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Abstract. Vegetation is an important component in global
ecosystems, affecting the physical, hydrological and biogeo-
chemical properties of the land surface. Accordingly, the way
vegetation is parameterized strongly influences predictions
of future climate by Earth system models. To capture fu-
ture spatial and temporal changes in vegetation cover and
its feedbacks to the climate system, dynamic global vegeta-
tion models (DGVMs) are included as important components
of land surface models. Variation in the predicted vegetation
cover from DGVMs therefore has large impacts on modelled
radiative and non-radiative properties, especially over high-
latitude regions. DGVMs are mostly evaluated by remotely
sensed products and less often by other vegetation products
or by in situ field observations. In this study, we evaluate
the performance of three methods for spatial representation
of present-day vegetation cover with respect to prediction of
plant functional type (PFT) profiles – one based upon distri-
bution models (DMs), one that uses a remote sensing (RS)
dataset and a DGVM (CLM4.5BGCDV; Community Land
Model 4.5 Bio-Geo-Chemical cycles and Dynamical Vege-
tation). While DGVMs predict PFT profiles based on phys-
iological and ecological processes, a DM relies on statisti-
cal correlations between a set of predictors and the mod-
elled target, and the RS dataset is based on classification of
spectral reflectance patterns of satellite images. PFT profiles

obtained from an independently collected field-based veg-
etation dataset from Norway were used for the evaluation.
We found that RS-based PFT profiles matched the reference
dataset best, closely followed by DM, whereas predictions
from DGVMs often deviated strongly from the reference.
DGVM predictions overestimated the area covered by bo-
real needleleaf evergreen trees and bare ground at the ex-
pense of boreal broadleaf deciduous trees and shrubs. Based
on environmental predictors identified by DM as important,
three new environmental variables (e.g. minimum tempera-
ture in May, snow water equivalent in October and precipita-
tion seasonality) were selected as the threshold for the estab-
lishment of these high-latitude PFTs. We performed a series
of sensitivity experiments to investigate if these thresholds
improve the performance of the DGVM method. Based on
our results, we suggest implementation of one of these novel
PFT-specific thresholds (i.e. precipitation seasonality) in the
DGVM method. The results highlight the potential of using
PFT-specific thresholds obtained by DM in development of
DGVMs in broader regions. Also, we emphasize the poten-
tial of establishing DMs as a reliable method for providing
PFT distributions for evaluation of DGVMs alongside RS.
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1 Introduction

Vegetation plays an important role in the climate system, as
changes in the vegetation cover alter the biogeophysical and
biogeochemical properties of the land surface (Davin and
de Noblet-Ducoudré, 2010; Duveiller et al., 2018). There-
fore accurate descriptions of the vegetation distribution hold
a key role in Earth system models (ESMs) (Bonan, 2016;
Poulter et al., 2015). Historical and present vegetation dis-
tributions can be prescribed in ESMs by means of datasets
prepared from observations (Lawrence and Chase, 2007; Li
et al., 2018; Lawrence et al., 2011). However, in order to pre-
dict the future temporal and spatial changes in natural veg-
etation cover and subsequently the processes, dynamics and
feedbacks to the climate system, dynamic global vegetation
models (DGVMs) are needed.

DGVMs have been implemented as components of ESMs
(Bonan et al., 2003) to represent long-term vegetation
changes by a set of parameterizations describing general
physiological principles, including ecological disturbances,
successions (Seo and Kim, 2019) and species interactions
(Scheiter et al., 2013). DGVMs represent the heterogeneity
of land surface processes and interactions with other com-
ponents of the Earth system by characterizing land areas by
their composition of type units defined by plant functional
types (PFTs) (Bonan et al., 2003; Oleson et al., 2013). PFTs
are groupings of plant species with similar eco-physiological
properties, which express differences in growth form (woody
vs. herbaceous), leaf longevity (deciduous vs. evergreen) and
photosynthetic pathway (C3 and C4) (Wullschleger et al.,
2014). Even though DGVMs are being constantly developed
and improved to incorporate more complex plant processes
(Fisher et al., 2010) and more PFTs (Chadburn et al., 2015;
Porada et al., 2016; Druel et al., 2017), there are still funda-
mental challenges for DGVMs to correctly simulate the ex-
tents of PFTs that characterize boreal and Arctic ecoregions
(Gotangco Castillo et al., 2012). For instance, the thematic
resolution (i.e. the number of classes or PFTs in a model)
of high-latitude PFTs is still limited (Wullschleger et al.,
2014), and important interactions between vegetation and
fire at high latitudes are still missing (Seo and Kim, 2019),
which in turn has implications on forest carbon storage in
high latitudes still being underestimated by most DGVMs
(Song et al., 2013). The large uncertainties in simulating
high-latitude PFT distributions may also lead to discrepan-
cies between modelled and observed energy fluxes and hy-
drology (Hartley et al., 2017), carbon cycles (Sitch et al.,
2008) or surface albedo (Shi et al., 2018). Accordingly, sys-
tematic evaluation of PFT distributions modelled by DGVMs
is required to improve the DGVMs and, subsequently, to re-
duce uncertainties in estimates of climate sensitivity and in
predictions by ESMs.

Remote sensing (RS) is often used for evaluation, bench-
marking and improvement of parameters of DGVMs (Zhu
et al., 2018). RS products are commonly used to describe

vegetation cover using vegetation classes derived from multi-
spectral images based on vegetation indices, such as the
normalized difference vegetation index (NDVI) (Xie et al.,
2008; Franklin and Wulder, 2002). For evaluation, RS prod-
ucts are translated into distributions of the PFT classes
used in the DGVMs (Lawrence and Chase, 2007; Poul-
ter et al., 2011). However, inconsistencies between various
available RS-based land-cover or vegetation products (Ma-
jasalmi et al., 2018) as well as a mismatch between the spa-
tial resolution in RS observations and the spatial heterogene-
ity of vegetation patches (Myers-Smith et al., 2011; Lantz
et al., 2010) have been reported. The fact that benchmarking
DGVMs only to these RS-based products may lead to differ-
ent conclusions in ESMs (Poulter et al., 2015) motivates the
exploration of other vegetation products as a supplement to
RS.

Among the less explored methods to generate wall-to-wall
vegetation cover predictions is distribution modelling. Dis-
tribution models (DMs) are most often used to predict the
distribution of a target by the establishment of a statistical
relationship between the target (response) and the environ-
ment (predictors) (e.g. Halvorsen, 2012). The most common
use of DM in ecology is for prediction of species distribu-
tions (Henderson et al., 2014), but DM methods have proved
valuable also for prediction of targets at higher levels of bio-
, geo- or eco-diversity (i.e. vegetation types and land-cover
types) (Ullerud et al., 2016; Horvath et al., 2019; Simensen
et al., 2020). DM methods are inherently static, in contrast
to the DGVMs (Snell et al., 2014). Nevertheless, they may
be a useful corrective to DGVMs by providing insights into
important environmental factors driving the distribution of
individual targets, which may, in turn, improve PFT parame-
terization in DGVMs.

