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Abstract. The sudden increase in Amazon fires early in the
2019 fire season made global headlines. While it has been
heavily speculated that the fires were caused by deliberate
human ignitions or human-induced landscape changes, there
have also been suggestions that meteorological conditions
could have played a role. Here, we ask two questions: were
the 2019 fires in the Amazon unprecedented in the histori-
cal record, and did the meteorological conditions contribute
to the increased burning? To answer this, we take advan-
tage of a recently developed modelling framework which
optimises a simple fire model against observations of burnt
area and whose outputs are described as probability densities.
This allowed us to test the probability of the 2019 fire sea-
son occurring due to meteorological conditions alone. The
observations show that the burnt area was higher than in
previous years in regions where there is already substantial
deforestation activity in the Amazon. Overall, 11 % of the
area recorded the highest early season (June–August) burnt
area since the start of our observational record, with areas
in Brazil’s central arc of deforestation recording the highest
ever monthly burnt area in August. However, areas outside of
the regions of widespread deforestation show less burnt area
than the historical average, and the optimised model shows
that this low burnt area would have extended over much of
the eastern Amazon region, including in Brazil’s central arc
of deforestation with high fire occurrence in 2019. We show
that there is a 9 % likelihood of the observed August fires

being caused by meteorological conditions alone, decreasing
to 6 %–7 % along the agricultural–humid forest interface in
Brazil’s central states and 8 % in Paraguay and Bolivia dry
forests. Our results suggest that changes in land use, cover
or management are the likely drivers of the substantial in-
crease in the 2019 early fire season burnt area, especially in
Brazil. Burnt area for September in the arc of deforestation
had a 14 %–26 % probability of being caused by meteoro-
logical conditions, potentially coinciding with a shift in fire-
related policy from South American governments.

1 Introduction

South American fires made global headlines in August 2019,
with the largest increase in fire activity seen in nearly 10
years (INPE, 2019; Lizundia-Loiola et al., 2020). Of the
roughly 100 000 fires burning by the end of the month,
around half were in the Amazon rainforest region (de
Oliveira Andrade, 2019; INPE, 2019). While fires in drier
savannah regions of South America such as the Cerrado are
more common, fires in the rainforest are not a natural oc-
currence and are rarely ignited without human intervention
(Aldersley et al., 2011). As such, fires in humid, tropical re-
gions where the vegetation is not adapted to frequent burn-
ing (Kelley, 2014; Staver et al., 2020; Zeppel et al., 2015),
have much higher tree mortality rates (Brando et al., 2014;
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Cochrane and Schulze, 1999; Pellegrini et al., 2017). As a
result, an estimated 906 000 ha of the Amazon biome was
lost to fires in 2019 (Butler, 2017). The amount of carbon
and trace gas emission was also a major concern given the
high biomass of the areas being burnt, and smoke from these
fires reached cities as far as São Paulo more than 2700 km
away (Lovejoy and Nobre, 2019). Usually, small-scale fires
in Amazonia are associated with deliberate but localised
deforestation, although in dry years, there is more risk of
these fires escaping into much larger areas (Aragão et al.,
2018). Hence the substantial increase in fires in 2019 sparked
much debate about whether the level of burning was unprece-
dented, whether increased burning was driven by a drier than
normal fire season and whether raised levels of direct defor-
estation played a role (Arruda et al., 2019; Escobar, 2019).

The Amazon has not been the only place with recent un-
usual and high fire activity, with large-scale fire events world-
wide in the last couple of years including in the Arctic,
Mediterranean, Australia, the UK and the US. In Novem-
ber 2018 over 80 people were killed in the Camp Fire in Par-
adise, California, the most destructive in California’s history,
with the Camp, Woolsey and Carr fires together costing an
estimated USD 27 billion in damages (Nauslar et al., 2019).
California 2020 fire season is set to be even more damag-
ing (Anon, 2020), though the true extent and costs are still
increasing at the time of writing. Hundreds of fires burnt in
Siberia and Alaska throughout the 2019 and 2020 Northern
Hemisphere summers, releasing over 150 Mt of CO2 in 2019
and 244 Mt in 2020 into the atmosphere (Witze, 2020). Of
major concern was the release of large quantities of black
carbon with the potential to further accelerate local arctic
ice melt (Patel, 2019). The UK saw some burning, including
a peatland fire in north-east Sutherland that doubled Scot-
land’s carbon emission for 6 d in May 2019 (Wiltshire et al.,
2019). Between September 2019 and February 2020, fires
across south-eastern Australian burnt around 18.6 × 106 ha,
destroyed over 5900 buildings and killed at least 34 people
(Boer et al., 2020; RFS, 2019; Sanderson and Fisher, 2020).
Unusual fire events such as these are expected to increase
in frequency in the future from both changes in climate and
socio-economic pressures on the landscape (Fonseca et al.,
2019; Jones et al., 2020). Given the concerns raised and the
extent to which much of these fire events captured the atten-
tion of the public and press in recent months, in the after-
math, it is important to look at these events objectively. In
particular, it is essential to determine whether they were un-
usual in the context of the historical record and, if so, what
might be new and emerging drivers.

