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Abstract. Recently, remotely sensed measurements of the
near-infrared reflectance (NIRv) of vegetation, the fluo-
rescence correction vegetation index (FCVI), and radiance
(NIRvrad) of vegetation have emerged as indicators of vege-
tation structure and function with potential to enhance or im-
prove upon commonly used indicators, such as the normal-
ized difference vegetation index (NDVI) and the enhanced
vegetation index (EVI). The applicability of these remotely
sensed indices to tropical forests, key ecosystems for global
carbon cycling and biodiversity, has been limited. In partic-
ular, fine-scale spatial and temporal heterogeneity of struc-
ture and physiology may contribute to variation in these in-
dices and the properties that are presumed to be tracked by
them, such as gross primary productivity (GPP) and absorbed
photosynthetically active radiation (APAR). In this study,
fine-scale (approx. 15 cm) tropical forest heterogeneity rep-
resented by NIRv, FCVI, and NIRvrad and by lidar-derived
height is investigated and compared to NIRv and EVI using
unoccupied aerial system (UAS)-based hyperspectral and li-
dar sensors. By exploiting near-infrared signals, NIRv, FCVI,
and NIRvrad captured the greatest spatiotemporal variability,
followed by the enhanced vegetation index (EVI) and then

the normalized difference vegetation index (NDVI). Wavelet
analyses showed the dominant spatial scale of variability of
all indicators was driven by tree clusters and larger-than-tree-
crown size gaps rather than individual tree crowns. NIRv,
FCVI, NIRvrad, and EVI captured variability at smaller spa-
tial scales (∼ 50 m) than NDVI (∼ 90 m) and the lidar-based
surface model (∼ 70 m). We show that spatial and tempo-
ral patterns of NIRv and FCVI were virtually identical for a
dense green canopy, confirming predictions in earlier studies.
Furthermore, we show that NIRvrad, which does not require
separate irradiance measurements, correlated more strongly
with GPP and PAR than did other indicators. NIRv, FCVI,
and NIRvrad, which are related to canopy structure and the
radiation regime of vegetation canopies, are promising tools
to improve understanding of tropical forest canopy structure
and function.
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1 Introduction

Important spatial and temporal heterogeneity in structurally
complex and species-rich tropical forests is not well charac-
terized. Many factors contributing to this heterogeneity, in-
cluding varying microclimate, light conditions, topography,
crown structure, and patterns of tree mortality and regenera-
tion, can produce high variability in carbon fluxes, ultimately
affecting coarse-scale gross primary production (GPP) mea-
surements in forests (e.g., Xu et al., 2015; Guan et al., 2015;
Morton et al., 2014; Bohlman and Pacala, 2012; Laurance
et al., 2012; Clark et al., 2008; Huete et al., 2008). Improv-
ing knowledge of tropical forest dynamics at multiple scales
is crucial to monitoring and predicting resilience of tropical
ecosystems and productivity under climate change (Liu et al.,
2021; Clark et al., 2017; Laurance et al., 2012; Malhi, 2012;
Wright, 2010; Saatchi et al., 2010; Lewis et al., 2009). Re-
mote sensing (RS) measurements have been employed to un-
cover vegetation patterns of structure and productivity from
local to global scales, often with a focus on filling gaps in
knowledge regarding variation and uncertainties in GPP es-
timates (e.g., Jung et al., 2011; Glenn et al., 2008; Huete et
al., 2002; Ryu et al., 2018; Yang et al., 2017; Jiang et al.,
2008; Zhao et al., 2010; Heinsch et al., 2006; Running et al.,
2004; Turner et al., 2003). Yet, the spatial mismatch between
satellite data (e.g., 30 m to 1 km pixel resolution), which pro-
vide observations across large extents at repeat intervals, and
site-specific plot level data (e.g., 0.1–1 ha) is in part respon-
sible for the uncertainties in GPP estimates (Gelybó et al.,
2013; Zhang et al., 2020). A way to solve this problem is to
acquire high-spatial-resolution and high-temporal-resolution
data that can capture fine-grained heterogeneity of tropical
forests (Clark et al., 2017; Mitchard, 2018; Saatchi et al.,
2011; Lewis et al., 2009). Unoccupied aerial systems (UASs)
with hyperspectral imaging sensors offer an opportunity to
collect tropical forest canopy data at high spatial resolution
and which could address unknowns related to the high het-
erogeneity of tropical forests.