Comparative studies that evaluate the present-day PFT dis-
tributions of DGVMs in a systematic manner, with reference
to a field-based evaluation dataset, are, with some exceptions
(Druel et al., 2017), few. In this study, we evaluate vegeta-
tion distribution, translated to PFT profiles and obtained by
three different methods (DGVM, RS and DM), and use an
independently collected field-based dataset of vegetation dis-
tribution, AR (the Norwegian national map series for area
resources), for the evaluation. Furthermore, we explore if en-
vironmental correlates of vegetation-type distributions iden-
tified by DM can be used to improve DGVMs by adjusting
parameter settings for high-latitude PFTs.

To approach these aims, we constructed a conversion
scheme to harmonize the classification schemes of RS, DM
and AR into the PFTs used by the DGVM method. We repre-
sent the present-day vegetation coverage by using plant func-
tional type profiles (PFT profiles), vectors of relative abun-
dances of PFTs within an area, e.g. a given study plot, sum-
ming to one. We then compare the PFT profiles obtained by
the DGVM, RS and DM methods with the AR reference
on 20 selected study plots across the Norwegian mainland.
Finally, we conduct a series of sensitivity experiments (see
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Sect. 4) which build upon the results of the analyses per-
formed in this study to explore if the DGVM performance
can be improved by adjusting DGVM parameters for selected
environmental drivers identified by the DM method.

2 Methods

2.1 Study area – Norway

The study area covers mainland Norway, spanning lati-
tudes from 57◦57′ to 71◦11′ N and longitudes from 4◦29′

to 31◦10′ E. Norway is characterized by a gradient from a
rugged terrain with deep valleys and fjords in the western,
oceanic parts to gently undulating hills and shallow valleys
in the central and eastern, more continental parts. Tempera-
ture and precipitation show considerable variation with lat-
itude, distance from the coast and altitude (Førland, 1979).
While the mean annual precipitation ranges from 278 mm in
the central inland of southern Norway to more than 5000 mm
in mid-fjord regions along the western coast, the yearly mean
temperature ranges from 7 ◦C in the southwestern lowlands
to−4 ◦C in the high mountains (Hanssen-Bauer et al., 2017).

The vegetation of Norway is structured along two main
bioclimatic gradients (Fig. 1), one related to temperature and
growing-season length and one to humidity and oceanity
(Bakkestuen et al., 2008). Broadleaf deciduous forests, regu-
larly found in the southern and southwestern parts (the bore-
onemoral bioclimatic zone), are further west and north (in the
southern boreal zone), restricted to locally warm sites (Moen,
1999). With declining temperatures northwards and towards
higher altitudes, evergreen coniferous boreal forests domi-
nate in the southern and middle boreal zones. In the north-
ern boreal zone, the coniferous boreal forests pass gradually
into subalpine birch forests, which form the tree line in Nor-
way. A total of about 38 % of mainland Norway is covered by
forests, and about 37 % of the land is situated above the for-
est line (of which two-thirds is covered by alpine mountain
heaths). Wetlands cover approximately 9 %, and broadleaf
deciduous forests cover about 0.4 % of the land area (Bryn
et al., 2018).

2.2 The AR reference dataset

Data obtained by in situ field mapping, which is considered
among the most reliable sources of land-cover information
(Alexander and Millington, 2000), are practically and eco-
nomically impossible to obtain in a wall-to-wall format for
large land areas such as countries (Ullerud et al., 2020). As
an alternative, area-frame surveys based upon stratified sta-
tistical sampling may provide accurate, area-representative,
homogeneous and unbiased land-cover and land-use data for
large areas. To evaluate the three methods for representing
vegetation addressed in this study, we used the “Norwegian
land cover and land resource survey of the outfields” (“Are-
alregnskap for utmark”) dataset (Strand, 2013), a Norwegian

implementation of the mapping programme LUCAS (Land
Use and Coverage Area frame Survey; Eurostat, 2003). Data
were collected in the period between 2004 and 2014 in a sys-
tematic regular grid covering the whole land area of Norway,
on which the plots (in total 1081 plots, each 0.6km×1.5 km,
i.e. 0.9 km2) were placed every 18 km (in latitude) by 18 km
(in longitude) (Bryn et al., 2018; Strand, 2013). In each plot,
expert field surveyors performed land-cover mapping by use
of a system with 57 land-cover and vegetation-type classes
(Bryn et al., 2018), mapped at a scale of 1 : 25000. The
data were provided in vector format with vegetation-type at-
tributes assigned to each mapped polygon.

2.3 Study plots

Out of the 1081 rectangular AR plots, 20 were selected to
make up our reference dataset, AR (Fig. 1; centre coordi-
nates in Table S1 in the Supplement). The AR plots spanned
elevations from 88 to 1670 m a.s.l., with mean annual tem-
peratures between −4.0 and 7.1 ◦C and mean annual precip-
itation between 466 and 2661 mm (Table S1). The gradients
of precipitation and temperature are known to be among the
most influential for vegetation distribution (e.g. Ahti et al.,
1968; Bakkestuen et al., 2008). A series of Kolmogorov–
Smirnov tests for comparison of sample mean and variance
for these two variables using data from seNorge2 (Lussana
et al., 2018a, b) was obtained to investigate if the 20 selected
plots capture the variation across temperature and precipita-
tion in Norway acceptably well compared to the full set of
1081 AR plots (Fig. S2). Additionally, we tested the repre-
sentativeness across the range of variation for a third vari-
able (precipitation seasonality) which was later selected for
sensitivity experiments (see further details in Sect. 4). While
low values of temperature and precipitation are slightly un-
derrepresented in the 20 plots, the total range of variation was
well covered. None of the tests for temperature, precipitation
and the additional variable (precipitation seasonality) indi-
cate that the sample of the 20 plots deviates from the full set
of 1081 plots. The representativeness of the 20 plots was also
tested against the full dataset of 1081 AR plots with regard
to PFT coverage (in the Supplement, Sect. S3 and Table S3),
using a chi-square test. This test showed that the two datasets
are not more dissimilar than expected by chance.

2.4 Methods for representing vegetation

In this study, we use “plot” as a collective term for two partly
overlapping spatial units: (i) the 0.9 km2 rectangles of the AR
reference dataset and (ii) the 1 km2 quadrats with the same
centre point as, and edges parallel to those of, the AR rectan-
gles. The latter were used for the three methods of DGVM,
RS and DM (Fig. S6).

Representations of the present-day vegetation for each of
these 20 plots were obtained by three different methods: (i) as
the result of single-cell DGVM simulations for each plot, (ii)
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Figure 1. Locations of the 20 plots across the two main bioclimatic gradients in the study area: temperature (a) and precipitation (b). The
plots are numbered by longitude from west to east. Exact values of temperature, precipitation and altitude for each plot are given in Table S1.

Table 1. Details of each of the methods for representing vegetation. DGVM – dynamic global vegetation model, RS – remote sensing and
DM – distribution model. PFT – plant functional type and VT – vegetation type.

DGVM RS DM

Model type Process-based mechanistic
model

Supervised and unsupervised
classification

Statistical model

Software or model name
and version

Community Land Model 4.5 –
CLM4.5BGCDV

ENVI (image analysis) and
ArcGIS (classification)

R version 3.6.2, generalized
linear model

Reference Oleson et al. (2013) Johansen (2009) Horvath et al. (2019)

Thematic resolution 14 PFTs 25 VTs 31 VTs

Spatial resolution
(grid cell)

1 km 30 m 100 m

inferred from a RS vegetation map of the study area and (iii)
from vegetation-type DM models (Table 1). In order to make
the three methods comparable, vegetation was represented
by plant functional type profiles (PFT profiles), obtained by
a conversion scheme (Table S5 and Sect. 2.5). We define a
PFT profile as a thematic representation of the land surface
in a given plot or a group of plots, described as a vector of
relative PFT abundances, i.e. values that sum up to one.

