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Abstract. Data assimilation has led to advancements in bio-
geochemical modelling and scientific understanding of the
ocean. The recent operational availability of data from BGC-
Argo (biogeochemical Argo) floats, which provide valuable
insights into key vertical biogeochemical processes, stands
to further improve biogeochemical modelling through assim-
ilation schemes that include float observations in addition to
traditionally assimilated satellite data. In the present work,
we demonstrate the feasibility of joint multi-platform assim-
ilation in realistic biogeochemical applications by present-
ing the results of 1-year simulations of Mediterranean Sea
biogeochemistry. Different combinations of satellite chloro-
phyll data and BGC-Argo nitrate and chlorophyll data have
been tested, and validation with respect to available indepen-
dent non-assimilated and assimilated (before the assimila-
tion) observations showed that assimilation of both satellite
and float observations outperformed the assimilation of plat-
forms considered individually. Moreover, the assimilation of
BGC-Argo data impacted the vertical structure of nutrients
and phytoplankton in terms of deep chlorophyll maximum
depth, intensity, and nutricline depth. The outcomes of the
model simulation assimilating both satellite data and BGC-
Argo data provide a consistent picture of the basin-wide dif-
ferences in vertical features associated with summer strat-
ified conditions, describing a relatively high variability be-
tween the western and eastern Mediterranean, with thinner
and shallower but intense deep chlorophyll maxima asso-
ciated with steeper and narrower nutriclines in the western
Mediterranean.

1 Introduction

In recent years, biogeochemical modelling has significantly
contributed to the knowledge of key aspects of marine
ecosystem processes at both local and global scales (Fen-
nel et al., 2019). While quality assessment advancements
have improved our confidence in model results (Hipsey et
al., 2020), intrinsic limitations still exist because of unrep-
resented processes and uncertainty in parameterization and
numerical approximation (Dowd et al., 2014). On the other
hand, emerging observation systems have provided valuable
information on the biogeochemical state and processes in
the ocean (Chai et al., 2020; Claustre et al., 2020; Groom
et al., 2019; Muller-Karger et al., 2018; Roemmich et al.,
2019). However, observations can be sparse and unevenly
distributed in time and space (in situ), limited to the ocean
surface (satellite remote sensing) and generally affected by
calibration and measurement errors (Bittig et al., 2019; Xing
et al., 2020). Data assimilation (DA) aims to increase knowl-
edge and representation of processes by integrating models
with information obtained from observations.

In ocean biogeochemical modelling, the assimilation of
satellite ocean-colour observations has been successfully ap-
plied in research and operational applications at both global
and regional scales (Fennel et al., 2019; Groom et al., 2019).
Chlorophyll concentration is the most commonly assimilated
variable since the first applications of ocean biogeochemi-
cal DA (Ciavatta et al., 2016; Dorofeyev and Sukhikh, 2018;
Ford and Barciela, 2017; Ford, 2020; Gehlen et al., 2015;
Mattern et al., 2017; Pradhan et al., 2019; Ratheesh et al.,
2016; Santana-Falcón et al., 2020; Song et al., 2016; Teruzzi
et al., 2018; Tsiaras et al., 2017). However, assimilation of
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the ocean-colour diffuse attenuation coefficient, phytoplank-
ton functional types, particulate organic carbon, and inherent
optical properties has been suggested as promising alterna-
tive to chlorophyll assimilation (Ciavatta et al., 2019, 2018,
2014; Dutkiewicz et al., 2019; Jones et al., 2016; Pradhan et
al., 2020; Shulman et al., 2013; Skákala et al., 2018; Xiao
and Friedrichs, 2014).

Ocean-colour observation assimilation takes advantage of
the frequent, large-scale satellite observations related to the
microbial biology of the upper ocean. However, the infor-
mation includes the ocean surface layers only. In the con-
text of data assimilation, the application of this information
to deeper ocean layers requires approximations and assump-
tions. Vertical covariance must be parameterized by syn-
thetic precalculated vertical profiles in variational schemes
(Teruzzi et al., 2018), while EnKF-like (ensemble Kalman
filter) schemes may have limitations in effectively impact-
ing deeper ocean layers (Fontana et al., 2013; Hu et al.,
2012). Indeed, some EnKF-like applications introduce lim-
itation to the increments in subsurface layers through local-
ization in the vertical direction to address spurious correla-
tions (Goodliff et al., 2019; Pradhan et al., 2019).

In situ observations provide information on processes oc-
curring in the ocean interior (e.g. deep chlorophyll maxi-
mum, vertical fluxes of nutrients or organic matter). An oper-
ational framework of biogeochemical observations has been
recently introduced by BGC-Argo (biogeochemical Argo)
floats, which routinely deliver biogeochemical observations
for the open sea (typically chlorophyll, oxygen, nitrate con-
centrations, optical properties, and pH) with a profiling fre-
quency ranging from 5 to 10 d (Bittig et al., 2019; Chai et
al., 2020; Claustre et al., 2020; D’Ortenzio et al., 2020; Or-
ganelli et al., 2017). Data from BGC-Argo floats provide
valuable insights into key vertical biogeochemical processes,
such as the seasonal progression of stratified and mixed con-
ditions and their impacts on the dynamics of phytoplankton
and nutrients (e.g. Barbieux et al., 2019; D’Ortenzio et al.,
2020, 2014; Pasqueron de Fommervault et al., 2015; Lavi-
gne et al., 2013; Mayot et al., 2017; Mignot et al., 2014). The
first examples of the assimilation of float observations into
biogeochemical models have improved the estimates of the
vertical variability in biogeochemical variables (Cossarini et
al., 2019; Verdy and Mazloff, 2017). Moreover, the potential
benefits of integrating BGC-Argo observations with satellite
data and biogeochemical modelling have been demonstrated
by recent observing system simulation experiments (OSSEs)
and parameter optimization studies (Ford, 2021; Germineaud
et al., 2019; Wang et al., 2020).

In the present work, we demonstrate the feasibility of joint
multi-platform assimilation in realistic biogeochemical ap-
plications by presenting the results of 1-year simulations
of Mediterranean Sea biogeochemistry using the MedBFM
(Mediterranean biogeochemical flux model) system that in-
cludes the OGSTM and the low-trophic-level BFM (Sa-
lon et al., 2019) offline coupled with the NEMO-OceanVar

Mediterranean Forecasting System (MFS) model (Oddo et
al., 2014, 2009). Different combinations of satellite chloro-
phyll data and BGC-Argo nitrate and chlorophyll data have
been assimilated using an upgraded version of the 3DVar-
Bio variational assimilation scheme that was previously ap-
plied in single-platform assimilation (Cossarini et al., 2019;
Teruzzi et al., 2019, 2018, 2014). The relatively high number
of deployed BGC-Argo floats in the Mediterranean Sea and
the specific seasonal variability in phytoplankton–nutrient
dynamics, and the noticeable west–east gradient of the deep
chlorophyll maximum (DCM) depth of the Mediterranean
Sea (Lavigne et al., 2013) make this basin a suitable lo-
cation for the implementation and verification of a multi-
platform assimilation system. The simulations carried out in
the present work have been validated with respect to avail-
able assimilated and non-assimilated (before the assimila-
tion) observations and have been investigated in terms of as-
similation impact. Moreover, since a good simulation skill
was demonstrated by the validation, the model outcomes
have been used to explore the basin-wide differences in the
vertical features associated with summer stratified conditions
when the DCM and nutricline are well established over the
whole Mediterranean Sea (Barbieux et al., 2019; Lavigne et
al., 2013; Lazzari et al., 2012; Mignot et al., 2014).

Section 2 describes the observation datasets used for the
assimilation and the biogeochemical model and assimilation
scheme set-up. The results and discussion are provided in
Sects. 3 and 4, respectively.

2 Methods

The Mediterranean Sea biogeochemistry was simulated for 1
year (2015) with four different assimilation set-ups and a ref-
erence run without assimilation using the MedBFM model
system that is operationally implemented in the Coperni-
cus Marine Environment Monitoring Service (CMEMS) and
provides nominal biogeochemical products for the Mediter-
ranean Sea (Bolzon et al., 2020; Salon et al., 2019).

