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Abstract. A mechanistic understanding of how tropical-tree
mortality responds to climate variation is urgently needed to
predict how tropical-forest carbon pools will respond to an-
thropogenic global change, which is altering the frequency
and intensity of storms, droughts, and other climate extremes
in tropical forests. We used 5 years of approximately monthly
drone-acquired RGB (red–green–blue) imagery for 50 ha of
mature tropical forest on Barro Colorado Island, Panama,
to quantify spatial structure; temporal variation; and climate
correlates of canopy disturbances, i.e., sudden and major
drops in canopy height due to treefalls, branchfalls, or the
collapse of standing dead trees. Canopy disturbance rates
varied strongly over time and were higher in the wet sea-
son, even though wind speeds were lower in the wet season.
The strongest correlate of monthly variation in canopy dis-
turbance rates was the frequency of extreme rainfall events.
The size distribution of canopy disturbances was best fit by
a Weibull function and was close to a power function for
sizes above 25 m2. Treefalls accounted for 74 % of the to-
tal area and 52 % of the total number of canopy disturbances
in treefalls and branchfalls combined. We hypothesize that
extremely high rainfall is a good predictor because it is an
indicator of storms having high wind speeds, as well as satu-
rated soils that increase uprooting risk. These results demon-

strate the utility of repeat drone-acquired data for quantify-
ing forest canopy disturbance rates at fine temporal and spa-
tial resolutions over large areas, thereby enabling robust tests
of how temporal variation in disturbance relates to climate
drivers. Further insights could be gained by integrating these
canopy observations with high-frequency measurements of
wind speed and soil moisture in mechanistic models to better
evaluate proximate drivers and with focal tree observations
to quantify the links to tree mortality and woody turnover.

1 Introduction

Moist tropical forests account for 40 % of the global biomass
carbon stocks (Xu et al., 2021), and uncertainty regarding
the future of these stocks is a major contributor to uncer-
tainty in the future global carbon cycle (Cavaleri et al., 2015).
Tropical-forest carbon stocks depend critically on tree mor-
tality rates, and recent studies suggest tropical-tree mortality
rates may be increasing due to anthropogenic global change
(Brienen et al., 2015; McDowell et al., 2018). Tropical-tree
mortality can be caused by a diversity of drivers including
windthrow (Fontes et al., 2018), droughts (McDowell et al.,
2018; Silva et al., 2018), fires (Silva et al., 2018), lightning
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strikes (Yanoviak et al., 2017), and biotic agents (Fontes et
al., 2018). The frequency of extreme rainfall and drought
events is expected to increase in tropical regions, potentially
increasing associated tree mortality (IPCC, 2014; Deb et al.,
2018; Aubry-Kientz et al., 2019). An improved understand-
ing of the processes of forest disturbance is critical to con-
strain estimates of current and future carbon cycling in trop-
ical forests under climate change (Leitold et al., 2018; John-
son et al., 2016; Muller-Landau et al., 2021).

Despite the importance of tree mortality to forest struc-
ture and carbon turnover rates, the mechanisms underlying
tree mortality remain unclear (McDowell et al., 2018). A key
problem is that remeasurement intervals of permanent plots
average 5 or more years, making it difficult to link mortal-
ity variation with particular climatic events (Phillips et al.,
2010; Davies et al., 2021; Arellano et al., 2019). The high
rates of decomposition in tropical forests further obscure ev-
idence of underlying mechanisms and risk factors (Arellano
et al., 2019). The few studies that have quantified tempo-
ral variation of tree mortality at monthly and bi-monthly
scales using ground-based data have all found higher tree
mortality in times of higher rainfall (Brokaw, 1982; Fontes
et al., 2018; Aleixo et al., 2019). This is consistent with
the understanding that many trees die in treefalls, which
are proximately caused by trunk breakage or uprooting and
are associated with storms (Marra et al., 2014; Araujo et
al., 2017; Fontes et al., 2018; Negrón-Juárez et al., 2017,
2018; Esquivel-Muelbert et al., 2020). The collection of ad-
ditional high-temporal-resolution mortality data over large
areas, together with high-temporal-resolution climatological
data, can aid in linking mortality to particular climatic events
and thereby elucidating mortality mechanisms (Arellano et
al., 2019; McMahon et al., 2019).

Drone-acquired imagery and digital aerial photogramme-
try software now provide excellent tools for monitoring for-
est canopies (Araujo et al., 2020), and repeat drone flights
can quantify canopy dynamics over large areas at high tem-
poral resolution. Photogrammetric analysis of simple RGB
(red–green–blue) imagery enables reconstruction of the ap-
pearance and three-dimensional structure of the top of the
canopy at high spatial resolution (Dandois and Ellis, 2013;
Araujo et al., 2020; Zahawi et al., 2015). Comparison of pho-
togrammetry products from successive drone flights allows
for easy detection and quantification of canopy disturbances
due to treefalls and branchfalls of canopy trees. Canopy trees
constitute a high proportion of stems, aboveground carbon
stocks, and woody productivity (Araujo et al., 2020), and
thus information on their mortality rates is disproportion-
ately useful to understanding forest dynamics and carbon
cycling. Treefalls do not necessarily result in tree mortal-
ity (trees may survive and resprout), but almost all treefalls
and branchfalls result in a large flux of carbon (wood) from
biomass to necromass within a short time period after the
event, which translates to reduced woody residence time. Pe-
riods of higher canopy disturbance rates thus represent pe-

riods of higher biomass turnover and likely correlate with
higher tree mortality rates. Further, even when trees do not
die from a canopy disturbance event, suffering crown loss or
damage increases the risk of subsequent mortality (Arellano
et al., 2019).

