Nitrogen isotopic fractionations during nitric oxide production in an agricultural soil

Zhongjie Yu1,2 and Emily M. Elliott1

1Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
2Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA

Correspondence: Zhongjie Yu (zjyu@illinois.edu)

Received: 26 September 2020 – Discussion started: 20 October 2020
Revised: 12 December 2020 – Accepted: 22 December 2020 – Published: 4 February 2021

Abstract. Nitric oxide (NO) emissions from agricultural soils play a critical role in atmospheric chemistry and represent an important pathway for loss of reactive nitrogen (N) to the environment. With recent methodological advances, there is growing interest in the natural-abundance N isotopic composition (δ15N) of soil-emitted NO and its utility in providing mechanistic information on soil NO dynamics. However, interpretation of soil δ15N-NO measurements has been impeded by the lack of constraints on the isotopic fractionations associated with NO production and consumption in relevant microbial and chemical reactions. In this study, anoxic (0 % O2), oxic (20 % O2), and hypoxic (0.5 % O2) incubations of an agricultural soil were conducted to quantify the net N isotope effects (15η) for NO production in denitrification, nitrification, and abiotic reactions of nitrite (NO2−) using a newly developed δ15N-NO analysis method. A sodium nitrate (NO3−) containing mass-independent oxygen-17 excess (quantified by a Δ17O notation) and three ammonium (NH4+) fertilizers spanning a δ15N gradient were used in soil incubations to help illuminate the reaction complexity underlying NO yields and δ15N dynamics in a heterogeneous soil environment. We found strong evidence for the prominent role of NO2− re-oxidation under anoxic conditions in controlling the apparent 15η for NO production from NO3− in denitrification (i.e., 49‰ to 60‰). These results highlight the importance of an under-recognized mechanism for the reversible enzyme NO2− oxidoreductase to control the N isotope distribution between the denitrification products. Through a Δ17O-based modeling of co-occurring denitrification and NO2− re-oxidation, the 15η for NO2− reduction to NO and NO reduction to nitrous oxide (N2O) were constrained to be 15‰ to 22‰ and −8‰ to 2‰, respectively. Production of NO in the oxic and hypoxic incubations was contributed by both NH4+ oxidation and NO3− consumption, with both processes having a significantly higher NO yield under O2 stress. Under both oxic and hypoxic conditions, NO production from NH4+ oxidation proceeded with a large 15η (i.e., 55‰ to 84‰) possibly due to expression of multiple enzyme-level isotopic fractionations during NH4+ oxidation to NO2− that involves NO as either a metabolic byproduct or an obligatory intermediate for NO2− production. Adding NO2− to sterilized soil triggered substantial NO production, with a relatively small 15η (19‰). Applying the estimated 15η values to a previous δ15N measurement of in situ soil NOx emission (NOx = NO + NO2) provided promising evidence for the potential of δ15N-NO measurements in revealing NO production pathways. Based on the observational and modeling constraints obtained in this study, we suggest that simultaneous δ15N-NO and δ15N-N2O measurements can lead to unprecedented insights into the sources of and processes controlling NO and N2O emissions from agricultural soils.

1 Introduction

Agricultural production of food has required a tremendous increase in the application of nitrogen (N) fertilizers since the 1960s (Davidson, 2009). In order to maximize crop yields, N fertilizers are often applied in excess to agricultural soils, resulting in loss of reactive N to the environment (Galloway et al., 2003). Loss of N in the form of gaseous nitric oxide...
(NO) has long been recognized for its adverse impacts on air quality and human health (Veldkamp and Keller, 1997). Once emitted to the atmosphere, NO is rapidly oxidized to nitrogen dioxide (NO₂), and these compounds (collectively referred to as NOₓ) drive production and deposition of atmospheric nitrate (NO₃⁻) (Calvert et al., 1985) and play a critical role in the formation of tropospheric ozone (O₃) – a toxic air pollutant and potent greenhouse gas (Crutzen, 1979). Despite the observations that emission of NO from agricultural soils can sometimes exceed that of nitrous oxide (N₂O) – a climatically important trace gas primarily produced from reduction of NO in soils (Liu et al., 2017), NO is frequently overlooked in soil N studies due to its high reactivity and transient presence relative to N₂O (Medinets et al., 2015). Consequently, the contribution of soil NO emission to contemporary NO emissions at regional to global scales is highly uncertain (e.g., ranging from 3 % to > 30 %) (Hudman et al., 2010; Vinken et al., 2014) and remains the subject of much current debate (Almaraz et al., 2018; Maaz et al., 2018).

As the central hub of the biogeochemical N cycle, NO can be produced and consumed in numerous microbial and chemical reactions in soils (Medinets et al., 2015). Among these processes, nitrification and denitrification are the primary sources responsible for NO emission from N-enriched agricultural soils (Firestone and Davidson, 1989). Denitrification is the sequential reduction of NO₂⁻ and nitrite (NO₃⁻) to NO, N₂O, and dinitrogen (N₂) and can be mediated by a diversity of soil heterotrophic microorganisms (Zumft, 1997). The enzymatic system of denitrification comprises a series of dedicated reductases whereby NO₂⁻ reductase (NIR) and NO reductase (NOR) are the key enzymes that catalyze production and reduction of NO, respectively (Ye et al., 1994). As such, NO is often viewed as a free intermediate of the denitrification process (Russow et al., 2009). In comparison, nitrification is a two-step aerobic process in which oxidation of ammonia (NH₃) to NO₂⁻ is mediated by ammonia-oxidizing bacteria (AOB) or archaea (AOA), while the subsequent oxidation of NO₂⁻ to NO₃⁻ is performed by nitrite-oxidizing bacteria (NOB) (Lehnert et al., 2018). Although production of NO during the nitrification process has been linked to NH₃ oxidation (Hooper et al., 2004; Caranto and Lancaster, 2017) and NO₂⁻ reduction by AOB/AOA-encoded NIR (Wrage-Mönning et al., 2018), the metabolic role of NO in AOB and AOA remains ambiguous, making it difficult to elucidate the enzymatic pathways driving NO release by nitrification (Beeckman et al., 2018; Stein, 2019). Additionally, NO can also be produced from abiotic reactions involving soil NO₂⁻ or its protonated form – nitrous acid (HNO₂) (Venterea et al., 2005; Lim et al., 2018). However, despite empirical evidence for the dependence of soil NO emission on soil N availability and moisture content (Davidson and Verchot, 2000), the source contribution of soil NO emission across temporal and spatial scales is poorly understood (Hudman et al., 2012). This is largely due to the lack of a robust means for source partitioning soil-emitted NO under dynamic environmental conditions.

Natural-abundance stable N and oxygen (O) isotopes in N-containing molecules have long provided insights into the sources and relative rates of biogeochemical processes comprising the N cycle (Granger and Wankel, 2016). The unique power of stable isotope ratio measurements stems from the distinct partitioning of isotopes between chemical species or phases, known as isotopic fractionation. Thus, in order to extract the greatest information from the distributions of isotopic species, a rigorous understanding of the direction and magnitude of isotopic fractionations associated with each relevant transformation is required. Both kinetic and equilibrium isotope effects can lead to isotopic fractionations between N-bearing compounds in soils (Granger and Wankel, 2016; Denk et al., 2017). During kinetic processes, isotopic fractionation occurs as a result of differences in the reaction rates of isotopically substituted molecules (i.e., isotopologues), leading to either enrichment or, in a few rare cases, depletion of heavy isotopes in the reaction substrate (Fry, 2006; Casciotti, 2009). The degree of kinetic isotope fractionation can be quantified by a kinetic isotope fractionation factor (α₂), which is often represented by the ratio of reaction rate constants of light isotopologues to that of heavy isotopologues. In this definition, α₂ is larger than 1 for normal kinetic isotope fractionation. For equilibrium reactions, equilibrium isotope fractionation arises from differences in the zero-point energies of two species undergoing isotopic exchange, leading to enrichment of heavy isotopes in the more strongly bonded form (Fry, 2006; Casciotti, 2009). In this case, the isotope ratios of two species at equilibrium are defined by an equilibrium isotope fractionation factor (αₑq), which is also related to the kinetic isotope fractionation factors of forward and backward equilibrium reactions (Fry, 2006). By convention, isotopic fractionation can be expressed in units of per mill (‰) as an isotope effect (ε) : ε = (α⁻¹ – 1) × 1000. Nevertheless, in a heterogeneous soil environment, expression of intrinsic kinetic and equilibrium isotope effects for biogeochemical N transformations is often limited due to transport limitation in soil substrates, the multi-step nature of transformation processes, and the presence of diverse soil microbial communities that transform N via parallel and/or competing reaction pathways (Maggi and Riley, 2010). As such, interpretation of N isotope distribution in soils has largely relied on measuring net isotope effects (η), which are often characterized by incubating soil samples under environmentally relevant conditions, that favor expression of intrinsic isotope effects for specific N transformations (Lewicka-Szczepak et al., 2014). For example, it has been shown that the net N isotope effects for N₂O production in soil nitrification, denitrification, and abiotic reactions are distinctively different under certain soil conditions (Denk et al., 2017), rendering natural-abundance N isotopes of N₂O a useful index for inferring sources of N₂O in agricultural soils (Toyoda et al., 2017).
While the isotopic dynamics underlying soil N$_2$O emissions has been extensively studied, there has been little investigation into the N isotopic composition (notated as $\delta^{15}N$ in units of ‰; $\delta = ((R_{\text{sample}}/R_{\text{standard}}) - 1) \times 1000$) of soil-emitted NO due to measurement difficulties (Yu and Elliott, 2017). Using a tubular denuder that trapped NO released from urea and ammonium (NH$_4^+$-) fertilized soils, Li and Wang (2008) revealed a gradual increase in $\delta^{15}N$-NO from $-49^{\circ}{\text{c}}$ to $-19^{\circ}{\text{c}}$ and simultaneous ^{15}N enrichment in soil NH$_4^+$ and NO$_3^-$ over a 2-week laboratory incubation. Similar $\delta^{15}N$ variations (i.e., $-44^{\circ}{\text{c}}$ to $-14^{\circ}{\text{c}}$) were recently reported for in situ soil NO$_x$ emission in a manure-fertilized cornfield (Miller et al., 2018). Moreover, the magnitude of $\delta^{15}N$-NO measured in this study depended on manure application methods, implying that NO$_x$ was mainly sourced from nitrification of manure-derived NH$_4^+$ (Miller et al., 2018).

Based on a newly developed soil NO collection system that quantitatively converts soil-emitted NO to NO$_2$ for collection in triethanolamine (TEA) solutions, our previous work demonstrated substantial variations in $\delta^{15}N$-NO ($-54^{\circ}{\text{c}}$ to $-37^{\circ}{\text{c}}$) in connection with changes in moisture content in a forest soil (Yu and Elliott, 2017). Furthermore, the measured in situ $\delta^{15}N$-NO values spanned a wide range ($-60^{\circ}{\text{c}}$ to $-23^{\circ}{\text{c}}$) and were highly sensitive to added N substrates (i.e., NH$_4^+$, NO$_2^-$, and NO$_3^-$), indicating that NO production from different sources may bear distinguishable $\delta^{15}N$ imprints (Yu and Elliott, 2017). Nevertheless, despite the potential of $\delta^{15}N$-NO measurements in providing mechanistic information on soil NO dynamics, interpretation of $\delta^{15}N$-NO has been largely impeded by the knowledge gap as to how $\delta^{15}N$-NO is controlled by N isotopic fractionations during NO production and consumption in soils.

To this end, we conducted a series of controlled incubation experiments to quantify the net N isotope effects for NO production in an agricultural soil. Replicate soil incubations were conducted to measure the yield and $\delta^{15}N$ of soil-emitted NO under anoxic (0 % O$_2$), oxic (20 % O$_2$), and hypoxic (0.5 % O$_2$) conditions, respectively. A sodium NO$_3^-$ fertilizer mined in the Atacama Desert, Chile (Yu and Elliott, 2018), was used to amend the soil in all three incubation experiments. This Chilean NO$_3^-$ originated from atmospheric deposition and thus contained an anomalous ^{17}O excess (quantified by the $\Delta^{17}O$ notation) as a result of mass-independent isotopic fractionations during its photochemical formation in the atmosphere (Michalski et al., 2004). Because isotopic fractionations during biogeochemical NO$_3^-$ production and consumption are mass-dependent, $\Delta^{17}O$-NO$_3^-$ is a conservative tracer of gross nitrification and NO$_3^-$ consumption and provides a quantitative benchmark for dissecting isotopic overprinting on $\delta^{15}N$-NO$_3^-$ and $\delta^{18}O$-NO$_3^-$ during co-occurring nitrification and denitrification (Yu and Elliott, 2018) (see Sect. S1 in the Supplement for more details). As additional tracers, three isotopically different NH$_4^+$ fertilizers were used in parallel treatments of the oxic and hypoxic incubations to quantify the nitrifier source contribution of NO production with changing O$_2$ availability. By integrating multi-species measurements of N and O isotopes in an isotopologue-specific modeling framework, we were able for the first time to unambiguously link the yield and $\delta^{15}N$ variations of soil-emitted NO to nitrification and denitrification carried out by whole soil microbial communities and to characterize the net isotope effects for NO production from soil NO$_3^-$, NH$_4^+$, and NO$_3^-$ under different redox conditions. The quantified isotope effects are discussed in the context of chemical and enzymatic pathways leading to net NO production in the soil environment and are applied to a previous field study (Miller et al., 2018) to provide implications for tracing the sources of NO emission from agricultural soils.