2.1 Observations

2.1.1 Satellite chlorophyll

The surface chlorophyll data used for assimila-
tion included both open-sea and coastal obser-
vations (Teruzzi et al., 2018) and were obtained
from the satellite multi-sensor product OCEAN-
COLOUR_MED_CHL_L3_NRT_OBSERVATIONS_009_
040 (i.e. a merged product of MODIS-AQUA, NOAA20-
VIIRS, NPP-VIIRS, and Sentinel3A-OLCI sensors;
https://resources.marine.copernicus.eu/?option=com_csw&
view=details&product_id=OCEANCOLOUR_MED_CHL_
L3_NRT_OBSERVATIONS_009_040, (last access: 17
November 2021). Original products, provided at a daily
frequency and a horizontal spatial resolution of 1 km,
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were weekly averaged and interpolated at the model grid
resolution to be used in the assimilation and validation
following the strategy previously implemented in Teruzzi
et al. (2014, 2018). Two levels of quality check were
performed on observations. The first quality check was
made independently from data assimilation and consisted in
removing observations whose anomalies were higher than
3 times the daily climatology standard deviation in order
to remove spikes. A second pre-data-assimilation check
rejected satellite observations not suitable for assimilation,
excluding observations whose mismatch value with respect
to the model was higher than 10 mg m−3 to keep the range
of model–observation differences consistent with the as-
sumed uncertainty levels. The threshold was calibrated by
a statistical analysis of the model–observation mismatches
of the REF (reference simulation without assimilation)
run. Through the pre-assimilation criterion, about 2 % of
satellite chlorophyll values were considered not suitable for
the assimilation and rejected. With the described satellite
chlorophyll data pre-processing, the yearly mean weekly
coverage of surface chlorophyll was equal to 91 % over the
Mediterranean Sea with coverage higher than 95 % in some
sub-basins (ALB, SWM1, NWM, TYR1, ION1, and LEV2;
names of sub-basins provided in Fig. 1). As expected, the
highest coverage occurred in summer (nearly 95 % between
May and August).

2.1.2 BGC-Argo floats

The BGC-Argo data used in the present study included ver-
tical profiles of chlorophyll, nitrate, and oxygen. The data
were obtained from the Coriolis Data Assembly Centre and
processed with the BGC-Argo community procedures (Bit-
tig et al., 2019; Johnson et al., 2018; Schmechtig et al., 2018,
2015; Thierry et al., 2018). As for satellite observations, two
levels of quality check were applied on float observations.
In the first check, which excluded unrealistic values, an ex-
pert judgement procedure was applied because the relative
novelty of BGC-Argo datasets may lead to a higher occur-
rence of poorly reliable observations. In particular, nitrate
profiles were rejected if the surface value was higher than
3 mmol m−3, chlorophyll profiles were checked for nega-
tive values (rejection of single negative observations), and
quenching correction was performed by imposing a constant
chlorophyll value in the mixed layer. The exclusion of ni-
trate values higher than 3 mmol m−3 in the surface layers
was based on the analysis of climatological values provided
in the EMODnet dataset (Buga et al., 2018). In the pre-data-
assimilation check (second quality check phase) observations
were rejected when the mismatch with respect to the model
was higher than 5 mg m−3 and 2 mmol m−3 for chlorophyll
and nitrate, respectively. As for satellite, these values were
based on a statistical analysis of the model–observation mis-
matches in REF. The pre-assimilation check excluded nearly
3 % and less than 1 % of the float nitrate and chlorophyll ob-

servations, respectively. The number of profiles used for as-
similation and validation were 1484 for chlorophyll, 718 for
nitrate, and 794 for oxygen. Float profiles covered the whole
Mediterranean Sea but with a larger sampling in the west-
ern regions than in the other regions (Fig. 1). In particular,
the southern part of the Ionian Sea lacks float measurements.
Since BGC-Argo floats are focused on and designed to op-
erate in pelagic areas, shallow basins (northern Adriatic and
Aegean seas) were not sampled.

2.2 Model system

The MedBFM system used in this study is the biogeo-
chemical component of the Mediterranean CMEMS model
system aimed at providing short-term forecasts and multi-
annual reanalysis, and it consists of the coupled physical–
biogeochemical OGSTM-BFM model and the 3DVarBio as-
similation scheme (Salon et al., 2019). The OGSTM-BFM
is designed with a transport model (OGSTM) and a biogeo-
chemical reactor featuring the biogeochemical flux model
(BFM). The OGSTM transport model, which is a modi-
fied version of the OPA 8.1 transport model (Lazzari et
al., 2010), was recently upgraded to resolve the free sur-
face and variable volume-layer effects on the transport of
tracers and is fully consistent with the off-line coupling of
the NEMO3.2 version (Salon et al., 2019). The BFM is a
medium-complexity low-trophic-level ecosystem model de-
signed to describe energy and material fluxes through both
“classical food-chain” and “microbial food-web” pathways
(Thingstad and Rassoulzadegan, 1995). This model includes
nine plankton functional types (four phytoplankton, four zoo-
plankton, and one bacteria) and takes into account the co-
occurring effects of multi-nutrient interactions (Lazzari et
al., 2012). The BFM was recently developed with a carbon-
ate system (Cossarini et al., 2015) and revised phytoplank-
ton nutrient uptake processes (Lazzari et al., 2016). More-
over, the BFM has been implemented in the Mediterranean
Sea in a wide range of applications, including 1D and 3D
configurations aimed at studying the interaction between op-
tics and biogeochemistry (Terzić et al., 2021, 2019), con-
ducting climate scenario simulations (Lazzari et al., 2014),
estimating carbon sequestration services (Melaku Canu et
al., 2015), simulating high-resolution coastal dynamics in
marginal seas (Cossarini et al., 2017), analysing temporal
scales of multi-decadal variability (Di Biagio et al., 2019),
and studying CDOM (chromophoric-dissolved organic mat-
ter) spatiotemporal variability (Lazzari et al., 2021). 3DVar-
Bio is the data assimilation scheme for the correction of
phytoplankton biomass and nutrient concentrations (i.e. ni-
trate and phosphate) using surface chlorophyll from satellite
observations and vertical profiles of chlorophyll and nitrate
from the BGC-Argo floats.

https://doi.org/10.5194/bg-18-6147-2021 Biogeosciences, 18, 6147–6166, 2021



6150 A. Teruzzi et al.: Deep chlorophyll maximum

Figure 1. Positions of BGC-Argo floats equipped with sensors to provide chlorophyll (blue), nitrate (orange), and oxygen (red) concentrations
and limits of the sub-basins: Alboran (ALB), southwestern Mediterranean (SWM), northwestern Mediterranean (NWM), Tyrrhenian (TYR),
Ionian (ION), Adriatic (ADR), Aegean (AEG), and Levantine (LEV) seas.

Model set-up

In the current application, the MedBFM was forced offline
with outputs from the NEMO3.2 model of the Mediterranean
CMEMS model system (Simoncelli et al., 2016), which pro-
vides daily mean physical dynamics (i.e. horizontal and verti-
cal current velocities, vertical eddy diffusivity, potential tem-
perature, salinity, and sea surface height in addition to sur-
face data for solar shortwave irradiance and wind stress). The
mesh grid was based on a 1/16◦ longitudinal scale factor and
a 1/16◦ cos (ϕ) latitudinal scale factor. The vertical mesh grid
accounted for 70 vertical z levels: 25 in the first 200 m of
depth, 31 between 200 and 2000 m, and 14 below 2000 m.

