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Abstract. We have estimated global air–sea CO2 fluxes
(fgCO2) from the open ocean to coastal seas. Fluxes and as-
sociated uncertainty are computed from an ensemble-based
reconstruction of CO2 sea surface partial pressure (pCO2)
maps trained with gridded data from the Surface Ocean CO2
Atlas v2020 database. The ensemble mean (which is the
best estimate provided by the approach) fits independent data
well, and a broad agreement between the spatial distribu-
tion of model–data differences and the ensemble standard
deviation (which is our model uncertainty estimate) is seen.
Ensemble-based uncertainty estimates are denoted by ±1σ .
The space–time-varying uncertainty fields identify oceanic
regions where improvements in data reconstruction and ex-
tensions of the observational network are needed. Poor re-
constructions of pCO2 are primarily found over the coasts
and/or in regions with sparse observations, while fgCO2 esti-
mates with the largest uncertainty are observed over the open
Southern Ocean (44◦ S southward), the subpolar regions, the
Indian Ocean gyre, and upwelling systems.

Our estimate of the global net sink for the period
1985–2019 is 1.643± 0.125 PgC yr−1 including 0.150±
0.010 PgC yr−1 for the coastal net sink. Among the ocean
basins, the Subtropical Pacific (18–49◦ N) and the Subpolar
Atlantic (49–76◦ N) appear to be the strongest CO2 sinks for
the open ocean and the coastal ocean, respectively. Based on
mean flux density per unit area, the most intense CO2 draw-
down is, however, observed over the Arctic (76◦ N poleward)
followed by the Subpolar Atlantic and Subtropical Pacific for
both open-ocean and coastal sectors. Reconstruction results
also show significant changes in the global annual integral of
all open- and coastal-ocean CO2 fluxes with a growth rate of
+0.062± 0.006 PgC yr−2 and a temporal standard deviation

of 0.526± 0.022 PgC yr−1 over the 35-year period. The link
between the large interannual to multi-year variations of the
global net sink and the El Niño–Southern Oscillation climate
variability is reconfirmed.

1 Introduction

Since the onset of the industrial era, humankind has pro-
foundly modified the global carbon (C) cycle. The use of
fossil fuels, cement production, and land use change added
700±75 PgC (best estimate±1σ ) to the atmosphere between
1750 and 2019 (Friedlingstein et al., 2020). An estimated
285±5 PgC of this excess C stayed there; the remainder was
taken up by the ocean (170±20 PgC) and the land biosphere
(230± 60 PgC). While the fraction of total CO2 emissions
sequestered by the ocean has remained rather stable (22 %–
25 %) over the past 6 decades (Friedlingstein et al., 2020),
the global ocean sink has varied significantly at interannual
timescales (Rödenbeck et al., 2015). Global ocean biogeo-
chemical models (GOBMs) are used within the framework of
the annual assessment of the global carbon budget (Friedling-
stein et al., 2020) to annually re-estimate the means of and
variations in CO2 sinks and sources over the global ocean
and major basins. However, these recent model-based esti-
mates need to be benchmarked against observation-based es-
timates in order to better understand the global carbon budget
as well as its yearly re-distribution in the biosphere (Hauck
et al., 2020).

In situ measurements of sea surface fugacity of CO2 col-
lected by an international coordinated effort of the ocean ob-
servation community and combined into the Surface Ocean
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CO2 Atlas (SOCAT, https://www.socat.info/, last access:
16 June 2020; Bakker et al., 2016) provide an observational
constraint on the assessment of the surface ocean partial pres-
sure of CO2 (pCO2) and the ocean C sinks and sources. De-
spite an increasing number of observations since the 1990s,
data density remains uneven in space and time. While, for
instance, data coverage is sparse over the southern basins of
the Atlantic and Pacific oceans, observations are seasonally
biased towards the summers at high latitudes (Landschützer
et al., 2014; Denvil-Sommer et al., 2019; Gregor et al., 2019).