Traditional reflectance-based indices (RIs) using RS data,
such as the normalized difference vegetation index (NDVI)
and enhanced vegetation index (EVI), are known to capture
structural changes that are coincident with changes in GPP.
RIs have provided optical methods using RS to track GPP via
the light use efficiency (LUE) model (Monteith, 1977; Yuan
et al., 2014; Medlyn, 1998). In the most commonly used for-
mulation of the LUE model for RS, GPP is

GPP= APARx ε, (1)

where APAR is the absorbed photosynthetically active radi-
ation and ε is the efficiency with which the target vegetation
converts the radiation to carbon (Gamon, 2015; Yuan et al.,
2014; Running et al., 2004). APAR is derived from

APAR= PARx f PAR, (2)

where PAR is the incoming photosynthetically active radi-
ation and fPAR is the fraction of absorbed PAR. RIs com-
monly used in the LUE model of GPP as well as direct prox-
ies for GPP are NDVI and EVI, because of a strong rela-
tionship to fPAR (Springer et al., 2017; Morton et al., 2016;
Gamon et al., 2015; Porcar-Castell et al., 2014; Glenn et al.,
2008; Gao et al., 2007; Huete et al., 2002; Zarco-Tejada et al.,
2013). NDVI and EVI are typically used as proxies on sea-
sonal timescales. When used to examine changes on shorter
timescales, they have been multiplied by photosynthetically
active radiation (PAR) to account for changes in radiation
(incoming, absorbed, and scattered) which better align with
GPP changes (Springer et al., 2017; Yuan et al., 2014). How-
ever, RIs alone have often not shown enough sensitivity to
capture more fine-scale or rapid changes in vegetation, such
as those in tropical forests, and questions linger about the
ability to track green-up with RIs in evergreen regions (Liu
et al., 2021; Yang et al., 2018a; Lee et al., 2013; Xu et al.,
2015; Morton et al., 2014; Samanta et al., 2010; Sims et al.,
2008).

Recently, three emerging vegetation indicators have been
shown to track with GPP more closely than traditional RIs.
These indicators are the near-infrared reflectance of vege-
tation (NIRv) (Badgley et al., 2017), the fluorescence cor-
rection vegetation index (FCVI) (Yang et al., 2020), and the
near-infrared radiance of vegetation (NIRvrad) (Wu et al.,
2020). Because they exploit additional information from the
NIR region of the spectrum, NIRv, FCVI, and NIRvrad do
not saturate in dense canopies or suffer the same level of con-
tamination from senesced vegetation and soils as traditional
RIs (Baldocchi et al., 2020; Badgley et al., 2017). Addition-
ally, these indicators require only moderate spectral resolu-
tion data and are similarly straightforward to measure and
calculate as RIs, making them accessible in a broad range of
studies. Therefore, NIRv, FCVI, and NIRvrad could be em-
ployed as valuable indicators of canopy structure and func-
tion (Badgley et al., 2017, 2019; Dechant et al., 2020).

NIRv is the product of NDVI and the total near-infrared
scene reflectance (NIR). NIRv from moderate spectral res-
olution satellite imagery and field spectrometers has been
shown to empirically track both measured and modeled GPP
globally, although with highest uncertainties in the tropics.
The NIRv∼GPP relationship holds at monthly to seasonal
timescales presumably due to co-incident changes in canopy
phenology, light capture and scattering, and GPP (Badgley et
al., 2017, 2019; Dechant et al., 2020). FCVI, derived from ra-
diative transfer theory rather than an empirical relationship,
is calculated from RS data by subtracting the reflectance in
the NIR from the reflectance in the visible range (Yang et al.,
2020). Yang et al. (2020) demonstrated that FCVI tracked
GPP and solar-induced fluorescence (SIF; a radiance-based
indicator of GPP) by capturing structure and radiation infor-
mation from a vegetated canopy in field experiments with
crops and in numerical experiments. Yet FCVI showed dif-
ferences from NIRv due to exposed soil within the vegetated
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study areas. In previous studies, FCVI and NIRv were simi-
lar for dense green canopies where soils have less of an im-
pact, but this has not yet been tested in the tropics (Wang et
al., 2020; Badgley et al., 2019; Dechant et al., 2020). The
product of NDVI and the NIR radiance, called NIRvrad,
was proposed as a proxy for GPP on half-hourly and daily
timescales. In contrast, NIRv and FCVI track changes on
longer timescales (Wu et al., 2020; Dechant et al., 2020; Bal-
docchi et al., 2020; Zeng et al., 2019). Because the radiance
of NIR accounts for incoming radiation at short timescales,
NIRvrad has tracked GPP and SIF on half-hourly and diurnal
scales as well as seasonally in crops and, to a limited extent,
natural grass and savanna ecosystems (Dechant et al., 2020;
Baldocchi et al., 2020; Zeng et al., 2019; Wu et al., 2020).

Readily available UAS-based hyperspectral sensors are ca-
pable of robust measurements of NIRv, FCVI, and NIRvrad
at ultra-high spatial scales, i.e., tens of centimeters or less.
In this regard, UAS-based data have the potential to improve
our understanding of tropical forest structure and function
over a range of scales that are poorly resolved by other RS
platforms. Here, we use high-spatial-resolution UAS mea-
surements to characterize spatial and temporal variation in
a semi-deciduous tropical forest canopy during the dry sea-
son and compare commonly used spectral indices (NDVI
and EVI) to newer vegetation indicators (NIRv, NIRvrad,
and FCVI) by (i) examining correlations between GPP and
vegetation indicators using mean values across the canopy
throughout the day, (ii) evaluating the distribution of fine-
spatial-resolution values (∼ 15 cm) across the canopy and
examining changes in this spatial variation throughout the
course of 2 d, and finally (iii) identifying the dominant spa-
tial scale driving variation across our 10 ha study region.