Initial conditions were provided by a 2-year spin-up sim-
ulation forced by 2015 physical fields in perpetual mode.
The 2-year spin-up was initialized by profiles of biogeo-
chemical variables as provided by the EMODnet_int cli-
matology, which merges the in situ EMODnet data collec-
tions (Buga et al., 2018) and the datasets listed in Lazzari
et al. (2016) and Cossarini et al. (2015). In the Atlantic area
(i.e. west of the Strait of Gibraltar to the 9◦ longitude) tracer
concentrations were relaxed to seasonally varying climato-
logical profiles. Seasonal profiles of phosphate, nitrate, sil-
icate, and dissolved oxygen were derived from an analysis
of the climatological World Ocean Atlas 2018 data (Gar-
cia et al., 2019) and the EMODnet_int dataset. The bio-
geochemical open-boundary conditions at the Dardanelles
strait were obtained through a Dirichlet-type scheme that
uses climatological values from the literature (Salon et al.,
2019). Atmospheric deposition rates of inorganic nitrogen
and phosphorus were set according to the synthesis proposed
by Ribera d’Alcalà et al. (2003), while terrestrial inputs of
nutrients (nitrogen and phosphorous) from 39 rivers were
obtained from the PERSEUS FP7-287600 project dataset
(deliverable D4.6, http://www.perseus-net.eu/assets/media/
PDF/deliverables/3321.6_Final.pdf, (last access: 17 Novem-

ber 2021). The terrestrial nutrient discharge rates were cli-
matological (average of the 2000–2015 period) and took into
account seasonal variability at a monthly scale based on vary-
ing monthly water discharge.

2.3 3D variational assimilation

In 3DVarBio, assimilation is performed through the mini-
mization of a cost function that is defined on the basis of
Bayes’ theorem (Lorenc, 1986) as the weighted sum of the
square mismatches between the model background state xb
(the model state before the assimilation) and the analysis xa
(the assimilation result) and the observations y. Each square
mismatch is weighted according to its accuracy estimations,
meaning that xa− xb is weighted by the background error
covariance matrix B, while (y−H(xb)) is weighted by the
observation error covariance matrix R:

J (xa)= (xa− xb)
T B−1 (xa− xb)

+ (y−H(xb))
T R−1 (y−H(xb)) . (1)

In Eq. (1) y−H(xb) is usually named innovation and H

the observational operator that maps the values of the model
background state xb in the observation space. In our appli-
cation H(xb) are model values of the variables observed
by satellite or floats at observation locations. Through the
minimization of the cost function 1, the assimilation pro-
vides the analysis xa, i.e. the optimal weighted distance from
both y and xb. According to Weaver et al. (2003) and Do-
bricic and Pinardi (2008), the solution of the assimilation
step (i.e. the increment xa− xb) is calculated by defining a
control variable v and a transformation matrix V such that
xa−xb = Vv and B= VVT . Moreover, the matrix V, which
transforms increments from the control space to the model
space, is decomposed into a sequence of operators that char-
acterize different aspects of the error covariances: the vertical
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error covariance (VV), the horizontal error covariance (VH),
and the biogeochemical state variable error covariance (VB)
(Teruzzi et al., 2014). Recent developments of the scheme
include the upgrade of VH to become anisotropic to address
the assimilation of satellite coastal observations (Teruzzi et
al., 2018), the upgrade of H and VV to address the assim-
ilation of BGC-Argo float profiles (Cossarini et al., 2019),
and the parallel recoding of the horizontal filter applied in
VH (Teruzzi et al., 2019). In the present study, the 3DVar-
Bio assimilation scheme was adapted to assimilate float ni-
trate data and both satellite and float chlorophyll data and to
provide corrections on all the phytoplankton variables and
on nitrate and phosphate concentrations. In particular, in ad-
dition to the covariance between the assimilated chlorophyll
and the 17 BFM variables describing the phytoplankton func-
tional types (Teruzzi et al., 2014), the VB operator now in-
cludes the covariance between nitrate and phosphate calcu-
lated on a validated 20-year simulation of the MedBFM sys-
tem (Teruzzi et al., 2016). Observation error covariance ma-
trix R has been assumed to be diagonal, and it is unchanged
with respect to previous applications for satellite and float
chlorophyll observations (Cossarini et al., 2019; Teruzzi et
al., 2018), while a uniform and constant error has been as-
signed to float nitrate observations (0.24 mmol m−3) accord-
ing to triple-collocation error estimates (Mignot et al., 2019).

2.3.1 Assimilation set-ups

Provided that single-sensor chlorophyll data assimilation has
already been demonstrated (Teruzzi et al., 2018; Cossarini et
al., 2019), satellite (Sc) and float (Fc) chlorophyll data assim-
ilation simulations in 2015, together with a reference simu-
lation without assimilation (REF), were used as benchmarks
to evaluate the relative improvement in the joint data assim-
ilation simulations of float chlorophyll and nitrate (Fcn) ob-
servations and float nitrate and both float and satellite chloro-
phyll observations (ScFcn; Table 1). Oxygen profiles, avail-
able from the BGC-Argo floats, were not assimilated but
were used as independent observations for validation.

The weekly averaged maps of satellite chlorophyll concen-
tration (Sect. 2.1.1) were assimilated once per week, while
the assimilation of available vertical in situ profiles of chloro-
phyll and nitrate concentrations (Sect. 2.1.2) was performed
every day. When satellite and float observations were both
available, the assimilation was performed separately with
satellite information assimilation occurring first since the dif-
ferent data densities impacted the effectiveness of the multi-
platform assimilation. Through the VB operator of 3DVar-
Bio, the assimilation of chlorophyll data provided increments
for the four phytoplankton functional groups (17 state vari-
ables) for chlorophyll data assimilation, as well as for nitrate
and phosphate for nitrate data assimilation. The application
of simultaneous increments of nitrate and phosphate was a
key element in the Mediterranean Basin, where both nutrients
can act as limiting factors of phytoplankton growth (Lazzari

et al., 2016). Adopting a conservative approach, other nutri-
ents were not updated by DA because of their less relevant
role as a limiting factor in the Mediterranean Sea.

3 Results

3.1 Validation with observations

The performance of the different assimilation set-ups (Ta-
ble 1) was evaluated by comparing available assimilated ob-
servations with model outputs before the assimilation and
non-assimilated observations with daily mean model outputs.
The root mean square difference (RMSD) in four macro sub-
basins and at eight different layers (Fig. 1 and Table 2) was
calculated for the BGC-Argo observations and in two sea-
sons for the surface satellite chlorophyll observations.

3.1.1 Validation with the BGC-Argo floats

Considering the BGC-Argo float chlorophyll data, the
RMSD values of the REF simulation were lower in the
eastern sub-basins than in the other sub-basins, with values
higher than 0.1 mg m−3 only in the NWM sub-basin (Fig. 2).
In general, subsurface layers had a higher RMSD than the
surface with a west–east increase in the depth of the max-
imum RMSD, which matches the west–east gradient of the
deep chlorophyll maximum (DCM) in the Mediterranean
Sea. The assimilation of satellite chlorophyll (Sc) data alone
did not clearly affect the model skill with respect to float
chlorophyll data. Indeed, the RMSD values with respect to
the REF decreased by almost 10 % in the surface layers of
ION and LEV and increased by almost 10 %–15 % in TYR
and in the subsurface L4 layer of ION and LEV.

On the other hand, and as expected, the assimilation of
float chlorophyll data significantly reduced the RMSD val-
ues with respect to chlorophyll in all sub-basins in the Fc,
Fcn, and ScFcn simulations. RMSD reductions occurred es-
pecially in layers with the highest RMSD in the REF simu-
lation, ranging between −13 % and −20 %, with the highest
values in the western sub-basins. Differences in RMSD re-
ductions between the Fc and Fcn simulations were not ap-
preciable, meaning that the assimilation of nitrate did not
decrease the benefit of float chlorophyll data assimilation.
The joint assimilation of satellite chlorophyll data and float
chlorophyll data and nitrate data caused variations in the
RMSD with respect to float chlorophyll data that were both
positive and negative according to the effect on RMSD with
satellite chlorophyll data assimilation alone. The resulting
RMSDs were lower or slightly higher than the REF RMSDs
everywhere, with the unique exception of layer L4 in LEV.