Monitoring canopy disturbances with drones also provides
the opportunity to precisely quantify the size distributions
of these canopy disturbances and to distinguish branchfalls
from treefalls. Here we define a canopy disturbance as a sub-
stantial decrease in canopy height in a contiguous patch of
canopy occurring over one measurement interval, such as
typically results from a treefall or branchfall. Marvin and
Asner (2016) and Dalagnol et al. (2021) referred to these as
“dynamic canopy gaps”. By definition, canopy disturbances
reduce canopy height and thereby change light regimes for
understory and neighboring trees, and the magnitude of the
change depends on the disturbance size in area and depth
(Hubbell et al., 1999). In general, larger canopy disturbances
cause larger canopy gaps as traditionally measured on the
ground. Previous studies have analyzed the size distributions
of static gaps – areas with canopy height below a thresh-
old – for insights into forest structure, habitat niches, and
disturbance regimes (e.g., Manrubia and Solé, 1997; Lobo
and Dalling, 2013, 2014; Fisher et al., 2008). Tree species
respond differently to canopy gaps of different sizes, with
small gaps favoring a different set of species than large gaps
(Brokaw, 1985; Denslow, 1980, 1987; Dalling et al., 2004).
Branchfalls, like treefalls, are important in generating canopy
gaps and contributing to woody turnover but often go unmea-
sured (Marvin and Asner, 2016; Leitold et al., 2018). Quanti-
fying tree mortality and other damage contributes to a better
understanding of the change of the forest structure, necro-
mass estimates, and nutrient cycling.

Here, we use 5 years of approximately monthly drone-
acquired RGB imagery for a 50 ha area of mature tropi-
cal forest on Barro Colorado Island, Panama, to investigate
canopy dynamics at high temporal resolution. We aim to
(1) quantify temporal variation in canopy disturbance rates
and its relationship to climate variation, (2) characterize the
size structure of canopy disturbances, and (3) evaluate the
role of branchfalls in canopy dynamics. We expect that dis-
turbance rates will be higher in the wet season than the dry
season; we hypothesize disturbance rates will increase with
the frequency of extreme rainfall and wind events; and we
compare the correlations of various rainfall and wind statis-
tics with temporal variation in disturbance rates. To charac-
terize the size structure of canopy disturbances, we quantify
the size (area) distribution and evaluate whether it is the best
fit by power, Weibull, or exponential functions. Finally, we
quantify the proportion of canopy disturbance due to branch-
falls (rather than treefalls) and test whether branchfalls and
treefalls exhibit similar patterns of temporal variation. Our
results provide new insights into the patterns and drivers of
canopy disturbance and tree mortality in this tropical forest
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and illustrate the utility of drones for quantifying canopy dy-
namics over large areas at high temporal resolution.

2 Methods

2.1 Study site

Barro Colorado Island (BCI; 9.15◦ N, 79.83◦W) is a
15 km2 island in central Panama that was isolated from
the surrounding mainland when Lake Gatun was created
as part of the construction of the Panama Canal. BCI
supports a tropical moist forest in the Holdridge life zone
system (Holdridge, 1947). Annual precipitation averages
approximately 2600 mm, with a pronounced dry season
between January and April (a mean of about 3.5 months with
< 100 mm per month). Mean maximum 1 d wind speeds
are 8.1 and 5.8 m s−1 during the dry and wet seasons, re-
spectively (https://smithsonian.figshare.com/articles/dataset/
Yearly_Reports_Barro_Colorado_Island/11799111/2, last
access: 15 December 2021). Mean annual temperature is
26 ◦C and varies little throughout the year (Windsor, 1990).
The 50 ha forest dynamics plot (1000 m× 500 m) was
established on BCI in 1981 and is located in an old-growth
forest (Leigh, 1999), with the exception of a small area of
1.92 ha of old secondary forest (∼ 100 years old) in the
northern central part of the plot (Harms et al., 2001).