2 Materials and methods

2.1 Soil characteristics and preparation

Soil samples used in this study were collected in July 2017 from a conventional corn–soybean rotation field in central Pennsylvania, USA, managed by the USDA (Agricultural Research Service, University Park, PA, USA). The soil is a well-drained Hagerstown silt loam (fine, mixed, semicracking, Typic Hapludalfs) with sand, silt, and clay content of 21 %, 58 %, and 21 %, respectively. The sampled surface layer (0–10 cm) had a bulk density of 1.2 g cm$^{-3}$ and a pH (1 : 1 water) of 5.7. Total N content was 0.2 % and $\delta^{15}N$ of total N was 5.3 ‰. Soil C : N ratio was 11.4 and organic carbon content was 1.8 %. In the laboratory, soils were homogenized and sieved to 2 mm (not air-dried) and then stored in resealable plastic bags at 4 °C until further analyses and incubations. Gravimetric water content of the sieved and homogenized soils was 0.14 g H$_2$O g$^{-1}$. Indigenous NH$_4^+$ and NO$_3^-$ concentrations were 0.7 and 19.8 µg N g$^{-1}$, respectively. Throughout this paper, soil N concentrations, NO fluxes, and N transformation rates are expressed on the basis of soil ovenry (105 °C) weight.

2.2 Net NO production and collection of NO for $\delta^{15}N$ analysis

The recently developed soil dynamic flux chamber (DFC) system was used to measure net NO production rates and to collect soil-emitted NO for $\delta^{15}N$ analysis (Yu and Elliott, 2017). A schematic of the DFC system is shown in Fig. 1a. Detailed development and validation procedures for the NO collection method were presented in Yu and Elliott (2017). Briefly, custom-made flow-through incubators modified from 1 L Pyrex medium bottles (13951 L, Corning, USA) were used for all the incubation experiments (Fig. 1b). Each incubator was stoppered with two 42 mm Teflon septa secured by an open-topped screw cap and equipped with two vacuum valves for purging and closure of the incubator headspace. To measure net NO production from enclosed soil samples, a flow of NO-free air with desired O$_2$
content was directed through the incubator into a chemiluminescent NO–NO\textsubscript{2}–NH\textsubscript{3} analyzer (model 146i, Thermo Fisher Scientific) (Fig. 1a) (Yu and Elliott, 2017). Outflow NO concentration was monitored continuously until steady, and then the net NO production rate was determined from the flow rate and steady-state NO concentration. To collect NO for \(\delta^{15}\text{N}\) analysis, a subsample of the incubator outflow was forced to pass through a NO collection train (Fig. 1a) where NO is converted to NO\textsubscript{2} by excess \text{O}_3 (\sim 3 \text{ ppm}) in a Teflon reaction tube (9.5 mm i.d., ca. 240 cm length) and subsequently collected in a 500 mL gas washing bottle containing a 20\% (v/v, 70 mL) TEA solution (Yu and Elliott, 2017). The collection products were about 90\% NO\textsubscript{2} and 10\% NO\textsubscript{3} (Yu and Elliott, 2017). Results from comprehensive method testing showed that the NO collection efficiency was 98.5\% \pm 3.5\% over a wide range of NO concentrations (12 to 749 ppb) and environmental conditions (e.g., temperature from 11 to 31 °C and relative humidity of the incubator outflow from 27\% to 92\%) (Yu and Elliott, 2017). Moreover, it was confirmed that high concentrations of ammonia (NH\textsubscript{3}) (e.g., 500 ppb) and nitric acid (HONO) (removed by an inline HONO scrubber, Fig. 1a) in the incubator outflow do not interfere with NO collection (Yu and Elliott, 2017).

2.3 Anoxic incubation

To prepare for the anoxic incubation, the soil samples were spread out on a covered tray for pre-conditioning under room temperature (21 °C) for 24 h. Next, the soil was amended with the Chilean NO\textsubscript{3}− fertilizer (\(\delta^{15}\text{N} = 0.3\%e \pm 0.1\%e, \delta^{18}\text{O} = 55.8\%e \pm 0.1\%e, \Delta^{17}\text{O} = 18.6\%e \pm 0.1\%e\)) to achieve a fertilization rate of 35 μg NO\textsubscript{3}−⋅N⋅g−1 and a target soil water content of 0.21 g H\textsubscript{2}O⋅g−1 (equivalent to 46\% water-filled pore space, WFPS). The fertilized soil samples were thoroughly homogenized using a glass rod in the tray. A total of 100 g (dry-weight equivalent) of soil was then weighed into each of eight incubators, resulting in a soil depth of about 1.5 cm. The incubators were connected in parallel using a Teflon purging manifold (Fig. 1c), vacuumed and filled with ultra-high-purity N\textsubscript{2} for three cycles, and incubated in the dark with a continuous flow of N\textsubscript{2} circulating through each of the eight incubators at 0.015 standard liters per minute (SLPM). The sample fertilization and preparation procedures were repeated three times to establish three batches of replicate samples, leading to 24 soil samples in total for the anoxic incubation.

The first NO measurement and collection event was conducted 24 h after the onset of the anoxic incubation, and daily sampling was conducted thereafter. At each sampling event, one incubator from each replicate sample batch was isolated by closing the vacuum valves, removed from the purging manifold, and then measured using the DFC system. To prevent O\textsubscript{3} contamination by residual air in the DFC system, the DFC system was evacuated and flushed with N\textsubscript{2} five times before the vacuum valves were re-opened. A flow of N\textsubscript{2} was then supplied at 1 SLPM for continuous NO concentration measurement and collection. Samples from the replicate batches were measured successively.

Following the completion of measurement and collection of each sample, the incubator was opened from the top and the soil was combined with 500 mL deionized water for extraction of soil NO\textsubscript{2}− and NO\textsubscript{3}− (McKenney et al., 1982). Because NO\textsubscript{2}− accumulation was found in pilot experiments, deionized water, rather than routinely used KCl solutions, was used for the extraction to ensure accurate NO\textsubscript{3}− determination (Homyak et al., 2015). To extract soil NO\textsubscript{2}− and NO\textsubscript{3}−, the soil slurry was agitated vigorously on a stir plate for 10 min and then centrifuged for 10 min at 3400 g. The resultant supernatant was filtered through a sterile 0.2 μm filter (Homyak et al., 2015). In light of high NO\textsubscript{3}− concentrations observed in the pilot experiments, the filtrate was divided into two 60 mL Nalgene bottles, with one of the bottles receiving sulfamic acid to remove NO\textsubscript{2}− (Granger and Sigman, 2009). This NO\textsubscript{2}−-removed sample was used for NO\textsubscript{3}− isotope analysis, while the other sample without sulfamic acid treatment was used for determining NO\textsubscript{2}− and NO\textsubscript{3}− concentrations and combined \(\delta^{15}\text{N}\) analysis of NO\textsubscript{2}− + NO\textsubscript{3}−. Two important control tests, based on NO\textsubscript{2}−/NO\textsubscript{3}− spiking and acetylene (C\textsubscript{2}H\textsubscript{2}) addition, were conducted to evaluate the robustness of the adopted soil incubation and extraction methods. The results confirmed that the water extraction method was robust for determining concentrations and isotopic composition of soil NO\textsubscript{2}− and NO\textsubscript{3}− and that aerobic NO\textsubscript{3}− production from NH\textsubscript{4}+ oxidation was negligible during the soil incubation and extraction procedures (Tables S1 and S2 in the Supplement; see Sect. S2 for more details).

2.4 Oxic and hypoxic incubations

The same pre-conditioning and fertilization protocol described for the anoxic incubation was used for the oxic and hypoxic incubations. Three isotopically different NH\textsubscript{4}+ fertilizers were used in parallel treatments of each incubation experiment: (1) \(\delta^{15}\text{N} = 1.9\%e\) (low \(^{15}\text{N}\) enrichment), (2) \(\delta^{15}\text{N} = 22.5\%e\) (intermediate \(^{15}\text{N}\) enrichment), and (3) \(\delta^{15}\text{N} = 45.0\%e\) (high \(^{15}\text{N}\) enrichment). An off-the-shelf ammonium sulfate ((NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4}) reagent was used in the low-\(\delta^{15}\text{N}\) treatment, while the fertilizers with intermediate and high enrichment of \(^{15}\text{N}\) were prepared by gravimetrically mixing the (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4} reagent with NH\textsubscript{4}+ reference materials IAEA-N2 (\(\delta^{15}\text{N} = 20.3\%e\)) and USGS26 (\(\delta^{15}\text{N} = 53.7\%e\)). In both oxic and hypoxic incubations, each of the three \(\delta^{15}\text{N}\) treatments consisted of three replicate sample batches where each batch consisted of eight samples, resulting in 72 samples for each incubation experiment.

At the onset of each incubation experiment, soil samples (100 g dry-weight equivalent) were amended with the desired NH\textsubscript{4}+ fertilizer (90 μg N g−1) and the Chilean NO\textsubscript{3}− fertilizer (15 μg N g−1) to the target soil water content of...
0.21 g H$_2$O g$^{-1}$ (46 % WFPS). Following the amendment, two soil samples from each replicate batch were immediately extracted – one with 500 mL of deionized water for soil NO$_2^-$ and NO$_3^-$ using the extraction method described above and the other one with 500 mL of a 2 M KCl solution for determination of soil NH$_4^+$. The remaining samples were incubated under desired O$_2$ conditions until further measurements. In the oxic incubation, the incubators were connected in parallel using the purging manifold and continuously flushed by a flow of zero air (20% O$_2$ + 80% N$_2$). In the hypoxic incubation, a flow of synthetic air with 0.5% O$_2$ content (balanced by 99.5% N$_2$) was used to incubate the soil samples. The synthetic air was generated by mixing the zero air with ultra-high-purity N$_2$ using two mass flow controllers (model SmartTrak 50, Sierra Instruments).

Replicate NO measurement and collection events were conducted at 24, 48, and 72 h following the onset of the oxic and hypoxic incubations. Because net NO production rates were low under oxic and hypoxic conditions, all remaining soil samples in each replicate batch were connected in parallel for NO measurement and collection using the DFC system. This parallel connection ensured high outflow NO concentrations (i.e., > 30 ppb) required for quantitative NO collection (Yu and Elliott, 2017). The flow rate of purging air (20% O$_2$ for the oxic incubation and 0.5% O$_2$ for the hypoxic incubation) during the DFC measurement was 0.25 SLPM to each incubator. Following the NO measurement and collection, two soil samples from each replicate batch were extracted for determination of soil NO$_3^-/NO_2^-$ (500 mL deionized water) and NH$_4^+$ (500 mL 2M KCl), respectively. Because NO concentrations were too low for reliable NO collection at 72 h after the onset of the incubations, only net NO production rates were measured using the remaining two soil samples in each replicate batch.

2.5 Abiotic NO production

The potential for NO production from abiotic reactions was assessed using sterilized soil samples. Soil samples (100 g dry-weight equivalent) were weighed into the incubators and then autoclaved at 121 °C and 1.3 atm for 30 min. The autoclaved samples were pre-incubated under oxic and anoxic conditions, respectively, for 24 h and then fertilized with the Chilean NO$_3^-$ (35 µg NO$_3^-$-N g$^{-1}$) or the lab (NH$_4$)$_2$SO$_4$ (90 µg NH$_4^+$-N g$^{-1}$). The fertilizer solutions were added to the soil surface through the Teflon septa using a sterile sy-
ringe equipped with a 25-gauge needle. These samples were then measured periodically for net NO production. Because NO$_3^-$ was found to accumulate during the anoxic incubation (see below), four soil samples were sterilized, pre-incubated under anoxic condition, and then fertilized with a NaNO$_3$ solution (δ^{15}N-NO$_3^-$ = 1.4%e ± 0.2%e) (8 µg N g$^{-1}$) for immediate NO measurement and collection. These NO$_3^-$-amended samples were thereafter incubated under anoxic conditions and measured periodically for net NO production until undetectable.

2.6 Chemical and isotopic analyses

Soil NO$_3^-$ concentrations were determined using a Dionex ion chromatograph ICS-2000 with a precision of (1σ) of ±5.0 µg N L$^{-1}$. Soil NO$_3^-$ concentrations were analyzed using the Griess–Illosay colorimetric reaction with a precision of ±1.2 µg N L$^{-1}$. Soil NH$_4^+$ concentrations were measured using a modified fluorometric o-phenaldialdehyde (OPA) method for soil KCl extracts (Kang et al., 2003) with a precision of ±7.0 µg N L$^{-1}$. NO$_2^- +$ NO$_3^-$ concentration in the TEA collection samples was measured using a modified spongy cadmium method with a precision of ±1.6 µg N L$^{-1}$ (Yu and Elliott, 2017).