There are many ways to assess drivers of historical fire
events. Some studies simply correlate individual drivers with
burnt area in isolation (Andela et al., 2017; Van Der Werf
et al., 2008). However, these do not consider the complex in-
teraction of multiple drivers regarding fire and are therefore
unable to go beyond a loose attribution of a particular forc-
ing to fire, which can easily be confused as causations due to

the number of drivers. Fire danger indices (FDIs), which can
capture simultaneous drivers, are useful for calculating the
level of risk of a fire spreading and becoming severe in a par-
ticular area (de Groot et al., 2015). FDIs have been adapted
to assess recent and future trends in climate regarding fire
weather (Burton et al., 2018; Jolly et al., 2015) and attribute
increases in fire risk to anthropogenic changes in climate
(van Oldenborgh et al., 2020). These metrics thereby pro-
vide rapid policy-relevant information for fire management
(De Groot et al., 2010; Perry et al., 2020). However, FDIs
by themselves do not account for fuel or ignitions, differen-
tiating them from fire observations such as burnt area, which
makes them an unsuitable tool for assessing fire in the holis-
tic context of weather, fuel dynamics, ignitions, and human
land and fire management (Kelley and Harrison, 2014). Fire-
enabled land surface models (LSMs) can, however, account
for these drivers (Kelley and Harrison, 2014; Lasslop et al.,
2016; Prentice et al., 2011b) to simulate a physical, observ-
able measure of fire regimes, such as burnt area or number of
fires. Some LSM fire schemes achieve this by modelling fuel
moisture using FDIs (Lenihan et al., 1998; Rabin et al., 2017;
Venevsky et al., 2002). However, most LSMs have been de-
veloped to study long-term, often decadal-timescale carbon
dynamics and Earth system feedbacks and therefore often fail
to reproduce year-to-year patterns of fire with the required
accuracy to determine the causes of individual fire seasons
(Andela et al., 2017; Hantson et al., 2016, 2020). Embed-
ding fire within a complex vegetation model system also pre-
vents rapid observation–model fusion, as iterative optimisa-
tion techniques are too computationally expensive and insta-
bilities arise from non-linear responses of fire to simulated
vegetation and fuel dynamics. Many large-scale vegetation-
modelling projects, therefore, simulate up to a “present day”
that can be several months or years out of date (Friedling-
stein et al., 2019; Hantson et al., 2020). This lack of pre-
dictive capability has led to calls for simulation frameworks
that fuse statistical representations of fire drivers with mod-
elling techniques that consider such interactions (Fisher and
Koven, 2020; Forkel et al., 2017; Krawchuk and Moritz,
2014; Sanderson and Fisher, 2020; Tollefson, 2018; Williams
and Abatzoglou, 2016).

Kelley et al. (2019) developed a methodology which ad-
dresses this gap by coupling the same representation of pro-
cesses found in simple fire-enabled LSMs (Rabin et al.,
2017) using a Bayesian inference framework. The main ad-
vantage of this system is that it can assess the contribution
of different fire drivers directly from observations and track
uncertainty in the model parameters and the models’ abil-
ity to reproduce observations. We apply this methodology
here, using monthly meteorological conditions and burnt area
(BA) observations to constrain and drive the model, thus cap-
turing interannual variability within the context of changing
meteorological conditions. We use this framework to answer
the specific question: did the meteorological conditions con-
tribute to the Amazonia fires of 2019?
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2 Methods

The modelling protocol and optimisation framework largely
follow Kelley et al. (2019), where a more detailed descrip-
tion may be found. Here, we summarise and outline further
refinements. Monthly BA is modelled as a product of limita-
tions imposed by four controls: (1) fuel availability; (2) mois-
ture in live and dead fuel; (3) anthropogenic and natural igni-
tion; (4) both active suppression and landscape fragmentation
effects from human land use (Table S1 in the Supplement).
Each control is calculated as a linear combination of its re-
spective drivers. The impact each control has on fire is repre-
sented by a logistic curve describing the maximum allowed
burnt area based on that control, and the product of all four
limitations is used to determine BA.