2.2 Meteorological data

Meteorological data were collected in the lab clearing and
Lutz tower, approximately 1.7 km northeast of the center
of the 50 ha plot (https://smithsonian.figshare.com/articles/
dataset/Yearly_Reports_Barro_Colorado_Island/11799111/
2, last access: 15 December 2021). Wind speed was mea-
sured using an anemometer (R. M. Young wind monitor
model 05103) installed at the top of Lutz tower, at 48 m
height above ground and approximately 6 m above the top
of the surrounding canopy. Wind speed measurements were
made every 10 s, and the average, minimum, and maximum
values were recorded at the end of every 15 min interval. We
used the maximum wind speeds for our analyses. Rainfall
was measured in the lab clearing using a tipping bucket
(Hydrological Services model TB3) and recorded every
5 min; we aggregated these data to 15 min periods to match
the temporal resolution of the wind speed data. Rainfall and
wind speed data are available at https://biogeodb.stri.si.edu/
physical_monitoring/research/barrocolorado, last access:
15 December 2021. The meteorological record had no gaps
during our study period (Fig. S1).

2.3 Canopy disturbance identification

We used approximately monthly orthomosaics and canopy
surface models produced from drone-acquired imagery to
analyze temporal variation in canopy disturbance rates in

the 50 ha forest dynamics plot between 2 October 2014 and
28 November 2019. RGB imagery was collected using a va-
riety of drones and cameras over the years, with a horizon-
tal spatial resolution of 3–7 cm. Imagery for each sampling
date was processed using the photogrammetry software Ag-
isoft Metashape to obtain orthomosaics and surface elevation
models, which were then aligned vertically and horizontally.

We defined a canopy disturbance as a substantial decrease
in canopy height in a contiguous patch of canopy occur-
ring over one measurement interval, such as typically results
from a treefall or branchfall. We identified canopy distur-
bances through a combination of analysis of the canopy sur-
face model changes and visual interpretation of the orthomo-
saics (Fig. 1). We first differenced surface elevation models
for successive dates to obtain a raster of the canopy height
changes for the associated interval (Fig. 1 and Text S1 in
the Supplement). We then pre-delineated major canopy dis-
turbances by filtering for areas in which canopy height de-
creased more than 10 m in contiguous areas of at least 25 m2

and which had an area-to-perimeter ratio greater than 0.6.
We note that 25 m2 is the minimum gap area used in pre-
vious studies of this site by Brokaw (1982) and Hubbell et
al. (1999). The area-to-perimeter condition removes artifacts
associated with slight shifts in the measured positions of in-
dividual trees from one image set to another, whether due to
wind or alignment errors (note that this criterion involves a
combination of shape and size). Finally, we systematically
examined 1 ha square subplots for each pair of successive
dates and edited the pre-delineated polygons, removed false
positives, and added visible new canopy disturbances that
were not previously delineated (whether because they were
too small in area or in canopy height drop). We also classi-
fied disturbances as being due to treefalls (a whole previously
live tree fell, creating a clearly visible gap on the forest floor,
or the whole live crown disappeared), branchfalls (a portion
of a live crown broke), or standing dead trees disintegrating
based on visual inspection of the orthomosaics (Fig. S2).

We calculated the total number and area of canopy dis-
turbances within the BCI 50 ha plot during the 5 years of
the study. In calculating the number and total area of distur-
bances, we included all disturbed areas that were inside the
plot boundaries (if a disturbance was on the boundary, only
the area inside the plot was included). Our analyses of tem-
poral variation employed the same definitions for numbers
and areas of canopy disturbances within the 50 ha plot. For
analyses of the size structure of disturbances, we included
the complete areas of disturbances whose centroids were lo-
cated within the plot (i.e., we excluded disturbances centered
outside the plot and included area outside the plot for dis-
turbances centered inside the plot to avoid artifacts related
to reducing disturbance size by trimming at the plot bound-
aries).
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Figure 1. Canopy disturbance visualized on canopy surface models and orthomosaics calculated from photogrammetric analyses of drone
imagery. (a, b) Elevation models for a portion of the study area on two successive dates, 28 August (a) and 23 September 2019 (b). (c) Dif-
ference in elevation between the two dates, with the black area indicating a large decrease in canopy elevation. (d, e) RGB orthomosaics of
the same dates. Please note that the date format in this figure is year-month-day.

2.4 Temporal variation in canopy disturbance rates
and its relation to climate

We calculated canopy disturbance rates for each measure-
ment interval as the percentage of area disturbed per month
(i.e., per 30 d period). Specifically, we summed the total area
disturbed during the measurement interval and divided by the
total area of the plot and the length of the time interval. We
excluded one excessively long interval (237 d – image ac-
quisition gap) from all analyses of temporal variation; the
remaining intervals ranged from 14 to 91 d, with a median
of 31.5 d (Table S1). We also calculated an incidence canopy
disturbance rate as the number of canopy disturbances per
hectare per month. We calculated the mean; minimum; max-
imum; and the 25th, 50th, and 75th percentiles of interval
length, number and area of canopy disturbances, and the re-
spective monthly rates.