The denitrifier method (Sigman et al., 2001; Casciotti et al., 2002) was used to measure δ^{15}N and δ^{18}O of NO$_3^-$ in the NO$_3^-$-removed soil extracts and the δ^{15}N of NO$_2^- +$ NO$_3^-$ in the extracts without sulfamic acid treatment. In brief, a denitrifying bacterium (Pseudomonas aureofaciens) lacking the N$_2$O reductase enzyme was used to convert 20 nmol of NO$_3^-$ into gaseous N$_2$O. The N$_2$O was then purified in a series of chemical traps, cryo-focused, and finally analyzed on a GV Instruments Isoprime continuous flow isotope ratio mass spectrometer (CF-IRMS) at m/z 44, 45, and 46 at the University of Pittsburgh Regional Stable Isotope Laboratory for Earth and Environmental Science Research where all isotope analyses were conducted for this study. International NO$_3^-$ reference standards IAEA-N3, USGS34, and USGS35 were used to calibrate the δ^{15}N and δ^{18}O analyses. The long-term precision is ±0.3%e and ±0.5%e, respectively, for the δ^{15}N and δ^{18}O analyses. Because the denitrifier method does not differentiate NO$_3^-$ and NO$_2^-$ for the δ^{15}N analysis, δ^{15}N of NO$_2^-$ was estimated using an isotopic mass balance when NO$_2^-$ accounted for a significant fraction of the total NO$_3^- +$ NO$_2^-$ pool.

Δ^{17}O of NO$_3^-$ was measured using the coupled bacterial reduction and thermal decomposition method described by Kaiser et al. (2007). The denitrifying bacteria were used to convert 200 nmol of NO$_3^-$ to N$_2$O, which was subsequently converted to O$_2$ and N$_2$ by reduction over a gold surface at 800°C. The produced O$_2$ and N$_2$ were separated using a 5 Å molecular sieve gas chromatograph, and the O$_2$ was then analyzed for δ^{17}O and δ^{18}O using the CF-IRMS. Δ^{17}O was calculated from the measured δ^{17}O and δ^{18}O using Eq. (1) (see Sect. S1) and calibrated by USGS34, USGS35, and a 1 : 1 mixture of USGS34 and USGS35.

$$\Delta^{17}O = \left[\ln \left(\frac{\delta^{17}O}{1000} + 1 \right) - 0.52 \ln \left(\frac{\delta^{18}O}{1000} + 1 \right) \right] \times 1000 \quad (1)$$

The precision of the Δ^{17}O analysis of USGS35 and the USGS35:USGS34 mixture is ±0.3%e (Yu and Elliott, 2018). Following Kaiser et al. (2007), the measured Δ^{17}O-NO$_3^-$ was used in the reduction of molecular isotope ratios of N$_2$O to correct for the isobaric interference (i.e., m/z 45) on the measured δ^{15}N-NO$_3^-$. δ^{15}N of NH$_4^+$ in the KCl extracts was measured by coupling the NH$_3$ diffusion method (Zhang et al., 2015) and the hypobromite (BrO$^-$) oxidation method (Zhang et al., 2007) with the denitrifier method (Felix et al., 2013). Briefly, an aliquot of soil KCl extract with 60 nmol NH$_4^+$ was pipetted into a 20 mL serum vial containing an acidified glass fiber disk. The solution was made alkaline by adding magnesium oxide (MgO) to volatilize NH$_3$, which was subsequently captured on the acidic disk as NH$_4^+$.

After incubation under 37°C for 10 d, NH$_4^+$ was eluted from the disk using deionized water, diluted to 10 µM, oxidized by BrO$^-$ to N$_2$O, and finally measured for δ^{15}N as NO$_2^- +$ NO$_3^-$ at 20 nmol using the denitrifier method. International NH$_4^+$ reference standards IAEA-N1, USGS25, and USGS26 underwent the same preparation procedure as the soil KCl extracts and were used along with the NO$_3^-$ reference standards to correct for blanks and instrument drift. The precision of the δ^{15}N-NH$_4^+$ analysis is ±0.5%e (Yu and Elliott, 2018).

δ^{15}N of NO collected in the TEA solution was measured following the method described in Yu and Elliott (2017). Briefly, the TEA collection samples were first neutralized with 12 N HCl to pH ~7, and then 10 to 20 nmol of the collected product NO$_2^- +$ NO$_3^-$ was converted to N$_2$O using the denitrifier method. In light of the low δ^{15}N values of soil-emitted NO and the presence of NO$_3^-$ as the dominant collection product, a low-δ^{15}N-NO$_3^-$ isotopic standard (KNO$_3$, RSIL20, USGS Reston; δ^{15}N = −79.6%e) was used together with the international NO$_3^-$ reference standards to calibrate the δ^{15}N-NO analysis. Following the identical treatment principle, we prepared the isotopic standards in the same matrix (i.e., 20% TEA) as the collection samples and matched both the molar N amount and injection volume (±5%) between the collection samples and the standards to minimize the blank interferences associated with the bacterial medium and the TEA solution. The precision and accuracy of the δ^{15}N-NO analysis, determined by repeated sampling of an analytical NO tank (δ^{15}N-NO = −71.4%e) under diverse collection conditions, is ±1.1%e (Yu and Elliott, 2017).
3 Results

Sixty-three NO collection samples were obtained from the incubation experiments. The NO collection efficiency calculated based on the measured NO\textsubscript{3} + NO\textsubscript{2} concentration in the TEA solution and the theoretical concentration based on the measured net NO production rate (Yu and Elliott, 2017) was on average 99.1 ± 3.7%. Out of the 63 collection samples, four samples had a NO collection efficiency lower than 95%. These samples were excluded from further data analysis and interpretation. The measured N concentrations, net NO production rates, and isotope data from all the incubation experiments are available in Tables S5 to S11.

3.1 Anoxic incubation

During the anoxic incubation, soil NO\textsubscript{3} concentration decreased linearly from 49.3 ± 0.1 to 23.1 ± 0.2 µg N g-1 (Fig. 2a), while NO\textsubscript{2} concentration increased linearly from 0.4 ± 0.1 to 6.9 ± 0.1 µg N g-1 (Fig. 2b). The net NO production rate (f\textsubscript{NO-anoxic}) increased progressively from the first sampling day (72 ± 8 ng N g-1 h-1) to sampling day 5 and then stabilized at about 82 ng N g-1 h-1 (Fig. 2c).

δ15N-NO\textsubscript{3} and δ15N-NO values increased from 4.7%e ± 0.3% to 38.7%e ± 1.5% and −44.7%e ± 0.3% to −22.8% ± 2.2%, respectively, over the anoxic incubation (Fig. 2d and f). The difference between δ15N-NO\textsubscript{3} and δ15N-NO values increased significantly from 49.4%e to 59.5%e toward the end of the incubation (Fig. 2d and f). Based on the closed-system Rayleigh model, the apparent δ isotopic fractionation during NO\textsubscript{3} consumption was estimated to be 43.3%e ± 0.9%e (Fig. S3 in the Supplement). δ15N-NO\textsubscript{2} was estimated for samples collected in the last 3 sampling days where NO\textsubscript{3} accounted for > 15% of the NO\textsubscript{3} + NO\textsubscript{2} pool. The estimated δ15N-NO\textsubscript{3} values were −6.9%e ± 3.7%e, −6.0%e ± 2.5%e, and −0.9%e ± 1.3%, respectively (Fig. 2e). Although limited to the last 3 sampling days, δ15N-NO\textsubscript{2} was lower than δ15N-NO\textsubscript{3} by 33.6%e to 37.9%e (Fig. 2d and e) but was higher than the concurrently measured δ15N-NO\textsubscript{3} values by a relatively constant offset of 21.5%e ± 0.7%e (Fig. 2e and f). Surprisingly, both δ18O-NO\textsubscript{3} values (33.4%e ± 0.2%e to 23.1%e ± 0.3%e) and Δ17NO-NO\textsubscript{3} values (10.0%e ± 0.2%e to 0.7%e ± 0.2%) decreased progressively over the course of the anoxic incubation and were entirely decoupled from δ15N-NO\textsubscript{3} (Fig. 2g and h).

3.2 Oxic and hypoxic incubations

Over the oxic incubation, soil NH\textsubscript{4}+ concentration decreased linearly with increasing NO\textsubscript{3} concentration under all three δ15N-NH\textsubscript{4}+ treatments (Fig. 3a and b). In the hypoxic incubation, changes in NH\textsubscript{4}+ and NO\textsubscript{3} concentrations were more limited, although the linear trends were still evident (Fig. 3a and b). Under both oxic and hypoxic conditions, the total concentration of soil NH\textsubscript{4}+ and NO\textsubscript{3} remained nearly constant over the entire incubations (i.e., variations < 4%), and soil NO\textsubscript{2} concentration was below the detection limit in both incubations. In the oxic incubation, δ15N-NH\textsubscript{4}+ values uniformly increased by 8.6%e to 13.1%e under all three δ15N-NH\textsubscript{4}+ treatments (Fig. 3e), while δ15N-NO\textsubscript{3} values varied distinctly, depending on the initial δ15N-NO\textsubscript{3} values (Fig. 3d). Specifically, δ15N-NO\textsubscript{3} values increased by 7.8%e and decreased by 10.9%e under the high and low δ15N-NH\textsubscript{4}+ treatments, respectively, and remained relatively constant under the intermediate δ15N-NH\textsubscript{4}+ treatment (Fig. 3d). Limited increases in δ15N-NO\textsubscript{3} values (< 2%e) were observed under all three δ15N-NH\textsubscript{4}+ treatments in the hypoxic incubation (Fig. 3e). Correspondingly, variations in δ15N-NO\textsubscript{3} values were much smaller in the hypoxic incubation compared to those revealed in the oxic incubation (Fig. 3d). In both oxic and hypoxic incubations, δ18O-NO\textsubscript{3} (Fig. 3g) and Δ17O-NO\textsubscript{3} (Fig. 3h) values decreased progressively under all three δ15N-NH\textsubscript{4}+ treatments, although the rates of decrease were significantly higher in the oxic incubation (Fig. 3g and h).

The net NO production was significantly higher in the hypoxic incubation (fNO-hypoxic 9.0 to 10.4 ng N g-1 h-1) than in the oxic incubation (fNO-oxic 7.1 to 8.5 ng N g-1 h-1) (Fig. 3e). The measured δ15N-NO values ranged from −16.8%e ± 0.3%e to −54.9%e ± 0.8%e in the oxic incubation and from −21.3%e ± 0.0%e to −51.4%e ± 0.4%e in the hypoxic incubation (Fig. 3f). Pooling all the δ15N-NO measurements, we found that δ15N values between NH\textsubscript{4} and NO did not change from 58.9%e to 70.7%e across the three δ15N-NH\textsubscript{4}+ treatments in the oxic incubation and from 50.4%e to 69.6%e in the hypoxic incubation (Fig. 4). In both incubations, the largest difference was observed under the high-δ15N-NH\textsubscript{4}+ treatment, while the smallest difference was observed under the low-δ15N-NH\textsubscript{4}+ treatment. Under both oxic and hypoxic conditions, there was a significant linear relationship between the measured δ15N-NO and δ15N-NH\textsubscript{4}+ values from all three δ15N-NH\textsubscript{4}+ treatments (Fig. 4). The slope of the linear relationship is 0.78 ± 0.03 (±1 SE) and 0.61 ± 0.05 for the oxic and hypoxic incubations, respectively (Fig. 4).

3.3 Abiotic NO production

Addition of NO\textsubscript{3} or NH\textsubscript{4}+ to the sterilized soil did not result in detectable NO production under either oxic or anoxic conditions. Immediate NO release was, however, triggered by NO\textsubscript{3} addition under anoxic conditions (Fig. 5a). The abiotic NO production rate (f\textsubscript{NO-abiotic}) reached a steady level of 83 ± 5 ng N g-1 h-1 several minutes after the NO\textsubscript{3} addition and then decreased exponentially to < 3 ng N g-1 h-1 over the following 8 d (Fig. 5a). The natural logarithm of f\textsubscript{NO-abiotic} showed a linear relationship with time (Fig. 5b). The NO produced following the NO\textsubscript{3} addition had a δ15N value of −17.8%e ± 0.4%e, giving rise to a δ15N offset between NO\textsubscript{2} and NO of 19.2%e ± 0.5%e.
4 Discussion

Because interpretations of the results from the incubation experiments build upon each other, here we discuss the results from incubation of the sterilized soils (hereafter, abiotic incubation), anoxic incubation, and oxic/hypoxic incubations successively.