Various data-based approaches have been proposed to in-
fer gridded maps of surface ocean pCO2 from the sparse
set of observation-based data. They have been successful
in obtaining similarly low misfits between the reconstructed
and evaluation data and reasonable estimates of air–sea CO2
fluxes (see Rödenbeck et al., 2015; Gregor et al., 2019;
Friedlingstein et al., 2020) although model design and im-
plementation are quite different (e.g. the proportion of SO-
CAT data used in model fitting and evaluation). Aside from
data reconstruction built on a single model mapping pCO2
data with machine learning, classical regression, or mixed-
layer schemes (e.g. Rödenbeck et al., 2013; Landschützer
et al., 2016; Iida et al., 2021), ensemble-based approaches
have recently emerged but with their own concepts and ob-
jectives. For example, Denvil-Sommer et al. (2019) designed
a two-step reconstruction of pCO2 climatologies and anoma-
lies based on five neural network models and selected the one
that reproduced the pCO2 field with the smallest model–data
misfit. Gregor et al. (2019) and Gregor and Gruber (2021)
introduced machine-learning ensembles with 6 to 16 differ-
ent two-step clustering–regression models mapping surface
pCO2 and suggest that the use of their ensemble mean is
better than each member estimate. In a broader context, Rö-
denbeck et al. (2015) presented an intercomparison of 14
mapping methods targeting the identification of common or
distinguishable features of different products in long-term
mean, regional, and temporal variations. Hauck et al. (2020)
and Friedlingstein et al. (2020) also synthesized pCO2 map-
ping products and took an ensemble of their observation-
based estimates of air–sea CO2 fluxes as a benchmark to
compare with the one derived from ocean biogeochemical
models.

Despite positive conclusions overall, statistical data recon-
structions are still subject to further improvements. In Rö-
denbeck et al. (2015), Hauck et al. (2020), Bushinsky et al.
(2019), and Denvil-Sommer et al. (2021), the authors explain
that substantial extensions of surface ocean observational
network systems are essential to better determine pCO2 and
fluxes at finer scales and reduce mapping uncertainties. So far
mapping uncertainties have been estimated by using misfits
between the model outputs and SOCAT data (e.g. the root-
mean-square deviation, RMSD). By construction, such un-
certainty estimates are restricted to oceanic regions and peri-
ods when observations are available (Rödenbeck et al., 2015;
Lebehot et al., 2019; Gregor et al., 2019), and the uncertainty

quantification of an averaged pCO2 or an integrated flux over
the space and time of interest is with low confidence due to
sparse data density. Also, most of the aforementioned map-
ping methods target pCO2 data and estimate air–sea fluxes
solely over the open ocean, with the coastal data excluded
or not fully qualified. In Laruelle et al. (2014), the authors
present spatial distributions of air–sea flux density and esti-
mates of the total coastal C sink inferred from spatial integra-
tion methods on coastal SOCAT data. Laruelle et al. (2017)
adapted the two-step neural network approach described in
Landschützer et al. (2016) to the coastal-ocean pCO2. The
coastal and open-ocean products were combined into a sin-
gle reconstruction to yield a global monthly climatology of
pCO2 presented in Landschützer et al. (2020). Notwithstand-
ing these advances, a global reconstruction and its uncer-
tainty assessment of monthly varying coastal surface ocean
pCO2 and air–sea fluxes are still missing.

In this work, we propose a new inference strategy for re-
constructing the monthly pCO2 fields and the contempo-
rary air–sea fluxes over the period 1985–2019 with a spa-
tial resolution of 1◦× 1◦. It is based on a Monte Carlo ap-
proach, an ensemble of 100 neural network models mapping
sub-samples drawn from the monthly gridded SOCATv2020
data and available data of predictors. This ensemble ap-
proach was developed at the Laboratoire des Sciences du
Climat et de l’Environnement (LSCE) as both an extension
of and an improvement on the first version (LSCE-FFNN-
v1; Denvil-Sommer et al., 2019). In the following sections,
we first present the ensemble of neural networks designed
with the aims of leaving aside the issue of discrete bound-
aries in the existing two-step clustering–regressions (see fur-
ther discussion in Gregor and Gruber, 2021) and reducing
the mapping uncertainties induced by the two-step recon-
struction of the pCO2 fields (Denvil-Sommer et al., 2019) or
by an ensemble-based reconstruction with a small ensemble
size. In addition, each feed-forward neural network (FFNN)
model follows a leave-p-out cross-validation approach, i.e.
the exclusion of p gridded SOCAT data of the reconstructed
month itself in model training and validation. This allows us
to reduce model over-fitting and to leave many more inde-
pendent data for model evaluation than in the previous stud-
ies. The mean and standard deviation computed from the en-
semble of 100 model outputs are defined as estimates of the
mean state and uncertainty in the carbon fields. As one of
the novel key findings of this study compared to the exist-
ing ones, we compute and analyse the estimates of pCO2
and air–sea fluxes, model errors, and model uncertainties for
different timescales (e.g. monthly, yearly, and multi-decadal)
and spatial scales (e.g. grid cells, sub-basins, and the global
ocean). We then suggest the use of an indicator map built on
the space–time-varying uncertainty fields instead of model–
data misfits for identifying regions that should be prioritized
in future observational programmes and model development
in order to improve data reconstruction. Last but not least, the
model best estimates of and uncertainty in pCO2 and air–
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sea fluxes are analysed seamlessly over the open ocean to
the coastal zone. Potential drivers of the spatio-temporal dis-
tribution and the magnitude of open-ocean and coastal CO2
fluxes are discussed with the aim to better identify underly-
ing processes and to detect potential focus regions for further
studies on the evolution of oceanic CO2 sources and sinks.

