neverthe-
less, droughts and warm spells are increasing in spring as
well (Vogel et al., 2021), which can have detrimental implica-
tions for the Mediterranean ecosystems as spring is the main
growing season. With temperature increases in future, vul-
nerability to cold conditions might be constrained to a shorter
time frame, whereas the time span with vulnerability to hot
conditions might expand within the year. Increasing aridity
is projected in the Mediterranean, especially during winter
and spring (Samaniego et al., 2018), while at the same time
heavy precipitation events are projected to increase (Toreti
and Naveau, 2015). Thus, it remains difficult to determine
how vulnerability to dry and wet conditions will evolve in
future.

4.2 Potential limitations of the methodological
procedure

The presented method depends heavily on the quality of the
employed data types for both the two drivers and the impact
proxy. Several limitations regarding moisture data are well
known; e.g. the coarse spatial resolution impairs assessments
at local scales. Furthermore, satellite-based soil moisture is
limited to the retrieval of surface soil moisture, while deeper-
reaching root-zone soil moisture is the actual ecologically
relevant variable. Satellite-based soil moisture is only rep-
resentative of the first 2–5 cm of the soil layer. The root zone
of plants is usually deeper, which reduces the explanatory
power of satellite-based soil moisture for drought impacts on
ecosystems (Liu et al., 2016; Dorigo et al., 2017; West et al.,
2019). For example, soil drying during summer affects pri-
marily the top soil layer, while drying in deeper layers shows
a lagged response because upward capillary flow from these
layers is comparatively slow (Berg et al., 2017). Nicolai-
Shaw et al. (2017) found that soil moisture data from ESA
CCI were a good indicator for drought in grasslands, while
forests exhibited weaker responses, probably due to access to
deeper soil layers for forests compared to grasslands. How-
ever, we also assessed vulnerability to soil moisture at the
depths 0–7, 7–28 and 28–100 cm using reanalysis data from
ERA5-Land, and the patterns obtained at the deeper layers
7–28 and 28–100 cm are in large part similar to the ones of
the layer at 0–7 cm (see Appendix A). This indicates that the
assessment of the top soil layer is able to yield results which
are valid for a larger proportion of the soil column. Coupling
of land surface models with satellite-based surface soil mois-
ture can further enhance knowledge on the status of root-
zone soil moisture in future (Dorigo et al., 2017; Tramblay
et al., 2020). Furthermore, it should be noted that validations
of the ESA CCI soil moisture data set with in situ observa-
tions from Mediterranean sites in Spain, France and Turkey
showed high agreement (Albergel et al., 2013; Dorigo et al.,
2015; Bulut et al., 2019). Also the FAPAR product from the
CGLS has been validated with observation data from Tunisia,
Italy, Spain and France, primarily for a variety of crop types

as well as a deciduous broadleaf forest in Italy and a needle-
leaf forest in Spain (Fuster et al., 2020). The FAPAR is of-
ten assumed to be directly linked to productivity. However,
droughts might lead to physiological changes such as stomata
closure, which are not apparent in the spectral characteristics
of the canopy and thus in the FAPAR but nevertheless invoke
a decreased productivity. This was the case, for example, in
forest ecosystems during the drought-and-heat-wave event in
2003 in Europe (Reichstein et al., 2007; Zhang et al., 2016).

The Mediterranean Basin is characterised by large spa-
tial variability because of its complex topography (Lionello
et al., 2006). The relatively coarse resolution of the ESA CCI
soil moisture data set is currently limiting the representation
of this high spatial complexity (Crocetti et al., 2020). Many
land cover classes express similar patterns over the course
of the year according to our results. This could potentially
indicate that grid points are sometimes not homogeneous
enough but rather represent a mixture of several land cover
classes due to the coarse resolution of 0.25◦. The ESA CCI
land cover product applied in this study is a state-of-the-art
data set; a more detailed data set is currently not available
for the Mediterranean Basin as a whole. The ESA CCI land
cover classification allows only for the differentiation of ma-
jor plant functional types, and future studies might benefit
from a more refined land cover classification scheme with a
broader variety of land cover classes. Furthermore, the sub-
regions used in this study are not fully homogeneous, and
there is a certain variability within a given subregion. Thus,
the patterns identified in this study (see Figs. 5 and 6) can-
not always be inferred for an entire subregion. Therefore, the
ecosystem vulnerability maps (Figs. 7 and B1) should be ad-
ditionally examined for the identification of potentially devi-
ating patterns within subregions.