4.1 Reaction characteristics and N isotopic fractionation during abiotic NO production

The immediate release of NO upon the addition of NO$_2^-$ highlights the chemically unstable nature of NO$_2^-$ and the critical role of chemical NO$_2^-$ reactions in driving soil NO emissions (Venterea et al., 2005; Lim et al., 2018). The strong linearity between $\ln(f_{NO\text{-abiotic}})$ and time (Fig. 5b) suggests apparent first-order kinetics for the abiotic NO production from NO$_2^-$ (Eqs. 2 and 3) (McKenney et al., 1990).

$$f_{NO\text{-abiotic}} = s_{abiotic} \times k_{abiotic} \times [NO_2^-]$$ \hspace{1cm} (2)

$$[NO_2^-] = [NO_2^-]_0 e^{-k_{abiotic} \times t}$$ \hspace{1cm} (3)

In Eqs. (2) and (3), t is time; $k_{abiotic}$ is the pseudo-first-order rate constant for NO$_2^-$ loss; $s_{abiotic}$ is the apparent stoichiometric coefficient for NO production from NO$_2^-$; and $[NO_2^-]_0$ and $[NO_2^-]$ are NO$_2^-$ concentration at time t and $t = 0$ in the sterilized soil, respectively. Combining Eqs. (2) and (3) and then log-transforming both sides yield

$$\ln(f_{NO\text{-abiotic}}) = -k_{abiotic} \times t + \ln(s_{abiotic} \times k_{abiotic} \times [NO_2^-]_0).$$ \hspace{1cm} (4)

According to Eq. (4), $k_{abiotic}$ and $s_{abiotic}$ are estimated using the slope and intercept of the linear regression of $\ln(f_{NO\text{-abiotic}})$ vs. time (Fig. 5b). Given $[NO_2^-]_0 = 8 \mu g N g^{-1}$, $s_{abiotic}$ and $k_{abiotic}$ are estimated to be 0.52 ± 0.05.

Figure 3. Measured and modeled concentrations of NO$_3^-$ (a) and NH$_4^+$ (b); net NO production rate (c); δ^{15}N values of NO$_3^-$ (d), NH$_4^+$ (e), and NO (f); and δ^{18}O (g) and Δ^{17}O (h) of NO$_3^-$ under the three δ^{15}N-NH$_4^+$ treatments (differed by color) of the oxic (open symbols) and hypoxic (solid symbols) incubations. The estimated k_{abiotic} is within the range (i.e., 0.00055 to 0.73 h$^{-1}$) derived by a recent study based on soil samples spanning a wide range of pH values (3.4 to 7.2) (Lim et al., 2018). Based on the estimated k_{abiotic}, 97% of the added NO$_3^-$ was lost by the end of the abiotic incubation.

Several reaction pathways with distinct stoichiometry have been proposed for abiotic NO production from NO$_3^-$ in soils. Under acidic soil conditions, self-decomposition of HNO$_2$ produces NO and nitric acid (HNO$_3$) with a stoichiometric HNO$_2$-to-NO ratio ranging from 0.5 to 0.66 (i.e., 1 mole of HNO$_2$ produces 0.5 to 0.66 moles of NO) (Van Cleemput and Samater, 1995). Although at pH 5.7 HNO$_2$ constituted < 1% of the NO$_3^-$ + HNO$_2$ pool in this soil, HNO$_2$ decomposition can occur on acidic clay mineral surfaces, even though bulk soil pH is circumneutral (Venterea et al., 2005). However, given the complete NO$_3^-$ consumption in the abiotic incubation, HNO$_2$ decomposition confined to acidic microsites could not account for all observed NO production. Under anoxic conditions, NO$_3^-$ / HNO$_2$ can also be stoichiometrically reduced to NO by transition metals (e.g., Fe(II)) and diverse organic molecules (e.g., humic and fulvic acids, lignins, and phenols) in a process termed chemodenitrification (Zhu-Barker et al., 2015). The produced NO from chemodenitrification can undergo further reduction to form N$_2$O and N$_2$ (Zhu-Barker et al., 2015). In addition, both NO$_3^-$ and NO in soil solution can be consumed as nitroso donors in abiotic nitrosation reactions, resulting in N incorporation into soil organic matter (Heil et al., 2016; Lim et al., 2018). Therefore, our observation that about half of the reacted NO$_3^-$ was recovered as NO may result from multiple competing NO$_3^-$ sinks, parallel NO-producing pathways, and possibly abiotic NO consumption in the sterilized soil.
completely inactivate biological NO production due to the presumably cause less alteration of soil properties may not milder sterilization methods (e.g., gamma-irradiation) that tion from NO2.

2 molecules by autoclaving. Furthermore, autoclaving has also cateing dramatic increases in solubility and lability of organic molecules by autoclaving. Moreover, autoclaving has also been shown to substantially increase abiotic N2O production from NO3−-amended soils (Wei et al., 2019). Conversely, milder sterilization methods (e.g., gamma-irradiation) that presumably cause less alteration of soil properties may not completely inactivate biological NO production due to the high diversity of biological NO production pathways in soils (e.g., non-specific reactions catalyzed by extracellular enzymes) (Medinet et al., 2015). Further research is warranted to compare different sterilization methods for their effects on abiotic NO production and 15 NO(abiotic).

4.2 Reaction reversibility between NO3− and NO2− and N isotope distribution between NO3−, NO2−, and NO during the anoxic incubation

The measured fNO-anoxic (72 to 82 ng N g−1 h−1) (Fig. 2c) is well within the range reported for anoxic soil incubations (e.g., 5 to 500 ng N g−1 h−1) (Medinet et al., 2015) and is about two-thirds of the net consumption rate of NO3− + NO2− during the anoxic incubation. That the majority of consumed NO3− + NO2− was recovered as NO supports the emerging notion that NO can be the end product of denitrification once limitations on gas diffusion are lifted in soils (Russo et al., 2009; Loick et al., 2016). Applying the derived kabiotic and sbiotic in the abiotic incubation to the measured NO3− concentrations under anoxic condition produced a range of fNO-abiotic from < 4 to 68 ng N g−1 h−1 (Fig. S4). While this modeled fNO-abiotic appears to contribute up to 80% of the measured fNO-anoxic (Fig. S4). fNO-anoxic was high and remained stable even without any significant accumulation of NO3− in the soil (Fig. 2b and c), suggesting that kabiotic was likely overestimated in the abiotic incubation (see above).

Assuming that net biological NO production was maintained at the level of fNO-anoxic measured during the first sampling event and that sbiotic was constant and equal to 0.52, a back-of-the-envelope calculation based on the difference in fNO-anoxic between the first and last sampling events and the NO3− concentration measured at the end of the anoxic incubation indicates that kabiotic was likely on the order of 0.0027 h−1, or about 7 times lower than the kabiotic derived in the abiotic incubation. Although qualitative, this calculation suggests a minor contribution of abiotic NO production to the measured fNO-anoxic (< 12%; Fig. S4).

The large increases in δ 15N-NO3− and δ 15N-NO values over the anoxic incubation (Fig. 2d and f) are congruent with strong N isotopic fractionations during microbial denitrification (Mariotti et al., 1981; Granger et al., 2008). However, the observed net isotope effect for NO production from NO3− (i.e., 15NO3−:NO− 3 15 NO− 3 49.4% to 59.5%) is larger than the apparent N isotope effect for NO3− consumption (43.3% ± 0.9%) (Fig. S3). The large magnitude and increasing pattern of δ 15N(NO), together with the accumulation of NO3− in the soil, point to complexity beyond single-step isotopic fractionations and highlight the need to carefully examine fractionation mechanisms for all intermediate steps leading to net NO production (i.e., NO3− → NO2− → NO, and NO to N2O). Moreover, it is surprising that both δ 18O-NO3− and Δ 17O-NO3− values decreased over the anoxic incubation (Fig. 2g and h). Interestingly, similar decreasing trends in δ 18O-NO3− values (e.g., up to 4% over 25 h) have been

Figure 4. δ 15N(NO) as a function of δ 15N-NH4+ in the oxic and hypoxic incubations.
The well-established paradigm that variations in δ^{18}O (‰), although not reported by Lewicka-Szczebak et al. (2014) for two anoxically incubated agricultural soils amended with a high-δ^{18}O Chilean NO$_3^-$ fertilizer similar to ours (i.e., δ^{18}O-NO$_3^-$ = 56 ‰), although Δ^{17}O-NO$_3^-$ was not reported in this previous study. The decreasing δ^{18}O-NO$_3^-$ values, observed here and by Lewicka-Szczebak et al. (2014), appear to contradict the well-established paradigm that variations in δ^{15}N-NO$_3^-$ and δ^{18}O-NO$_3^-$ values follow a linear trajectory with a slope of 0.5 to 1 during dissimilatory NO$_3^-$ reduction (Granger et al., 2008). Furthermore, as Δ^{17}O-NO$_3^-$ is in theory not altered by microbial denitrification—a mass-dependent fractionation process (Michalski et al., 2004; Yu and Elliott, 2018), the decreasing Δ^{17}O-NO$_3^-$ values observed in this study indicate that processes capable of diluting or erasing the Δ^{17}O signal may occur concurrently with denitrification during the anoxic incubation. Importantly, if this dilution or removal of the Δ^{17}O signal was accompanied by N isotopic fractionations, there may be cascading effects on the distribution of N isotopes between NO$_3^-$, NO$_2^-$, and NO.

The decreasing δ^{18}O-NO$_3^-$ and Δ^{17}O-NO$_3^-$ values could be potentially explained by an O isotope equilibration between NO$_3^-$ and soil H$_2$O, catalyzed either chemically or biologically via a reversible reaction between NO$_3^-$ and NO$_2^-$ (Granger and Wankel, 2016). However, it has been shown in controlled laboratory experiments that dissimilatory NO$_3^-$ reduction catalyzed by bacterial nitrate reductase (NAR) is irreversible at the enzyme level (Treibergs and Granger, 2017) and that abiotic O isotope exchange between NO$_3^-$ and H$_2$O is extremely slow (half-life > 109 years at 25 °C and pH 7) and therefore irrelevant under natural soil conditions (Kaneko and Poulson, 2013). Although fungi use a distinct enzyme system for denitrification (Shoun et al., 2012), there is no evidence for enzymatic reversibility of fungal NAR in the literature. Furthermore, by converting NH$_4^+$ and NO$_3^-$ simultaneously to N$_2$ and NO$_3^-$, anaerobic NH$_4^+$ oxidation (anammox) could dilute the Δ^{17}O signal by producing NO$_3^-$ with Δ^{17}O = 0 (Brunner et al., 2013). However, due to the low indigenous NH$_4^+$ concentration, anammox is considered not pertinent during the anoxic incubation. Given the complete recovery of NO$_3^-$ concentrations and isotopes in the control experiments (Tables S1 and S2), as well as the significantly increased δ^{15}N-NO$_3^-$ values during the anoxic incubation, we excluded NO$_3^-$ production from aerobic NH$_4^+$ oxidation as a possible explanation for the observed declines in δ^{18}O-NO$_3^-$ and Δ^{17}O-NO$_3^-$ values.

Therefore, having ruled out the above possibilities led us to postulate that the decreasing δ^{18}O-NO$_3^-$ and Δ^{17}O-NO$_3^-$ values may result from anaerobic NO$_2^-$ oxidation mediated by NOB in the soil. The enzyme catalyzing NO$_2^-$ oxidation to NO$_3^-$ in NOB – NO$_3^-$ oxidoreductase (NXR) – is metabolically versatile and has been shown to catalyze NO$_3^-$ reduction under anoxic conditions by operating in reverse (Friedman et al., 1986; Freitag et al., 1987; Bock et al., 1988; Koch et al., 2015). Moreover, during NXR-catalyzed NO$_2^-$ oxidation, the required O atom originates from H$_2$O molecules (Reaction R1), so that NO$_3^-$ can in theory be oxidized to NO$_3^-$ without the presence of O$_2$ by donating electrons to reductively active intracellular components (Wunderlich et al., 2013) or alternative electron acceptors in niche environments (Babbin et al., 2017).

\[
\text{NO}_3^- + 2\text{H}^+ + 2e^- \Leftrightarrow \text{H}_2\text{O} + \text{NO}_2^-(\text{R1})
\]

In a denitrifying environment, anaerobic oxidation of denitrification-produced NO$_3^-$ back to NO$_2^-$ (i.e., NO$_2^-$ re-oxidation) can dilute δ^{18}O-NO$_3^-$ and Δ^{17}O-NO$_3^-$ values by incorporating a “new” O atom from H$_2$O into the reacting NO$_3^-$ pool (Reaction R1) (Granger and Wankel, 2016). Under acidic and circumneutral pH conditions, this dilution effect can be further enhanced by chemically and perhaps biologically catalyzed O isotope equilibration between NO$_3^-$ and H$_2$O (Casciotti et al., 2007; Buchwald and Casciotti, 2010), which effectively erases the isotopic imprints of denitrification on NO$_2^-$ prior to its re-oxidation. The reversibility of

![Figure 5](https://doi.org/10.5194/bg-18-805-2021)
NXR and its direct control on O isotopes in NO$_3^-$ have been convincingly demonstrated by Wunderlich et al. (2013) using a pure culture of *Nitrobacter vulgaris*. By incubating *N. vulgaris* in a NO$_3^-$ solution under anoxic conditions, Wunderlich et al. (2013) showed that NO$_3^-$ was produced in the solution by *N. vulgaris* and that *N. vulgaris* promoted incorporation of amended 18O-H$_2$O labels into NO$_3^-$ through a re-oxidation of the accumulated NO$_2^-$ (Wunderlich et al., 2013).