Higher RMSD values with respect to float nitrate values
(Fig. 3) were registered in the subsurface and deep layers
(L5–L8) of the REF simulation in all the sub-basins except
NWM. The RMSD values increased with depth following the
vertical increase in nitrate concentration (Salon et al., 2019),
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Table 1. Assimilation set-ups and names assigned to the simulations. Assimilated variables can be satellite chlorophyll (Sat CHL), float
chlorophyll (Float CHL), and float nitrate (Float NIT). DA updates can be applied to the 17 phytoplankton variables (phyto) and to nitrate
and phosphate concentrations (nutrients). The covariance between biogeochemical variables applied by VB is that between chlorophyll and
phytoplankton variables (CHL-Phyto) and between nitrate and phosphate (NIT-PHO).

Name Assimilated Updated Covariances in VB

REF – – –

Sc Sat CHL
Phyto

CHL-Phyto

Fc Float CHL

Fcn As Fc + Float NIT
Phyto, nutrients

CHL-Phyto

ScFcn As Fcn + Sat CHL NIT-PHO

Figure 2. RMSD between model simulations and BGC-Argo chlorophyll values in four sub-basins (Fig. 1). Grey lines indicate the limits of
layers L1–L5 (Table 2) used to calculate the chlorophyll RMSD.

Table 2. Names, depths, and variables used for the eight layers em-
ployed in the validation.

Name Depths Validated variables

L1 0–10 m
L2 10–30 m Chlorophyll
L3 30–60 m Nitrate
L4 60–100 m Oxygen
L5 100–150 m

L6 150–300 m Nitrate
L7 300–600 m Oxygen
L8 600–1000 m

while the RMSD values higher than 1 mmol m−3 in the L1
and L2 layers in the NWM were related to an overestima-
tion of surface nitrate during summer. Satellite data assimila-
tion in the Sc simulation impacted nitrate indirectly through
model dynamics after the DA increments in phytoplankton
biomass, resulting in lower RMSD values with respect to
REF in the surface layers (L1–L4) in the NWM (−20 %) and
the opposite in the TYR (+20 %). When float data were as-

similated, a 5 % reduction in nitrate RMSD occurred in the
surface layers in the NWM and TYR in the Fc simulation,
while a general reduction of up to 30 % in several layers in
the western sub-basins and up to 20 % in ION and LEV was
achieved with the assimilation of nitrate profiles in both the
Fcn and ScFcn simulations.

Considering the joint assimilation in ScFcn, it is worth
noting that an increase in the nitrate RMSD in L3 in the
TYR resulted from the superimposition of the increase due
to satellite chlorophyll data assimilation and the reduction
due to float nitrate data assimilation. In general, the effects
on RMSD with respect to nitrate in the joint satellite–float
assimilation showed that the RMSD variations were almost
additive: the RMSD reductions in the Sc simulation were re-
flected in more intense reductions in ScFcn than those in the
Fcn simulation, while the opposite occurred in the case of the
RMSD increases in the Sc simulation.

The RMSD between the float oxygen data and REF simu-
lation (Fig. 4) increased from the surface (approximately 5–
15 mmol m−3) to the subsurface and deeper layers (approxi-
mately 15–20 mmol m−3) in the NWM and TYR sub-basins,
while it was almost uniform along the vertical in the eastern
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Figure 3. RMSD between model simulations and BGC-Argo nitrate data in four sub-basins (Fig. 1). Grey lines indicate the limits of layers
L1–L8 (Table 2) used to calculate the RMSD. The depth scale is different above and below 150 m (thick grey line).

sub-basins with ranges of 2–10 and 7–17 mmol m−3 in ION
and LEV, respectively. In particular, RMSDs very slightly
differed among simulations, especially in the eastern sub-
basins. In particular, the float assimilation had very little ef-
fect on oxygen RMSDs, and the effect of satellite chlorophyll
assimilation is not univocal since RMSDs are both slightly
reduced (TYR) and increased (NWM) in the Sc simulation.
On the other hand, the float assimilation had very little effect
on oxygen RMSDs.

3.1.2 Validation with satellite chlorophyll data

The RMSDs with respect to the satellite chlorophyll data
(Fig. 5) in the REF simulation ranged between 0.07 and
0.11 mg m−3 in winter and between 0.013 and 0.035 mg m−3

in summer, consistent with the seasonal variation in the sur-
face chlorophyll concentration in the Mediterranean Sea. As-
similation of float data alone had negligible effects on the
RMSD calculated with satellite data (i.e. RMSD reductions
between 0 % and 3 % in all the sub-basins except SWM in
Fcn), whereas the assimilation of satellite chlorophyll data in
the Sc and ScFcn simulations significantly reduced the satel-
lite chlorophyll RMSD with a gradient of reduction intensity
from west to east. In fact, relative reductions were more in-
tense than or close to 50 % in ION and LEV and almost equal
to 20 % and 30 % in SWM in winter and summer, respec-
tively.

The skill performance analysis (Figs. 2–5) clearly showed
that joint assimilation of satellite chlorophyll data and float
chlorophyll and nitrate data (ScFcn simulation) significantly
reduced the RMSD with respect to all the assimilated vari-
ables and did not induce any degradation of float oxygen

observations, outperforming all the simulations with single-
stream assimilation.

3.2 Data assimilation impact

Several factors (e.g. the number and position of available ob-
servations, the innovation values, the spatial covariances, and
those between the biogeochemical variables) influence the
spatial extension and temporal persistence of the assimila-
tion impact on biogeochemical dynamics. Several methods
have been tested to measure the impact of observations on
models, including conducting OSSEs (e.g. Ford, 2021; Ger-
mineaud et al., 2019) and introducing data impact indicators
(e.g. Raicich and Rampazzo, 2003). To assess the impact of
satellite and BGC-Argo float observations, the following in-
dicator was evaluated:

Ixy (t)=
|ScFcn(t)−REF(t)|200

REF(t)200
, (2)

where ScFcn(t) and REF(t) indicate results at date t

of the ScFcn and REF simulations, respectively, and
|ScFcn(t)−REF(t)| is their absolute difference. The sub-
script 200 represents the integral over the 0–200 m layer,
while the overbar represents the average over the whole
Mediterranean and over seasonal periods. The impact indi-
cator Ixy(t) was calculated for each assimilation date and
each grid point and was then statistically analysed and sum-
marized on a seasonal basis. The indicator Ixy(t) quantifies
how much an assimilated run deviates from the REF simu-
lation; thus it is higher where and when the simulation de-
viates from REF and is closer than REF to the assimilated
observations. The seasonal median of the impact index val-
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Figure 4. RMSD between model simulations and BGC-Argo oxygen data in four sub-basins (Fig. 1). Grey lines indicate the limits of layers
L1–L8 (Table 2) used to calculate the RMSD. The depth scale is different above and below 150 m (double grey line).

Figure 5. RMSD between model simulations and satellite chlorophyll observations in six sub-basins (Fig. 1) for winter (left and darker bars)
and summer (right and lighter bars).

ues masked scattered assimilations (in particular in summer
for chlorophyll and in winter for nitrate; Figs. 6 and 7) show-
ing that satellite data, given their high observational density,
almost always had a relevant impact over the whole basin.
On the other hand, the 95th percentile of the Ixy(t) distri-
bution allowed us to highlight the areas where at least one
assimilation markedly reduced the model mismatch.

In almost the whole (i.e. 97 %) Mediterranean Sea the
Ixy(t) 95th percentile for chlorophyll concentration was
greater than 0.3 in winter (Fig. 6), while in summer, it was
greater than 0.3 % in 26 % of the Mediterranean Sea and
mainly in areas surrounding the float trajectories (Fig. 6,
bottom map). The impact indicator calculated for the single
data-stream assimilation runs (Fcn and Sc, not shown) con-
firmed that summer local DA effects were mainly due to float
assimilation, while the relevant impact of ScFcn over the

whole basin in winter was mainly related to satellite chloro-
phyll data assimilation.