We made several changes to the previous modelling pro-
tocol in order to utilise near-real-time meteorological and
fire variables so that we can produce relevant results that
closely follow the fire event and to better describe the con-
ditional probability distribution between parameter samples
and burnt area observations. We used the MODIS Collec-
tion 6 MCD64A1 burnt area product (Giglio et al., 2018) as
our target dataset and replaced actual over potential evapo-
transpiration in the moisture control with soil moisture (Ta-
ble S1). We also used both the top 10 cm and 10–200 cm
soil moisture (Kalnay et al., 1996) as independent moisture
drivers in order to capture the impact of previous drought
years on deep water availability for live fuel. As near-real-
time wet-day information is also not available, we replaced
wet days in the calculation of dead fuel drying potential (Kel-
ley et al., 2014) with a proxy for wet days (WDs), using
Global Precipitation Climatology Project (GPCP) precipita-
tion (Adler et al., 2003) (pr) based on (Prentice et al., 2011a)

WD= 1− e−wd·pr, (1)

where wd is an optimised parameter.
All variables were resampled and, where necessary, inter-

polated to a monthly time step as per Kelley et al. (2019).
All driving variables were provided on a resolution of 2.5◦

except land use, provided at 0.5◦. We, therefore, choose to
regrid all datasets to a resolution of 2.5◦, as interpolating to
a finer resolution would provide no new information about
the meteorological drivers tested. MCD64A1, soil moisture
and equilibrium fuel moisture content were processed using
the “rgdal” (Bivand et al., 2016) and “raster” (Hijmans and
van Etten, 2014) packages in R (R Core Team, 2015). For
MODIS vegetation continuous field (VCF) fractional covers
(Dimiceli et al., 2015), tiles were merged and resampled to
the model grid using the “gdal” package (GDAL/OGR con-
tributors, 2018). Land use, population density, precipitation,
humidity, temperature and lightning were processed using
the iris package (Met Office, 2013) with Python version 3
(Python Software Foundation, https://www.python.org/, last
access: 27 March 2019).

The model was optimised against MCD64A1 burnt area
(Giglio et al., 2018) for the period July 2002 to June 2018,
which was the common period for all datasets (Table S2) over
South America, south of 13◦ N. We used the same Bayesian
inference technique as per Kelley et al. (2019). Bayes’ theo-
rem states that the likelihood of the values of the set, β, which
contain our 24 unknown parameters (i.e. the 21 parameters
from Kelley et al. (2019), wd from Eq. (1) and error term pa-
rameters P0, σ in Eq. 3) and our known model inputs, given
a set of observations Ys is proportional to the prior proba-
bility distribution of β (P(β)) multiplied by the conditional
probability of Ys given β:

P(β|Ys)∝ P(β) ·P(Ys|β). (2)

As 41.47 % of the burnt area observations are zero and
the remaining are normally distributed under logit transfor-
mation (Fig. A1 in Appendix A), we, therefore, defined the
likelihood, P(Ys|β) using a zero-inflated normal distribution
on the logit transformed burnt area, as opposed to a simple
normal distribution as used in Kelley et al. (2019). This bet-
ter described the observational to the simulated difference in
burnt area during times of very low or very high burning. Our
zero-inflation likelihood term is therefore described as

P(Ys = 0|β)= 5Ni (1−BA2
i ) · (1−P0),

P (Ys > 0|β)= [1−P(Ys = 0|β)] ·
N

σ
√

2π

· exp

{
6Ni

(
logit(yi)− logit(BAi)

σ

)2
}
, (3)

where i represents an individual data point, yi is the burnt
area observations, N is the observation sample size and
logit(x)= log

(
x

1−x

)
.

The posterior solution was inferred for all model parame-
ters using a Metropolis–Hastings Markov chain Monte Carlo
(MCMC) step with the PyMC3 Python package (Salvatier
et al., 2016), running 10 chains each over 10 000 iterations.
We used all of the 44 750 grid cells on our 2.5◦ grid and
monthly time step for 16 years in our assimilation procedure.
This is a departure from Kelley et al. (2019), where only 10 %
of grid cells were used, as our sample size was much smaller
and we did not face the same computational demand. Due
to our sample size, our likelihood dominates over our priors,
and as with Kelley et al. (2019), priors predominantly were
employed to set physically plausible bounds on our parame-
ters.