Importantly, there is mounting evidence from the marine N cycle community that NO$_3^-$ re-oxidation plays a critical role in the N isotope partitioning between NO$_3^-$ and NO$_2^-$.

At the process scale, NO$_2^-$ re-oxidation co-occurring with dissimilatory NO$_3^-$ reduction can lead to a large $\delta^{15}N$ difference between NO$_3^-$ and NO$_2^-$ beyond what would be expected to result from NO$_3^-$ reduction alone (Gaye et al., 2013; Dale et al., 2014; Dähnke and Thamdrup, 2016; Peters et al., 2016; Martin and Casciotti, 2017; Buchwald et al., 2018).

This large $\delta^{15}N$ difference is thought to arise from a rare, but intrinsic, inverse kinetic isotope effect associated with NO$_2^-$ re-oxidation (e.g., $-13\%_c$) (Casciotti, 2009). As such, in a net denitrifying environment, NO$_3^-$ re-oxidation functions as an apparent branching pathway along the sequential reduction of NO$_3^-$, preferentially re-reoxidizing 15NO$_2^-$ back to NO$_3^-$.

At the enzyme scale, the bidirectional NXR enzyme has been proposed to catalyze intracellular coupled NO$_2^-$ reduction and NO$_3^-$ oxidation (i.e., bidirectional interconversion of NO$_3^-$ and NO$_2^-$), facilitating expression of an equilibrium N isotope effect between NO$_3^-$ and NO$_2^-$ (Reaction R2) (Wunderlich et al., 2013; Kemeny et al., 2016).

$$14\text{NO}_2^- + 15\text{NO}_3^- \leftrightarrow 15\text{NO}_2^- + 14\text{NO}_3^- \quad \text{(R2)}$$

Evidence from pure culture studies of anammox bacteria carrying the NXR enzyme (Brunner et al., 2013) and theoretical quantum calculations (Casciotti, 2009) suggest that this N isotope equilibration favors partitioning of 14N into NO$_2^-$ with an equilibrium isotope effect ranging from $-50\%_c$ to $-60\%_c$ (negative sign is used to denote that this N isotope equilibration partitions 14N into NO$_2^-$ with an equilibrium isotope effect ranging from $-50\%_c$ to $-60\%_c$) (see above).

This NXR-catalyzed NO$_3^-$/NO$_2^-$ interconversion was invoked to explain the extremely low $\delta^{15}N$-NO$_3^-$ values relative to $\delta^{15}N$-NO$_2^-$ (up to $90\%_c$) in the surface Antarctic Ocean, where aerobic NO$_2^-$ oxidation is inhibited by low nutrient availability (Kemeny et al., 2016). Hypothetically, if expressed at either the process or the enzyme level, the N isotope effect for NO$_2^-$ re-oxidation could propagate into denitrification-produced NO, giving rise to an increased $\delta^{15}N$ difference between NO$_3^-$ and NO (15NO$_3^-$/NO). To test whether NO$_2^-$ re-oxidation can explain the observed declines in δ^{18}O-NO$_3^-$ and Δ^{17}O-NO$_3^-$/NO$_2^-$ values and $\delta^{15}N$ distribution between NO$_3^-$, NO$_2^-$, and NO, we modified an isotopologue-specific (i.e., 14N, 15N, 16O, 17O, and 18O) numerical model previously described by Yu and Elliott (2018) to simulate co-occurring denitrification and NO$_2^-$ re-oxidation in two steps. Without a clear identification of the alternative electron acceptors that coupled with anaerobic NO$_2^-$ oxidation in the studied soil, we followed the reaction scheme proposed by Wunderlich et al. (2013) and Kemeny et al. (2016) (Reaction R1) to parameterize the NXR-catalyzed NO$_3^-$ re-oxidation as the backward reaction of a dynamic equilibrium between NO$_3^-$ and NO$_2^-$ (Fig. 6) – that is, the NXR-catalyzed NO$_3^-$ re-oxidation (backward reaction) is balanced by an NXR-catalyzed NO$_2^-$ reduction (forward reaction), leading to no net NO$_3^-$ oxidation or NO$_2^-$ reduction in the soil. Importantly, this representation is consistent with the observation that both NO$_3^-$ consumption and NO$_2^-$ accumulation followed a pseudo-zero-order kinetics over the anoxic incubation (Fig. 2a and b), which implies no net contribution from the NO$_3^-$/NO$_2^-$ interconversion. Given previous findings that the NXR-catalyzed O exchange between NO$_3^-$ and NO$_2^-$ depends on NO$_2^-$ availability (Wunderlich et al., 2013), the backward NO$_2^-$ re-oxidation was assumed to be first order (with respect to NO$_3^-$), defined by a first-order rate constant, $k_{\text{NXR(b)}}$. With respect to the O isotope equilibrium between H$_2$O and the reacting NO$_3^-$ pool, we considered two extreme-case scenarios: (1) no exchange and (2) complete exchange. In the no-exchange scenario, the imprints of denitrification on δ^{18}O-NO$_3^-$ and Δ^{17}O-NO$_3^-$ values are preserved, such that only one H$_2$O-derived O atom is incorporated into NO$_2^-$ with each NO$_2^-$ molecule being re-oxidized (Reaction R1).

In the complete-exchange scenario, δ^{18}O and Δ^{17}O values of NO$_3^-$ always reflect those of soil H$_2$O (δ^{18}O-H$_2$O $\approx -10\%_c$, Δ^{17}O-H$_2$O $= 0\%_c$) (Fig. 6), and therefore all three O atoms in NO$_3^-$ produced from NO$_2^-$ re-oxidation originate from H$_2$O. Furthermore, we considered both abiotic NO production and denitrification as the source of NO during the anoxic incubation (Fig. 6). To account for the potential overestimation in k_{abiotic} (see above), we used a reduced k_{abiotic} (0.0027 h$^{-1}$) to model net abiotic NO production from NO$_2^-$, while k_{abiotic} and 15NO$_3^-$/NO$_2^-$ (abiotic) were fixed at 0.52% and 19.2% respectively. With respect to $\delta^{15}N$ of denitrification-produced NO, we assumed that NXR-catalyzed NO$_3^-$ reduction to NO and NOR-catalyzed NO reduction to N$_2$O were each associated with a kinetic N isotope effect (15N/NIR and 15N/NOR). The closed-system Rayleigh equation was then used to simulate the coupled NO production and reduction in denitrification at each model time interval (Lewicka-Szczebak et al., 2014). Detailed model derivation and formulation are provided in the Supplement (Sect. S3.1).

With this model of co-occurring denitrification and NO$_2^-$ re-oxidation, we first solved for the rates of denitrifier-catalyzed NO$_3^-$ (R_{NAR}), NO$_2^-$ (R_{NIR}), and NO (R_{NOR}) reductions and $k_{\text{NXR(b)}}$ (four unknowns) using the measured NO$_3^-$ and NO$_2^-$ concentrations, $f_{\text{NO-anoxic}}$, and Δ^{17}O-NO$_3^-$ values (four measured variables). This first modeling step was robustly constrained by the measured Δ^{17}O-NO$_3^-$, which essentially functions as a 15NO$_3^-$ tracer (Yu and Elliott, 2018) and is therefore particularly sensitive to NO$_2^-$ re-oxidation. In the second modeling step, the measured $\delta^{15}N$-NO$_3^-$, $\delta^{15}N$-NO$_2^-$, $\delta^{15}N$-NO$_3^-$, and $\delta^{15}N$-NO$_2^-$.
Figure 6. Model structure of co-occurring denitrification and NO\textsubscript{3} re-oxidation and associated N isotope effects. Nitrogen transformations driven by denitrifiers and nitrifiers are shown by solid black and red arrows, respectively, and abiotic O exchange between NO\textsubscript{3} and H\textsubscript{2}O by the solid blue arrow. The dashed blue arrow denotes net NO yield from abiotic NO\textsubscript{3} reactions.

\[\text{NO}_2^- \text{ and } \delta^{15}\text{N-NO} \text{ values (three measured variables) were used to optimize the kinetic N isotope effects for NAR-catalyzed NO}_2^- \text{ reduction (15\text{\text{\footnotesize{NAR}}}), 15\text{\text{\footnotesize{\eta}}\text{\text{\footnotesize{NIR}}}}, 15\text{\text{\footnotesize{\eta}}\text{\text{\footnotesize{NOR}}}}, \text{ and the equilibrium N isotope effect for NXR-catalyzed NO}_3^- / NO}_2^- \text{ interconversion (15\text{\text{\footnotesize{\eta}}\text{\text{\footnotesize{NXR(eq)}}}) (Reaction R2; Fig. 6) (four unknowns). This modeling system is under-determined (number of measured variables is less than the number of unknowns) and thus cannot be solved uniquely. Thus, instead of definitively solving for the four unknown isotope effects, we explored their best combination to fit the measured } \delta^{15}\text{N values of NO}_3^- , \text{ NO}_2^- , \text{ and NO. Specifically, to reduce the number of unknowns for model optimization, } 15\text{\text{\footnotesize{\eta}}\text{\text{\footnotesize{\text{\footnotesize{NAR}}}}}} \text{ and } 15\text{\text{\footnotesize{\eta}}\text{\text{\footnotesize{\text{\footnotesize{NXR(eq)}}}}} \text{ were treated as known values, and } 15\text{\text{\footnotesize{\eta}}\text{\text{\footnotesize{\text{\footnotesize{NIR}}}}}} \text{ and } 15\text{\text{\footnotesize{\eta}}\text{\text{\footnotesize{\text{\footnotesize{NOR}}}}}} \text{ were solved by mapping through the entire space of } 15\text{\text{\footnotesize{\text{\footnotesize{\text{\footnotesize{NAR}}}}}}} \text{ and } 15\text{\text{\footnotesize{\text{\footnotesize{\text{\footnotesize{NXR(eq)}}}}}}} \text{ (at a resolution of } 1\% \text{), defined by their respective widest range of possible values. We used a range of } 5\% \text{ e to } 55\% \text{ e for } 15\text{\text{\footnotesize{\text{\footnotesize{\text{\footnotesize{NAR}}}}}}}, \text{ consistent with a recent compilation based on soil incubations and denitrifier pure cultures (Denk et al., 2017). Given the existing observational and theoretical constraints (Casciotti, 2009; Brunner et al., 2013), a range of } -60\% \text{ e to } 0\% \text{ e was assigned to } 15\text{\text{\footnotesize{\text{\footnotesize{\text{\footnotesize{NXR(eq)}}}}} which is equivalent to the argument that the impact of NO}_3^- / NO}_2^- \text{ interconversion on the N isotope distribution between NO}_2^- \text{ and NO}_2^- \text{ can vary from null to a strong partitioning of } ^{14}\text{N to } ^{15}\text{N. We further defined the lower percentile 2.5 of the error-weighted residual sum of squares (RSS) between simulated and measured } \delta^{15}\text{N values of NO}_3^- , \text{ NO}_2^- , \text{ and NO as the threshold for selection of the best-fit models. Detailed information regarding model optimization can be found in the Supplement (Sect. S3.2). Results from the first modeling step are summarized in Table 1, and the best-fit models were plotted in Fig. 2 to compare with the measured data. Because the NXR-catalyzed NO}_3^- / NO}_2^- \text{ interconversion was assumed to result in no change in NO}_3^- \text{ and NO}_2^- \text{ concentrations, } R_{\text{NAR}} \text{ (0.158 } \mu\text{g N g}^{-1} \text{ h}^{-1} \text{), } R_{\text{NIR}} \text{ (0.112 } \mu\text{g N g}^{-1} \text{ h}^{-1} \text{), and } R_{\text{NOR}} \text{ (0.039 } \mu\text{g N g}^{-1} \text{ h}^{-1} \text{) can be well described by zero-order kinetics and are not sensitive to model scenarios for O exchange between NO}_3^- \text{ and H}_2\text{O (Table 1). Moreover, the observed NO}_3^- \text{ accumulation and } \delta^{15}\text{O-anoxic dynamics can be well reproduced using the modeled denitrification rates and the downward adjustment of } k_{\text{abiotic}} \text{ (Fig. 2b and c). } k_{\text{NXR(b)}} \text{ was estimated to be 0.64 and 0.25 h}^{-1} \text{ under the no-exchange and complete-exchange scenarios, respectively (Table 1). Under both scenarios, the simulated } \Delta^{17}\text{O-NO}_3^- \text{ values exhibit a characteristic decreasing trend and are in excellent agreement with measured } \Delta^{17}\text{O-NO}_3^- \text{ values (Fig. 2h). The larger } k_{\text{NXR(b)}} \text{ under the no-exchange scenario is expected and can be explained by the faster back reaction (i.e., NO}_2^- \text{ re-oxidation) required to reproduce the observed dilution of } \Delta^{17}\text{O-NO}_3^- , \text{ because only one new O atom is incorporated into NO}_3^- \text{ with each NO}_3^- \text{ molecule being re-oxidized. Although the measured } \delta^{18}\text{O-NO}_3^- \text{ values did not provide quantitative constraints for the model optimization, the isotopologue-specific model with the optimized denitrification rates and } k_{\text{NXR(b)}} \text{ was run forward to test whether the decreasing } \delta^{18}\text{O-NO}_3^- \text{ values can also be possibly explained by co-occurring denitrification and NO}_2^- \text{ re-oxidation (details are provided in Sect. S4). The results showed that NO}_3^- \text{ reduction (acting to increase } \delta^{18}\text{O-NO}_3^- \text{ values) and NO}_2^- \text{ re-oxidation (acting to decrease } \delta^{18}\text{O-NO}_3^- \text{ values) have counteracting effects on the forward-modeled } \delta^{18}\text{O-NO}_3^- (Fig. S2) and that the decreasing trend in } \delta^{18}\text{O-NO}_3^- \text{ values can be well reproduced under both no-exchange and complete-exchange scenarios with a reasonable assumption on the net O isotope effects for denitrification and NO}_2^- \text{ re-oxidation (Fig. S2; see Sect. S4) (Granger and Wankel, 2016). Therefore, although } k_{\text{NXR(b)}} \text{ cannot be definitively quantified in this study due to the unknown degree of O exchange between NO}_3^- \text{ and H}_2\text{O, these simulation results provide confidence in our hypothesis that the observed decreases in } \delta^{18}\text{O-NO}_3^- \text{ and } \Delta^{17}\text{O-NO}_3^- \text{ values were driven by the reversible action of the NXR enzyme. It is important to note that the estimated } k_{\text{NXR(b)}} \text{ is fairly large even under the complete-exchange scenario. Based on the NO}_3^- \text{ concentration measured at the end of the anoxic incubation (6.9 } \mu\text{g N g}^{-1} \text{), a } k_{\text{NXR(b)}} \text{ of 0.25 h}^{-1} \text{ would require a } \text{NO}_2^- \text{ re-oxidation rate (1.7 } \mu\text{g N g}^{-1} \text{ h}^{-1} \text{) that is 1 order of magnitude higher than the estimated } R_{\text{NAR}} \text{ and } R_{\text{NIR}} \text{. However, the inferred maximum } \text{NO}_2^- \text{ re-oxidation rate under either model scenario (1.7 to 4.4 } \mu\text{g N g}^{-1} \text{ h}^{-1} \text{) is still within the reported range for aerobic NO}_3^- \text{ oxidation in agricultural soils (e.g., up to 6–7 } \mu\text{g N g}^{-1} \text{ h}^{-1} \text{) (Taylor et al., 2019), which is indicative of high NOB activity even under anoxic conditions (Koch et al., 2015). It is also noteworthy that } \Delta^{17}\text{O analysis of NO}_3^- \text{ can in theory provide quantitative constraint on the degree of O isotope exchange between NO}_3^- \text{ and H}_2\text{O during the anoxic incubation, as has been previously demonstrated by } \Delta^{17}\text{O analysis of } \text{N}_2\text{O to determine O exchange between } \text{N}_2\text{O and H}_2\text{O during denitrification.}} \]
(Lewicka-Szczebak et al., 2016). However, in this study, robust Δ17O-N2O analysis was confounded by the low NO2 concentrations as well as the fact that NO2 can undergo O exchange with H2O during sample processing and storage (Casciotti et al., 2007). Future development in soil Δ17O-N2O analysis and calibration will benefit the use of Δ17O to disentangle NO2 reaction complexity in soil environments.