Chlorophyll profiles averaged over the areas with Ixy(t)

95th percentiles higher than 0.3 for REF and ScFcn revealed
that DA impacts were different in winter and summer (Fig. 6,
left panels). In winter, when impacts were mainly related to
satellite observations, assimilation generally induced chloro-
phyll concentration reductions that were vertically homoge-
neous in the surface layer and then vanished almost at the
bottom of the euphotic layer. On the other hand, the float-
related assimilation impacts of summer were vertically lo-
calized around DCM and affected its depth and intensity.

The data assimilation impact on the nitrate 3D field was
less intense than that for chlorophyll, and relatively high val-
ues of I (t) were located mainly in float trajectory convolu-
tion areas (Fig. 7 maps). Satellite and float chlorophyll data
in both single-stream and joint assimilation (not shown) had
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Figure 6. Maps of Ixy(t) 50th and 95th percentiles for chlorophyll in winter and summer (a, b, h, and i); red contours identify the areas
within three correlation radii from the float positions (dashed lines for floats without nitrate observations). Mean profiles at time and location
with Ixy(t) higher than 0.3 in five sub-basins for the ScFcn and REF simulations (c, d, e, f, g, j, k, l, m, and n) in winter (c–g) and summer
(j–n).

relatively low impacts on nitrate, and local patches of large
assimilation impacts occurred mainly where float nitrate data
were assimilated.

Analysing the seasonal distribution of the spatial data im-
pact, the Ixy(t) 95th percentile was higher than 0.3 only in
3 % of the Mediterranean Sea in winter, while the percent-
age increased to 12 % in summer. Moreover, in summer, the
Ixy(t) 95th percentile was slightly higher in the basin outside
the areas affected by float observations. The seasonal differ-
ences in the Ixy(t) spatial distribution were due to two con-
curring effects: the lower number of floats equipped with ni-
trate sensors in winter and the persistence of nitrate changes,
as indicated by the enhancement in Ixy(t) spatial homogene-
ity over time (not shown).

Data assimilation impacts on nitrate profile shapes (Fig. 5)
were nearly homogeneous along the vertical with negligi-
ble effects on nitracline depth and slope in ION in win-

ter (positive ScFcn and REF differences), in NWM in win-
ter, and in ION and LEV in summer (negative ScFcn and
REF differences). In contrast, nitracline depth and slope were
significantly affected by vertically non-uniform assimilation
impacts (e.g. NWM and TYR in summer). Below 300 m
(not shown), differences between REF and ScFcn propagate
nearly constantly until 500 m and then tend to vanish between
500 and 600 m.

3.3 Nitracline and deep chlorophyll maximum

The good skill of the analysis simulation that integrates satel-
lite and BGC-Argo observations to reproduce 3D fields of
phytoplankton and nutrients (ScFcn simulation) supported
the use of the simulation outputs to investigate some basin-
wide biogeochemical features in summer, when processes in
the vertical direction are dominated by stratified conditions.
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Figure 7. Maps of the Ixy(t) 50th and 95th percentiles for nitrate in winter and summer (a, b, h, and i); red contours identify the areas within
three correlation radii from the float position (dashed lines for floats without nitrate observations). Mean profiles at time and location with
Ixy(t) higher than 0.3 in five sub-basins for the ScFcn and REF simulations (c, d, e, f, g, j, k, l, m, and n) in winter (c–g) and summer (j–n).

In particular, deep chlorophyll maximum (DCM) and nutri-
cline dynamics were investigated by calculating several in-
dexes that identified the vertical displacement and the profile
shape (Table 5) and provided the representation of their west-
to-east variability in the Mediterranean Sea during summer
(Figs. 8 and 9).

Consistent with previous findings (Lavigne et al., 2013;
Lazzari et al., 2012; Mignot et al., 2014), the simulated DCM
depth exhibited a west–east gradient (Fig. 8) ranging from
nearly 80 m in the western basins to values higher than 100 m
in the eastern basins. Moreover, in the ScFcn simulation, the
DCM and DBM (deep phytoplankton biomass maximum)
depths mostly coincided with a correlation coefficient higher
than 0.9. The DCM thickness and the chlorophyll concen-
tration at the DCM also showed spatial gradients over the
Mediterranean Sea (Fig. 9): moving eastward, as the DCM
deepens, the DCM thickness increases, while its intensity
(chlorophyll concentration at DCM) decreases.

According to the paradigm that the DBM is a layer where
both light and nutrients are co-limiting factors for phyto-
plankton (Cullen, 2015), the DCM and nitracline depths were

spatially correlated in the Mediterranean Sea (Fig. 9). In-
deed, similar to the DCM depth, the nitracline depth showed
a west-to-east gradient, and given the proposed definitions
(Table 5), the nitracline was located slightly above the DCM,
with a nearly constant 15 m gap. As shown for the DCM,
moving eastward, the nitracline thickness varied in the same
way as its depth. Indeed, the nitracline thickness was higher
in the eastern (50 m) than in the western sub-basins (30 m;
Fig. 9). The nitracline slope gradient exhibited an opposite
sign moving eastward, with values ranging between 0.08–
0.12 and 0.02–0.5 mmol m−4 in the western and eastern
Mediterranean, respectively (Fig. 9). Even if the Mediter-
ranean Sea is a small marginal sea, it exhibits a wide range of
summer vertical conditions: a 25 % thinner and shallower but
intense DCM associated with a steeper (more than double)
and 33 % narrower nitracline in the western Mediterranean
than in the more oligotrophic eastern Mediterranean.

The simulated values of PAR (photosynthetically active
radiation) at the DCM depth (Fig. 9) ranged between 1.5
and 2 mol quanta m−2 d−1 moving westward from the Sicil-
ian Channel and between 0.6 and 1 mol quanta m−2 d−1 in
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Table 3. Indexes evaluated in simulation ScFcn during summer stratification.

Quantity [unit] Definition

DCM Depth [m] Depth of the maximum chlorophyll concentration.

Intensity [mg chl m−3] Chlorophyll concentration at the DCM.

Thickness [m] Thickness of the layer where the chlorophyll concentration
is higher than half the difference between chlorophyll at the
DCM and chlorophyll at the surface.

Nitracline Depth [m] Depth where the maximum first derivative of the nitrate
concentration along the vertical is located (with the exclu-
sion of maxima at depths lower than 30 m).

Slope [mmol N m−4] Thickness of the layer with the first derivative of the nitrate
concentration being larger than 75 % of the derivative at the
nitracline.

Thickness [m] Mean of the first derivative of the nitrate profile in the layer
used to define nitracline thickness.

Light availability PAR at DCM [mol quanta m−2 d−1] Photosynthetically available radiation calculated at the
DCM.

Figure 8. Mean DCM depth [m] calculated over summer in areas with water depths lower than 200 m. Western and eastern meridional
averages of Fig. 9 are calculated along red continuous and dashed lines, respectively, excluding the Adriatic (ADR) and Aegean (AEG) seas.

the eastern Mediterranean, with higher PAR-at-DCM values
occurring between 24 and 26◦ E only. The west-to-east de-
creasing values of PAR at DCM are documented in a study
based on BGC-Argo observation (Mignot et al., 2014), even
if the reported values were slightly lower than in Fig. 9.

The DBM can be considered a nutrient trap layer where
all the nutrient fluxes from the bottom layer are consumed
by phytoplankton. Thus, since it is confined upward by
nutrient depletion and downward by the absence of light,
higher irradiance at the DBM (equivalent to DCM in our
case) can indicate a higher rate of nutrient uptake by phy-
toplankton and related higher production (Cullen, 2015). In
our results, this hypothesis was confirmed by higher nu-
trient uptakes in the western sub-basins than in the east-
ern sub-basins at the DCM depth: the nitrate and phosphate
uptake ranges were equal to 1.0–2.3× 10−2 and 1.0–2.1×

10−3 mmol m−3 d−1 in the western Mediterranean, while in
the eastern Mediterranean, they decreased to 0.5–1.2× 10−2

and 0.4–0.6× 10−3 mmol m−3 d−1, respectively. The spatial
variability in nutrient uptake was correlated with the phyto-
plankton primary production gradient simulated in the DCM
layer. In fact, the simulated primary production maximum in
the DCM layer was equal on average to 4 mg C m−3 d−1 in
the western Mediterranean and to 2.5 mg C m−3 d−1 in the
eastern Mediterranean (a detailed primary production sce-
nario simulated by the same BFM model with a very similar
set-up is presented in Fig. 2.2.2 of Schuckmann et al., 2020).
The higher rate of biological activity produced a sharper tran-
sition from the surface depleted zone to the deeper nutrient-
rich zone in the western Mediterranean. Additionally, the
higher nitrate concentration in the mesopelagic layer con-
tributed to increasing the nitracline steepness in the western
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sub-basins (Fig. 7) and hence the vertical supply of nutrients
and higher nutrient consumption and production in the DBM
layer.