Once optimised, the model was then run from January
2002–December 2019, and so the trained model was in a
predictive mode for 2019. Due to data availability at the
time of writing, July 2017–June 2018 land cover, land use
and population density were recycled for July 2018 onwards
(Table S2). We sampled 100 parameter ensemble members
from the last 5000 iterations of each of the 10 chains, pro-
viding us with 1000 ensemble members to estimate the mod-
els’ posterior solution to Eq. (2). Sampling was performed
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using the iris package (Met Office, 2013) with Python ver-
sion 3 (Python Software Foundation, https://www.python.
org/). The posterior solution provides an estimate of the burnt
area based on the parameter uncertainty of our model, corre-
sponding to the yellow areas in time series in Figs. 1 and 2.
The mean burnt area for a particular parameter combination
(BAβ) was obtained from

BAβ =

1∫
0

P(BA|β) ·BAdBA. (4)

BAβ was evaluated using the implementation of the fire
Model Intercomparison Project (fireMIP) benchmarking
metrics (Hantson et al., 2020; Kelley et al., 2013; Rabin et al.,
2017) as per Kelley et al. (2019). We also performed ad-
ditional benchmarking metrics of the models’ ability to re-
produce seasonality and inter-annual variability of fire. See
Figs. S1–S3 in the Supplement and the model evaluation
Supplement for validation methods and results.

We chose five regions (marked A–E in Fig. 1 and Table 1;
see Fig. A2 for locations) to represent forest areas already
under pressure from deforestation. Regions A–C form a tran-
sect (west to east) across the agricultural–humid tropical for-
est interface in Brazil’s arc of deforestation, often associated
with deforestation (Fig. S4), whereas the D and E regions
are found in agricultural regions embedded in savanna and
grassland regions that experience frequent burning:

A. Acre, southern Amazonas state and Brazilian–Peruvian
border

B. Rondônia and northern Mato Grosso, Brazil

C. Tocantins, Brazil

D. Maranhão and Piau in coastal deforestation regions

E. Brazilian, Bolivian and Paraguayan border.

We also assessed an overall area of active deforestation
(AAD) in the Amazon region (Fig. A2). This area is defined
as the parts of South American southern tropics with signif-
icant decreasing tree cover trends, as seen in VCF (Dimiceli
et al., 2015) and significant increasing agricultural fractions
in the HYDEv3.1 dataset (Klein Goldewijk et al., 2010).
Trend analysis used the same technique described in Kel-
ley et al. (2019), where we took significance as p < 0.05 on
the linear trend for each month in the year on logit trans-
formed cover variables, using the green–brown R package
(Forkel et al., 2013, 2015). AAD was additionally assessed
over three sub-region areas, primarily to evaluate the mod-
els’ historic performance and assess the increase in 2019 fires
across the humidity gradient:

F. area of active deforestation

G. the southern end of agricultural–humid tropical forest
interface in Brazil’s central states, often associated with
the arc of deforestation in Brazil’s central states

H. drier savanna and woodland in Cerrado and Caatinga
in the eastern basin where land has already been heavily
converted to agriculture

I. southern seasonally dry–deciduous Chiquitano and
Gran Chaco forests, mainly along the Amazon and La
Plata watersheds.

We assessed the probability of 2019 fire activity being ex-
plained by information provided to the model in three ways
(Table 1):

1. The likelihood of observed monthly burnt area based on
the information provided to our model: in the predictive
model, the probability of a burnt area y (where y can be
outside training data Ys, as is the case for our year 2019
analysis) being explained by our model (Pred(y) – full
model uncertainty, or model error, in tan areas on time
series in Figs. 1 and 2) is proportional to the probability
of y given a parameter set, β, weighted by P(β|Ys):

Pred(y)∝
∫
PS

P(β|Ys) ·P(y|β)dβ. (5)

Where the observed burnt area, y, falls within the
model’s full posterior, (D(y)) is then the sum of all
probabilities greater than y:

D(y)=

1∫
y

Pred(y)dBA. (6)

When D(y)∼ 0,1 suggests y is towards the extremes
of the posterior. As our posterior solution is not nor-
mally distributed, observations can fall at the extremes
(i.e. when there is no burnt area, y = 0 and by defi-
nition D(y)= 1) and still have a high likelihood (i.e.
if P(Ys = 0|β) in Eq. (3) is much greater than 0; see
Fig. B2 as an example). We, therefore, define the sig-
nificance of D(y) as the probability of y occurring by
chance (pv(y)) from the sum of all probabilities below
P(y) (Fig. B2):

pv(y)= 1−
i≤n∑
iε2·Z

 yi∫
yi−1

P(x)dx−P(y) · (yi − yi−1)

, (7)

where {yi, . . .,yn} is the set of solutions to P(yi)=

P(y).