2 Materials and methods

2.1 Study area

Barro Colorado Island (BCI), Panama, is a 1560 ha island
(approximately 15 km2) in Gatun Lake, which was formed
by the construction of the Panama Canal. The Smithso-
nian Tropical Research Institute manages the preserved area
specifically for research. This semi-deciduous moist trop-
ical forest receives approximately 2640 mm mean annual
precipitation and has a mean temperature of 26 ◦C with
a dry season from approximately January through April
(Detto et al., 2018). There is high species diversity, with
approximately 500 tree species, approximately 60 species
per hectare, and about 6.3 % of trees at > 30 cm diameter
at breast height (dbh) (Bohlman and O’Brien, 2006; Condit
et al., 2000). The UAS and ground measurements were fo-
cused on an area approximately 10 ha within the footprint
of an eddy covariance tower near the center of the island
(9.156440◦, −79.848210◦).

2.2 Data collection

The GatorEye Unmanned Flying Laboratory is a hardware
and software system built for sensor fusion applications, and
which includes hyperspectral, thermal, and visual cameras
and a lidar sensor, coupled with a differential GNSS, inter-
nal hard drives, computing systems, and an inertial motion
unit (IMU). Hardware and processing details, as well as data
downloads, are available at http://www.gatoreye.org. The
GatorEye Unmanned Flying Laboratory flew 13 missions
on 30 and 31 January 2019 over the forest canopy within
the eddy covariance tower footprint at an average height of
120 m above ground level (AGL) and at 12 m s−1 (Fig. 1).
In this study, we used radiometrically calibrated flight tran-
sects from the Nano VNIR 270 spectral band hyperspectral
sensor (Headwall Photonics, Fitchburg, MA, USA), which
covered approximately 1 ha per flight within the eddy co-
variance (EC) footprint in this study. The Nano sensor spec-
trally samples at approximately 2.2 nm and 12 bit radiomet-
ric resolution from 400 to 1050 nm. The frame rate was set
to 100 fps, with an integration time of 12 ms and provided
a pixel resolution of approximately 15× 15 cm. The Nano
sensor was calibrated to radiance by the manufacturer before
the field campaign, and pixel drift was removed by dark im-
age collection, which was corrected for during the conversion
from digital number to radiance. The hyperspectral transects
were equally subset for each flight in ENVI+ IDL (Harris
Geospatial, Boulder, CO). Each flight resulted in 1920 tran-
sects of approximately 400 m length composing three blocks
discretized in 2500 data points. Simultaneous lidar was col-
lected using a VLP-32c ultra puck (Velodyne, San Jose, CA),
which was processed to a 0.5× 0.5 m resolution digital sur-
face model (DSM).

Turbulent fluxes and meteorological variables were mea-
sured from a 40 m eddy covariance (EC) flux tower (Fig. 1).
The eddy covariance system includes a sonic anemometer
(CSAT3, Campbell Scientific, Logan, UT) and an open-path
infrared CO2/H2O gas analyzer (LI7500, LI-COR, Lincoln,
NE). High-frequency (10 Hz) measurements were acquired
by a data logger (CR1000, Campbell Scientific) and stored on
a local PC. Other measurements made at the tower include air
temperature and relative humidity (HC2S3, Rotronic, Haup-
pauge New York) and photosynthetically active radiation
(PAR; BF5, Delta-T Devices, UK). EC data were processed
with a custom program using a standard routine described in
Detto et al. (2010). GPP was derived from daytime values of
net ecosystem exchange (NEE) by adding the corresponding
mean daily ecosystem respiration obtained as the intercept
of the light response curve (Lasslop et al., 2010). Due to a
power issue, EC data were not available during the 30 Jan-
uary flights; so only 31 January GPP data were available.

An HandHeld 2 Pro spectroradiometer (HH2; Malvern
Panalytical, Boulder, CO) fitted with a diffuse cosine recep-
tor was used on the ground in full sun at the forest edge
to record incoming irradiance on 30 and 31 January 2019

https://doi.org/10.5194/bg-18-6077-2021 Biogeosciences, 18, 6077–6091, 2021

http://www.gatoreye.org


6080 T. Merrick et al.: Unveiling spatial and temporal heterogeneity of a tropical forest canopy

(∼ 3 nm FWHM and spectral sampling at 1 nm). HH2 irra-
diance was resampled to match the Nano hyperspectral sen-
sor and used to calculate reflectance. A calibrated reference
tarp was placed in full sun at the forest edge, and the UAS
flew over and recorded the tarp each UAS flight. Reflectance
was calculated separately using the HH2 and tarp data and
resulting reflectance values compared as a method to vicari-
ously cross-calibrate reflectance from the hyperspectral data
(<7.0 % difference for all data in the study). In addition, PAR
was calculated with the HH2 data and compared to the tower-
mounted PAR measurement (approximately 1.5 km apart) to
help understand any differences in the sky conditions during
flight times. PAR differences across the site for each flight
time for the duration of flights (approximately 10–15 min in
length each) ranged between 4.0 % and 10.3 %.