2 Methods

2.1 General formulation

The air–sea flux density (molC m−2 yr−1) is calculated here
by the standard bulk equation

fgCO2 = kL(1− fice) 1pCO2

= kL(1− fice)
(
pCOatm

2 −pCO2
)
, (1)

where k is the gas transfer velocity computed as a function
of the 10 m ERA5 wind speed (Hersbach et al., 2020) fol-
lowing Wanninkhof (2014) and its coefficient is scaled to
match a global mean transfer velocity of 16.5 cm h−1 (Nae-
gler, 2009).L is the temperature-dependent solubility of CO2
(Weiss, 1974), fice and pCOatm

2 are the sea-ice fraction and
the atmospheric CO2 partial pressure, respectively. In Eq. (1),
a positive (negative) flux indicates oceanic CO2 uptake (re-
lease). Details and references for the source of these variables
are given in Table S1 in the Supplement, except for pCO2,
which is described in the following section.

2.2 An ensemble-based approach for the
reconstruction of sea surface pCO2 and air–sea
CO2 fluxes

The sea surface partial pressure of CO2 in Eq. (1) is es-
timated monthly over each point of the global ocean by
analysing sparse in situ measurements of CO2 fugacity, gath-
ered and gridded at a monthly and 1◦ resolution in the 2020
release of the Surface Ocean CO2 Atlas (SOCATv2020,
https://www.socat.info/, last access: 16 June 2020). SO-
CATv2020 covers the period 1985–2019. First, monthly
gridded pCO2 data were converted from SOCATv2020 CO2
fugacity (Körtzinger, 1999). We then regressed these pCO2
values against a set of predictors with non-linear functions,
i.e. feed-forward neural network (FFNN) models. As illus-
trated in Fig. 1, our predictors are biological, chemical, and
physical variables commonly associated with the variations
in pCO2 (e.g. Landschützer et al., 2013; Denvil-Sommer
et al., 2019; Gregor et al., 2019): sea surface height (SSH),
sea surface temperature (SST), sea surface salinity (SSS),
mixed-layer depth (MLD), chlorophyll a (chl a), and atmo-
spheric CO2 mole fraction (xCO2). A pCO2 climatology
(Takahashi et al., 2009) and the geographical coordinates
(latitude and longitude) were also added to the predictors. Ta-
ble S1 details the data source. All data were reprocessed and
co-located at the same SOCAT resolution following Land-
schützer et al. (2016) and Denvil-Sommer et al. (2019). For

instance, chl a was set approximately to 0 mg m−3 over the
Arctic and the Southern Ocean winter when no data were
available. In the case of data being unavailable before 1998,
climatologies based on all available data were used as pre-
dictors. Exceptionally, predictors for SSH before 1993 were
climatologies plus a linear trend in order to retain the overall
response to the global warming. The MLD before 1992 was
taken as the average MLD between 1992 and 1997.