Many studies do not consider lagged effects in their de-
sign and the choice of a suitable timescale to account for
such effects is not trivial and under debate (Zeng et al., 2013;
Ivits et al., 2016). Response time varies depending on the
type of event and the affected ecosystem. The response lag
of vegetation is land-cover-specific as plants have various
regulatory physiological functions to react to changes in soil
moisture such as stress memory, water storage and stabilisa-
tion activities at the community level (van der Molen et al.,
2011; Niu et al., 2014; Zhang et al., 2017). Faster response
times to droughts are observed for pasture and crops com-
pared to shrubs and forests (Chen et al., 2014; Bachmair
et al., 2018). Generally, responses to drought are slower in
semi-arid and sub-humid biomes compared to arid biomes
(Vicente-Serrano et al., 2013). A study by Ivits et al. (2016)
at the European scale found that vegetation in the Mediter-
ranean responds slowly to meteorological droughts com-
pared to most other European regions. Impacts on vegeta-
tion by meteorological and soil moisture droughts are often
largest within the preceding 1 to 2 months (Zeng et al., 2013;
Chen et al., 2014; Wu et al., 2015; Papagiannopoulou et al.,
2017; Bachmair et al., 2018), which is the reason we de-
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cided on a 3-month timescale in the moving average applied
to the environmental drivers in our approach. Temperature
responses are usually faster than responses to drought but
can still exhibit lagged responses up to a few months (Zeng
et al., 2013; Papagiannopoulou et al., 2017). Temperature
and soil moisture anomalies are usually analysed on different
timescales (typically on a daily scale for temperature and on
a monthly scale for soil moisture), which renders their joint
assessment difficult. Ecosystem impacts can also vary sub-
stantially on a temporal scale from, for example, temporary
changes in productivity to persistent regime shifts (Crausbay
et al., 2017). Therefore, using a single timescale might not
capture all relevant temporal dynamics. The choice of the op-
timal timescale is non-trivial, and, for example, timescales of
less than a month for investigating drought impacts on vege-
tation have also been suggested (West et al., 2019).

Our analysis is year-round without being explicitly re-
stricted to the months of the growing season, which makes it
easily transferable to any study area. We decided this for two
reasons. First, it is complex to account only for the months
of the growing season as there is a large variability depend-
ing on latitude and longitude within the Mediterranean Basin
(Lionello et al., 2006). Second, the analysis is implicitly lim-
ited to the growing season because FAPAR deviations during
the dormant season are expected to be small and thus will
exceed the extremeness threshold only on rare occasions. In
our study, it can be clearly noted that the number of detected
events is not distributed equally throughout the course of the
year. They are at a minimum at the transition from summer
to autumn, when ecosystem activity is low in the Mediter-
ranean (see Sect. 3.2). Therefore, large areas – especially
in the interior of the countries – are under-represented in
these months. Results for months during the dormant season
should be interpreted cautiously (Ivits et al., 2016), taking
into account that they depend on a considerably lower num-
ber of events. These events might be representative solely of
specific ecosystems that are still active at this time of the year
or may partially result from noise in the data.

5 Conclusions

The seasonal ecosystem vulnerability analysis presented in
this study helps identify the time of the year at which vul-
nerability to a certain climatic condition occurs. The vulner-
ability of Mediterranean ecosystems to the concurrent cli-
matic drivers temperature and soil moisture was success-
fully assessed using the FAPAR as a proxy for ecosys-
tem productivity, with a focus on the variation in impacts
with seasonality. Our results are in line with the character-
istic intra-annual change between an energy-limited and a
water-limited regime from winter to summer in the Mediter-
ranean (Schwingshackl et al., 2017). In general, three sea-
sonal stages of vulnerability are identified throughout the
year: (1) vulnerability to hot and dry conditions in late spring

to midsummer, (2) vulnerability to cold and dry conditions
from the end of summer to mid-autumn, and (3) vulnerabil-
ity during cold and wet conditions from the end of autumn
to mid-spring. There are several regions which deviate from
this pattern; e.g. the “hot and dry” regime is extended from
spring to autumn in Turkey, whereas the Balkan Peninsula
is continuously energy-limited throughout the year and not
vulnerable to hot conditions. Our results point out the neces-
sity to incorporate seasonality in the vulnerability analysis
concept as well as to examine vulnerability at a subregional
scale to account for the large spatial and temporal variabil-
ity in the Mediterranean. Increasing aridity and fast changes
in the phenological cycle are observed in the Mediterranean
Basin due to climate change (Gao and Giorgi, 2008; Gordo
and Sanz, 2010). The approach for detecting seasonal ecosys-
tem vulnerability opens novel opportunities for developing
early-warning tools to identify detrimental ecosystem con-
ditions, water limitations and irrigation demand in near-real
time and for performing long-term assessments of ecosystem
vulnerability and change for the near- and mid-future climate
scenarios.