Whenever D(y) and pv(y) are low, this indicates burn-
ing is significantly higher than expected by the model in
that month.
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Table 1. Observed and model anomaly in burnt area for August and September 2019 as a fraction of August and September averages
2002–2019 across selected regions (see methods). Red indicates more burning than normal, blue less and yellow around average burning.
The model is expressed as 5 %–95 % of the posterior accounting for parameter uncertainty. The first column under “likelihood” shows the
percentage likelihood that the observed burnt area is as suggested by the model; the second column gives the associated p value. The third
column gives the percentage likelihood that the model suggests a higher than average burnt area for the given month, and the fourth column
shows the percentage likelihood that the model captures the observed anomaly based on the full model posterior.

2. The likelihood that the burnt area would have been
higher than the annual average, i.e. the fraction of the
model’s full posterior being greater than the model’s an-
nual average climatological posterior (the point where
the vertical lines cross 1 in the right-hand columns in
Figs. 1 and 2): a climatological burnt area “clim” for a
given month,m, in the year (i.e. January, February, etc.)
can be calculated from the convolution of each year’s
posterior solutions, βyr,m. Note that it is the model in-
puts, incorporated in βm, and not the model parameters
that vary with time:

P(BA|climm)= P
(
BA|β2001,m ∩β2002,m. . .∩β2019,m

)
,

where P(BA/2|βi ∩βj )=
∫ BA

0 P(BA− x|βj ) ·
P(BA|βi)dx and

P(BA/3|βi ∩βj ∩βk)=

BA∫
0

P(BA− x|βk)

·P(x/2|βi ∩βj )dx . (8)

The probability of an anomaly A in a given year, yr, for
month m, is, therefore

P(A|βyr,m ∩ climm)=

1∫
0

P(A ·BA|βyr,m)

·P(BA|clim)dBA . (9)
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The likelihood of a year having a higher anomalous A
is the sum of probabilities of <A:

L(A|βyr,m ∩ climm)=

A∫
0

P(A|βyr,m ∩ climm)dA. (10)

And the likelihood of the year an average burnt area is
given by L(1|βyr,m ∩ climm).

3. The likelihood of the observed anomalous year occur-
ring is given by

L

(
ym,yr

ym
/|βyr,m ∩ climm

)
, (11)

where ym,yr is the burnt area for the month,m, and year,
yr, in question and ym is the climatological average of
that month

3 Results

3.1 Burnt area from 2001–2018

The highest historic burnt areas are found in the Savanna re-
gions of tropical South America (Fig. 3), though some burn-
ing still occurs in forested areas, particularly in areas which
have experienced an increase in agriculture and decrease in
tree cover since 2002 (Fig. S4). The model reproduces this
spatial pattern, and the model’s full posterior encompasses
the full range of burnt areas (Fig. 3, and benchmarking in
the Supplement). Burnt area starts to increase in May and
dies out in October throughout most of the area of active de-
forestation, although it can start as late as July in more hu-
mid areas and can continue through to December in drier Sa-
vanna (Fig. S3). The bulk of the burnt area occurs in August
and September. September typically sees the highest burnt
area in central Brazil, whereas fire peaks in August around
Bolivia and Paraguay (Figs. 1E and S3). Our model repro-
duces this seasonal pattern in burning across all regions (see
benchmarking in the Supplement), including onset and peak
(Fig. S3). As our model maintains constant human ignitions
and suppression throughout the year, this suggests that the
seasonal pattern can be largely reproduced from meteorolog-
ical variations, although a slight increase in uncertainty in
early fire season burning could point to increased human ig-
nitions not captured in the model (Fig. S3).