We compared canopy disturbance rates between wet and
dry seasons and between early wet and late wet seasons.
We defined the dry season as 1 January to 30 April (rain-
fall < 100 mm per month, Fig. S3), the early wet season as
1 May to 31 August, and the late wet season as 1 Septem-
ber to 31 December. Intervals that straddled more than one
season were classified to the season in which they had more

days. We tested for differences in canopy disturbance rates
between seasons using two-tailed Student’s t test on the log-
transformed canopy disturbance rates for each measurement
interval, after first confirming that these rates met assump-
tions for normality (Shapiro–Wilk test) and homogeneity of
variance (Levene test).

We evaluated the relationship of temporal variation in
canopy disturbance rates with temporal variation in the
frequencies of climate extremes using parametric correla-
tions. We calculated the Pearson correlations of the log-
transformed canopy disturbance rates (area per time) with
the log-transformed frequency of extreme rainfall and wind
speed events (number per time) (i.e., log(y)∼ log(x+ 1)),
for different definitions of extreme events. For example, one
definition of an extreme event would be a 15 min period with
rainfall above the 99th percentile. We evaluated three differ-
ent temporal grains for defining extreme events (15 min, 1 h,
and 1 d intervals); for two different meteorological variables
(total rainfall and maximum wind speed); and for 100 dif-
ferent thresholds, corresponding to every 0.1 percentile in-
crement between the 90th and 99.9th percentile of the cor-
responding distributions. We compared the predictive ability
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of these 600 different definitions of extreme events in terms
of their Pearson correlations.

2.5 Size structure of canopy disturbances

We characterized the size structure of canopy disturbances
whose geometric center was inside the plot, excluding dis-
turbances from the one excessively long interval of 237 d.
Longer time intervals increase the likelihood that what is
measured as a single disturbance event in fact constitutes
multiple adjoining or overlapping events. We calculated the
mean, minimum, maximum, and median of the area of in-
dividual canopy disturbances. We calculated the cumulative
distribution functions with respect to the disturbance size
(area) of the number and total area of canopy disturbances
to quantify the proportions of canopy disturbances and of to-
tal area disturbed in disturbances below any given size.

We took advantage of the three-dimensional structure of
our photogrammetry data to quantify canopy disturbances in
terms of their vertical height drop as well as their horizontal
area. For each canopy disturbance, we calculated the aver-
age height drop from the differences in the canopy surface
models. We excluded 61 canopy disturbances in which mean
heights increased because they reflect errors in the canopy
height models. We fit a generalized additive model (GAM)
for average height drop as a function of the log-transformed
area to better visualize the trend in how these were related.

We quantified the size distributions of canopy disturbances
by fitting three alternative probability distributions: exponen-
tial, power (or Pareto), and Weibull as in Eqs. (1)–(3):

fexp (x)=
1
N
λe−λx, (1)

fpow (x)=
1
N
x−λ, (2)

fweib (x)=
1
N

λ

α

(x
α

)λ−1
e−(

x
α )

λ

, (3)

where λ and α are fitted parameters, x is the canopy distur-
bance area in square meters, e is the natural exponential ba-
sis, and N is normalization constants such that the truncated
distribution integrates to 1. Recognizing that our methods are
likely to miss smaller disturbances, we fit these distributions
to truncated datasets, excluding disturbances below 2, 5, 10,
or 25 m2. Note that 25 m2 is the minimum area for defin-
ing a canopy disturbance in our automated pre-delineation
algorithm, and we are confident we captured all disturbances
above this area. We are progressively less confident of our
ability to capture smaller disturbances. We also truncated the
fitted distributions above at the maximum possible distur-
bance area we could have observed using our methods (50 ha
or 500 000 m2). We fit each type of distribution (exponential,
power, and Weibull) to each dataset (different minimum dis-
turbance area and corresponding truncation) using the max-
imum likelihood. The maximum-likelihood estimates of the
parameters were those that maximized the likelihood func-

tion (Eq. 4):

L=
∑
i

log
[
f (x)

]
. (4)

We selected the model that minimized the Akaike informa-
tion criterion (AIC) (Burnham and Anderson, 2002). We also
evaluated the goodness of fit using the Kolmogorov–Smirnov
statistic, the maximum difference in the cumulative proba-
bility distributions between the observed data and the fitted
distribution (Carvalho, 2015).

2.6 Branchfalls vs. treefalls

We classified each canopy disturbance as being a branch-
fall, treefall, or a standing dead tree, except for those distur-
bances occurring in the exceptionally long time interval. In
35 cases we could not distinguish the type of disturbance, and
these cases were omitted from analyses that required distur-
bance classification. We evaluated the relative contributions
of branchfalls vs. treefalls, and we did not include stand-
ing dead trees in the analysis because our methods possibly
missed standing dead trees. We separately calculated treefall
and branchfall disturbance rates for each interval and relative
contributions to their summed number and area. We calcu-
lated the Pearson correlations of branchfall disturbance rates
with treefall disturbance rates, for both area- and number-
based rates.

3 Results

We identified 1048 canopy disturbances with a combined
area of 56 134.37 m2 (5.61 ha) that affected the area within
the BCI 50 ha plot between 2 October 2014 and 28 Novem-
ber 2019 (Fig. 2). During the 5 years of the study, 11.2 % of
the area of the BCI 50 ha plot was affected by canopy dis-
turbances (Fig. 2), and 0.6 % was disturbed more than once
(Fig. S4).