4 Discussion

The results of the present work demonstrate the feasibility
of assimilating multi-stream biogeochemical observations in
real ecosystem simulations, showing the potential and the
impact of emerging observation systems such as the BGC-
Argo network. Moreover, using assimilation set-ups that dif-
ferently combine satellite chlorophyll and BGC-Argo float
chlorophyll and nitrate observations, the reciprocal effects
of each observation source showed that the impact of two
or more data streams resulted in an almost superimposition
of the assimilation effects on the simulation results. Even if
the significantly different observed densities of the two data
streams considered here (i.e. much higher in the satellite data
than in the float data) could lead to the suppression of the im-
pact of the less populated data stream, it is also true that the
satellite surface observations and float profiles were shown
to act mostly in different seasons (winter versus summer, re-
spectively) and at different pelagic layers, leading to an ad-
ditive superimposition of single assimilation effects. These
results were obtained by adopting a sequence of assimilation
events for the different data streams and letting the model
dynamically adjust the increments. In particular, the assim-
ilation frequency was set to weekly and daily for satellites
and floats, respectively, in accordance with previous studies
on single-stream assimilation (Cossarini et al., 2019; Teruzzi
et al., 2018, 2014). However, alternative strategies can mit-
igate the effects of higher observation densities, excessively
reducing the impact of the other more sparse and more scarce
observations. For instance, an error in the spatial covariance
component can be included in the observation error covari-
ance matrix (Moore et al., 2019) to take into consideration
the spatial correlation of neighbouring high-density obser-
vations (e.g. satellite observations). Keeping the observation
error covariance matrix diagonal, another option can be to in-
crease satellite observation errors close to the locations of the
assimilated float profiles. Either considering the off-diagonal
element of the observation error matrix or dynamically ad-
justing its diagonal elements close to float positions requires
considerable work to revise the formulation scheme and tune
the errors.

On the other hand, as shown in a recent OSSE (Ford et
al., 2020), the availability of a large and homogeneous float
coverage can generate a full-domain impact of float assimila-
tion. The foreseen increase in the BGC-Argo network (Bittig
et al., 2019; Claustre et al., 2020) will move in that direc-
tion. However, the need to elongate life floats will probably
result in a decrease in the sampling cycle frequency from 5 to
10 d (Roemmich et al., 2019). Moreover, the potential effec-
tiveness of the present BGC-Argo missions in covering the

Mediterranean bioregions has been demonstrated at least for
chlorophyll (D’Ortenzio et al., 2020). Thus, while it is de-
sirable to increase the number of nitrate sensors, it must be
acknowledged that the density of BGC-Argo could not in-
crease indefinitely in the future. In the Mediterranean Sea, a
season-dependent sampling frequency that is higher during
winter and spring surface blooms and lower during summer
slow-dynamic conditions could compensate for the battery-
saving needs and the maximization of float impact in joint
float–satellite assimilation. In addition, to increase the spa-
tial impact of data assimilation, future operational implemen-
tations can be based on pseudo profiles reconstructed by a
neural network approach such as CANYON-MED that uses
the larger coverage of the Argo network and oxygen sensors
(Fourrier et al., 2020).

The present results of the joint assimilation of multi-
stream chlorophyll data showed a mitigation of the in-
crease in the RMSD of chlorophyll with respect to the non-
assimilated chlorophyll dataset in the single-stream assimi-
lation simulations (Figs. 2 and 5). The RMSD increase with
respect to the non-assimilated chlorophyll data in the single-
stream assimilation can be ascribed to discrepancies between
the two datasets obtained by different measurement methods.
Provided that florescence-derived methods and reflectance-
based models have different sensitivity and calibration pat-
terns whose investigation is out of the scope of the present
work, it is relevant to highlight that discrepancies have a sea-
sonal distribution: higher-than-float satellite values occur in
summer, and the opposite occurs in winter (Fig. 10). As a
consequence of these discrepancies and of the propagation of
information through the prescribed DA vertical covariance,
the change in chlorophyll profiles due to satellite assimilation
either reduced or increased the distance between modelled
chlorophyll and BGC-Argo chlorophyll profiles (Fig. 2). On
the other hand, considering RMSDs with respect to satel-
lite chlorophyll (Fig. 5), the effect of inconsistency between
satellite and float chlorophyll was highlighted by the slight
increase in RMSDs in simulations with float chlorophyll as-
similation. In perspective, when the inconsistency between
satellite and float will be solved, the multi-platform assimi-
lation will provide improvements over large areas thanks to
the relevant spatial coverage of satellite observations. In the
meantime, the model, acting as a dynamical filter, integrates
both sources of information together with the vertical covari-
ance VV operator implemented in the assimilation scheme.
Indeed, the vertical covariance is a key element that allows
us to integrate surface with subsurface information. In our
case the VV operator was derived at a monthly scale from the
simulation results averaged over sub-basins (Teruzzi et al.,
2018). However, by adopting a higher temporal and spatial
resolution for the definition of VV, local information (sin-
gle satellite observation and float profile) can be better inte-
grated through the assimilation. Indeed, in physical oceanog-
raphy, point-to-point varying VV or a combination of sea-
sonal pre-calculated and flow-dependent parts have been suc-
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Figure 9. Meridional averages of summer water column indexes (Table 5) along red lines in Fig. 8 for western (continuous line) and
eastern (dashed line) sub-basins: DCM (green) and nitracline (blue) depth [m] (a); DCM (green) and nitracline (blue) thickness [m] (b);
DCM intensity (green) as chlorophyll concentration [mg m−3] and nitracline slope (blue) [mmol m−4] (c); PAR-at-DCM depth (orange)
[mol quanta m−2 d−1] and bottom nitrate concentration (blue) [mmol m−3] (d).

cessfully tested in assimilation applications (Dobricic et al.,
2015; Storto et al., 2018; Storto and Oddo, 2019).

The different assimilation set-ups investigated in the
present work showed the reciprocal effects of the assimi-
lation of different data streams and how they combined in
the multi-stream assimilation. Considering effects on nitrate,
the assimilation of satellite chlorophyll reduced the nitrate
RMSDs (computed on BGC-Argo data) with respect to the
REF simulation in all the sub-basins with the exception of
TYR (Fig. 3). The rather persistent and broad DA increments
during late winter and early spring were acting to reduce
the overestimation of the bloom maxima, resulting in nearly
uniform reductions in the phytoplankton biomass in the eu-
photic layer. In turn, by reacting to the new phytoplankton

concentration, less nitrogen was eventually re-mineralized to
nitrate. Thus, the nitrate concentration was modified in the
direction of reducing the REF nitrate overestimation in the
upper layer. An analogous mechanism has been investigated
in previous applications of satellite chlorophyll assimilation
in the MedBFM system (Teruzzi et al., 2018, 2014). In the
case of BGC-Argo chlorophyll assimilation, the changes in
the phytoplankton profiles were less uniform (Cossarini et
al., 2019), often alternating between positive and negative
increments along the same profile. It follows that the ef-
fects on nitrate profiles (through new uptake or release af-
ter mortality and exudation) were non-linear and not uniform
with relatively small impacts on the overall nitrate RMSDs.
Concerning the assimilation effects on the non-assimilated
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Figure 10. Scatter plot on a logarithmic scale of float and satellite
observations of chlorophyll concentration.

oxygen variable, the non-degradation of the oxygen RMSDs
was a positive aspect of the assimilated simulations, while
the limited and non-univocal effects of the assimilation on
oxygen RMSDs were related to the interaction of a number
of trophic processes (e.g. phytoplankton production and res-
piration, zooplankton and bacteria respiration) after the as-
similation increments on phytoplankton biomass. Effects on
non-assimilated biogeochemical variables are discussed in a
number of works (e.g. Ciavatta et al., 2014; Ford, 2020; Mat-
tern et al., 2017; Santana-Falcón et al., 2020; Simon et al.,
2015; Skákala et al., 2021; Teruzzi et al., 2018; Tsiaras et al.,
2017; Yu et al., 2018) in which the non-degradation of non-
assimilated variables is considered already a good result of
the assimilation process. Moreover, the model-assimilation
system acts as a filter so that, even if the performance of
the multi-platform assimilation is lower than any one of the
single assimilations, it produces a balanced solution with re-
spect to all the available information.