2.3 Vegetation indicators

We calculated NDVI and EVI as Tucker (1979), Huete et
al. (2002), and Rouse et al. (1974):

NDVI=
R770−800−R630−670

R770−800+R630−670
(3)

and

EVI=
2.5(R770−800−R630−670)

R770−800+ 6×R630−670− 6×R460−475+ 1
, (4)

where R is reflectance and the subscripts indicate wave-
lengths. Here, we used the averages of 770–800 nm for NIR,
630–670 nm for red reflectance, and 460–475 nm for blue
band reflectance and normalized to reduce noise.

We further calculated the near-infrared vegetation index
NIRv as

NIRv = NDVI×R770−800, (5)

where R770−800 is the NIR reflectance (Badgley et al., 2017).
The fluorescence correction vegetation index (FCVI) was
calculated from spectral data by subtracting the reflectance in
the visible range (R400−700) from the NIR reflectance (Yang
et al., 2020) as follows

FCVI = R770−800−R400−700. (6)

The near-infrared radiance of vegetation (NIRvrad) was
calculated similarly to the NIRv, except NDVI was multi-
plied by the radiance, rather than reflectance, from the NIR
region (R770−800) (Wu et al., 2020) as follows:

NIRvrad = NDVI×R770−800. (7)

2.4 Data analysis

A workflow summarizing data analyses is provided in Fig. 1.
We examined mean values across the canopy over the course
of 1 d by creating a diurnal time series of scatterplots of the

tower-based PAR data, tower-based GPP data, and means of
all spectral vegetation indicators, on 31 January 2019, and
ran comparisons using Pearson’s correlation coefficients to
examine correlations. Results are provided in Sect. 3.1 and
Fig. 2. At fine spatial scales, i.e., pixel sizes of ∼ 15 cm,
we created density plots, calculated the coefficient of vari-
ation (CV), and calculated the means of all vegetation indi-
cators (NDVI, EVI, NIRv, FCVI, NIRvrad) for each flight
to compare spatial and temporal variability. Results are pro-
vided in Sect. 3.2 and Fig. 3. To determine which spatial
scales dominate the variability of each vegetation quantity,
we ran power spectrum wavelet analysis using code created
in the MATLAB programming language (MathWorks, Nat-
ick, Massachusetts). For each vegetation quantity and each
flight, and for the lidar elevation model representing canopy
height, we computed the Morlet wavelet power spectrum of
individual transects (Torrence and Compo, 1998). All power
spectra from the wavelet analysis were normalized to unit
variance. An ensemble power spectrum for each vegetation
indicator was created by averaging across all the transects
of each flight and then across flights. We then compared the
power spectra for each vegetation indicator and lidar data
to compare the spatial scales at which the quantities cap-
tured variability as well as the spatial scale at which the
lidar-based elevation model captured variability. Results are
provided in Sect. 3.3 and Fig. 4. For illustration purposes,
Fig. A1 is an example of two synthetic signals generated
with the fractal Brownian motion algorithm and different
level of noise-to-signal ratio (Signal A and B, respectively,
Fig. A1) and the corresponding power spectra which decay
differently at smaller spatial scales (Power Spectra, Fig. A1).
Initial UAS data processing was carried out in Interactive
Data Language (IDL) and Environment for Visualizing Im-
ages (ENVI) (Harris Geospatial, Boulder, CO). Other analy-
ses, including graphical illustrations, were carried out using
the R open-source environment with libraries dplyr, ggplot,
and tidyverse (R Development Core Team, 2010; Wickham
et al., 2018; Wickham, 2017, 2016) and MATLAB R2019a
(MathWorks, Natick, Massachusetts).