2.4.1 The DGVM method

The DGVM employed in this study was the CLM4.5BGCDV
(hereafter referred to as DGVM), an option provided in
NCAR’s (National Center for Atmospheric Research) Com-
munity Land Model version 4.5 (CLM4.5) with vegetation
dynamics, the plant–soil carbon–nitrogen cycle and multi-
layer vertical soil enabled (Oleson et al., 2013). In DGVM,
plant photosynthesis, stomatal conductance, carbon–nitrogen
allocation, plant phenology and multi-layer soil biogeo-
chemistry are described in accordance with default CLM4.5
values, while vegetation dynamics (establishment, survival,
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mortality and light competition) are handled separately based
upon simple assumptions of environmental thresholds for
establishment, survival and mortality of each PFT (see
Sect. S7) (Oleson et al., 2013). We used DGVM in the form
of single-cell simulations for the 20 plots with the grid-
cell size set to 1km× 1 km (Table 1) to simulate the frac-
tional cover of each PFT. All models were run with de-
fault CLM4.5 values for surface parameters (e.g. soil tex-
ture and depth), with prescribed atmospheric forcing derived
from the 3-hourly hindcast of the regional model (SMHI-
RCA4; Swedish Meteorological and Hydrological Institute
Rossby Centre regional atmospheric model) driven by the
ERA-Interim reanalysis for the European Domain of the Co-
ordinated Downscaling Experiment (CORDEX) for 1980–
2010 (Dyrrdal et al., 2018). The CORDEX model simulation
was used because it has a higher spatial resolution than the
default atmospheric forcing used in CLM4.5 (0.11◦× 0.11◦

and 0.5◦×0.5◦, respectively). An inspection of the choice of
atmospheric forcing, by which the CORDEX data were com-
pared with the seNorge data used for DM, showed minimal
differences (Fig. S4). Only results obtained using CORDEX
data are therefore shown in this paper. The 30-year CORDEX
data were cycled during the spin-up. A 30-year period is con-
sistent with WMO (World Meteorological Organization) cli-
matological normal based on the rationale that a 30-year pe-
riod is short enough to avoid large long-term trends while
being long enough to include the range of variability. Thus,
the data are not detrended or averaged.

The model was run with default PFT parameters (Ta-
ble S7). All the selected sites are mostly undisturbed. In
our experiments, soil C and N were firstly initialized using
a restart file from an existing global present-day spin-up sim-
ulation with prescribed vegetation. Each model simulation
was spun up for 400 years to establish a vegetation in equi-
librium with the current climate after initialization from bare
ground. In three plots where the equilibrium of vegetation
was questionable (plot 6, 12 and 17), we extended the spin-up
by 400, 200 and 200 years, respectively, to check if any effect
on PFT profile could be seen. No significant changes in the
PFT profile was noted in these three instances (Figs. S11.1
and S11.2), and therefore we kept the initial 400-year spin-
up for all the sites. A 20-year average at the end of the spin-
up was used as input for calculation of PFT profiles (repre-
senting years 1990–2010), which corresponds with the data-
collection timeframe of the DM, RS and AR methods.

Among the 15 PFTs used in CLM4.5 to represent veg-
etated surfaces globally (Lawrence and Chase, 2007), only
six (plus bare ground) were relevant for our study area (Ta-
ble S7). Bare ground was predicted to occur where plant
productivity was below a threshold value (Dallmeyer et al.,
2019). The DGVM simulates the vegetated land unit only
(non-grey boxes in Fig. S8), while other land units within the
20 plots, including glaciers, wetlands, lakes, cultivated land
and urban areas, make up the excluded (EXCL) PFT cate-
gory (Table S5). The percentage cover fraction of each PFT

is equal to the average individual’s fraction projective cover
(FPCind) multiplied by the number of individuals (Nind) and
average individual’s crown area (CROWNind). FPCind is a
function of the maximum leaf carbon achieved in 1 year,
while CROWNind is related to dead stem carbon simulated
by the model. Nind is mainly determined by the establish-
ment and survival rate controlled by establishment and sur-
vival threshold conditions (Levis et al., 2004). We obtained
PFT profiles for each plot by excluding the EXCL category
and recalculated fractions of the vegetated land unit covered
by each PFT to sum up to one.

2.4.2 The RS method

As a RS product we used SatVeg (Johansen, 2009), a veg-
etation map for Norway with 25 land-cover classes and a
spatial resolution (grid-cell size) of 30 m (Table 1). SatVeg
is obtained by a combination of unsupervised and supervised
classification methods, applied to Landsat 5 TM (Thematic
Mapper) and Landsat 7 ETM+ (Enhanced Thematic Map-
per) images within the near-infrared and mid-infrared spec-
trum covering the period 1999–2006. While with the super-
vised classification, training data are based on well-labelled
data from the study area, during the unsupervised classifica-
tion the algorithm is only supplied with the number of out-
put classes without further interference of the user. Only grid
cells that were within each 1 km2 plot with a majority of their
area were taken into consideration for further calculations.

2.4.3 The DM method

The distribution models (DMs) for 31 vegetation types (VTs)
obtained by Horvath et al. (2019) using generalized linear
models (GLMs, with logit link and binomial errors, i.e. lo-
gistic regression) were used for this study. The VT data were
collected during years 2004–2014. The DMs were obtained
by using wall-to-wall data for 116 environmental predic-
tors from six groups (topographic, geological, proximity, cli-
matic, snow and land cover), gridded to a spatial resolution of
100m× 100 m (Table 1) as predictors. Important predictors
were selected by an automated stepwise forward-selection
procedure for each of the 31 VTs individually; thus each fi-
nal model is built upon only a narrow selection of important
predictors (Horvath et al., 2019). All DMs were evaluated us-
ing an independent evaluation dataset and by calculating the
area under the receiver operator curve (AUC), a threshold-
independent measure of model performance commonly used
in DM (see Horvath et al., 2019, for details). AUC can be in-
terpreted as the probability that the model predicts a higher
suitability value for a random-presence grid cell than for a
random-absence grid cell (Fielding and Bell, 1997). A seam-
less vegetation map (i.e. with one predicted VT for each grid
cell with no overlap and no gaps) was obtained from the
stack of 31 probability surfaces by assigning to each grid cell
the VT with the highest predicted probability of occurrence
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within that cell (Ferrier et al., 2002). Grid cells with the ma-
jority of their area within a 1 km2 plot were used for further
calculations (Fig. S6).

2.5 Conversion to PFT profiles

Harmonization of the various vegetation classification sys-
tems was accomplished by a conversion scheme that repre-
sented each grid cell (RS and DM) or polygon (AR) in each
of the 20 plots with one out of the six PFTs recognized by
DGVM (Table S5 and Fig. S6). The scheme was obtained
by expert judgements and solicited by a consensus process
which involved ecologists participating in the AR survey as
well as scientists working with RS and DGVMs.