Appendix A: Comparison of ecosystem vulnerability
using soil moisture from ESA CCI and ERA5-Land

The ERA5-Land soil moisture layer at 0–7 cm gives very
similar results compared to the ESA CCI data set in the
second half of the year (August–December) for most land
cover classes (see Fig. A1), where the patterns are identi-
cal in most cases; for “all land cover classes” they are in
agreement from June to December. However, in spring they
often deviate, e.g. in May, when dry conditions arise in the
ERA5-Land data set, whereas using ESA CCI there is no sig-
nificant vulnerability to dry conditions for many land cover
classes. For land cover classes such as “crops (rainfed)” vul-
nerability to dry conditions in May seems realistic as various
crops are prone to drought in their reproductive phase (Zhang
and Oweis, 1999; Daryanto et al., 2016), which indicates that
ERA5-Land might give more plausible results for the month
of May. “Shrubland” is often prone to dry conditions in the
second half of the year in the ESA CCI data set, whereas
according to the ERA5-Land data set it is not. Also “forest
(broadleaved)” is prone to dry conditions from June to Octo-
ber in the ESA CCI data set, unlike in the ERA5-Land data
set, where it is vulnerable to dry conditions from September
to October but not during summer. However, there is no ap-
parent systematic bias over all classes, but rather it changes
by month. So, in February, vulnerability in the ERA5-Land
data set, for example, leans more towards dry conditions,
whereas in July this pattern is reversed.

During most of the year, the majority of subregions co-
incide well in both data sets, but there are exceptions (see
Fig. A2). There is vulnerability to dry conditions in August
in the Balkans, the Iberian Peninsula and in north-western
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Africa for ESA CCI soil moisture, whereas for ERA5-Land
this is reversed or insignificant. For north-western Africa,
ERA5-Land detects lower vulnerability to dry conditions
than ESA CCI throughout the course of the year. In ad-
dition, in the Iberian Peninsula vulnerability to wet condi-
tions is pronounced at the beginning of the year for ESA
CCI, whereas for ERA5-Land most months during this pe-
riod show vulnerability to dry conditions.

Figure A1. Median monthly ecosystem vulnerability per land cover. Vulnerability to temperature (ERA5-Land) is shown in white, and
vulnerability to soil moisture (ERA5-Land at depth 0–7 cm) is shown in black for each month of the year (columns) for each land cover (rows).
Months with statistically significant deviation in climatic drivers during non-hazardous and hazardous ecosystem conditions according to the
Mann–Whitney U test based on a significance level α = 0.05 are shown in colour (see legend); all other months are shown in grey. The
number of grid points in which an event has occurred in this month and land cover within the period 1999–2019 is shown in the upper left
corner of each panel.