3.1 Temporal variation in canopy disturbance rates

Temporal variation analyses included 898 disturbances or
partial disturbances encompassing 49 742.1 m2 of area inside
the 50 ha plot in 46 time intervals (excluding the single long
interval). There was strong temporal variation in canopy dis-
turbance rates, with similar temporal variation in the total
area disturbed (Fig. 3) and in the number of disturbances
(Fig. S5). The mean rate of canopy disturbance creation was
905.1 m2 per month (range of 75 to 8040.9 m2 per month),
and the median was 499 m2 per month (other statistics in Ta-
ble S1).

The highest disturbance rates occurred during May–
July 2016, May–August 2018, and August–September 2019
(Fig. S6). The single highest disturbance rate was observed
between 1 June and 13 July 2016, when 11 257 m2 of dis-
turbances were created in just 42 d (a rate of 268 m2 d−1). A
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Figure 2. Map of canopy disturbances on the 50 ha plot (black rectangle, 1000× 500 m) on Barro Colorado Island, Panama, from 2 Octo-
ber 2014 to 28 November 2019.

full 2.3 % of the total area of the plot was converted to new
canopy disturbances during this time interval.

Rates of canopy disturbances were higher during the
wet season (p = 0.036, Fig. 4a). There was no significant
difference in rates between the early and late wet sea-
son (p = 0.226, Fig. 4b). Very high rates of disturbance
(> 0.3 % per month) were observed only in the wet season.

The best correlate of temporal variation in canopy distur-
bance rates was the frequency of 15 min rainfall events above
the 98.2th percentile, which explained 22 % of the varia-
tion (Fig. 5a). This relationship was mainly driven by events
occurred during wet seasons (Fig. 5a). This threshold out-
performed all other tested rainfall thresholds (all percentiles
from the 90.0th to 99.9th percentile, by 0.1 % of the different
frequency timescales, Fig. 5b). The 98.2th percentile corre-
sponds to a rainfall rate of 24.3 mm h−1 (Fig. 5c). There were
a total of 141 15 min rainfall events exceeding this threshold,
which occurred on 98 different days (Table S2). The mea-
surement interval with the highest disturbance rate (1 June to
13 July 2016) included 11 such high 15 min rainfall events
on 6 d (Table S2). The frequency of events of high maximum
wind speed was not significantly related to canopy distur-
bance rates. Indeed, Pearson correlations were negative for
most wind speed variables (Fig. S7).

3.2 Size structure of canopy disturbances

Size distribution analyses included 870 canopy disturbances
(with 49 495.5 m2 of total area) that had their centers inside
the plot and were not part of the excluded long interval. The
area of an individual canopy disturbance ranged from 2.2 to
486.7 m2, with a mean of 56.9 m2. The median disturbance

area was 36.1 m2, whereas 50 % of the total area was in dis-
turbances greater than 87.1 m2 (Fig. 6a).

The size distribution of observed canopy disturbances was
close to a power function for areas above 25 m2 and was rel-
atively flat over the range of 5 to 25 m2 (Fig. 6b). The fitted
exponent of the power function was −2.16 for canopy dis-
turbances above 25 m2, but the Weibull distribution provided
a better fit than the power function (Table 1). When distribu-
tions were fit to data including smaller size classes (> 2 m2,
> 5 m2, or > 10 m2), the distribution is further from a power
function. The Weibull function remains the best fit; the expo-
nential becomes the second-best fit; and the power function
is the worst fit of the three (Figs. S8 and S9 and Table 1).
Canopy disturbances with larger areas tended to have larger
mean decreases in canopy height (Fig. 6c and d).

3.3 Treefalls and branchfalls

Analyses of the relative contributions of branchfalls,
treefalls, and standing dead trees included 863 canopy distur-
bances or partial disturbances with 48 424.7 m2 of total area
inside the 50 ha plot that could be visually classified into one
of these categories and that were not part of the excluded
long interval. Treefalls accounted for 66.3 % of the total ob-
served disturbance area and 47.9 % of the total number of
observed disturbances; branchfalls accounted for 23.5 % of
the area and 43.5 % of the number; and standing dead trees
accounted for 10.2 % of the area and 8.6 % of the number.
Treefall and branchfall disturbance rates varied largely in
parallel, although the ratios of their rates varied among mea-
surement periods (Figs. 7 and S10). The ratio of the area in
branchfalls to the area in treefalls ranged from 0.024 to 1.4
among measurement periods, and the ratio of the number of
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Figure 3. Temporal variation in canopy disturbance rates in the 50 ha plot on Barro Colorado Island, Panama, across measurement intervals.
Gray shading indicates wet seasons (May to December) of each year, and ticks on the x axis indicate the first day of each year. Rates are
shown in units of percent of area per month (sum of total area disturbed during the measurement interval, divided by the total area of the
plot and the length of the time interval times 30 d). Note that the total area of each rectangle is proportional to the total area of the canopy
disturbed during that measurement interval.