An ensemble of 100 FFNN models was used to recon-
struct monthly pCO2 fields with a 1◦× 1◦ resolution over
the global surface ocean during the years 1985–2019. This
ensemble approach was developed at the Laboratoire des Sci-
ences du Climat et de l’Environnement (LSCE) as both an
extension of and an improvement on the first version (LSCE-
FFNN-v1; Denvil-Sommer et al., 2019). Our model outputs
are part of the Copernicus Marine Environment Monitoring
Service (CMEMS). Throughout the paper, it is hence referred
to as CMEMS-LSCE-FFNN.

To reconstruct the pCO2 fields over the global ocean for
each target month over the 1985–2019 period, all the avail-
able SOCAT data and the co-located predictors have been
collected for the month before and the month after the tar-
get month. We randomly extracted two-thirds of each one
of these datasets to make training datasets for the FFNN
models, leaving the remaining third to be corresponding test
datasets. The FFNN models were then trained for each target
month. Moreover, the exclusion of the reconstructed month
itself in the training and test datasets follows a leave-p-out
cross-validation approach, where p is the number of gridded
SOCAT data in the target month. This approach allows us to
reduce model over-fitting, as well as to assess the quality of
the reconstruction against SOCAT data that are fully inde-
pendent from the training phase.

The random extraction and the FFNN training were re-
peated 100 times so that 100 versions of the monthly FFNN
models have been obtained. Note that our ensemble approach
belongs to the classes of bootstrapping and Monte Carlo
methods in statistics. Theoretically, the number of samples
or the ensemble size must be substantially large to obtain
a convergence. However, it was demonstrated in the litera-
ture (e.g. Goodhue et al., 2012; Efron et al., 2015) that with
an ensemble size of 50 the model estimation is likely sta-
ble and with an ensemble size over 100 the improvement in
standard errors between model outputs and evaluation data
is negligible. Figure S2 in the Supplement shows an illus-
tration of the reconstruction skill with respect to the ensem-
ble size S. For each ensemble of S model outputs of pCO2
(S ∈ {5, 10, 20, 50, 75, 100}), the root-mean-square devia-
tion (RMSD) is computed between the ensemble mean (our
best model estimate) and SOCAT data over the period 1985–
2019. As seen in this figure, the reconstruction starts to stabi-
lize with S = 50. In this study, we have exploited a large but
realistic amount of computing resources to run an ensemble
of S = 100 neural network models. Equation (1) was then ap-
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Figure 1. Illustration of a feed-forward neural network (FFNN) model mapping monthly gridded SOCAT data and feature variables (Ta-
ble S1) co-located at a spatial resolution of 1◦× 1◦.

plied to the ensembles of FFNN outputs of pCO2 in order to
obtain ensembles of monthly global fgCO2 fields.

2.3 Coastal and regional division

The reconstructed pCO2 fields and air–sea CO2 fluxes are
analysed over the global ocean, at particular locations, and
in 11 oceanic sub-basins used by the Regional Carbon Cy-
cle Assessment and Processes Tier 1 (RECCAP1; Canadell
et al., 2011) and previous studies (Schuster et al., 2013;
Sarma et al., 2013; Ishii et al., 2014; Lenton et al., 2013;
Wanninkhof et al., 2013; Landschützer et al., 2014). In or-
der to distinguish the coastal from the open ocean, we use
the coastal mask from the MARgins and CATchments Seg-
mentation (MARCATS; Laruelle et al., 2013) interpolated on
the 1◦× 1◦ SOCAT grid. Details of the regional (open and
coastal) division are given in Table 1 and Fig. 2.

With the above definitions, the coastal regions encompass
6.33 % of a total maximum ocean area of 352.77× 106 km2.
The computation of these numbers was based on the max-
imum data coverage of the CMEMS-LSCE-FFNN recon-
struction taking into account the variable monthly sea-ice
fraction. The number of monthly gridded SOCATv2020 data
used in the reconstruction of pCO2 is reported in Table S2
for each region, with 301 449 in total and 10.36 % of the data
available over the predefined coastal regions.

2.4 Statistics

The mean (µ) and standard deviation (σ ) of the 100-member
ensembles of pCO2 and fgCO2 are chosen as their best es-
timate and the associated uncertainty, respectively. Unless

Table 1. Indication of 11 RECCAP1 regions (Fig. 2). Only the total
area with respect to the maximum coverage of the reconstructed
data is accounted for in each region.