The VB operator (biogeochemical covariance operator)
plays a key role in the accuracy of results of the assimi-
lated and non-assimilated variables. In this work, VB was
based on the actual physiological status at each grid point for
the phytoplankton components, while the nitrate–phosphate
covariance was pre-calculated using a multi-annual simula-
tion and varied monthly and at sub-basin scale. Our results
suggest that the relevant variability in the DCM and nu-
tricline conditions across the Mediterranean Sea would re-
quire a VB including finer temporal- and spatial-scale co-
variances between phytoplankton and nutrients. An avail-
able option to extend the number of variables considered in
VB and to increase its capability to represent covariance at
finer scales consists of Kalman-filter-based methods, among
which recently emerging hybrid schemes (Carrassi et al.,
2018) could be particularly relevant since they can combine

pre-calculated covariance with the one estimated by an en-
semble Kalman filter approach. In the present application
the covariance operator VB has an impact on all the phyto-
plankton variables, as well as on two nutrients (phosphate
and nitrate), which can act as limiting factors of phytoplank-
ton growth in the Mediterranean Sea (Lazzari et al., 2016).
In perspective VB could be developed to include other vari-
ables; however, considering silicate, it should be noted that
in OGST-BFM applications in the Mediterranean Sea silicate
limitation is less relevant compared to nitrate or phosphate.

Recent literature highlighted the relevant role of assimi-
lating vertical observations from BGC-Argo to improve the
simulation of key biogeochemical processes (Ford, 2021;
Germineaud et al., 2019; Wang et al., 2020). Our analysis
of the assimilation impact showed that the description of
several biogeochemical features of the euphotic layer (such
as the DCM depth and intensity and nutricline depth) bene-
fited from BGC-Argo chlorophyll and nitrate data. Further-
more, the results of the simulation that integrated float and
satellite observations provided a validated 3D description of
Mediterranean Sea biogeochemistry. In particular, we inves-
tigated the DCM layer during summer-stratified conditions.
The results were quantitatively consistent with previous esti-
mations of DCM depth over the Mediterranean Sea (Lavigne
et al., 2013; Lazzari et al., 2012; Mignot et al., 2014) and
qualitatively with the results of studies that investigated the
variability in the main DCM and nutricline features accord-
ing to different nutrient and light availability regimes (e.g.
Aksnes et al., 2007; Barbieux et al., 2019; Beckmann and
Hense, 2007; Cossarini et al., 2019; Cullen, 2015; Gong et
al., 2017; Terzić et al., 2019). In particular, we showed that
the DCM is shallower, more intense, and less thick and oc-
curs at higher light intensity with higher nutrient uptake by
phytoplankton in the western Mediterranean than in the east-
ern Mediterranean. Correspondingly, the nitracline and the
phosphocline (not shown) are shallower, steeper, and nar-
rower. Moving eastward, the DCM and nutricline features
change by as much as 50 % (Fig. 9), which indicates that the
Mediterranean Sea has relatively variable conditions despite
being a small semi-enclosed basin (Bethoux et al., 1999;
Malanotte-Rizzoli et al., 2014; Schroeder et al., 2016). Sev-
eral factors contribute to the east–west differences in the
DCM and nutricline properties. For instance, a higher light
extinction factor and higher nutrient concentrations in the
bottom layer than in the other layers have been associated
with shallower DCM (or DBM) and nutricline depths and a
steeper nutricline (Aksnes et al., 2007; Beckmann and Hense,
2007; Gong et al., 2017; Mellard et al., 2011; Mignot et al.,
2014). Moreover, winter deep mixing events can create con-
ditions for a shallower DCM since a larger availability of
nutrients in the subsurface layer is made available by win-
ter mixing in the northwestern Mediterranean (Mignot et
al., 2014). In our simulations, both the higher bottom-layer
nutrients and typical strong mixing events in the western
Mediterranean were consistently reproduced, and they sus-
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tained the east–west gradient of DCM depth. As in our simu-
lation results, BGC-Argo observations in the Mediterranean
Sea (Barbieux et al., 2019; Pasqueron de Fommervault et al.,
2015) showed a shallower, more intense, and narrower DCM
and a shallower and steeper nitracline in the western Mediter-
ranean, but nitracline depths were closer to the DCM in the
eastern Mediterranean, in contrast to the almost constant dif-
ference between the DCM and nitracline depths observed in
our simulation. However, this discrepancy can be ascribed
to the different methods used to define a nitracline. Accord-
ing to Salon et al. (2019), we defined nitracline as the layer
where the slope was larger, corresponding to the interface
between high and depleted nutrient concentrations. In fact,
results more similar to those of Barbieux et al. (2019) have
been obtained by applying the same definition of nitracline
depth to our simulation results (not shown). In a previous
study based on BGC-Argo observations, the relation between
the DCM and DBM in the Mediterranean Sea was also in-
vestigated (Barbieux et al., 2019; Mignot et al., 2014). As
an emergent property of the BFM formulation and simula-
tion set-ups, our results show that the subsurface depths of
chlorophyll and biomass maxima coincided (similar to the
findings of Mignot et al., 2014). On the other hand, the re-
sults of Barbieux et al. (2019) highlight that the two depths
can be non-coincident under oligotrophic conditions typical
of the eastern Mediterranean basins.

In addition to confirming previous findings on the spatial
variability in the DCM layer characteristics in the Mediter-
ranean Sea, the assimilated simulation presented in this work
provides a full 3D and time-varying description of a number
of biogeochemical variables, allowing us to further investi-
gate potential relations between the vertical distributions of
phytoplankton, nutrients, light availability, and other physi-
cal forcings. The use of the results of assimilated simulations
that include along-depth observations can integrate investi-
gations on the DCM and its dynamics that to date have been
based on observations, which can be sparse and not evenly
distributed in time (Navarro and Ruiz, 2013; Ricour et al.,
2021).

5 Conclusions

In this work, we presented the results of a set of simula-
tions of Mediterranean Sea biogeochemistry that integrated
BGC-Argo chlorophyll and nitrate observations and satellite
chlorophyll observations using different assimilation set-ups.
The results show that the assimilation of all the data streams
outperformed the single-source assimilation when validated
with respect to available observations, indicating that the as-
similation of BGC-Argo observations has relevant (even if
local) impacts on the vertical structure of nutrients and phy-
toplankton. The impacts of multi-variate profile assimilation
are directly linked to the sampling frequency and dimension
of the BGC-Argo network, which should increase to match

the consolidated importance and relevance of satellite obser-
vation assimilation. Thus, in a perspective view, the multi-
platform assimilation can improve model representation of
both large-scale (hundreds to thousands of kilometres) to
mesoscale features and be beneficial for robust reconstruc-
tion in global and regional reanalysis. The results of the sim-
ulation with multi-platform assimilation provided a 3D de-
scription of the basin-wide gradient of DCM and nitracline
dynamics through specifically developed metrics (e.g. DCM
depth and intensity, as well as nitracline depth and steepness)
and highlighted the role played by light and nutrient avail-
ability in the western and eastern Mediterranean Sea. Even
if the Mediterranean Sea is a small marginal sea, it exhibits
a wide range of summer vertical conditions of the DCM and
nutricline with thinner and shallower but intense DCM asso-
ciated with a steeper and narrower nutricline in the western
Mediterranean Sea, while the opposite occurs in the eastern
Mediterranean Sea.
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Terzić, E., Salon, S., Cossarini, G., Solidoro, C., Teruzzi, A.,
Miró, A., and Lazzari, P.: Impact of interannually variable
diffuse attenuation coefficients for downwelling irradiance
on biogeochemical modelling, Ocean Model., 161, 101793,
https://doi.org/10.1016/j.ocemod.2021.101793, 2021.