Based on the modeled denitrification rates and kNXR(b), the best-fit 15ηNXR(b) was confined to a narrow range from −40 ‰ to −35 ‰ (Fig. 7a and b) and was not sensitive to model scenarios for O equilibration between NO3 and H2O (Fig. 8b). While the best-fit 15ηNXR and 15ηNXR(b) were positively correlated, especially under the complete-exchange scenario (Fig. 7a and b), the best-fit 15ηNXR spanned a wide range (5 ‰ to 45 ‰) and was significantly lower under the no-exchange scenario (RSS-weighted mean: 19 ‰) relative to the complete-exchange scenario (RSS-weighted mean: 30 ‰) (Fig. 8a). On the other hand, the best-fit 15ηNXR(b) (15 ‰ to 22 ‰) and 15ηNXR (8 ‰ to 2 ‰) did not vary substantially and were similar between the two model scenarios (Figs. 7c–d and 8c–d). Under both model scenarios, the measured δ15N-N2O3, δ15N-N2O5, and δ15N-N values can be well simulated using the RSS-weighted mean 15η values from the best-fit models (Fig. 2d to f). Specifically, the modeled difference between δ15N-N2O3 and δ15N-N2O5 values increased from about 29 ‰ at the beginning of the incubation to about 38 ‰ at the end of the incubation (Fig. 2d and e), whereas a constant δ15N offset of about 20 ‰ was revealed between the modeled δ15N-N2O3 and δ15N-N values (Fig. 2e and f). Therefore, the modeled 15η values and δ15N-N2O5 dynamics reveal important new information for understanding the increasing 15ηNO3/NO over the anoxic incubation. During the early phase of the incubation, the N isotope partitioning between NO3, NO2, and NO was mainly controlled by denitrification and its associated isotopic effects (i.e., 15ηNXR(b), 15ηNXR, and 15ηNXR(eq)). With the increasing accumulation of NO2 in the soil, the dominant control on the δ15N distribution shifted to the N isotope exchange between NO3 and NO2, so that the difference between the δ15N-N2O3 and δ15N-N2O5 values was primarily determined by 15ηNXR(eq) (−40 ‰ to −35 ‰). The revealed positive correlation between the best-fit 15ηNXR and 15ηNXR(b) (Fig. 7a and b) and the significantly lower 15ηNXR under the no-exchange scenario (Fig. 8a) essentially reflect a trade-off between 15ηNXR and 15ηNXR(eq) in controlling the δ15N difference between NO3 and NO2 – that is, when the interconversion between NO3 and NO2 is fast and the magnitude of 15ηNXR(eq) is large (i.e., very negative), only a small 15ηNXR is required to sustain the large δ15N difference between NO3 and NO2 over the course of the anoxic incubation.

The estimated 15ηNXR(eq) from the best-fit models is higher (i.e., closer to zero) than that derived from theoretical calculations and pure culture studies (−50 ‰ to −60 ‰) (Casciotti, 2009; Brunner et al., 2013). Given the heterogeneous distribution of substrates in soils, the lower absolute magnitude of the best-fit 15ηNXR(eq) may be due to the partial rate limitation by transport of NO2/NO3 to the active site of NXR. As such, the best-fit 15ηNXR(eq) should provide a conservative estimate of the intrinsic equilibrium effect. Thus, the results from the anoxic incubation underscore the important, yet previously unrecognized, role of the reversible NO3/NO2 interconversion in controlling the δ15N dynamics of soil NO3 and its denitrification products. Substantial re-oxidation of NO3 under anoxic conditions seems paradoxical but is underpinned by the increasingly recognized high degree of metabolic versatility of NOB, including simultaneous oxidation of an organic substrate and NO2, as well as parallel use of NO3 and O2 as electron acceptors (Koch et al., 2015). In the absence of O2, few electron acceptors exist at common environmental pH that have a higher redox potential than the NO3/NO2 pair (Wunderlich et al., 2013; Babbin et al., 2017). It is therefore likely that NOB would gain energy by performing the intracellular coupled oxidation of NO3 and reduction of NO2 to survive periods of O2 deprivation. Although anaerobic NO2 oxidation until now has been conclusively shown only in anoxic ocean water columns (Sun et al., 2017; Babbin et al., 2017) and aquatic sediments (Wunderlich et al., 2013), soils host a huge diversity of coexisting NOB (Le Roux et al., 2016) and the physiological flexibility of NOB beyond aerobic NO2 oxidation may contribute to the unexpected higher abundances and activities of NOB relative to AOB and AOA in agricultural soils (Höberg et al., 1996; Ke et al., 2013). Using the modified isotopologue-specific model, we demonstrate the possibility that large 15ηNXR can be an artifact of an isotopic equilibrium between NO3 and NO2, occurring in connection with the bifunctional NXR enzyme. Therefore, effective expressions of 15ηNXR(eq) in concurrence with 15ηNXR may explain why 15ηNXR values estimated by some anoxic soil incubations (e.g., 25 ‰ to 65 ‰) are far larger than those reported by studies of denitrifying and NO2-reducing bacterial cultures (e.g., 5 ‰ to 30 ‰) (Denk et al., 2017) and why the slope of δ18O-N2O3 vs. δ15N-N2O3 values during denitrification in many field studies was not constant and rarely close to unity as observed in pure denitrifying cultures (Granger and Wankely, 2016). Indeed, evidence for a reversible enzymatic pathway linking NO3 and NO2 under anoxic conditions has already been documented in previous soil studies (e.g., Kool et al., 2011; Lewicka-Szczebak et al., 2014), implying its wide occurrence in soils. More studies using soils from a broad range of environments are needed to pinpoint the exact mechanisms by which NO3 can be anaerobically oxidized in soils. To that end, Δ17O-N2O5 can be used as a powerful benchmark for disentangling co-occurring NO3 reduction and NO2 re-oxidation.

The best-fit 15ηNXR (15 ‰ to 22 ‰) falls within the range derived in anoxic soil incubations (11 ‰ to 33 ‰) (Mariotti et al., 1982) and is consistent with results based on denitrifying bacteria carrying copper-containing NIR (22 ‰) (Martin and Casciotti, 2016). Under both model scenarios, the best-fit
Table 1. Means and 95 % confidence intervals of modeled denitrification rates and NO\textsubscript{2}- re-oxidation rate constants under the no-exchange and complete-exchange scenarios.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>No exchange</th>
<th>Complete exchange</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{NAR}</td>
<td>Zero-order rate for NO\textsubscript{3} reduction (µg N g-1 h-1)</td>
<td>0.158 to 0.160</td>
<td>0.158 to 0.160</td>
</tr>
<tr>
<td>R_{NIR}</td>
<td>Zero-order rate for NO\textsubscript{2} reduction (µg N g-1 h-1)</td>
<td>0.112 to 0.113</td>
<td>0.112 to 0.113</td>
</tr>
<tr>
<td>R_{NOR}</td>
<td>Zero-order rate for NO reduction (µg N g-1 h-1)</td>
<td>0.039 to 0.040</td>
<td>0.039 to 0.040</td>
</tr>
<tr>
<td>$k_{\text{NXR(b)}}$</td>
<td>First-order rate constant of NO\textsubscript{2} re-oxidation (h-1)</td>
<td>0.64 to 0.66</td>
<td>0.25 to 0.26</td>
</tr>
</tbody>
</table>

Figure 7. Contour maps showing variations in error-weighted residual sum of squares (RSS) between simulated and measured δ15N values, modeled $^{15}\eta_{\text{NIR}}$, and modeled $^{15}\eta_{\text{NOR}}$ as a function of prescribed $^{15}\eta_{\text{NAR}}$ and $^{15}\eta_{\text{NXR}}$ under the no-exchange (a, c, e) and complete-exchange (b, d, f) model scenarios. Bold contour lines encompass the best-fit models defined by the lower percentile 2.5 of the error-weighted RSS.

incubation. Alternatively, the model-inferred $^{15}\eta_{\text{NOR}}$ might reflect a balance between enzymatic and diffusion isotope effects, as has been previously demonstrated for N$_2$O reduction in soil denitrification (Lewicka-Szczechak et al., 2014). Because diffusion would be expected to have a small and normal kinetic isotope effect, if NO$^-_2$ reduction was limited by NO diffusion out of soil denitrifying sites, the estimated $^{15}\eta_{\text{NOR}}$ would be shifted toward the isotope effect for NO diffusion. Diffusion might be particularly important in this study due to the flow-through condition during the anoxic incubation and the low solubility of NO, both of which favor gas diffusion while preventing re-entry of escaped NO to denitrifying cells. Thus, the small $^{15}\eta_{\text{NOR}}$ inferred from the best-fit models is likely a combination of diverse NO reduction pathways in this agricultural soil, as well as limited expression of enzymatic isotope effects imposed by NO diffusion. Regardless, the empirical finding of this study suggests that due to the small $^{15}\eta_{\text{NOR}}$, the bulk δ^{15}N values of denitrification-produced N$_2$O should not be significantly altered by accumulation and diffusion of NO during denitrification.