3 Results and discussion

3.1 Diurnal trend in spectral vegetation indicators,
PAR, and GPP

The degree to which remote sensing vegetation indica-
tors represent changes in GPP depends largely on canopy-
structure-dependent light absorption and scattering pro-
cesses, that is, exploiting relationships between a remote
sensing vegetation quantity, PAR or APAR, and GPP. Fig-
ure 2 shows GPP, PAR, and the mean value of each vegeta-
tion quantity at each flight time over the course of 31 Jan-
uary, the day on which we had overlapping data between
the UAS and eddy covariance system (Fig. 2a–d). Addi-
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Figure 1. Summary of methods. Diagram representing discrete flight times for UAS and near-continuous EC-estimated GPP (far left). Plat-
forms and instrumentation (blue) consisted of the Malvern Panalytical HandHeld 2 Pro spectroradiometer (HH2), the GatorEye Unmanned
Flying Laboratory, and the tower at Barro Colorado Island (BCI). Data collected included irradiance, hyperspectral, lidar, eddy covariance
system (EC), and photosynthetically active radiation (PAR). Calculations made were PAR with the HH2 (PARHH2), normalized difference
vegetation index (NDVI), enhanced vegetation index (EVI), fluorescence correction vegetation index (FCVI), the near-infrared vegetation
index (NIRv), the near-infrared radiance of vegetation (NIRvrad), the digital surface model (DSM), gross primary productivity (GPP), and
PAR from the PAR sensor on the tower (PARtower). An overview of the data analysis at each scale is provided in the right of the diagram.

tionally, Pearson correlation coefficients among mean NIRv,
FCVI, NIRvrad, EVI, and NDVI for each flight time and
the GPP and PAR values at the flight times are shown in
Fig. 2d. NIRv is significantly and strongly positively corre-
lated to both FCVI (r = 0.9, p<0.001) and EVI (r = 0.9,
p<0.01). NIRvrad is the only vegetation quantity with a
significant correlation to PAR and GPP, with a strong pos-
itive relationship (0.9 and 0.81, respectively, p values <0.05;
Fig. 2d). Mean NIRvrad values also have the greatest rela-
tive diurnal change among the vegetation indicators (Fig. 2c
and d). These results demonstrate that a shared correlation of
NIRvrad and GPP to PAR results in mean NIRvrad tracking
diurnal changes in GPP to a greater degree than NIRv, FCVI,
NDVI, or EVI, because NIRvrad takes incoming radiation
into account, whereas the other vegetation indicators do not.
The ability of NIRvrad to track APAR is notable alone. How-
ever, our evidence supports the proposed use of NIRvrad as a
proxy for changes in GPP on short timescales – albeit based
on only 1 d of data. NIRvrad is a more practical proxy of GPP
than SIF in the sense that a separate instrument to measure
PAR is not needed (Wu et al., 2020; Zeng et al., 2019). Given
that the relationship between NIRvrad and GPP depends on
PAR, it is unclear if the association between NIRvrad and
GPP would weaken during the wet season when low light or
diffuse light conditions are more common (Berry and Gold-
smith, 2020).

3.2 Tropical forest canopy variation

Spatial distributions and the coefficient of variation (CV) of
all pixels of NIRv, FCVI, and NIRvrad are generally sim-
ilar to one another and show considerable variation spa-
tially across the canopy and temporally over the course of

a day and across days (Fig. 3a–c, Table A2). NIRv, FCVI,
and NIRvrad distributions are distinct from EVI and NDVI
(Fig. 3a–e, Tables A1 and A2). NIRv, FCVI, and NIRvrad
have the highest CV at each flight time (between 39.78 % and
91.54 %, Table A1), followed by EVI (between 20.24 % and
37.24 %, Table A2), and NDVI varied the least at any flight
time (between 9.83 % and 12.82 %, Table A2). For some in-
dices, mean values across the canopy fail to capture extreme
high (NIRv, NIRvrad, and FCVI) or low values (NDVI) dur-
ing morning and afternoon hours. This pattern suggests “hot”
and “cool” spots of activity related to heterogeneity in for-
est structure and low sun angles. In previous studies, the
directional effects on NIRv have been examined on coarse
spatial scales (i.e., satellites) and have been proposed as a
means of improving understanding of NIRv agreement to
GPP (Hao et al., 2021; Dechant et al., 2020; Baldocchi et al.,
2020; Zhang et al., 2020). Our results demonstrate that NIRv,
FCVI, and NIRvrad capture fine-grained heterogeneity of
this tropical forest canopy, which was obscured by EVI and
NDVI (Fig. 3a–e). NIRv and NIRvrad use NDVI; thus, by
definition, NIR is the largest contributing factor to the hetero-
geneity captured (Fig. 3a, c, and e). While NIRv and NIRvrad
distributions are generally similar, they diverge in the after-
noons when PAR declines, which likely is why NIRvrad is
better correlated with GPP. EVI variability was higher than
NDVI variability but lower than that of NIRv, FCVI, and
NIRvrad, indicating that EVI has a different level of sensi-
tivity to viewing geometry and canopy components (poten-
tially understory), light absorption, and scattering regime of
the canopy than the other indices (Table A1and Table A2).
We also show empirically that NIRv and FCVI are virtually
the same in a dense tropical forest presumably due to both in-
dices similarly representing the radiation regime of the trop-
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Figure 2. Diurnal time series smoothed with a LOESS filter of (a) GPP; (b) PAR; (c) NIRvrad; (d) NIRv, FCVI, NDVI, and EVI; and (e)
comparisons of quantities using Pearson correlations color indicates strength of relationship: ∗: p value <0.05, ∗∗: p value <0.01, and ∗∗∗:
p value <0.001.

ical forest canopy, i.e., light capture and scattering, in condi-
tions with little background soil, supporting the predictions
of earlier studies (Dechant et al., 2020; Zeng et al., 2019;
Yang et al., 2018b; Wu et al., 2020).