Index Region Latitude Area (106 km2)

Open Coast
ocean

Globe (G) 90◦ S–90◦ N 330.42 22.35
1 Arctic (Ar) 76–90◦ N 1.07 0.99
2 Subpolar Atlantic (SpA) 49–76◦ N 8.88 4.15
3 Subpolar Pacific (SpP) 49–76◦ N 6.16 3.65
4 Subtropical Atlantic (StA) 18–49◦ N 23.22 1.83
5 Subtropical Pacific (StP) 18–49◦ N 36.37 1.65
6 Equatorial Atlantic (EA) 18◦ S–18◦ N 23.15 1.05
7 Equatorial Pacific (EP) 18◦ S–18◦ N 66.50 3.22
8 South Atlantic (SA) 44–18◦ S 17.79 0.83
9 South Pacific (SP) 44–18◦ S 37.15 0.50
10 Indian Ocean (IO) 44◦ S–30◦ N 52.80 2.71
11 Southern Ocean (SO) 90–44◦ S 59.47 3.12

stated otherwise, a model best estimate and its uncertainty
computed at each desired space–time resolution are denoted
by µensemble± σensemble, where

µensemble =

i=100∑
i=1

pCOReconstruction(i)
2

100
,

σensemble =

√√√√√ i=100∑
i=1

(
pCOReconstruction(i)

2 −µensemble

)2

100
, (2)
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Figure 2. Map of RECCAP1 regions (Regional Carbon Cycle As-
sessment and Processes; Canadell et al., 2011) and MARCATS
(MARgins and CATchments Segmentation) coastal mask (Laruelle
et al., 2013) co-located on the 1◦× 1◦ SOCAT grid.

and pCOReconstruction(i)
2 is one of the 100 members of

the reconstructed pCO2 fields. Similar definitions are ap-
plied for fgCO2. The units of air–sea flux estimates are
molC m−2 yr−1 for a flux density, and this is converted to
PgC yr−1 for an integral over a region or the global ocean.

Model robustness of the reconstructed pCO2 fields is eval-
uated on the gridded SOCAT data and in situ observations
(Sutton et al., 2019). The evaluation data are denoted as
pCOObservation

2 in the following formulas. Standard statistics
include the coefficient of determination (r2); misfit mean
(model bias) and misfit standard deviation,

µmisfit =

j=N∑
j=1

dpCOj2

N
,

σmisfit =

√√√√√ j=N∑
j=1

(
dpCOj2 −µmisfit

)2

N
; (3)

and the root-mean-square deviation (RMSD),

RMSD=

√√√√√ j=N∑
j=1

(
dpCOj2

)2

N
, (4)

where dpCOj2 = pCOReconstruction
2 (j)−pCOObservation

2 (j)

and N is a number of evaluation data. All these scores are
computed for different coastal and open regions from the
scale of grid cells to the global scale.

Generally, RMSD measures the reconstruction skill in
terms of the mean distance between model estimates and
evaluation data, while r2 measures the proportion of data
variation predicted by the model. Compared to other met-
rics such as mean absolute bias and r2, the RMSD takes
another role, an outlier detector, which gives larger weights
to high model–data misfits. Note that r2, µmisfit, σmisfit, and
RMSD reflect the model performance with respect to evalua-
tion data, while σensemble measures the stability of the model
best estimate µensemble. Nevertheless, these different statis-
tics should consistently reflect the skill of the model recon-
struction, e.g. depending on the density and distribution of
data sampling.

In the next section, both the temporal and the spatial dis-
tributions of gridded SOCAT data and in situ observations,
model–data errors, model best estimates, and uncertainties
are shown. An intensive analysis is presented for both the
open-ocean and the coastal zones. We then interpret key
factors leading to a good or poor reconstruction of surface
pCO2 and fgCO2, e.g. SOCAT data density and distribution,
model design and resolution, regional to local characteristics
of pCO2 and fgCO2, and their potential driving mechanisms.

3 Results

3.1 Evaluation

To verify the robustness of the mapping method, we first
evaluate the goodness of fit of reconstructed pCO2 against
the independent SOCAT data from the leave-p-out cross-
validation set (see Sect. 2.2).