Unusually high levels of burning occurred in 2004 in the
Bolivian–Paraguayan dry forest (red line in Fig. 1E), in 2005
in the eastern arc of deforestation (Fig. 1A) and Paraguay
dry forest (Fig. 1E), in 2007 in monsoonal coastal forests
(Fig. 1D), and in 2010 in Bolivia and Paraguay dry forests
(Fig. 1D and E). The 2005 and 2010 burnings have pre-
viously been associated with droughts driven by a tropical
North Atlantic warming anomaly (Marengo and Espinoza,

2016). The model reproduced the spatial pattern of this in-
creased burning in 2005 and 2010 (Figs. C1 and C2 in
Appendix C). In our different regions, observed levels of
burning fall within our model’s posterior (Figs. B1 and B2
in Appendix B), although they are at the higher end, with
a high value of expectation (height of the posterior curve
in Figs. B1 and B2) and high p value (blue shaded area,
Figs. B1 and B2). This, along with the model’s high Spear-
man’s rank performance (Figs. S1 and S2) suggests that the
model is able to capture the interannual variations driven
by meteorological conditions. Deforestation rates in 2004/05
were high (Marengo et al., 2018), and an increase in fire ac-
tivity in 2007 has also been linked to deforestation across
the Amazon (Morton et al., 2008). Additionally, in the early
part of our observational record, much of the region has
been shown to be less coupled to meteorological drivers and
more heavily influenced by human fire and land management
(Aragão et al., 2018). This is reflected by the improved per-
formance of the model, which depends solely on changing
population density and land use cover and not on changes in
landscape management, during this later period in the AAD
(Fig. 2F, 2011 onwards), particularly in areas dominated by
agriculture (Fig. 2H).

On the whole, the framework’s posterior is better able
to encompass extremes in observations in humid regions
(Fig. 2G vs. H and I), particularly across the Brazilian arc
of deforestation (Fig. 1A–C vs. D and E). Overall, 19 out
of 204 months up to 2018 for the AAD (∼ 9 %) fall out-
side the 90 % confidence interval (tan in Fig. 2F), suggesting
that the frameworks posterior accurately describes the occur-
rence of more extreme months for the region as a whole. That
only 13 months out of (204 months× 5 regions) 1020 months
(∼ 1 %) fall outside the posterior for smaller regions (Fig. 1)
suggests that the posterior is wider than expected. Our as-
sessments of mismatch between observations and model for
these regions will, therefore, likely be conservative, partic-
ularly for humid regions B and C, with no months prior to
2019 falling outside the 90 % confidence interval.

3.2 Burnt area in 2019 in context

The year 2019 burnt area during the early fire season (de-
fined as June to August) was higher than the 2002–2019 av-
erage in areas of recent historical deforestation, despite a
lower than average burnt area over much of the rest of the
continent (Fig. 3). The AAD as a whole saw the third high-
est levels of burning in the fire season (Fig. 2F, August), be-
hind 2007 and 2010. Overall, 11 % of the AAD, particularly
around the central region of Brazil’s arc of deforestation, ex-
perienced more burning in August than in any previous year
since our observation record started in 2002 (Fig. 1B and C).
Despite burnt area returning to normal levels in September
across most of the AAD (Fig. 4), burning remained high in
humid forest areas (Fig. 2G). Burning also remained higher
than average along the border between Brazil, Bolivia and
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Figure 1. Time series and fire season anomalies for modelled and observed burnt area. See Fig. A2 for locations of A–E. Red lines show
monthly burnt area observations from MCD64A1, yellow shows model accounting for parameter uncertainty (10 %–90 %) and brown shows
full model uncertainty (10 %–90 %). The red line is dashed when observations and model accounting for parameter uncertainty overlap.
Vertical grid lines are positioned for August each year. Right-hand plots show observed (x axis) and modelled (y axis) anomaly, calculated
as 2019 burnt area over 2002–2019 climatological average burnt area for (first column) August and (second column) September. The colour
indicates the year, with 2019 in red. Thin lines show 10 %–90 % full model uncertainty, while dots and thick line indicate 10 %–90 %
parameter uncertainty

Paraguay (Figs. 1E, 2I and 4). This meant that, while the
burnt area was higher than usual in 2019, it was not excep-
tionally higher over the entire fire season (June–September)
for the entire AAD, though individual regions still stand out
as having much higher burning than in any previous year,
particularly in Brazil’s central states (Fig. 1B and C).