Midday distributions of NIRv, FCVI, and NIRvrad on
30 January at 12:00 and 13:30 and 31 January at 12:30 are
less skewed than at other times of the day, whereas morning
and afternoon distributions are skewed toward lower values,
except for 31 January at 15:30 (Fig. 3a–c). On both days,
when mean values peak at midday, the variation for all veg-
etation indicators is lowest (30 January at 12:00 CV between
47.6 and 49.2 and 31 January at 12:30 CV between 45.6 and
47.2) (Fig. 3, Table A1). The highest variability occurred
in the afternoon on both days (30 January at 16:30 CV be-
tween 91.3 % and 91.5 and 31 January at 14:30 CV between
83.3 % and 83.8 % for all quantities) (Fig. 3, Table A2). At
midday, NIRv, FCVI, and NIRvrad variability was low and
means were high, indicating that viewing and sun geometry
drive the higher and lower values during morning and after-
noon. This effect is greater in the afternoon than the morning
(Fig. 3, Table A2). However, a different pattern is apparent
on 31 January during the 15:30 flight time when mean val-
ues increased from the 14:30 flight time means and the CV
values were the lowest of any flight observations in the study,
and this influence appears to be greatest on EVI. It is possible
that this was due to another type of effect on illumination ge-
ometry, such as wind influencing the UAS, diffuse radiation
effects, or hotspot effects.

3.3 Power spectrum analysis

Power spectrum analysis was used to identify the dominant
spatial scales driving variability across the canopy (Fig. 4). In
Fig. 4, the area beneath the curve is proportional to the vari-
ance because it is the spectrum divided by the corresponding
scale and then plotted as a function of the log of the scale (ex-
ample signals and power spectra provided Fig. A1). Similar
to their spatial distributions (Fig. 3), NIRvrad and FCVI are
indistinguishable in their dominant scales of spatial variabil-
ity (Fig. 3) (Dechant et al., 2020; Zeng et al., 2019). Power
spectrum analysis shows a distinct peak around 50 m spa-
tial scale for NIRv, NIRvrad, FCVI, and EVI, whereas NDVI
peaks at approximately 90 m. The largest tree crown sizes on
BCI are on the order of 20–30 m in diameter, and the most
common crown sizes are between 4–10 m (Fig. A2). Thus,
the spatial variability of the vegetation indicators is strongly
influenced by larger forest structures, such as forest gaps and
tree clusters, rather than individual tree crowns.

This larger scale of variability is also confirmed by the
power spectrum of the lidar-derived canopy surface model,
which displays a peak at 70 m scale, indicating that larger
than tree crown scales produce the most variability in canopy
height. In other words, UAS-based lidar data also show that
canopy heights within a 70 m spatial scale create strong spa-
tial features on the landscape. Vegetation indicators and the
lidar canopy surface model appear less effective at captur-
ing smaller scale differences within a canopy (leaves or leaf
clumps) or among the most frequent tree crown sizes on BCI
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Figure 3. NIRv (a), FCVI (b), and NIRvrad (c) density plots for each flight time on 30 and 31 January 2019. Colors of distributions indicate
day.

(4–10 m sunlit tree crown sizes determined by stereophotos;
Fig. A2). However, the peaks in the vegetation indicators are
broader than the peak in the lidar data, showing that smaller
features of the canopy are still contributing to the total spatial
signal in the power spectra. These results suggest that satel-
lite data with a spatial resolution greater than ∼ 50 m may
miss important variation in diverse tropical forest canopies.
NDVI displays a different shape with a slower decay at small
scales, indicating less distinguishable spatial structures from
the canopy, and a peak shifted to the larger scales (Fig. 4);
i.e., NDVI does not distinguish smaller spatial structures. At
much larger scales (>100–200 m), the vegetation indicators
decline smoothly, while NDVI and especially lidar show an
increase in variance probably associated with topographic
heterogeneity.

One reason why vegetation indicators and lidar captured
variability at spatial scales larger than the most common tree
crown sizes on BCI is that canopy heights tend to be more
uniform on BCI compared to other tropical forests, possi-
bly due to wind (Bohlman and O’Brien, 2006). For exam-
ple, Dipterocarpus-dominated Southeast Asian forests have
emergent trees, unlike BCI, which can reach up to 60 m in
height. Additionally, tree crowns on BCI tend to be more
flat-topped than conical or rounded, and trees can be found
clumped in similar heights, which could explain why the
most often detected unit is larger than the mean of a sin-
gle crown. On the other end of the spectrum, forest gaps can
be larger than a single crown because treefall often affects
neighboring trees.