We used the conversion scheme of Table S5 to generate
wall-to-wall PFT maps from the original RS, DM and AR
datasets (Table 1) by assigning one PFT to each 30m×30 m
grid cell, 100m×100 m grid cell or VT polygon, respectively.
PFT profiles for each plot, at the same thematic resolution as
for DGVM, were obtained as the vector with fractions of grid
cells or polygons assigned to each of the six PFTs. EXCL
classes not represented in DGVM (cf. Table S5) were left
out to minimize the effect of land use, which could other-
wise have brought about differences in PFT profiles among
the compared methods. PFT profiles were obtained for each
combination of method and plot. To test for deviations in PFT
coverage between the methods across the whole study area,
aggregated PFT profiles were obtained by averaging the 20
PFT profiles obtained for each method.

2.6 Comparison of PFT profiles

To examine the overall pattern across the study area and to
assess the models’ ability to produce overall predictions of
PFTs that accord with the PFTs’ overall frequency (as given
by the reference), aggregated PFT profiles obtained by each
of the DGVM, RS and DM methods were compared with
the aggregated PFT profile of the AR reference dataset by
a chi-square test (Zuur et al., 2007). To identify strongly
deviating modelling results at a plot scale, the dissimilarity
between PFTs profiles obtained by each of the DGVM, RS
and DM methods and the PFT profile of the AR dataset for
each plot was calculated by using proportional dissimilarity
(Czekanowski, 1909):

dhj =
∑
|yhji − y0ji |/

∑
(yhji + y0ji)

= 1− 2
∑

min(yhji,y0ji)/
∑

(yhji + y0ji), (1)

where yhji refers to the specific element in a PFT profile vec-
tor (the fraction occupied by the PFT in question) given by
method h (DGVM, RS or DM; h= 1, . . .,3; the value h= 0
refers to the AR reference dataset), j refers to the specific
plot (j = 1, . . .,20) and i refers to the PFT (i = 1, . . .,6). Pro-
portional dissimilarity is the Manhattan measure standard-
ized by division by the sum of the pairwise sums of vari-
able values (here PFTs). Since the values of each PFT profile

sums to one, the index reduces to

dhj = 1−
∑

min(yhji,y0ji).

The proportional-dissimilarity index is appropriate for inci-
dence data like PFT abundances, i.e. variables that take zero
or positive values. The index reaches a maximum value of
one when two objects have no common presences (here,
PFTs present in both compared objects) and ignore joint
absences (zeros). To assess the degree to which the mod-
els produce pairwise similar differences, we compared the
pairwise differences between the proportional-dissimilarity
values among methods using a Wilcoxon–Mann–Whitney
paired-samples test.

All raster and vector operations related to the DM, RS and
AR methods were carried out in R (version 3.4.3) (R Core
Team, 2019) using packages “rgdal” (Rowlingson, 2019),
“raster” (Hijmans, 2019) and “sp” (Pebesma and Bivand,
2005), while graphics are produced using the “ggplot2”
package (Wickham, 2016). Statistical analyses were carried
out in R (version 3.4.3) using the “vegan” package (Oksa-
nen et al., 2019). All maps were produced in QGIS (QGIS
Development Team, 2019).

3 Results

The aggregated PFT profiles for the RS and DM datasets did
not differ significantly from those of the reference AR dataset
according to the chi-square test, while a significant difference
was found for the DGVM profiles (Table 2). While the pro-
portion of grid cells attributed to the PFT boreal NET (bo-
real needleleaf evergreen tree) by the RS and DM methods
underestimated AR values by 3.0 and 2.8 percentage points,
respectively, DGVM overestimated the proportion of boreal
NET by 20.4 percentage points compared to the AR refer-
ence. Also, unproductive areas (BG; bare ground) were over-
estimated by DGVM (by 16.6 percentage points) and less so
by RS (4.0 percentage points), while this PFT was slightly
underrepresented by DM (by 5.0 percentage points). Dis-
crepancies were also observed for the cover of the C3 PFT,
which was overestimated by RS and DM (by 7.2 and 2.9 per-
centage points, respectively) and underestimated by DGVM
(by 3.0 percentage points). Furthermore, DGVM overesti-
mated BG and temperate BDT (broadleaf deciduous tree)
cover on the expense of boreal BDT and boreal BDS (boreal
broadleaf deciduous shrub).

In accordance with results from comparisons between ag-
gregated PFT profiles obtained by the three methods and
those obtained for the reference dataset, DGVM profiles for
individual plots were significantly more dissimilar to the AR
reference than RS and DM profiles (Fig. 2). While RS had the
lowest median proportional dissimilarity with the AR refer-
ence (0.19, compared to 0.26 for DM and 0.41 for DGVM),
DM had the lowest spread of dissimilarity values, measured
as interquartile difference (0.12, compared to 0.19 for RS and
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Table 2. PFT profiles (columns) aggregated across all 20 plots for the three methods compared in this study and the AR reference dataset.
Results of comparisons of aggregated PFT profiles for each of the three methods with the reference are also given. DGVM – dynamic global
vegetation model, RS – remote sensing, DM – distribution model and AR – reference dataset. BG – bare ground, boreal NET – boreal
needleleaf evergreen trees, temperate BDT – temperate broadleaf deciduous trees, boreal BDT – boreal broadleaf deciduous trees, boreal
BDS – boreal broadleaf deciduous shrubs and C3 – C3 grasses.

PFT Compared methods Reference

DGVM (%) RS (%) DM (%) AR (%)

BG 29.5 17.0 7.9 12.9
Boreal NET 57.2 34.0 33.8 36.8
Temperate BDT 5.6 2.0 0.2 0.5
Boreal BDT 3.1 12.5 17.2 15.5
Boreal BDS 4.1 23.8 34.5 30.8
C3 0.5 10.7 6.4 3.5
Chi-square test χ2

= 45.98, df= 5, χ2
= 6.36, df= 5, χ2

= 2.61, df= 5,
p < 0.05 p = 0.27 p = 0.75

Figure 2. Proportional-dissimilarity values between PFT profiles
for each combination of 20 plots and each of the three methods
compared in this study and the corresponding plot in the AR ref-
erence dataset. The thick horizontal line, the box and the whiskers
represent the median, the interquartile difference and the range of
values for each method.

0.72 for DGVM), among the three methods (Fig. 2). While
no dissimilarity value for RS was above 0.50, two plots (4
and 19) acted as strong outliers in the distribution of DM
values (cf. Fig. 2). Additionally, a comparison of propor-
tional dissimilarity between pairs of methods revealed sig-
nificant differences between DGVM profiles and those ob-
tained by RS and DM (Wilcoxon rank-sum tests: W = 111,
p = 0.0167 and W = 88, p = 0.0026, respectively), while
RS and DM profiles were not significantly different from
each other (Wilcoxon rank-sum test:W = 161, p = 0.3013).