4.3 NO source contribution and N isotope effects for NO production from NH$_4^+$ oxidation under oxic and hypoxic conditions

The coupled decrease in NH$_4^+$ concentrations and increase in NO$_2^-$ concentrations (Fig. 3a and b) indicate active nitrification in both oxic and hypoxic incubations. Moreover, the two oxidation steps of nitrification were tightly coupled, resulting in no accumulation of NO$_2^-$ in the soil. Because NO$_3^-$ produced from nitrification has a zero ΔO$_2$ value, the active nitrification was also reflected in the progressive dilution of 15O(NO$_3^-$) under both oxic and hypoxic conditions (Yu and Elliott, 2018). Based on the measured concentrations and isotopic composition of NH$_4^+$ and NO$_3^-$, the isotopologue-specific model previously developed by Yu and Elliott (2018) was used to estimate the rates and net N isotope effects of net mineralization ($R_{\text{OrgN/NH}}$ and $^{15}\eta_{\text{OrgN/NH}}$), gross NH$_4^+$ oxidation to NO$_3^-$ ($R_{\text{NH}_4^+/\text{NO}_3^-}$ and $^{15}\eta_{\text{NH}_4^+/\text{NO}_3^-}$), and gross NO$_3^-$ consumption ($R_{\text{NO}_3^-/\text{comp}}$ and $^{15}\eta_{\text{NO}_3^-/\text{comp}}$) during the oxic and hypoxic incubations. As has been discussed above, this numerical model relies on the conservative nature of 17O(NO$_3^-$) and its powerful application in tracing co-occurring nitrification and NO$_3^-$ consumption (consisting of NO$_3^-$ immobilization and denitrification in this case) (Yu and Elliott, 2018). Detailed model derivation, formulation, and optimization have been documented in Yu and Elliott (2018) and are also briefly summarized in Sect. S5. The modeling results based on the low-15N-NH$_4^+$ treatment in the oxic incubation were reported by Yu and Elliott (2018). Here, we used data from all three δ^{15}N-NH$_4^+$ treatments to more robustly constrain the N transformation rates and net N isotope effects for each incubation experiment (i.e., oxic and hypoxic).
The modeling results are summarized in Table 2. Excellent agreement was obtained between the observed and simulated concentrations and isotopic composition of NH$_4^+$ and NO$_3^-$ for both oxic and hypoxic incubations (Fig. 3). $R_{\text{NH}_4/\text{NO}_3}$ can be well described by zero-order kinetics and was estimated to be 0.46 and 0.11 µg N g$^{-1}$ h$^{-1}$ for the oxic and hypoxic incubations, respectively (Table 2). The lower $R_{\text{NH}_4/\text{NO}_3}$ in the hypoxic incubation indicates that nitrification was limited by low O$_2$ availability. Under both oxic and hypoxic conditions, oxidation of NH$_4^+$ to NO$_3^-$ was associated with a large $\eta_{\text{NH}_4/\text{NO}_3}$ (23%e to 28%e; Table 2), consistent with the N isotope effects for NH$_4^+$ oxidation in pure cultures of AOB and AOA (e.g., 13%e to 41%e) (Mariotti et al., 1981; Casciotti et al., 2003; Santoro and Casciotti, 2011). On the other hand, the estimated $R_{\text{OrgN}/\text{NH}_4}$ and $R_{\text{NO}_3\text{comp}}$ were low and not significantly different between the two incubation experiments (Table 2). Nevertheless, while $R_{\text{NO}_3\text{comp}}$ was only 16% of $R_{\text{NH}_4/\text{NO}_3}$ in the oxic incubation, $R_{\text{NO}_3\text{comp}}$ accounted for a much larger fraction (63%) of $R_{\text{NH}_4/\text{NO}_3}$ in the hypoxic incubation, mainly due to the reduced $R_{\text{NH}_4/\text{NO}_3}$ under the low-O$_2$ condition. Due to the low magnitude of $R_{\text{OrgN}/\text{NH}_4}$ and $R_{\text{NO}_3\text{comp}}$, the estimated $\eta_{\text{OrgN}/\text{NH}_4}$ and $\eta_{\text{NO}_3\text{comp}}$ were associated with large errors and not significantly different from zero (Table 2).

By using three isotopically different NH$_4^+$ fertilizers in parallel treatments, we are able to quantify the fractional contribution of NH$_4^+$ oxidation to the measured net NO production (f_{NH_4}). Specifically, if NO was exclusively produced from soil NH$_4^+$, we would expect to see a constant δ^{15}N difference between NH$_4^+$ and NO across the three δ^{15}N-NH$_4^+$ treatments. In fact, the observed δ^{15}N differences were not constant, and the slope of δ^{15}N-NH$_4^+$ vs. δ^{15}N-NO was significantly lower than unity under both oxic and hypoxic conditions (Fig. 4). This suggests that sources other than NH$_4^+$ oxidation contributed to the observed net NO production. Although NO can be produced by numerous microbial and abiotic processes (Medinets et al., 2015), we argue that the other major NO source is mostly likely related to NO$_3^-$ consumption. This is based on the observation of high NO$_3^-$ concentrations in both oxic and hypoxic incubations, as well as the estimated low $R_{\text{OrgN}/\text{NH}_4}$ (Table 2), which indicates a low availability of labile organic N – another potential substrate for NO production (Stange et al., 2013) – in this agricultural soil. Therefore, based on the assumption that NH$_4^+$ oxidation and NO$_3^-$ consumption were the two primary NO sources during the oxic and hypoxic incubations, a two-source isotope mixing model was used to relate the measured δ^{15}N-NO values to the concurrently measured δ^{15}N-NH$_4^+$ and δ^{15}N-NO$_3^-$ values:

$$\delta^{15}\text{N-NO} = f_{\text{NH}_4} \times (\delta^{15}\text{N-NH}_4^+ - \delta^{15}\eta_{\text{NH}_4/\text{NO}}) + (1 - f_{\text{NH}_4}) \times (\delta^{15}\text{N-NO}_3^- - \delta^{15}\eta_{\text{NO}_3/\text{NO}}),$$

where $\delta^{15}\eta_{\text{NH}_4/\text{NO}}$ and $\delta^{15}\eta_{\text{NO}_3/\text{NO}}$ are the net isotope effects for NO production from NH$_4^+$ oxidation and NO$_3^-$ consumption, respectively. Rearranging Eq. (5) yields Eq. (6):

$$\delta^{15}\text{N-NO} = f_{\text{NH}_4} \times \delta^{15}\text{N-NH}_4^+ + (1 - f_{\text{NH}_4}) \times \delta^{15}\text{N-NO}_3^- - \left[f_{\text{NH}_4} \times \delta^{15}\eta_{\text{NH}_4/\text{NO}} + (1 - f_{\text{NH}_4}) \times \delta^{15}\eta_{\text{NO}_3/\text{NO}} \right].$$

(6)

$$\delta^{15}\eta_{\text{comb}} = f_{\text{NH}_4} \times \delta^{15}\eta_{\text{NH}_4/\text{NO}} + (1 - f_{\text{NH}_4}) \times \delta^{15}\eta_{\text{NO}_3/\text{NO}}.$$

(7)
soil NO emissions are predominately driven by nitrification and NO production, whereas NO produced from denitrification is further reduced to N₂O before it escapes to the soil surface (Kester et al., 1997; Skiba et al., 1997). The minor role of denitrification is largely deduced from the supposition that denitrification is activated only under wet soil conditions (Davidson and Verchot, 2000). However, based on our Δ¹⁵N-based NO source partitioning, about 30% of the net NO production was attributed by NO₃⁻ consumption under oxic condition, highlighting the potential importance of denitrification in driving soil NO emissions under conditions not typically conducive to its occurrence. There is growing evidence that extensive anoxic microsites can develop in otherwise well-aerated soils due to micro-scale variability of O₂ demand and soil texture-dependent gas diffusion limitations (Keiluweit et al., 2018). Although we would not predict high rates of heterotrophic respiration in this agricultural soil with low organic carbon, it is possible that rapid O₂ consumption by nitrification may outpace O₂ supply through diffusion in soil microsites, fostering development of anoxic niches in close association with nitrification hot spots (Kremen et al., 2005). Based on the Δ¹⁵N labeling and direct Δ¹⁵NO measurements using a gas chromatograph–quadrupole mass spectrometer, Russow et al. (2009) demonstrated that nitrification contributed about 70% of net NO production in a well-aerated, NH₄⁺-fertilized silt loam, in strong agreement with our results based on natural-abundance Δ¹⁵N measurements. An even lower contribution to NO production, e.g., 26% to 44%, has been reported for nitrification in organic, N-rich forest soils incubated under oxic conditions (Stange et al., 2013). The persistence of denitrifying microsites in the studied soil is further corroborated by the nearly doubled net NO production from NO₃⁻ consumption in the hypoxic incubation (Fig. 9). Importantly, the actual NO yield in denitrification might be much higher than those estimated for gross NO₃⁻ consumption during the oxic and hypoxic incubations (i.e., 3.2% and 6.1%), as denitrification occurring in anoxic niches might only comprise a small fraction of the estimated RₙNO₃,comp.

Interestingly, while RₙNH₄/NO₃ was significantly lower in the hypoxic incubation, the net NO production from NH₃ oxidation was similar between the two incubation experiments, indicating a higher NO yield in nitrification when O₂ availability became limited (Fig. 9). However, mechanisms underlying the differential NO yield in nitrification are difficult to elucidate owing to the high complexity of biochemical pathways of NO production by AOB and AOA. In AOB, the prevailing view of NH₃ oxidation is that it occurs via a two-step enzymatic process, involving hydroxylamine (NH₂OH) as an obligatory intermediate (Fig. 10). The first step is catalyzed by NH₃ monooxygenase (AMO), which uses copper and O₂ to hydroxylate NH₃ to NH₂OH. Next, a multiheme enzyme, NH₂OH oxidoreductase (HAO), catalyzes the four-electron oxidation of NH₂OH to NO in enzyme-bound nitroxy1 (([HNO-Fe]) and nitrosoyl (NO-Fe) intermediates (Lehnert et al., 2018) (Fig. 10). Under this NH₂OH obli-

![Figure 9. Hole-in-the-pipe illustration of NO production from gross nitrification and NO₃⁻ consumption under oxic and hypoxic conditions. “OrgN” denotes organic nitrogen.](image)
gate intermediate model, NO emission was proposed to result from dissociation of NO from the enzyme-bound nitrosyl complex under high-NH$_3$ and/or low-O$_2$ conditions (Fig. 10) (Hooper et al., 2004; Beeckman et al., 2018). However, there is recent strong evidence that HAO generally catalyzes the three-electron oxidation of NH$_2$OH to NO under both aerobic and anaerobic conditions; the HAO-produced NO is further oxidized to NO$_2^-$ by an unknown enzyme (Caranto and Lancaster, 2017). In this way, NO would not be a byproduct of incomplete NH$_2$OH oxidation but rather required as an obligatory intermediate for NO$_2^-$ production (Fig. 10). It was further proposed that AOB-encoded copper-containing NIR may catalyze the final one-electron oxidation of NO to NO$_2^-$ by operating in reverse (Lancaster et al., 2018). Under this NH$_2$OH/NO obligate intermediate model, high intracellular NO concentrations arise when the rate of NO production outpaces the rate of its oxidation to NO$_2^-$, leading to NO leakage from cells. Consequently, under O$_2$ stress, decreases in the rate of NO oxidation to NO$_2^-$ might be expected, and this may explain the observed increase in nitrification NO yield in the hypoxic incubation. Additionally, some AOB strains can produce NO in a process termed nitriﬁer denitriﬁcation, in which NO is produced through NIR-catalyzed NO$_2^-$ reduction and can be further reduced to N$_2$O by AOB-encoded NOR (Wrage-Mönning et al., 2018) (Fig. 10). Compared to AOB, the NH$_3$ oxidation pathway in AOA remains unclear (Beeckman et al., 2018). The current model is that NH$_3$ is ﬁrst oxidized by an archaeal AMO to NH$_2$OH and subsequently converted to NO$_2^-$ by an unknown HAO counterpart (Kozlowski et al., 2016). NO seems to be mandatory for archaeal NH$_2$OH oxidation and has been proposed to act as a co-substrate for the NO$_2^-$ production (Kozlowski et al., 2016). Consequently, NO is usually produced and immediately consumed with tighter control in AOA than in AOB (Kozlowski et al., 2016).