Vegetation indicators and the lidar-derived surface model
represent the spectral and structural properties most broadly
of the upper canopy, and thus it is conceivable that they
display similar spatial variability. However, NIRv, FCVI,
NIRvrad, and EVI discriminated details at a different spatial
scale from NDVI and lidar. These results parallel the vari-
ability detected in their distributions (Fig. 3 and Table A1),
where NDVI patterns were distinct from the other vegeta-
tion indicators. Taken together, these results show that NIRv,
FCVI, and NIRvrad have a smoother spatial pattern and peak
at finer scales than NDVI, which is known to saturate at
high green biomass (Zhu and Liu, 2015; Huete et al., 2002),
whereas NIRv, FCVI, and NIRvrad should better correlate
with aspects of photosynthetic capacity. Thus, these emerg-
ing indicators should measure finer-resolution spatial hetero-
geneity and should be more adept at monitoring changes
in structure and function of the canopy than NDVI. Addi-
tionally, the emerging indicators can potentially disaggre-
gate the physiological and structural component of SIF when
SIF measurements are available since changes in structure
of the forest coincide with changes in GPP (Wang et al.,
2020; Wu et al., 2020; Yang et al., 2020; Dechant et al.,
2020). Emerging indicators’ heightened ability to differenti-
ate the fine-scale spatial variability in the canopy is likely due
to the influence of high upwelling of NIR from the canopy
and understory, particularly in the dry season, which tends
to blur the signal of the upper canopy for NDVI. Notably,
EVI and NDVI, two common indicators of vegetation green-
ness, show differences in their power spectrum, in partic-
ular the slope of the curve for scales less than 20 m. EVI
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Figure 4. Ensemble wavelet power spectra for all the quantities
used in this study and a lidar-derived digital surface model (DSM).
Note that FCVI and NIRv are similar; thus, the NIRv curve is ob-
scured by the FCVI. Ensembles were created by averaging the spec-
trum of individual transects and then averaging across flights. Note
that in this representation, the spectrum divided by the correspond-
ing scale as a function of the log of the scale, the area beneath the
curve is proportional to the variance.

was designed to better capture vegetation changes by ex-
ploiting variability in the reflectance in the blue range, es-
pecially effective in dense green canopies. This may help ex-
plain the scale of variability in this canopy where variation
in the blue may be expected to manifest, especially because
deciduous crowns, which have high reflectance in blue wave-
lengths compared to fully leaved crowns, are present on BCI
(Bohlman, 2008).

4 Conclusions

We examined NIRv, FCVI, and NIRvrad, emerging vege-
tation indicators related to fPAR of a semi-deciduous trop-
ical forest canopy using UAS-based hyperspectral data. Our
findings demonstrate that NIRvrad has greater potential to
track GPP over the course of a day than the non-radiance-
based indices as evidenced by a shared correlation among
NIRvrad, PAR, and GPP. Thus, NIRvrad is a potential proxy
for tracking GPP on short timescales without the need for
separate measurements of incoming irradiance. Also, NIRv,
FCVI, and NIRvrad at high spatial resolution (∼ 15 cm) un-
veil greater spatial and diurnal variability of BCI’s tropical
forest canopy versus EVI or NDVI, which may pave the
way to improve our understanding of the relationship be-
tween GPP and remote sensing observations. For instance,
by benchmarking changes of vegetation function and struc-
ture that underlie a GPP measurement representing the whole
EC footprint, fine-scale NIRv, FCVI, or NIRvrad measure-
ments may reveal highly differential behaviors of tropical
species diurnally to seasonally. The dominant scale driving

spatial variability of spectral measurements and lidar data is
larger forest structures occurring on BCI, such as groups of
similar trees or forest gaps. Yet, smaller, broader peaks in
the power spectra of NIRv, FCVI, NIRvrad, and EVI indi-
cate these four indices incorporate smaller scale information
compared to NDVI. Taken together, the demonstrated poten-
tial to track GPP, measure spatial heterogeneity and variabil-
ity, and capture forest structural characteristics of BCI open
greater possibilities to examine structure and function within
and across this tropical forest.