3.3 Climatic conditions in 2019

The model shows with high confidence that most of eastern
Amazonia should have, in fact, experienced less fire than nor-
mal for June–August when accounting for 2019 meteorolog-
ical conditions. This expected low fire rate included areas in
the Brazilian humid-forest–agricultural interface in the AAD
that saw higher than annual average burning in observations
(Figs. 1C and 3). The western Amazon shows an increase in
fire compared to the annual average (Fig. 3). The observed
burnt area, however, still exceeds the model in all our re-
gions in 2019 (Fig. 1) except region D in the already heavily

converted agricultural land near the Brazilian coast (Fig. S4).
Only 0 %–2 % of the area of the AAD showed unprecedented
high burning in the model, compared to the 11 % in observa-
tions. Observed burnt area in August falls outside the full
model’s posterior (at 90 % confidence interval) for the AAD
(Fig. 2F), with only a 9 % likelihood of being explained by
the model (Table 1). This is particularly prominent in more
humid areas, with a 10 % likelihood in humid forests (Fig. 2G
and Table 1, G) – tied as lowest likelihood in the observa-
tional record with September 2005, compared to 17 % like-
lihood in seasonally dry forests regions (Fig. 2I) and 17 %
the driest, savanna areas (Fig. 2H) where observations tend
to fall outside the model posterior more often (see Sect. 3.1).
Regions B, C in central Brazil, and E on the Brazil, Bolivia
and Paraguay border are even less likely to be explained by
the model (7 % for B, 6 % for C and 8 % for E; Table 1),
despite all previous months falling within the full model’s
posterior confidence range in these regions, except for Au-
gust and September in the 2005 in region A, although it is
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Figure 2. As Fig. 1, but for the area of active deforestation region, which incorporates areas where there has been a significant increase in
agriculture and decrease in tree cover. See Fig. S4 and regions and increased agriculture and decreased tree cover in the (G) humid tropical
forest, (H) savanna and (I) dry–deciduous forest.

Figure 3. Maps of modelled and observed percentage of burnt area. First row: observed burnt area, for June–August 2002–2019 annual
average (left) and difference between June–August 2019 and 2002–2019 average (centre) and the number of years which the 2019 burnt area
exceeds (right). Second and third row: as top row, for the model posterior’s 5 % and 95 % percentiles.

Biogeosciences, 18, 787–804, 2021 https://doi.org/10.5194/bg-18-787-2021



D. I. Kelley et al.: Technical note: Low meteorological influence found in 2019 Amazonia fires 795

Figure 4. Same as Fig. 3 but for September.

more likely that burnt area regions A and D at either end of
Brazil’s arc of deforestation could be explained by the model
(18 % and 20 %, respectively).

The observed anomaly for August 2019 is higher than the
model across all regions except D. This is particularly promi-
nent in regions B and C, where observations show that burnt
area was 196 % and 138 % greater than the August average
(Table 1), whereas the model suggests that meteorological
conditions alone should have resulted in a fire season with
a 16 %–22 % increase (based on 5 %–95 % parameter uncer-
tainty range for parameter uncertainty) in burnt area in B and
2 % reduction to 4 % increase for C compared to the August
average, with only a 57 % and 53 % chance of a greater burnt
area than the average for B and C, respectively. The likely
occurrence of the observed anomaly was 7 % and 10 % for B
and C, respectively (Table 1) – much greater than any previ-
ous year (Fig. 1B and C, August column).

The higher observed anomaly vs. the model extends over
much of the AAD (Fig. 2, August column, red points). The
model suggests a 4 %–6 % reduction for the AAD, with a
49 % probability of greater than the annual average burnt
area (Table 1). By comparison, the observed burnt area was
45 % greater than the annual average, with a 20 % likelihood.
Again, the observed anomaly seems to be least likely in more
humid regions. For our humid area, G, the model suggests a
small (10 %–14 %) increase in burnt area, with only a 12 %
probability of a 107 % increase seen in observations, whereas

the 5 % observed reduction in drier savanna regions in H
seems to be in line with the model (at 67 % likelihood).

By September, there was less disparity between observa-
tions and models. In regions B and C, for example, observa-
tions had a 14 % and 26 % probability of being explained by
the model and a 66 % and 25 % likelihood of the anomalous
year as seen in the observations. Across the AAD, the more
modest 16 % increase in the observations had a likelihood of
40 %.