Visual inspection of spatial patterns of PFT profile charac-
teristics across the 20 plots suggests that the best agreement
among the methods was obtained for the southeastern part
of the study area, dominated by boreal NET (Fig. 3 and Ta-

ble S10). Compared to the AR reference dataset, PFT profiles
obtained by DGVM were strongly biased: in the north (plots
17 and 18) towards boreal NET on the cost of boreal BDT,
near the western coast (plots 1, 2, 5 and 15) towards boreal
NET on the cost of boreal BDS and in southern coastal areas
(plots 3, 6 and 12) towards temperate BDT instead of boreal
NET. In plots 13 and 16 DGVM failed to establish vegetation
(predicting bare ground) where AR reported boreal BDS. RS
represented the PFT profiles of the AR reference well in most
cases but tended to overestimate the frequency of dominance
by C3 grasses at several locations (plots 3, 16 and 20). While
DM showed no general spatial pattern of PFT profile devia-
tions from the reference dataset, PFT profiles of plots 4 and
19 obtained by DM had almost no similarity to the corre-
sponding profiles of the AR reference dataset: C3 grasses and
boreal BDT were predicted instead of bare ground and boreal
NET, respectively.

4 Sensitivity experiments and model improvement

We used the results of PFT profile comparisons between
DGVM and the AR reference (Fig. 3) and the results ob-
tained for the DM dataset as a starting point for exploring
the possible causes of the poor performance of DGVM. We
first identified the three most abundant PFTs (i.e. boreal NET,
boreal BDT and boreal BDS) in our set of plots (Table S3).
Thereafter, we identified the major VTs predicted by DM
in those plots that were translated into these PFTs using the
conversion scheme (Table S5) (pine forest, birch forest and
dwarf shrub heath, respectively; Table 3). Based on the re-
sults from Horvath et al. (2019), the corresponding final mod-
els for these three VTs were examined to identify important
environmental variables that were driving the distribution of
the VTs but not represented in DGVM. We recognized three
environmental predictors that are critical for the distribution
of each of these VTs and exhibit a clear threshold signature
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Figure 3. PFT profiles for each of the 20 plots for the three methods compared in this study and the AR reference dataset. The columns in
each cluster of the four bar charts represent, from left to right, the methods of the dynamic global vegetation model (DGVM), remote sensing
(RS) and distribution model (DM), with the AR reference dataset to the right.

in the frequency-of-presence plots (i.e. graphs showing vari-
ation in the abundance of the VT as a function of an environ-
mental predictors; also see Fig. S12): snow water equivalent
in October (swe_10), minimum temperature in May (tmin_5)
and precipitation seasonality (bioclim_15). Precipitation sea-
sonality is defined as the ratio of the standard deviation of
the monthly total precipitation to the mean monthly total
precipitation (i.e. the coefficient of variation), expressed as
a percentage (O’Donnell and Ignizio, 2012). Based on vi-
sual inspection of the frequency-of-presence plots, we iden-
tified specific threshold values for each of the three VTs (see
Fig. S12 for details) and implemented these threshold values
into DGVM as new limits for establishment of the three PFTs
as shown in Table 3. For example, in line with Fig. S12, VT
2ef and its respective PFT, boreal BDS, can only establish
when variable swe_10 is less than 380 mm.

We explored the extent to which these additional thresh-
olds improved the performance of DGVM on the subset of
six plots (i.e. 1, 2, 5, 15, 17 and 18) in which the PFT pro-

files are most biased compared to the AR reference dataset
due to the overrepresentation of boreal NEB. In total, three
sensitivity experiments were carried out by a stepwise pro-
cess; in each step a new threshold was added cumulatively to
the previous experiment (Table 3). Namely, in the first sensi-
tivity experiment (i), we added the swe_10 threshold. In the
second experiment (ii), we added both swe_10 and tmin_5
as the threshold. In the last experiment (iii), we added all the
three novel thresholds. Only the results of the third sensitivity
experiment with all the three thresholds added are reported
here. Results of the other two experiments are summarized
in Table S13.

The results show that while the added thresholds for
swe_10 and tmin_5 had little impact on the results (Ta-
ble S13), the addition of the threshold for bioclim_15 (i.e.
the third sensitivity experiment) largely improved the perfor-
mance of DGVM on the experimental plots explored (Fig. 4).
PFT profiles simulated by this experiment were more simi-
lar to those of the AR reference dataset for four out of the
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Table 3. New thresholds for establishment of the three PFTs explored in DGVM sensitivity experiments. The variables explored were swe_10
– snow water equivalent in October given in mm, tmin_5 – minimum temperature in May (◦C) and bioclim_15 – precipitation seasonality
(unitless index representing annual trends in precipitation).

VT PFT Sensitivity model run

(i) (ii) (iii)
swe_10 (mm) tmin_5 (◦C) bioclim_15

2ef – Dwarf shrub heath/Alpine calluna heath Boreal broadleaf deciduous shrub < 380 >−10 –
4a – Lichen and heather birch forest Boreal broadleaf deciduous tree < 180 >−7.5 –
6a – Lichen and heather pine forest Boreal needleleaf evergreen tree < 150 >−5 < 50

Figure 4. PFT profiles for the subset of six plots subjected to sensi-
tivity experiments with new DGVM establishment thresholds. The
columns in each cluster of the three bar charts represent, from left to
right, the dynamic global vegetation model (DGVM) with original
(default) parameter settings, DGVM with revised parameter settings
and AR reference dataset. For further details, see Table S13.

six plots in the experimental subset (plot 1, 2, 5 and 15): in
plots 1 and 15, boreal NET was correctly replaced by boreal
BDS; in plots 2 and 5, boreal NET was replaced by boreal
BDT, BDS and temperate BDT. The addition of new thresh-
old (bioclim_15) also reduced the modelled abundance of bo-
real NET in plots 17 and 18, but DGVM still failed to popu-
late these plots with another PFT (Fig. 4).

5 Discussion

5.1 Comparison of PFT profiles

The maps of PFT distributions generated by DM and RS are
generally similar (Fig. S9) across most of our study area. This
indicates that output from DM, which is rarely used for eval-
uating PFT distributions from DGVMs, can be used for this
purpose in addition to the commonly used RS-based datasets.
There are, however, some differences between results ob-
tained by the two methods near the northern Norwegian coast
and in the mountain areas of western Norway, which will be
discussed below in more detail.

We recognize six possible explanations for the differences
in PFT profiles obtained by DGVM, RS and DM for the 20
plots (see Table 4), related to the following issues: (i) the con-
version scheme (ref. Table S5); (ii) what is actually modelled
by DGVM, RS and DM, e.g. in terms of potential vs. actual
vegetation; (iii) the performance of individual DM models;
(iv) the transformation of predictions from single DMs into a
seamless vegetation map, i.e. assigning one VT to each grid
cell; (v) the DGVM performance; and (vi) missing PFTs in
DGVM.