Because remote sensing advancements are making it pos-
sible to capture physiological responses of vegetation, the
importance of improved techniques to examine the radia-
tion regime, for instance estimating fPAR or APAR, can
be overlooked. However, recent studies have highlighted the
importance and difficulties of measuring fPAR and APAR,
the strong dependence of measurements on illumination and
viewing geometry, and the need for increased understand-
ing of structure-related radiation regime information more
generally (e.g., Hao et al., 2021; Dechant et al., 2020; Bal-
docchi et al., 2020; Rocha et al., 2021; Zhang et al., 2020).
For NIRv, FCVI, and NIRvrad, inclusion of the NIR spec-
tral region makes the emerging indices more sensitive to
incoming, absorbed, and scattered radiation, which can be
influenced by illumination and viewing geometry, changes
in canopy leaf angles, or associated structure changes. In
the case of NIRvrad, which was most strongly associated
with GPP, changes in light regime and associated photosyn-
thetic capacity can even be captured diurnally. Further use of
NIRv, FCVI, and NIRvrad measurements, especially at high
spatial and temporal resolution, can inform our understand-
ing of information each captures from a canopy, as well as
improving interpretation of traditional reflectance-based in-
dices, and other remote sensing measurements, such as SIF.
This study highlights the importance of understanding the
incoming solar radiation, absorbed and scattered radiation,
and illumination and viewing geometry of any remote sens-
ing data, but it also encourages exploiting RS observations
to improve our ability to measure structure-related light cap-
ture and scattering patterns. It is in this role that we show
these measurements should be further investigated as valu-
able tools to improve our understanding of complex tropi-
cal forest canopies and potentially as an improved estimate
of fPAR, APAR, or GPP. While this study focuses on BCI,
these techniques could be applied more broadly for the pur-
poses of defining the dominant scale of spatial variability,
tracking structural changes, monitoring coincident changes
in GPP or light regime, or as inputs to vegetation models of
tropical forest structure and function.
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Appendix A

Figure A1. Sample signals with relatively higher noise (signal A) and lower noise (signal B) and their corresponding power spectra ensemble
plotted as normalized on log scale. Note the representation of the variance by area under the curve is preserved by multiplying the power
(S(f )) by the frequency (f ). In this way the area beneath the curve is still proportional to the variance.

Figure A2. Distribution of tree crown sizes on BCI in a sample ∼ 10 ha plot taken from digitized high-spatial-resolution stereophotos that
were linked to stems in the field (Bohlman and Pacala 2012). This ∼ 10 ha plot does not coincide with the ∼ 10 ha area sampled by the UAS
near the eddy covariance tower in this study.
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Table A1. Mean, standard deviation (SD), and coefficient of variation (CV) of NIRv, NIRvrad, and FCVI measurements for the study.

Flight time Mean SD CV Mean SD CV Mean SD CV
NIRv NIRv NIRv NIRvrad NIRvrad NIRvrad FCVI FCVI FCVI

(%) (%) (%)

Jan30_1000 0.26 0.16 61.36 0.60 0.36 60.54 0.29 0.18 59.69
Jan30_1100 0.24 0.15 61.48 0.54 0.33 60.56 0.27 0.16 60.89
Jan30_1200 0.29 0.15 49.20 0.82 0.39 47.59 0.34 0.16 47.88
Jan30_1330 0.28 0.14 50.46 0.81 0.40 49.24 0.32 0.16 49.16
Jan30_1430 0.27 0.15 55.46 0.70 0.38 54.38 0.31 0.17 54.22
Jan30_1530 0.21 0.14 65.10 0.63 0.41 64.71 0.25 0.16 64.01
Jan30_1630 0.16 0.14 91.54 0.32 0.30 91.54 0.17 0.15 91.39
Jan31_0900 0.22 0.14 66.31 0.52 0.34 65.25 0.25 0.16 66.01
Jan31_1000 0.24 0.14 59.43 0.66 0.39 58.29 0.27 0.16 59.04
Jan31_1230 0.30 0.14 47.17 1.09 0.50 45.63 0.35 0.16 45.91
Jan31_1330 0.22 0.14 61.91 0.82 0.51 61.47 0.25 0.15 60.53
Jan31_1430 0.16 0.14 85.32 0.50 0.42 83.81 0.19 0.16 83.83
Jan31_1530 0.86 0.08 9.83 0.61 0.12 20.24 0.53 0.04 8.15

Table A2. Mean, standard deviation (SD), and coefficient of variation (CV) of NDVI and EVI measurements for the study.

Flight time Mean SD CV NDVI Mean SD CV EVI
NDVI NDVI (%) EVI EVI (%)

Jan30_1000 0.86 0.10 11.64 0.57 0.18 31.54
Jan30_1100 0.88 0.09 10.15 0.57 0.14 24.40
Jan30_1200 0.85 0.09 10.38 0.52 0.15 28.48
Jan30_1330 0.85 0.09 10.60 0.59 0.15 25.24
Jan30_1430 0.85 0.09 10.35 0.61 0.16 26.84
Jan30_1530 0.85 0.11 12.52 0.54 0.19 35.21
Jan30_1630 0.93 0.06 6.69 0.49 0.18 36.90
Jan31_0900 0.87 0.10 11.54 0.51 0.19 37.24
Jan31_1000 0.87 0.10 11.08 0.55 0.19 34.66
Jan31_1230 0.85 0.08 9.82 0.66 0.15 22.72
Jan31_1330 0.85 0.09 10.70 0.55 0.19 33.80
Jan31_1430 0.85 0.09 10.58 0.42 0.18 43.07
Jan31_1530 0.86 0.08 9.83 0.61 0.12 20.24
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