Thierry, V., Bittig, H., Gilbert, D., Kobayashi, T., Kanako,
S., and Schmid, C.: Processing Argo oxygen data at
the DAC level,IFREMER for Argo Data Management,
https://doi.org/10.13155/39795, 2018.

Thingstad, T. F. and Rassoulzadegan, F.: Nutrient limitations, mi-
crobial food webs and “biological C-pumps”: suggested interac-
tions in a P-limited Mediterranean, Mar. Ecol. Prog. Ser., 117,
299–306, 1995.

Tsiaras, K. P., Hoteit, I., Kalaroni, S., Petihakis, G., and Tri-
antafyllou, G.: A hybrid ensemble-OI Kalman filter for
efficient data assimilation into a 3-D biogeochemical
model of the Mediterranean, Ocean Dyn., 67, 673–690,
https://doi.org/10.1007/s10236-017-1050-7, 2017.

Verdy, A. and Mazloff, M. R.: A data assimilating
model for estimating Southern Ocean biogeochem-
istry, J. Geophys. Res.-Oceans, 122, 6968–6988,
https://doi.org/10.1002/2016JC012650, 2017.

Vichi, M., Lovato, T., Lazzari, P., Cossarini, G., Gutierrez Mlot,
E., Mattia, G., Masina, S., McKiver, W. J., Pinardi, N., Solidoro,
C., Tedesco, L., and Zavatarelli, M.: The BiogeochemicalFlux
Model (BFM): Equation Description and User Manual. BFMver-
sion 5.1, BFM Reportseries N. 1, Release 1.1 [code], Bologna,
Italy, 104 pp., available at: http://bfm-community.eu (last access:
17 November 2021), 2015.

von Schuckmann, K., Traon, P.-Y. L., Smith, N., Pascual, A.,
Djavidnia, S., Gattuso, J.-P., Grégoire, M., Nolan, G., Aaboe, S.,
Fanjul, E. Á., Aouf, L., Aznar, R., Badewien, T. H., Behrens,
A., Berta, M., Bertino, L., Blackford, J., Bolzon, G., Borile, F.,
Bretagnon, M., Brewin, R. J. W., Canu, D., Cessi, P., Ciavatta,
S., Chapron, B., Chau, T. T. T., Chevallier, F., Chtirkova, B.,
Ciliberti, S., Clark, J. R., Clementi, E., Combot, C., Comerma,
E., Conchon, A., Coppini, G., Corgnati, L., Cossarini, G., Cra-
vatte, S., de Alfonso, M., de Montégut, C. B., Fernández, C.
D. L., de los Santos, F. J., Denvil-Sommer, A., de Collar, Á. P.,
Nunes, P. A. L. D., Biagio, V. D., Drudi, M., Embury, O., Falco,
P., d’Andon, O. F., Ferrer, L., Ford, D., Freund, H., León, M.
G., Sotillo, M. G., García-Valdecasas, J. M., Garnesson, P., Gar-
ric, G., Gasparin, F., Gehlen, M., Genua-Olmedo, A., Geyer, G.,
Ghermandi, A., Good, S. A., Gourrion, J., Greiner, E., Griffa, A.,
González, M., Hernández-Carrasco, I., Isoard, S., Kennedy, J. J.,
Kay, S., Korosov, A., Laanemäe, K., Land, P. E., Lavergne, T.,
Lazzari, P., Legeais, J.-F., Lemieux, B., Levier, B., Llovel, W.,
Lyubartsev, V., Traon, P.-Y. L., Lien, V. S., Lima, L., Lorente,
P., Mader, J., Magaldi, M. G., Maljutenko, I., Mangin, A., Man-
tovani, C., Marinova, V., Masina, S., Mauri, E., Meyerjürgens,
J., Mignot, A., McEwan, R., Mejia, C., Melet, A., Menna, M.,
Meyssignac, B., Mouche, A., Mourre, B., Müller, M., Notarste-

fano, G., Orfila, A., Pardo, S., Peneva, E., Pérez-Gómez, B.,
Perruche, C., Peterlin, M., Poulain, P.-M., Pinardi, N., Quilfen,
Y., Raudsepp, U., Renshaw, R., Révelard, A., Reyes-Reyes, E.,
Ricker, M., Rodríguez-Rubio, P., Rotllán, P., Royo Gelabert, E.,
Rubio, A., Ruiz-Parrado, I., Sathyendranath, S., She, J., Soli-
doro, C., Stanev, E. V., Staneva, J., Storto, A., Su, J., Tajalli
Bakhsh, T., Tilstone, G.H., Tintoré, J., Toledano, C., Tournadre,
J., Tranchant, B., Uiboupin, R., Valcarcel, A., Valcheva, N., Ver-
brugge, N., Vrac, M., Wolff, J.-O., Zambianchi, E., Zielinski,
O., Zinck, A.-S., and Zunino, S.: Copernicus Marine Service
Ocean State Report, Issue 4, J. Oper. Oceanogr., 13, S1–S172,
https://doi.org/10.1080/1755876X.2020.1785097, 2020.

Wang, B., Fennel, K., Yu, L., and Gordon, C.: Assessing the value
of biogeochemical Argo profiles versus ocean color observations
for biogeochemical model optimization in the Gulf of Mexico,
Biogeosciences, 17, 4059–4074, https://doi.org/10.5194/bg-17-
4059-2020, 2020.

Xiao, Y. and Friedrichs, M. A. M.: The assimilation of satellite-
derived data into a one-dimensional lower trophic level marine
ecosystem model, J. Geophys. Res.-Oceans, 119, 2691–2712,
https://doi.org/10.1002/2013JC009433, 2014.

Xing, X., Boss, E., Zhang, J., and Chai, F.: Evaluation of
Ocean Color Remote Sensing Algorithms for Diffuse At-
tenuation Coefficients and Optical Depths with Data Col-
lected on BGC-Argo Floats, Remote Sens., 12, 2367,
https://doi.org/10.3390/rs12152367, 2020.

Yu, L., Fennel, K., Bertino, L., Gharamti, M. E., and Thompson,
K. R.: Insights on multivariate updates of physical and biogeo-
chemical ocean variables using an Ensemble Kalman Filter and
an idealized model of upwelling, Ocean Model., 126, 13–28,
https://doi.org/10.1016/j.ocemod.2018.04.005, 2018.

Biogeosciences, 18, 6147–6166, 2021 https://doi.org/10.5194/bg-18-6147-2021

https://doi.org/10.1016/j.cageo.2019.01.003
https://doi.org/10.5194/bg-16-2527-2019
https://doi.org/10.1016/j.ocemod.2021.101793
https://doi.org/10.13155/39795
https://doi.org/10.1007/s10236-017-1050-7
https://doi.org/10.1002/2016JC012650
http://bfm-community.eu
https://doi.org/10.1080/1755876X.2020.1785097
https://doi.org/10.5194/bg-17-4059-2020
https://doi.org/10.5194/bg-17-4059-2020
https://doi.org/10.1002/2013JC009433
https://doi.org/10.3390/rs12152367
https://doi.org/10.1016/j.ocemod.2018.04.005

	Abstract
	Introduction
	Methods
	Observations
	Satellite chlorophyll
	BGC-Argo floats

	Model system
	3D variational assimilation
	Assimilation set-ups


	Results
	Validation with observations
	Validation with the BGC-Argo floats
	Validation with satellite chlorophyll data

	Data assimilation impact
	Nitracline and deep chlorophyll maximum

	Discussion
	Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