Empirical cumulative distribution functions (CDFs) and
frequency histograms drawn from these data are compared
in Fig. 3a and b. While a frequency histogram in Fig. 3a
shows the number of gridded SOCAT pCO2 data distributed
for each bin, the one in Fig. 3b (grey) reflects how the pCO2
values in observational grid boxes are distributed within their
bounds. The probability–probability (P–P) plot of Fig. 3b
(blue curve) measures the fit in the distributions of the recon-
struction and SOCAT data. The same presentation is used in
Fig. 3c and d for the misfit standard deviation σmisfit and the
ensemble standard deviation σensemble (see their definitions in
Eqs. 2 and 3 and their values in Fig. S3c and g).

The reconstructed pCO2 field matches SOCAT data
well: both are normally distributed with the same mean of
361.3 µatm (Fig. 3a), and a high agreement for all percentiles
(Fig. 3b) is seen. The slight under- or overestimation at high
and low percentiles implies that the model is slightly biased
towards the mean value, as is expected when predictor vari-
ables do not fully explain predictand variables in the training
dataset. This reduced variability is also reflected in the differ-
ence between the data standard deviation based on SOCAT
pCO2 (41.79 µatm) and the one based on CMEMS-LSCE-
FFNN (36.30 µatm).
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Figure 3. Comparison between empirical cumulative distribution functions (CDFs) of (a, b) SOCATv2020 data and the reconstructed pCO2
field and (c, d) model–data misfit standard deviation (σmisfit) and model uncertainty (σensemble), as seen in Fig. S3. In (c) and (d), the
distribution of σmisfit values scaled with a factor of 2 is plotted. A histogram with the axis in grey of the four subplots displays the number
of gridded data distributed in each bin; the bins with fewer than 200 data for (a) and 20 data for (c) have been excluded. In (b) and (d), the
bisector is shown in black.

Displayed in Fig. 3c, both misfit standard deviation
(σmisfit) and model uncertainty (σensemble) empirically fol-
low the exponential distribution. σmisfit is much higher than
σensemble as the CDF and frequency histogram of the former
(blue) show heavier tails than those of the latter (orange),
which brings the P–P curve below the bisector in Fig. 3d.
When dividing the misfit standard deviation values shown
in Fig. S3c by 2, σmisfit (green) shares a similar distribution
to σensemble (orange). A natural explanation for this 2-fold
tuning factor would point to a simple lack of spread of the
ensemble, either because the FFNN ensemble would be too
small or because the uncertainty in the predictors (not ac-
counted for here in the ensemble) would be significant. The
SOCAT CO2 fugacity data are sampled at an uneven space–
time resolution (e.g. the sampling frequency varies between
one read per minute to one per hour). Gridded data corre-
spond to the average of measurements collected within a
1◦× 1◦ box and in a month over the entire cell area. Vari-
ability in the sampling time and location of cruises and in-
struments induces temporal sampling bias (e.g. towards some
days in a month and/or the summer months at high latitudes)
and latitude and longitude offsets from the cell centre (e.g.
with an average of 0.34◦± 0.14◦ as reported in Sabine et al.,
2013), which are not taken into account.

Assume that

1. such practical imperfection presents a systematic error
in each measurement from the true data with an overall
standard deviation of σobservation and

2. systematic errors between SOCAT data and the recon-
structed data equal those between the true data and the
reconstructed data.

As observation errors are independent from the random er-
rors induced by the ensemble approach in each grid cell
(further to the implementation of the leave-p-out cross-
validation in model training; see Sect. 2.2), σmisfit in Eq. (3)
can be interpreted as

σ 2
misfit = σ

2
ensemble+ σ

2
observation , (5)

where σ 2
observation varies in space and time and is larger near

shelves (see the observation variability in Fig. S1b and c).
The interpretation of the magnitude of mismatch is there-

fore not straightforward, but we note that the spatial distribu-
tion of model errors and uncertainty estimates over the global
ocean (Fig. 5) consistently identifies the spatial distribution
of the model skill. This asset is prioritized in our preliminary
study and further analysed in the next sections. The 2-fold
factor used for the illustration in Fig. 3 has not been kept for
the following results.