5.1.1 The conversion scheme

The conversion schemes used to reclassify vegetation and
land-cover classes into PFTs have been reported as a pos-
sible attributor to erroneous PFT distributions (Hartley et al.,
2017). While we use a simple conversion scheme that as-
signs each land-cover type or vegetation type to one and only
one PFT (Dallmeyer et al., 2019), more complex conversion
schemes exist, by which each land-cover class is translated
into a multi-PFT composition that co-occurs within a grid
cell (Bonan et al., 2002; Li et al., 2016; Poulter et al., 2011,
2015). Our approach may be advantageous when the classes
to be converted are homogeneous, in the sense that one PFT
is clearly dominating in the type and in the sense that the
range of variation within the class in PFTs is negligible, such
as is the case for 90 % of the DM and RS classes in our study.
Our simple scheme may, on the other hand, be a source of
uncertainty when quantitatively important VTs are ambigu-
ous in one way or the other or, more commonly, in both
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ways at the same time. The set of VTs used in our study
includes several relevant examples: VTs that may include a
wide spectrum of tree-dominant types; the VT “1a/1b – Moss
snowbed/Sedge and grass snowbed” (Horvath et al., 2019),
which covers a range of variation in the relative abundance of
graminoids and, hence, shows affinity to C3 as well as to BG;
and the VT “8a – Damp forest”, which is usually dominated
by the evergreen Scots pine and converted into boreal NET,
but which in some instances (e.g. after clear-cutting) is dom-
inated by deciduous trees like Betula spp. and should then
be converted into boreal BDT (Bryn et al., 2018). However,
a close inspection of DM shows that our method reproduced
similar PFT profiles as the reference dataset for all plots, ex-
cept 2 out of 20 plots (the two outliers on Fig. 2, plots 4 and
19 in Fig. 3).

In our case, a more complicated conversion scheme is
likely to be compensated for by the sub-grid complexity
introduced in the process by which PFT profiles are ob-
tained. Rather than estimating a PFT profile for the 1 km2

plot directly, i.e. in one operation as in DGVM, the RS-based
classes and VTs are first converted into PFTs in their original
resolution and then subsequently subjected to aggregation to
obtain the PFT profiles. This results in a sub-grid PFT het-
erogeneity that could otherwise be implemented by using a
more complex conversion scheme.

5.1.2 What is modelled by DGVM, RS and DM

The methods used in this study produce different representa-
tions of the vegetated land surface in terms of actual or poten-
tial natural vegetation (Table 4). In order to model future veg-
etation changes and feedbacks, functional-type-based mod-
els like DGVM implicitly address the processes that control
the distribution of vegetation (Bonan et al., 2003; Song et al.,
2013). Simulating natural vegetation processes under a given
climatic equilibrium scenario (at any given time), DGVM
produces a model of potential natural vegetation (e.g. Bohn
et al., 2000; Hengl et al., 2018). RS-based classifications, on
the other hand, describe the land surface at a specific point
in time or changes through time (e.g. Arctic greening and
browning) (Myers-Smith et al., 2020) and, accordingly, por-
tray actual vegetation as influenced by previous and ongo-
ing land use (Bryn et al., 2013). Depending on the modelling
setup, DM may pragmatically describe the current ecolog-
ical envelope of a target or aim at revealing the proximate
causes for its distribution (Ferrier and Guisan, 2006), thus
modelling either actual or potential natural vegetation, de-
pending on the input data used for modelling (Hemsing and
Bryn, 2012; Hengl et al., 2018).

In this study, we carefully restricted our attention to PFTs
that represent natural vegetation, excluding VTs with strong
anthropogenic influences. This was done for all methods and
the AR reference. Nevertheless, differences with respect to
what is actually modelled by the different methods, potential
vegetation by DGVM and actual vegetation by RS and DM,

may have contributed to the observed among-model differ-
ences in PFT profiles.

5.1.3 DM performance

While the performance of the DM method is overall good,
distribution models of individual VTs vary in performance
(with AUC values ranging from 0.671 to 0.989) according to
the study by Horvath et al. (2019). Several reasons for the low
predictive performance of some DM runs are identified, of
which the most important is considered to be important pre-
dictors missing in the training data. This might seem counter-
intuitive, given the large number of predictor variables used
in the study (n= 116). However, the authors conclude that
several important factors for the distribution of vegetation
are not at all represented in the dataset (e.g. NDVI and lidar),
among other reasons because they are almost impossible to
obtain data for with the required spatial resolution (e.g. soil
nutrients). The DM method requires estimates for the prob-
abilities of occurrence for (almost) all individual vegetation
types to create a seamless vegetation map, which in turn is
required for making estimates for the PFT profiles as robust
as possible. Thus, in this context, “poor” models are better
than no model.

Individual models’ performance might be the reason for
the two plots whose PFT profiles deviate strongly from the
AR reference (Figs. 2 and 3). For plot 4, the discrepancy is
due to VT 1a/1b – Moss snowbed/Sedge and grass snowbed,
which is represented by one of the best performing among
the 31 DMs. For this VT, conversion scheme bias is a more
likely reason for the deviant PFT profile. For plot 19, boreal
BDT is modelled because the VT predicted by DM is “4a –
Lichen and heather birch forest”. The fact that the DM for
this VT is among the inferior DMs (see the ranking of indi-
vidual models presented in Horvath et al., 2019) makes this
explanation more likely in this case.

5.1.4 Transformation of single-DM predictions into a
vegetation map

The performance of DM on the particular plots may also
be influenced by the method chosen for transforming pre-
dictions from one DM for each VT into a seamless veg-
etation map. Assigning to each grid cell the VT with the
highest predicted probability of presence in that cell, which
is a commonly used method for this purpose (Ferrier and
Guisan, 2006), favours VTs represented by good DMs. This
is brought about by good DMs having a distribution of pre-
dictions that is more spread out (with larger predictions for
the grid cells identified as the most favourable cells) than
poor DMs (Halvorsen, 2012). However, since the probability
of presence for each VT was predicted separately for each
grid cell, the probability values for each VT vary indepen-
dently of the probabilities for the other VTs, throughout the
study area. Thus, we regard the chance that one VT con-
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Table 4. A summary of the key properties of the three methods compared in this study. DGVM – dynamic global vegetation model, RS –
remote sensing and DM – distribution model.

Key property Method

DGVM RS DM

Modelled property Process-based vegetation model –
using a priori parameterizations

Classification based on satellite
imagery (spectral reflectance)

Statistically based model of a tar-
get (response) and the environ-
ment (predictors)

Main purpose Feeding vegetation changes into
ESM for further quantification of
feedbacks between the land sur-
face and the atmosphere

Mapping of land cover or land use
for descriptive purposes, manage-
ment or monitoring

Predicting the spatial distribution
of a target and/or summarizing its
relationship with the environment

Material Climate forcing, PFT parameters
and host model

Satellite imagery in different
bands

Presence-absence training data
and environmental predictors

Spatial extent Global to regional
(single-cell tests)

Global to local Regional to local

Modelling outcome Potential vegetation Actual vegetation Potential or actual vegetation, de-
pending on the training data

Advantages – Addresses the processes

– Feedback loops with other
Earth system components
can be included

– Continuous temporal scale
of prediction into the future

– Observation-based

– High spatial resolution

– Good temporal coverage

– Opens for use of proxies for
important predictors

– May provide insight into
drivers of distributions

Disadvantages – Low performance (e.g. com-
pared with RS and DM) as
long as the underlying pro-
cesses are not fully under-
stood and properly parame-
terized

– Parameter intensive

– Resource demanding

– Data are sensitive to cloud
cover and shaded areas

– Atmospheric correction
needed

– Provides limited insight into
the processes that regulate
the distributions of
land-cover types

– No feedback included

– Provides limited insight into
the processes that regulate
the distributions of targets

– Temporally static (one point
in time addressed by each
model)

– No feedback included

Possible interactions
with the other meth-
ods

– May improve DM by point-
ing at relevant predictor
variables

– May improve RS by identi-
fying threshold values

– May improve DGVM by
improved parameterization
(based on RS indices)

– May improve DM by pro-
viding predictor variables,
directly or as indices (NDVI,
etc.)