Figure 4. Comparisons of canopy disturbances rates between wet and dry seasons (a) and between early and late wet seasons (b). Violin plots
depict the distributions of disturbance rates (percentage of area disturbed per month) over time intervals, with the number of time intervals
listed above each violin plot. Black dots and bars show mean and 95 % confidence intervals, respectively; p values are based on two-tailed
Student’s t tests for differences in log-transformed canopy disturbance rates between seasons.

branchfalls to the number of treefalls ranged from 0.083 to
2.3.

4 Discussion

The use of high-frequency drone imagery enabled us to quan-
tify temporal variation in canopy disturbance rates and to
quantify the sizes of canopy disturbances at high temporal
and spatial resolutions. We found that canopy disturbance
rates of the BCI 50 ha plot varied strongly over time and
were higher in the wet season. The frequency of extreme
rainfall events was the best correlate of monthly variation
in the canopy disturbance rate during the 5-year study pe-

riod. In contrast, maximum wind speed was not significantly
correlated. The size distribution of canopy disturbances was
close to a power function for larger canopy disturbances, but
the best fit was from a Weibull function overall. Branchfalls
accounted for 26 % of the total area of disturbances from
treefalls and branchfalls combined, and branchfall rates var-
ied largely in parallel with treefall rates over time. These
findings contributed to improve the understanding of the size
distribution, temporal variation, and meteorological drivers
of canopy disturbances in tropical forests.
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Figure 5. Relation of temporal variation in canopy disturbance rates to the frequency of extreme rainfall events. (a) The relationship for the
single best predictor of canopy disturbance rate is the frequency of 15 min periods with rainfall exceeding the 98.2th percentile. Each point
represents one measurement interval. (b) Variation in the Pearson correlation between the canopy disturbance rate and frequency of extreme
rainfall events depending on the temporal grain (colors) and percentile threshold (x axis) for defining extreme rainfall events. Open red circle
represents the best correlation. (c) The relationship of the percentile threshold (x axis) and rainfall rate (y axis) for different temporal scales.
Dashed red line indicates the rainfall rate in mm h−1 of the 98.2th percentile.

Figure 6. Size structure of canopy disturbances. (a) Cumulative number and area of canopy disturbances in relation to their area. (b) Size dis-
tribution of canopy disturbances, together with Weibull and power function fits for canopy disturbances larger than 25 m2 (this threshold was
chosen because we are confident we identified all canopy disturbances above this area, but we may have missed some smaller ones). (c) Re-
lationship of mean vertical height drop to horizontal area among canopy disturbances (points), together with a GAM fit (red line) to illustrate
the trend. (d) Distribution of canopy disturbances across area and height drop classes. The shaded gray in (b) indicates a canopy disturbance
area lower than the 25 m2 threshold.
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Table 1. Parameter values, Kolmogorov–Smirnov (K–S) statistics, the log-likelihood function, and 1AIC values for maximum-likelihood
fits of exponential, power, and Weibull probability density functions to size distributions for canopy disturbances larger than 2, 5, 10, and
25 m2. 1AIC is the difference in AIC from the best model. The best-fit models for each dataset, as well as those within 2 1AIC of the best
model, are highlighted in bold.

Minimum Distribution λ (95 % CI) α (95 % CI) K–S Log 1AIC
size (m2) likelihood

2 Exponential 0.0182 (0.0166–0.0199) 0.068 −4354.66 0.00
2 Power 1.313 (1.293–1.329) 0.339 −4950.99 1192.67
2 Weibull 1.027 (0.938–1.197) 55.8 (49.8–63.5) 0.071 −4354.24 1.16

5 Exponential 0.0191 (0.0173–0.0211) 0.069 −4286.15 4.27
5 Power 1.481 (1.447–1.507) 0.270 −4628.98 689.94
5 Weibull 0.917 (0.809–1.106) 48.6 (41.3–59.3) 0.055 −4283.01 0.00

10 Exponential 0.0196 (0.0181–0.0219) 0.076 −3956.39 18.05
10 Power 1.679 (1.644–1.711) 0.220 −4131.05 367.38
10 Weibull 0.821 (0.732–0.978) 41.0 (33.8–50.4) 0.053 −3946.36 0.00

25 Exponential 0.0197 (0.0180–0.0229) 0.103 −2954.95 56.59
25 Power 2.162 (2.112–2.262) 0.080 −2956.97 60.65
25 Weibull 0.529 (0.437–0.694) 12.1 (5.5–24.8) 0.020 −2925.65 0.00

Figure 7. Relationship of temporal variation in branchfall rates to temporal variation in treefall rates, when measured by total area (a) and
number of events (b). The 1 : 1 line is shown for reference.