3.1.1 Global ocean

At the global scale, the model fits the data with a mean
bias close to zero, an RMSD of 20.48 µatm, and a coeffi-
cient of determination (r2) of 0.76. The temporal fluctua-
tion of the spatial mean of the model–data mean difference
over the global ocean is displayed in Fig. 4a along with the
number of available gridded data. The time series of the
yearly bias (black curve) starts with a large positive value
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(7.47± 1.60 µatm) in the year 1985 (∼ 740 gridded data).
The bias drops during the following years and fluctuates
around zero from 1994 onwards (the number of grid boxes
containing SOCAT observations per year is generally larger
than 5000). In general, the magnitudes of the yearly model
bias and model spread are correlated with the number of
observation-based data, which has increased greatly since the
1990s. The importance of sustained data coverage is empha-
sized by Fig. S4. It illustrates the fact that large model–data
mismatches are frequently associated with the interruption
of voluntary observing ship (VOS) lines and thus with the
tracking of CO2 fugacity over large regions. The larger bias
computed prior to the 1990s (Fig. 4a) might intuitively lead
to the conclusion that model outputs are less reliable than
those in the later periods. However, this global mean score is
influenced by the number and distribution of data, and conse-
quently the increased data density does not fully explain the
reconstruction skill. For instance, even with a higher num-
ber of observation-based data than that in the pre-1990s, the
years 2001 and 2007 stand out with strong negative biases
(−5.44± 1.26 and −3.12± 0.92 µatm, respectively). While
such a comparison between the global bias and the number of
data highlights the lack of a simple relationship between the
number of data and the skill of the mapping method, the en-
semble spread (dark grey area) of model errors, representing
the spread of the annual mean of pCO2 estimates on the SO-
CAT grid with observations, is reduced with an exponential
decay constant of 0.46±0.06 per 1000 gridded data (Fig. 4b).

The model scores for the open ocean over the period 1985
to 2019 are 17.87 µatm for the RMSD and 0.78 for r2. The
skill of this novel method, which uses only two-thirds of SO-
CAT data for fitting each of 100 FFNN models, ranks sim-
ilarly to those from alternative statistical reconstruction ap-
proaches (Rödenbeck et al., 2013; Landschützer et al., 2014;
Gregor et al., 2019) which have been used to complement
model-based estimates of the ocean carbon sink (Friedling-
stein et al., 2019, 2020).

The CMEMS-LSCE-FFNN reconstruction over the
coastal regions for the full period is roughly 2 times less
effective than over the open ocean in terms of the RMSD
(35.86 µatm), while it shows a rather good fit with r2

= 0.70.
The high RMSD reflects high local model errors along the
continental shelves (Fig. S3). For the 1998–2015 period,
the CMEMS-LSCE-FFNN approach scored an RMSD
of 35.84 µatm while a recent coastal reconstruction by
Landschützer et al. (2020) obtained an error of 26.8 µatm
(see their Table 1). The latter presents a global ocean
pCO2 climatology product by unifying data over the same
period from two conceptually equivalent reconstruction
models: one covering the open ocean at a 1◦× 1◦ resolution
(Landschützer et al., 2016) and one targeting the coastal
ocean at a 0.25◦× 0.25◦ resolution (Laruelle et al., 2017).
These previous reconstructions cover the coastal region with
a broader definition (400 km distance from the seashore)
than the MARCATS mask used in this study, leading to the

differences in characteristics and numbers of evaluation data
of pCO2. In addition, the CMEMS-LSCE-FFNN model was
designed with the leave-p-out cross-validation approach
excluding many more independent data from monthly
model fitting for model evaluation than the previous models.
Overall model errors remain high despite the increase in the
spatial resolution and in the number of observations. Coastal
and shelf seas are characterized by complex physical and bi-
ological dynamics leading to high variability at small scales.
For instance, pCO2 levels over the Californian shelf can
exceed 850 µatm, with a spatial gradient of pCO2 as large
as 470 µatm over a distance of less than 0.5 km (Chavez
et al., 2018; Feely et al., 2008). Clearly, further model
improvement is needed in order to capture such high spatial
and temporal variability in surface ocean pCO2 present in
observations (see also Bakker et al., 2016; Laruelle et al.,
2017, and references therein).

In the following subsections, we present and discuss the
reconstruction skills for different ocean regions, as well as
for open-ocean and coastal domains (Fig. 4c). Complete re-
sults including the numbers of gridded data, RMSDs, and r2

for each region are summarized in Table S2.