To shed further light on the inner workings of net NO production from NH$_3^+$, we turn to constraining $^{15}\eta_{\text{NH}}/\text{NO}$. Specifically, the inherent linkage between $^{15}\eta_{\text{comb}}$, $^{15}\eta_{\text{NH}/\text{NO}}$, and $^{15}\eta_{\text{NO}_2/\text{NO}}$ (Eq. 7) allows one to probe the relative magnitude of $^{15}\eta_{\text{NH}/\text{NO}}$ and $^{15}\eta_{\text{NO}_2/\text{NO}}$ using the determined $^{15}\eta_{\text{comb}}$ and f_{NO_2}. Given that NO$_2$ was absent in the soil and that NO reduction in denitriﬁcation was likely associated with a small isotope effect (i.e., $^{15}\eta_{\text{NOR}}$; see above), $^{15}\eta_{\text{NO}_2/\text{NO}}$ in the oxic and hypoxic incubations should mainly reﬂect $^{15}\eta_{\text{NAR}}$. Thus, by assigning the entire possible range of the best-ﬁt $^{15}\eta_{\text{NAR}}$ derived in the anoxic incubation (5 % to 45 %; Fig. 7a) to $^{15}\eta_{\text{NO}_2/\text{NO}}$, $^{15}\eta_{\text{NH}/\text{NO}}$ was estimated to range from 60 % to 76 % in the oxic incubation and from 55 % to 84 % in the hypoxic incubation (Fig. 11). If we take one step further by assuming that both $^{15}\eta_{\text{NO}_2/\text{NO}}$ and $^{15}\eta_{\text{NH}/\text{NO}}$ were identical between the oxic and hypoxic incubations, then $^{15}\eta_{\text{NH}/\text{NO}}$ and $^{15}\eta_{\text{NO}_2/\text{NO}}$ could be uniquely determined to be 30 % and 66 %, respectively (Fig. 11; Table 2). Thus, the relative magnitude of $^{15}\eta_{\text{NO}_2/\text{NO}}$ and $^{15}\eta_{\text{NH}/\text{NO}}$ provides insights into the diﬀerential relationship between $^{15}\text{N-NH}_3^+$ and $^{15}\text{N-NO}$ across the three $^{15}\text{N-NH}_2^+$ treatments in the oxic and hypoxic incubations (Fig. 4). In the oxic incubation, if we assume that $^{15}\eta_{\text{NH}/\text{NO}} = 66\%$ and $^{15}\eta_{\text{NO}_2/\text{NO}} = 30\%$, the $^{15}\delta$N of NO produced from NH$_3^+$ oxidation under the low $^{15}\text{N-NH}_2^+$ treatment (about δ15N of NO from NO$_2^-$ consumption (about −38 %). However, under the high-$^{15}\text{N-NH}_2^+$ treatment, the $^{15}\delta$N of NH$_3^+$-produced NO would increase to about −14 % and be higher than $^{15}\delta$N values of NO$_2^-$-produced NO (about −26 %). Consequently, the production of NO from NO$_2^-$ consumption would dilute the $^{15}\delta$N of total net NO production, pulling it to

![Diagram](https://example.com/diagram.png)

Figure 10. The three enzymatic pathways for NO production during NH$_3$ oxidation to NO$_2^-$ by AOB: the NH$_2$OH obligatory intermediate pathway is indicated by blue circle 1, the NH$_2$OH/NO obligate intermediate pathway is indicated by blue circle 2, and the nitrifier-denitriﬁcation pathway is indicated by blue circle 3. Square brackets enclose proposed enzyme-bound intermediates [HNO-Fe] and [NO-Fe] of the NH$_2$OH obligatory intermediate pathway. The role of AOB-encoded nitrite reductase (NIR) in catalyzing NO oxidation to NO$_2^-$ in the NH$_2$OH/NO obligate intermediate pathway is hypothetical.

![Graph](https://example.com/graph.png)

Figure 11. Relative magnitude of net N isotope effects for NO production from NH$_3^+$ oxidation ($^{15}\eta_{\text{NH}/\text{NO}}$) and NO$_2^-$ consumption ($^{15}\eta_{\text{NO}_2/\text{NO}}$) in the oxic and hypoxic incubations.
fall below the 1 : 1 line between the $\delta ^{15}$N-NH$_4^+$ and $\delta ^{15}$N-NO values in Fig. 4. This dilution effect was more pronounced in the hypoxic incubation due to the lower f_{NH_3} (i.e., higher contribution of NO$_3^-$-produced NO) (Fig. 4).

Therefore, under either oxic or hypoxic condition, the net NO production from NH$_4^+$ oxidation proceeded with a large $\delta ^{15}$N$_{\text{NH}_4/\text{NO}}$. As NH$_3$ oxidation to NH$_2$OH was likely the rate-limiting step for the entire nitrification process, a fraction of the inferred large $\delta ^{15}$N$_{\text{NH}_4/\text{NO}}$ can be accounted for by the isotope effect for NH$_3$ oxidation to NH$_2$OH, which should be similar to the estimated $\delta ^{15}$N$_{\text{NH}_3/\text{NO}}$ (e.g., 23‰ to 28‰). The residual isotope effect, on the order of 40‰, must therefore stem from additional bond forming/breaking during net NO production in NH$_3$ oxidation. This additional N isotope effect could be explained by NO$_2^-$ reduction catalyzed by AOB-encoded NIR if NO was dominantly produced through the nitrifier-denitrification pathway (Fig. 10). However, provided that the two oxidation steps of nitrification were tightly coupled under both oxic and hypoxic conditions, it is unlikely that NO$_2^-$ would accumulate to high enough intracellular concentrations to trigger nitrifier denitrification (Wragge-Mönning et al., 2018). Similarly, we would not expect any substantial isotope fractionations to result from accumulation of intracellular NH$_2$OH or enzyme-bound intermediate species (e.g., [HNO-Fe] and [NO-Fe]). Thus, we are left with either a large and normal isotope effect for NO dissociation from its enzyme-bound precursor if NO production was mainly routed through the NH$_2$OH obligate intermediate pathway or an inverse isotope effect associated with NO oxidation if NO itself was an obligatory intermediate required for NO$_2^-$ production (Fig. 10). With respect to the first possibility, if NO dissociation from the Fe active site of HAO is mainly controlled by an equilibrium reaction between NO and enzyme-bound nitrosyl species, the forward and backward reactions may occur with distinctively different isotope effects, giving rise to an equilibrium isotope effect that favors partitioning of 14N to the dissociated NO. However, expression of this equilibrium isotope effect would be largely suppressed by limited isotope exchange between the two N pools due to the presumably transient presence of nitrosyl intermediate. Therefore, a partial expression of a large equilibrium isotope effect (e.g., > 40‰) would be required to explain the residual N isotope fractionation during NO production in NH$_3$ oxidation. Alternatively, in regards to the second possibility, if we assume that the enzyme-catalyzed oxidation of NO to NO$_2^-$ proceeds via an enzyme-bound transition state and that the transition state contains the newly formed N-O bond, an inverse isotope effect may result from more strongly bonded N atom in the transition state, for which there is precedent in the literature (i.e., NO$_2^-$ oxidation to NO$_3^-$; see above) (Casciotti, 2009). Moreover, the small NO yield observed in the oxic and hypoxic incubations would indicate a large consumption of NO (i.e., 95% to 99%). With this high level of NO consumption, an inverse isotope effect on the order of -13% to -9% would be sufficient to account for the residual isotope effect for net NO production from NH$_4^+$. This inferred isotope effect is of similar magnitude to that reported for NXR-catalyzed NO$_2^-$ oxidation (i.e., -13%) (Casciotti, 2009). However, to unambiguously determine the mechanisms giving rise to the large $\delta ^{15}$N$_{\text{NH}_4/\text{NO}}$, further biochemical analyses will be needed to clarify the enzymatic pathways responsible for NO production by AOB and AOA under relevant soil conditions. Nonetheless, the results presented here provide evidence that production of NO with low $\delta ^{15}$N values may be a characteristic feature of nitrification in NH$_4^+$-fertilized agricultural soils under both oxic and hypoxic conditions.

5 Implications for NO emission from agricultural soils

In this study, the net production rates and $\delta ^{15}$N values of NO were measured under a range of controlled laboratory conditions. The results provide insights into how stable N and O isotopes can be effectively used to understand the reaction mechanisms by which NO is produced and consumed in soils. While nitrification is the commonly cited source for NO emissions from agricultural soils, the measured net NO production rates in this study highlight the great potential of abiotic NO$_2^-$ reduction and denitrification in driving NO production and release from agricultural soils and thus should not be overlooked when attributing field soil NO emissions. Indeed, because NO is a direct product or free intermediate in these processes, abiotic NO$_2^-$ reduction and denitrification may inherently have a larger NO yield – that is, a bigger “hole” for NO leaking in the HIP model (Davidson and Verchot, 2000). We conclude that the isotope-based measurement and modeling framework established in this work is a powerful tool to bridge NO production with gross N transformation processes in agricultural soils, thereby providing a quantitative way to parameterize the HIP model for modeling soil NO emissions under dynamic environmental conditions (e.g., varying temperature and soil moisture content).

The differences in the net isotope effects for NO production from abiotic NO$_2^-$ reduction, denitrification, and nitrication revealed in this study (Fig. 12a) suggest that $\delta ^{15}$N-NO is a useful tracer for informing NO production pathways in agricultural soils. Specifically, the relatively small magnitude of $\delta ^{15}$N$_{\text{NO}_2^-/\text{NO(abiotic)}}$ indicates that $\delta ^{15}$N-NO is particularly useful in probing the relative importance of NO production from abiotic vs. microbial reactions, lending support to our previous finding based on rewetting of a dry forest soil that high $\delta ^{15}$N values of rewetting-triggered NO pulses were mainly contributed by chemical NO$_2^-$ reduction (Yu and Elliott, 2017). Moreover, the large $\delta ^{15}$N$_{\text{NH}_4/\text{NO}}$ revealed in the oxic and hypoxic incubations provides an empirical basis for discerning the relative role of NH$_4^+$ oxidation and NO$_3^-$ reduction in driving soil NO production and emissions. Interestingly, comparing the measured net isotope effects for NO production from abiotic NO$_2^-$ reduction, denitrification, and
nitrification with those previously quantified for N₂O production in soil incubations and pure cultures (Denk et al., 2017, and references therein; Jones et al., 2015; Wei et al., 2019), a similar pattern is evident across these three common production pathways for NO and N₂O (Fig. 12a). This similarity reflects the intimate connection between NO and N₂O turnover within each reaction pathway and provides strong evidence that simultaneous δ¹⁵N-NO and δ¹⁵N-N₂O measurements can potentially yield unprecedented insights into the sources and processes controlling NO and N₂O emissions from agricultural soils. However, on the other hand, the demonstrated reaction reversibility between NO₂ and NO₃⁻ under anoxic conditions is a new complication that needs to be considered when using δ¹⁵N to examine soil NO and N₂O emissions. As NO₂⁻ is often accumulated in agricultural soils following fertilizer application (Venterea et al., 2020), expression of the equilibrium isotope effect between NO devices in redox-dynamic surface soils may render δ¹⁵N-NO and δ¹⁵N-N₂O less useful in tracing NO and N₂O sources. Given that high soil NO₃⁻ concentrations can trigger emission pulses of NO and N₂O (Venterea et al., 2020), NO₃⁻ accumulation should be taken as a critical sign for careful evaluation of the reaction complexity underlying δ¹⁵N distributions among the denitrification products.

To further assess the potential utility of δ¹⁵N measurements in source partitioning NO emissions from agricultural soils, we applied the estimated N isotope effects to the in situ δ¹⁵N-NO₃ measurements reported by Miller et al. (2018). Importantly, the soil used in this study was collected from the same farm where Miller et al. (2018) conducted their field measurements (e.g., the USDA-managed corn–soybean field in central Pennsylvania, USA). Hence, the derived isotope effects may be particularly relevant to their reported δ¹⁵N-NO₃ values due to similar soil microbial community structures. Because NO₂⁻ accumulation was not reported by Miller et al. (2018), we consider nitrification and denitrification to be the primary sources for the observed NO (and, to a much lesser extent, NO₂) emissions. Therefore, the ¹⁵N values of soil NH₄⁺ and NO₃⁻ reported by Miller et al. (2018) to calculate the δ¹⁵N end-members for NO produced from NH₄⁺ oxidation and NO₃⁻ reduction. As shown in Fig. 12b, comparing the in situ δ¹⁵N-NO₃ measurements with the estimated isotopic end-members provides a compelling picture of soil NO dynamics following manure application. Notably, the initial low δ¹⁵N-NO₃ values reported by Miller et al. (2018) might indicate a mixed contribution of NH₄⁺ oxidation and NO₃⁻ reduction. As data-limited, this example provides promising initial evidence for the ability of multi-species δ¹⁵N measurements to provide mechanistic information on soil NO dynamics and its environmental controls. Further experimental constraints on soil δ¹⁵N-NO₃ variations can build on the measurement and modeling framework developed in this study to advance our understanding of soil NO source contributions over a wide range of environmental conditions and soil types.

Code and data availability. The datasets generated for this study and documentation about the equations and parameters of the isotopologue-specific models are available in the Supplement. The MATLAB codes for the isotopologue-specific models are available at https://github.com/zjyuuiuc/
Isotopologue-specific-models (last access: 1 February 2021) and at https://doi.org/10.5281/zenodo.4495715 (Yu, 2020).

Supplement. The supplement related to this article is available online at: https://doi.org/10.5194/bg-18-805-2021-supplement.

Author contributions. ZY and EME designed the study; ZY conducted the experiments and analyzed the data; ZY and EME wrote the paper.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. The authors thank Curtis Dell (USDA-ARS) for helping with the field soil sampling and Katherine Redling, Vivian Feng, Madeline Ellgass, and Madeline Gray (University of Pittsburgh) for assistance with the isotopic analyses.

Financial support. This work was supported by a National Science Foundation CAREER award (grant no. 1253000) to Emily M. Elliott.

Review statement. This paper was edited by Andreas Richter and reviewed by Wolfgang Wanek and one anonymous referee.

References

Felix, D. J., Elliott, E. M., Gish, T. J., McConnell, L. L., and Shapouri, J. D., Mohn, J., Decock, C., Lewicka-Szczebak, D., Har-