– May improve parameteriza-
tion and envelope discrimi-
nation of DGVM

– May improve RS by target-
ing specific PFTs that have
similar reflectance but dif-
ferent ecology

sistently outperforms another VT over all the grid cells to
be negligible. Alternative methods for this purpose should
be tested in the context of DGVM evaluation. To avoid un-
certainties associated with conversion between type systems
and perhaps even further improve the performance of DM,

we recommend exploring the option of using PFTs directly
as targets in DM. Direct modelling of PFTs rather than tak-
ing the detour via VT models may reduce the number of en-
vironment predictors required (116 layers used in Horvath
et al., 2019) in addition to circumventing the complicated
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process of modelling thematically narrow vegetation types
(VTs). Another potential advantage of modelling PFT tar-
gets directly is that the model parameters will then be PFT
specific and not in need of being converted (from a VT into
a PFT).

To further reduce the biases and uncertainties of DM-
based PFT profiles, we recommend exploring the use of vari-
ables derived from RS directly as predictors in DM. Previous
studies have shown that RS-based predictors may enhance
DM performance on different scales: on the vegetation-type
level (Álvarez-Martínez et al., 2018), on the habitat-type
level (Mücher et al., 2009) and on the PFT level (Assal et al.,
2015). Further suggestions for improvement of the methods
used in this study are found in Table 4.

5.1.5 DGVM performance

Our results show that, for many plots, the PFT profiles sim-
ulated by DGVM differ from those of the AR reference
dataset. According to our results, DGVM overestimates the
coverage of bare ground and boreal NET and underpre-
dicts the cover of C3 grasses, boreal BDT and boreal BDS.
While the AR reference dataset shows that the northern plots
(specifically plots 17 and 18) are covered by mountain birch
forest and shrubs (boreal BDT and boreal BDS), DGVM
predicts dominance of boreal NET in these plots. Overes-
timation of boreal NET has also been reported by Hickler
et al. (2012) for large parts of Scandinavia, who attributed
this to lacking representation of shade tolerance classes in
DGVM models. A similar pattern is seen in our results: the
PFT profiles obtained by DGVM during the 400-year spin-
up (Fig. S11.1) show no sign of boreal BDT in the early
phases of model prediction, as would be expected of an early-
successional forest in Norway.

Our results further suggest that DGVM underrepresents
grasses and shrubs compared to the reference dataset. This
may be explained by the built-in constraints in the light com-
petition scheme of DGVM. The model assumes that regard-
less of grass and shrub productivity, trees will cover up to
95 % of the land unit when their productivity permits (Ole-
son et al., 2013). The priority given to a PFT in DGVM de-
creases with the stature of the organisms in question because
of the increasing probability that a lower layer is covered by
another layer. The degree of underrepresentation is therefore
expected to increase from shrubs to grasses. Accordingly,
DGVM predicts dominance by trees in the most productive
regions, by grasses in less productive regions and by shrubs
in the least productive non-desert regions (Zeng et al., 2008).
The underrepresentation of C3 grasses by DGVM across the
20 plots accords with the results of Zhu et al. (2018), who
found that C3 grasses are underpredicted on a global level in
an earlier version of DGVM.

Inappropriate parameterization of shrubs may be a reason
why the DGVM underestimates boreal BDS in many of the
coastal plots (1, 2, 5 and 15) (Fig. 3 and Table S10). The im-

plementation of shrubs as a new PFT in an earlier version of
DGVM (CLM3-DGVM) by Zeng et al. (2008), parameter-
ized for representation of taller shrubs with heights between
0.1 and 0.5 m, may not suit the majority of dwarf shrubs
(of the genera Calluna, Betula and Empetrum) that abun-
dantly occurs in Norwegian ecosystems. To this, Gotangco
Castillo et al. (2012) add that the sparse shrub and grass veg-
etation cover simulated by DGVM in the tundra regions may
be caused by the soil moisture bias inherited from the host
land model CLM4 (Lawrence et al., 2011). Another reason
for DGVM’s underestimation of boreal BDS in coastal ar-
eas could be the 4000-year tradition of coastal heath man-
agement in Norway (Bryn et al., 2010) which causes a large
discrepancy between the actual vegetation modelled by RS,
DM and AR and the potential natural vegetation simulated
by DGVM under present-day climatic conditions (e.g. Bohn
et al., 2000; Hengl et al., 2018). We therefore argue that more
sensitivity studies of PFT-specific parameters for height, sur-
vival, establishment, etc., across all PFTs, are needed.

Some discrepancies in the DGVM output might be caused
by the climate forcing used in the simulations, looped for the
period 1980–2010. Long-term historical climate effects on
vegetation distribution were not included in our model simu-
lation. However, we noticed that vegetation distribution was
insensitive to interannual variation or decadal variation of the
climate forcing when it reached an equilibrium state in most
of our study sites. Even though long-term historical climate
effects (such as cooler temperature in the early 20th century)
may favour boreal BDS rather than boreal NET, we con-
sider such historical effects to have only minor impact on
the already large biases observed in DGVM (e.g. too much
boreal NET and too few BDS). We also note that DGVM
used a spatially coarser CORDEX reanalysis (11km×11 km)
to supply high-temporal-resolution (6-hourly) atmospheric
forcing data, while the climate predictors used in DM were
derived from the observation-based seNorge2 dataset with
1km×1 km spatial resolution and daily temporal resolution.
The larger biases in the CORDEX reanalysis data may also
contribute to the large mismatch between DGVM and the ref-
erence dataset. We have compared the average annual tem-
perature and annual precipitation of the two input datasets
used in DGVM and DM to look for differences (see Fig. S4).
It appears that precipitation estimates by CORDEX for the 20
plots were slightly higher than seNorge estimates; the con-
verse (although less pronounced) was true for temperature.
The consequences of these differences in the input data might
be investigated in follow-up studies.

Despite the shortcomings discussed above, DGVM per-
forms reasonably well for some PFTs. One example is the
temperate BDT, which is correctly predicted by the model to
be restricted to the southern coastal plots (Bohn et al., 2000;
Moen, 1999). This finding suggests that some climatically
driven PFTs (i.e. temperate BDT) are well implemented by
the existing parameters in the DGVM used in this study.
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5.1.6 Missing PFTs

DGVM coerces the world’s immense variation in plant
species composition (vegetation) into a very limited number
of predefined PFTs, compared to classification schemes used
by the other methods in this study (RS, DM and AR; see
Table S5) and by other approaches to systematization of eco-
diversity (e.g. Dinerstein et al., 2017; Keith et al., 2020). In
particular, the number of high-latitude specific PFTs is in-
sufficient to realistically represent the biodiversity of these
ecoregions, as pointed out by Bjordal (2018) and Vowles
and Björk (2017). Comparisons between PFT profiles ob-
tained by DGVM and profiles obtained by DM suggest spe-
cific vegetation types that need to be better represented in
DGVMs, either by improving an existing PFT or by adding a
new PFT (e.g. dwarf shrubs vs. tall shrubs; moss-dominated
snowbeds, wetlands and lichens). In our study, the PFT pro-
file of DGVM is represented by the six boreal PFTs, whereas
the original data for RS, DM and AR include an average of
17 % (ref. Table S3) of the total area that are not represented
by these six PFTs (classes for the EXCL PFT category, see
Table S5). This points to the missing PFTs in the classifica-
tion scheme of DGVM but also to the challenge that certain
ecosystems in our study area do not have a representation in
the PFT schemes of DGVM. This is exemplified by wetlands,
important ecosystems that are still not represented in many of
the current DGVMs. This is not only problematic from the
perspective of the land surface energy balance (Wullschleger
et al., 2014) but has also implications for modelling of car-
bon storage and cycling and other interactions between the
land surface and the atmosphere (Bjordal, 2018).