4.1 Temporal variation in canopy disturbance

Canopy disturbance rates varied strongly over time in this
moist tropical forest and were higher in the wet season. A
single time interval (1 June to 13 July 2016) accounted for
20 % of the total disturbed area of the BCI 50 ha plot. The
frequency of extreme rainfall events was a strong correlate
of the variation in canopy disturbance rates among mea-
surement intervals, whereas the frequency of high maximum
wind speeds was not related. At our site, wind speeds are
higher during the dry season, when canopy disturbance rates
are lower (Figs. 4a and S1), and it is possible that wind speed
is systematically underestimated in periods of high rainfall.
We also note that wind speed and rainfall measurements were
from a site 1.7 km from the boundary of the plot. Given the
highly local nature of convective storms in the tropics, these

measurements are imperfect proxies for conditions in the
focal plot. Treefall and branchfall disturbance rates varied
largely in parallel but not entirely. Differences in temporal
patterns could in part reflect different sensitivity to particular
abiotic drivers (e.g., wind regime and soil saturation).

These results are consistent with previous findings on sea-
sonal variation and the role of rainfall in gap formation in
tropical forests. A previous 4-year study on BCI found sea-
sonal peaks in August and September, in the middle of the
wet season, with monthly treefall rates significantly cor-
related with rainfall (r = 0.47, p< 0.02) (Brokaw, 1982).
Monthly tree mortality was also strongly and positively cor-
related with rainfall (r = 0.85) in a 1-year study of a 10 ha
site in the central Amazon (Fontes et al., 2018). Similarly,
a study monitoring canopy trees monthly over 5 decades in
the central Amazon found that trees died more often dur-
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ing wet months, even in drought years (Aleixo et al., 2019).
A regional study of the central Amazon based on 12 years
of satellite data found that major windthrows (visible on
Landsat) occurred more frequently between September and
February, months characterized by heavy rainfall, than the
rest of the year (Negrón-Juárez et al., 2017). Studies have
highlighted the importance of mesoscale convective systems,
such as squall lines, for windthrows (Garstang et al., 1998;
Negrón-Juárez et al., 2010, 2017; Araujo et al., 2017). In
Panama, the period of June to August has the higher number
of mesoscale convective systems (Jaramillo et al., 2017), and
these were the months when we observed the highest canopy
disturbance rates. The threshold rainfall rate of 24.3 mm h−1,
which defined the extreme rainfall rate that was the best
predictor of canopy disturbance formation in our study, is
4 times higher than the mean rate for mesoscale convective
systems in the Panama region (Jaramillo et al., 2017), high-
lighting the importance of extreme events. Analysis of spatial
variation in forest damage from Hurricane Maria in Puerto
Rico found that total rainfall was the most important meteo-
rological risk factor and that maximum sustained 1 min wind
speeds were the second-most important; these two variables
were moderately correlated (r = 0.43) (Hall et al., 2020).

4.2 Mechanisms and size structure of canopy
disturbances

Gaps in the forest canopy can be caused proximally by
treefalls of canopy trees, branchfalls of canopy branches,
the decay of standing dead canopy trees, or the decay of
canopy branches. Treefalls and branchfalls of canopy trees
are well-captured in our analyses, which focus on short-term
changes that indicate loss of major canopy elements. In con-
trast, the decay of dead trees and senescing branches gener-
ally involves more subtle changes in the canopy over a longer
period of time and is possibly mostly missed by our meth-
ods. Treefalls account for a majority of canopy tree mor-
tality in most tropical forests, but the mortality of stand-
ing trees also plays a major role, especially in drought peri-
ods. Overall, treefalls (in which trees were uprooted or their
trunks snapped) accounted for 51.2 % of all mortality of trees
> 10 cm DBH (diameter at breast height) in a large-scale
study of tree mortality in 189 Amazonian plots (Esquivel-
Muelbert et al., 2020) and 65 % in a study that monitored
tree mortality in 10 ha of forest in the central Amazon bi-
monthly over 1 year (Fontes et al., 2018). Treefalls can in-
volve a single canopy tree or multiple canopy trees. Multi-
tree treefalls can result from coordinated disturbances over
a large area (e.g., large-footprint wind disturbance) and/or
from domino effects in which the failure of one canopy tree
directly stresses one or more neighboring trees and causes
them to fall as well (e.g., when additional trees are knocked
down by the first tree or pulled down because of connections
via lianas). It has been hypothesized that canopy disturbances
may also be contagious over longer time intervals, with in-

creased risk of treefall near canopy gaps, but evidence for this
in tropical forests is mixed (Jansen et al., 2008). Given that
our measurement intervals are relatively short (∼ 1 month),
almost all of our mapped canopy disturbances are likely to
reflect single catastrophic events.