In addition to the soil moisture layer corresponding to 0–
7 cm soil depth, vulnerability to soil moisture was also anal-
ysed for the layers at 7–28 and 28–100 cm (see Figs. A3, A4,
A5, A6). The patterns at these deeper layers largely coincide
with the surface soil moisture layer (see Figs. A1, A2).
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Figure A2. Median monthly ecosystem vulnerability per subregion. Vulnerability to temperature (ERA5-Land) is shown in white, and
vulnerability to soil moisture (ERA5-Land at depth 0–7 cm) is shown in black for each month of the year (columns) for each land cover (rows).
Months with statistically significant deviation in climatic drivers during non-hazardous and hazardous ecosystem conditions according to the
Mann–Whitney U test based on a significance level α = 0.05 are shown in colour (see legend); all other months are shown in grey. The
number of grid points in which an event has occurred in this month and land cover within the period 1999–2019 is shown in the upper left
corner of each panel.
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Figure A3. Median monthly ecosystem vulnerability per land cover. Vulnerability to temperature (ERA5-Land) is shown in white, and
vulnerability to soil moisture (ERA5-Land at depth 7–28 cm) is shown in black for each month of the year (columns) for each land cover
(rows). Months with statistically significant deviation in climatic drivers during non-hazardous and hazardous ecosystem conditions according
to the Mann–Whitney U test based on a significance level α = 0.05 are shown in colour (see legend); all other months are shown in grey.
The number of grid points in which an event has occurred in this month and land cover within the period 1999–2019 is shown in the upper
left corner of each panel.
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Figure A4. Median monthly ecosystem vulnerability per land cover. Vulnerability to temperature (ERA5-Land) is shown in white, and
vulnerability to soil moisture (ERA5-Land at depth 28–100 cm) is shown in black for each month of the year (columns) for each land
cover (rows). Months with statistically significant deviation in climatic drivers during non-hazardous and hazardous ecosystem conditions
according to the Mann–Whitney U test based on a significance level α = 0.05 are shown in colour (see legend); all other months are shown
in grey. The number of grid points in which an event has occurred in this month and land cover within the period 1999–2019 is shown in the
upper left corner of each panel.
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Figure A5. Median monthly ecosystem vulnerability per subregion. Vulnerability to temperature (ERA5-Land) is shown in white, and
vulnerability to soil moisture (ERA5-Land at depth 7–28 cm) is shown in black for each month of the year (columns) for each land cover
(rows). Months with statistically significant deviation in climatic drivers during non-hazardous and hazardous ecosystem conditions according
to the Mann–Whitney U test based on a significance level α = 0.05 are shown in colour (see legend); all other months are shown in grey.
The number of grid points in which an event has occurred in this month and land cover within the period 1999–2019 is shown in the upper
left corner of each panel.
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Figure A6. Median monthly ecosystem vulnerability per subregion. Vulnerability to temperature (ERA5-Land) is shown in white, and
vulnerability to soil moisture (ERA5-Land at depth 28–100 cm) is shown in black for each month of the year (columns) for each land
cover (rows). Months with statistically significant deviation in climatic drivers during non-hazardous and hazardous ecosystem conditions
according to the Mann–Whitney U test based on a significance level α = 0.05 are shown in colour (see legend); all other months are shown
in grey. The number of grid points in which an event has occurred in this month and land cover within the period 1999–2019 is shown in the
upper left corner of each panel.
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Appendix B: Further materials

Table B1. Overview of the aggregation of land cover classes.

Number Original class Aggregated class

10 Cropland, rainfed Crops (rainfed)
11 Cropland, rainfed, herbaceous cover
12 Cropland, rainfed, tree or shrub cover

20 Cropland, irrigated or postflooding Crops (irrigated)

30 Mosaic cropland (> 50 %) or natural vegetation Mixed
(tree, shrub, herbaceous cover) (< 50 %)

40 Mosaic natural vegetation
(tree, shrub, herbaceous cover) (> 50 %) or cropland (< 50 %)

100 Mosaic tree and shrub (> 50 %) or herbaceous cover (< 50 %)

60 Tree cover, broadleaved, deciduous, closed to open (> 15 %) Forest (broadleaved)
62 Tree cover, broadleaved, deciduous, open (15 %–40 %)

70 Tree cover, needleleaved, evergreen, closed to open (> 15 %) Forest (needleleaved)

120 Shrubland Shrubland

130 Grassland Grassland

150 Sparse vegetation (tree, shrub, herbaceous cover) (< 15 %) Sparse vegetation
153 Sparse herbaceous cover (< 15 %)
200 Bare areas

190 Urban areas None (Omitted)

210 Water bodies None (Omitted)

Table B2. Overview of the six subregions and the corresponding countries used in this study.

Short name Long name Countries

IBE Iberian Peninsula Portugal, Spain

IAF Italy and France France, Italy

BAL Balkan Peninsula Albania, Bosnia and Herzegovina, Bulgaria,
Croatia, Greece, North Macedonia, Montenegro

TAC Turkey and Cyprus Cyprus, Turkey

SEM South-eastern Mediterranean Iran, Iraq, Israel and Palestinian territories,
Jordan, Lebanon, Libya, Syria

NWA North-western Africa Algeria, Morocco, Tunisia
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Figure B1. Average monthly vulnerability to soil moisture (ESA CCI) and temperature (ERA5-Land) in the Mediterranean Basin for (a) Jan-
uary, (b) February, (c) March, (d) April, (e) May, (f) June, (g) July, (h) August, (i) September, (j) October, (k) November and (l) December.
Grid points without any events during the respective month are displayed in black.
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Code and data availability. The code can be retrieved from https://
gitup.uni-potsdam.de/joschavogel/ecosystem_vulnerability (Vogel,
2021). All data sets used in this study are publicly available.
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