Some recent examples with improvements to the thematic
resolution of PFTs in DGVMs are available in the litera-
ture (Druel et al., 2019, 2017; Coppell et al., 2019; Chad-
burn et al., 2015; Porada et al., 2016), and further exam-
ples of DGVMs with a larger number of high-latitude PFTs
also exist (Euskirchen et al., 2009). In line with these stud-
ies, our results demonstrate a great potential for increasing
the thematic resolution of DGVMs in general and not lim-
ited to the DGVM tested here, in terms of developing and
parameterizing new specific PFTs to be representative of the
highlatitude and high-altitude habitats and also deriving pa-
rameters from observations, DMs or RS products (Bjordal,
2018; Wullschleger et al., 2014), specific for the high lati-
tudes (Druel et al., 2017).

5.2 Sensitivity experiments

Adjusting DGVM parameters so that they correspond bet-
ter with environmental drivers known to be functional in
the high-latitude PFTs has been suggested as a measure to
improve the performance of DGVM (Wullschleger et al.,
2014). Our sensitivity experiments demonstrate that DM re-
sults can inform DGVM parameterization based upon suit-
ability ranges of the environmental predictors recognized by

DM in determining the distribution of a PFT. Most notably,
we recognize that the implementation of precipitation sea-
sonality (bioclim_15< 50) as a threshold for the establish-
ment of NET, which has not yet been used in DGVM, im-
proves the distribution of high-latitude PFTs simulated by
DGVM. This adds to the environmental thresholds for the es-
tablishment of a PFT previously used in DGVMs to restrict
the predicted distribution of PFTs to realistic geographic re-
gions (Miller and Smith, 2012). Even though our sensitivity
experiments focus on a limited number of additional thresh-
olds across three PFTs, this approach shows promising re-
sults and is worth exploring more extensively in future stud-
ies.

The importance of precipitation seasonality (i.e. bio-
clim_15) as a critical limiting factor for the establishment of
boreal NET indicates that the increased seasonality impedes
growth of boreal NET. While some studies have emphasized
the importance of seasonal distribution of rainfall on vege-
tation in the semi-arid areas (Zhang et al., 2018), the impor-
tance of this factor for high-altitude areas is less well stud-
ied (Oksanen, 1995; Sevanto et al., 2006). Better representa-
tion of the processes related to the response of boreal NET to
water availability, especially spring drought in DGVM, also
warrants further investigation. From our results for plots 17
and 18, we notice that adjusting the climatic thresholds for
the establishment of boreal NET does not necessarily lead
to other PFT growth. Boreal BDT and BDS can establish at
both plots, but their growth rates are too slow to make them
occupy a large area at these plots. This implies that other en-
vironmental conditions, e.g. nitrogen availability, might play
a more important role in limiting the growth of BDT and
BDS in the tested DGVM. The biases of DGVM in simulat-
ing BDT and BDS has been widely noticed in previous stud-
ies (Gotangco Castillo et al., 2012) and remains a challenge
requiring more investigation in the future.

While going into further details of which additional PFTs
should be included in DGVMs and how these and other PFTs
should be parameterized is beyond the scope of the present
paper, we emphasize the potential of using DM for improving
the parameters of DGVMs. More specifically, we propose a
more intensive exploration of DM as a tool for identification
of potential environmental drivers for the high-latitude PFTs,
which may enhance the performance of DGVMs in high-
latitude ecoregions. The specific focus of our study is the bo-
real region, both because of the importance of these ecosys-
tems in the climate system and because of the data avail-
ability of vegetation-type DM and the field-based reference
dataset (AR). However, we believe that the improved DGVM
parameters resulting from our sensitivity experiments may
be applicable to other DGVMs such as Terrestrial Ecosystem
Model (TEM) and LPJ-GUESS (Lund–Potsdam–Jena Gen-
eral Ecosystem Simulator) (Euskirchen et al., 2009; Miller
and Smith, 2012). Also, the results from this study are likely
to be transferable to other high-latitude areas in the circum-
boreal region.
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6 Conclusions

This study demonstrates the potential of using distribution
models (DMs) for representing present-day vegetation in
evaluations of plant functional type (PFT) distributions simu-
lated by dynamic global vegetation models (DGVMs) and for
the improvement of specific PFT parameters within DGVMs.
By the identification of the main differences among PFT pro-
files obtained by three methods (DGVM, RS and DM) in
selected high-latitude plots distributed across climatic gra-
dients in Norway, we show that PFT profiles derived from
DM and RS are in the same range of reliability, judged by
the resemblance to a reference dataset (AR). Hence, we sug-
gest that DM results can be used as a complementary evalua-
tion dataset to benchmark the present-day DGVMs. This ap-
proach is recommended when high-quality RS products are
not available in the desired thematic resolution or when they
are not able to supply proxies of other properties (such as
deriving parameter improvements or PFT-specific traits).

Comparing the 20 PFT profiles obtained by DGVM with
those obtained by AR shows a large overestimation by
DGVM of boreal needleleaf evergreen trees (boreal NET)
and bare ground at the expense of boreal broadleaf decidu-
ous trees and shrubs. This is attributed to missing processes
and PFT parameterizations of high-latitude PFTs in DGVM.
We use DM results to identify a new PFT-specific environ-
mental parameter – precipitation seasonality – which, in a
series of sensitivity experiments, improves the distribution
of boreal NET predicted by DGVM. This new PFT-specific
threshold for establishment decreases the bias of boreal NET
in DGVM across four out of six plots, and as a result, the
distribution of other high-latitude PFTs is also better repre-
sented. We argue that this new threshold should be transfer-
able to other DGVMs simulating high-latitude PFTs and that
our DM-based approach can be well applied to other ecosys-
tems.

Further development of DGVM, such as refining param-
eters for existing boreal PFTs and increasing the thematic
resolution of PFTs for boreal areas, should be strongly en-
couraged to achieve a more realistic simulation of the distri-
bution of vegetation by DGVM to increase the reliability of
future predictions and the reliability of predicted vegetation
feedbacks in the climate system.

Data availability. The DGVM model scripts are available in
the GitHub repository https://github.com/huitang-earth/Horvath_
etal_BG2020 (Tang, 2021), while the script used to carry out
the analysis of this study is available in the GitHub repos-
itory https://github.com/geco-nhm/DGVM_RS_DM_Norway
(Horvath, 2020, https://doi.org/10.5281/zenodo.4399235).
High-resolution DM-based and RS-based PFT maps are
available for download at the Dryad Digital Repository
https://doi.org/10.5061/dryad.dfn2z34xn (Horvath et al., 2020;
Fig. S9). DGVM outputs are provided in Tables S10 and S13 and
Fig. S11.
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