Our study is one of several that have documented size dis-
tributions of canopy disturbances (dynamic gaps) or of static
canopy gaps above some size that are approximately power
functions, both on BCI (Solé and Manrubia, 1995; Lobo and
Dalling, 2014) and in other tropical forests (Marvin and As-
ner, 2016; Asner et al., 2013; Kellner and Asner, 2009; Silva
et al., 2019; Fisher et al., 2008). Static canopy gaps are ar-
eas in which the forest canopy is below a threshold height,
e.g., 10 m, at a given time. A power function distribution of
disturbance event sizes (here canopy disturbances) and of the
sizes of disturbed areas (canopy gaps) can emerge from self-
organization of dynamic systems such as forests in which in-
dividual tree growth and death depend on the sizes of neigh-
bors (Solé and Manrubia, 1995). These same self-organized
dynamics lead to the development of equilibrium size dis-
tributions of trees, which are typically well-fit by Weibull
distributions in tropical forests (Muller-Landau et al., 2006a,
b). The relative dearth of canopy disturbances smaller than
25 m2 in our dataset, compared to what would be expected
under a power function, may be explained in part by lower
detection frequencies, i.e., measurement bias. Our methods
are expected to capture all treefalls and branchfalls above
this threshold, but we may increasingly have missed smaller
events, especially below ∼ 5 m2. However, we consider it
unlikely that this is a sufficient explanation for the short-
fall in small disturbances and suggest that it is more likely
explained largely by the low frequency of small trees and
branches in the canopy of this mature tropical forest and thus
a dearth of small treefall and branchfall events.

Although rarely quantified, branchfall is an important eco-
logical process, with major contributions to woody turnover
and necromass production. We found that branchfalls were
almost as common as treefalls in number, although they con-
tributed a substantially smaller total area of disturbance. Sim-
ilarly, a ground survey of 78 canopy turnover events in a
Brazilian Amazon forest found that 44 % were branchfalls
and accounted for 15 % of the total affected area (Leitold
et al., 2018). In contrast, a landscape level analysis of lidar
data concluded that branchfalls were 7 times more frequent
than treefalls and accounted for 5 times more area (Marvin
and Asner, 2016). However, Marvin and Asner (2016) classi-
fied branchfalls and treefalls based purely on the proportional
decrease in canopy height (10 %–40 % decrease and 70 %–
100 % decrease, respectively), a process liable to misclassifi-
cation. It entirely ignored disturbances involving intermedi-
ate decreases in canopy height (40 %–70 %) and did not con-
sider the possibility that any of these disturbances might be
standing dead trees. Thus the differences in branchfall con-
tribution between our work and that of Marvin and Asner
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(2016) may be due as much to methodological differences as
to real variation in canopy dynamics.

5 Conclusions and future directions

A mechanistic understanding of the controls on woody res-
idence time in tropical forests is urgently needed to pre-
dict the future of tropical-forest carbon stocks and biodiver-
sity under global change (Johnson et al., 2016; McDowell
et al., 2018; Muller-Landau et al., 2021). Canopy trees ac-
count for a majority of the productivity and carbon stocks
in tropical forests, and their fates are disproportionately im-
portant for determining stand level woody residence time
(Araujo et al., 2020). Advances in drone hardware and pho-
togrammetric software now make it relatively inexpensive
and straightforward to quantify forest canopy structure and
dynamics at high spatial and temporal resolution through dig-
ital aerial photogrammetry and repeat drone imagery acquisi-
tions. Here we applied these methods to 50 ha of old-growth
tropical forest for 5 years and analyzed the resulting prod-
ucts to quantify major drops in canopy height such as those
created by branchfalls and treefalls; we thus calculate the
canopy disturbance rate. We found that canopy disturbance
rates are highly temporally variable and are well-predicted by
extreme rainstorms. Spatial resolutions of 3–7 cm in the or-
thomosaics, as used here, are now easily attained and proved
sufficient to capture canopy dynamics and visually classify
disturbances as treefalls, branchfalls, or the decomposition
of standing dead trees.

Future research building on these approaches and expand-
ing them to additional sites has much to contribute to our un-
derstanding of tropical-forest dynamics. The relationship of
the mortality of standing dead trees to temporal climate vari-
ation could be investigated from these same data by conduct-
ing additional analyses of the orthomosaics to quantify tem-
poral changes in leafing status of standing dead trees, prior
to these trees decomposing. A better understanding of the re-
lationship of storm conditions to treefall and branchfall rates
could be obtained by combining such drone-acquired data
with mechanistic models of wind damage risk (Jackson et al.,
2019), collecting higher-frequency three-dimensional wind
data, and/or measuring canopy dynamics at even higher tem-
poral resolution. The use of drones with high-accuracy GPS
systems, either post-processed kinematic (PPK) or real-time
kinematic (RTK) systems, would also be advantageous and
could enable the elimination of the alignment step of the pro-
cessing as well as automation of the identification of canopy
disturbances based on elevation model differences alone. Fi-
nally, we recommend carrying out flights under cloudy con-
ditions when possible, as these diffuse lighting conditions
improve visibility deeper in the canopy and reduce complica-
tions associated with shadows. The expansion of these meth-
ods to additional and larger areas, potentially in part through
citizen science initiatives, has great potential to improve our

understanding of the mortality of tropical-forest trees and the
future of tropical forests under changing climate regimes.
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