4 Discussion

The observed spatial pattern of burnt area in June–August
2019 shows that unprecedented burning was only seen in
Brazilian regions normally associated with deforestation.
Our modelling framework demonstrates that, based on me-
teorological conditions alone, reduced burning seen across
the rest of tropical South America should have extended into
these regions. Specifically, our analysis suggests that there is
only a 9 % probability that the levels of burning in the early
fire season would have been caused by 2019 meteorological
conditions or natural ignitions alone (time series in Figs. 1
and 2). Eastern areas normally associated with deforesta-
tion did show expected levels of burning, but in the western
and central parts of the arc of deforestation and Bolivia and
Paraguay dry forests, burning was much higher. Here there
is a 6 %–8 % of such high levels of burning compared to the
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background rate (Fig. 1, August column), with areas where
agriculture meets more humid forest seeing the most unusual
levels of burning. As our model’s posterior reflects the levels
of burning in previous dry years, we can eliminate drier con-
ditions as a possible driver of increased 2019 fires. We also
account for, and therefore eliminate, longer-term drier con-
ditions through deep soil moisture as a possible driver. The
cause of increased burning in 2019 is therefore either a driver
left static in the model for 2019 or a process not considered.
Because of the non-availability of near-real-time data, drivers
held unchanged at 2018 values for 2019 are tree cover, land
use and human population. The only plausible way tree cover
could have substantially changed is through increased de-
forestation rates (Zhang et al., 2015). Thereby changes in
drivers not accounted for in 2019 would only have caused
increased burning through direct human manipulation of the
landscape rather than the particular meteorological features
of that year.

Improved descriptions of evolving changes in human fire
and landscape interactions over time may also be required
to capture direct human-driven changes in burnt area. This
is likely to include changes in demography or human be-
haviour. For example, we currently account for the impact
of a changing population on fire starts and suppression but
not for how fire ignitions per person change over time. An
evolving policy could have also been the cause of the unusual
fire activity. It should also be noted that observed fire activity
returned to expected levels given meteorological conditions
in September over most of the deforestation region (Figs. 1
and 4). This reduction could be after the June–August fires
received international media coverage, triggering efforts in
combating fires from South American governments (BBC
news, 2019; NASA, 2019).

5 Conclusions

In this study, we have used a novel Bayesian modelling ap-
proach, which tests the likelihood of observed extremes in
fire against inferred historical relationships by tracking un-
certainties in modelling fire in the land surface. Our frame-
work provides a rapid assessment of whether there was any
influence of meteorological conditions across the Amazon
that exacerbated fire levels in 2019.

The model predicts a lower burnt area than we see in the
observations for Amazonia during June–August 2019, in-
dicating that from observed meteorological data alone, we
would not expect 2019 to be a high-fire year. This result
points to socio-economic factors having a strong role in the
high recorded fire activity. Specifically, we conclude that it
is likely (> 90 % probability) based on past relationships
between burnt area and meteorological conditions that the
weather conditions did not trigger the increase in burning in
Amazonia during the early fire season in 2019. This result
holds over the entire area of active deforestation and further-
more is likely (93 %) in central Amazonia.

Biogeosciences, 18, 787–804, 2021 https://doi.org/10.5194/bg-18-787-2021



D. I. Kelley et al.: Technical note: Low meteorological influence found in 2019 Amazonia fires 797

Appendix A

Figure A1. Distribution of burnt areas in MODIS Collection 6 MCD64A1 burnt area product (Giglio et al., 2018) and (red line) fitted normal
distribution of logit transformed burnt areas greater than 0.

Figure A2. Study regions. Boxes mark areas used for time series in Fig. 1 and rows A–E in Table 1. Coloured areas for time series if Fig. 2
and F–I in Table 1, with the entire coloured region being used for F AAD. See Fig. S4 for construction of AAD and areas G–I.
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Appendix B

Figure B1. Full model posterior solution (black line) for August
2005 across each of the sub-regions compared to MODIS Collection
6 MCD64A1 burnt area product (Giglio et al., 2018) (red dashed
line). Red shaded area (posterior solution smaller than observed)
shows the likelihood high burnt areas were influenced by factors
external to the modelling framework. Blue shaded area is the area of
the posterior which has less chance of occurrence than the observed
burnt area (given by blue dashed line).

Figure B2. As Fig. B1 but for August 2010.
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Figure B3. As Fig. B1 but for August 2019.
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Appendix C

Figure C1. Same as Fig. 3 but for June–September annual average compared to 2005.

Figure C2. Same as Fig. C1 but for 2010.
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Code and data availability. The model code and Bayesian infer-
ence framework used to support the findings of this study are
archived at https://doi.org/10.5281/zenodo.4298760 (Kelley et al.,
2020a). Model output is archived at https://doi.org/10.5281/zenodo.
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