3.1.2 Ocean basins

Arctic

Data coverage is particularly sparse over the Arctic Ocean
(Ar) with 50 to 220 grid boxes with observations per year
since 2007 and an interruption in 2010 (Fig. S4). While con-
tinental shelves account for 50 % of the region’s area, only
one-third of the observation-based data are from coastal re-
gions. Moreover, observations are seasonally biased towards
ice-free summer months (Bakker et al., 2016). Though re-
construction standard errors are similar for open basins and
coastal regions (RMSDs of 33.01 and 30.65 µatm, respec-
tively), the coefficient of determination is higher over the
open ocean (r2

= 0.61) compared to coastal seas (r2
= 0.44),

suggesting a higher model skill over open basins. The close-
to-zero bias of the coastal reconstruction shown in Fig. 4c
results from the compensation between highly positive and
negative values over the continental shelves of Alaska, the
Canadian archipelagos, and the Barents and Kara seas (see
Fig. S3); the yearly bias fluctuates within [−50,30] µatm
(Fig. S4). Of all open-ocean regions, the Arctic reconstruc-
tion has the highest bias (3.19 µatm). Cold Arctic waters are
characterized by low levels of surface ocean pCO2 due to the
temperature effect on CO2 solubility and the seasonal draw-
down of dissolved inorganic carbon (DIC) during summer
months by intense biological production (Feely et al., 2001;
Takahashi et al., 2009; Arrigo et al., 2010). Assuming that
the Arctic predictors remain within the range of global re-
lationships, the overestimation of pCO2 by CMEMS-LSCE-
FFNN, as seen in Fig. 4c, suggests a possible underestima-
tion of biological productivity. While this remains conjec-
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Figure 4. (a) Time series of the yearly mean model bias, i.e. the reconstructed pCO2 data minus SOCATv2020 data, over the global ocean.
The black curve and dark grey area represent the mean estimate and 1σ envelope of errors of the 100-member ensemble; the light grey curve
represents the total number of gridded SOCAT data used in the FFNN model construction. (b) Exponential fits of the model uncertainty (the
magnitude of the 1σ envelope in Fig. 4a) against the number of gridded data per year. The exponential function is y = aexp−bx+c. The black
curve is derived from the best fit, and the grey-shaded area corresponds to the spread derived from standard errors of parameter estimates.
(c) Statistical scores for 11 oceanic regions with the size of each scattered object proportional to the number of regional data (Table S2).

tural, we acknowledge a large uncertainty in the contribution
of biological activity (net primary production, NPP) to sur-
face ocean pCO2, as it is “proxied” by chlorophyll a derived
from remote sensing (Maritorena et al., 2010; Babin et al.,
2015). Overall, these scores point to the Arctic as a relatively
poorly reconstructed region.

Atlantic

The North Atlantic stands out as a region with high data cov-
erage (Fig. S1a) and a rapidly increasing number of data
since 2000 (Fig. S4). A sustained sampling effort adds be-
tween 2000 and 4000 data each year to the database over the
Subtropical Atlantic (StA) and Subpolar Atlantic (SpA) re-
gions (including between 10 %–40 % of coastal data). The
data density over the North Atlantic stands in strong contrast
to the often fewer than 1000 gridded data per year collected
over the Equatorial Atlantic (EA) and South Atlantic (SA)
and their strong year-to-year variability.

The comparison between the reconstructed open-ocean
pCO2 and evaluation data over the four sub-regions of the
open Atlantic (Fig. 4c and Table S2) reveals small mean
model–data differences, which together with the two other

scores, identify the Atlantic as the basin with the highest re-
construction skill. RMSDs corresponding to the StA, the EA,
and the SA are below 15.50 µatm, and r2 values are in the
range of [0.69,0.77]. While a larger RMSD is obtained over
the SpA (23.68 µatm), the r2 of 0.76 falls close to the upper
end of the range determined for the three other regions. As
discussed in Schuster et al. (2013), large temporal and spa-
tial gradients of pCO2 as well as its variability driven by a
diversity of physical and biological processes (e.g. surface
ocean temperature gradients, biological production, vertical
mixing, and horizontal advection of water masses) keep the
analysis of pCO2 over the SpA challenging.

Despite accounting for over 59 % of the total coastal data,
skilful data reconstruction over the coastal Atlantic regions
remains difficult. RMSDs are in general above 30 µatm, and,
with the exception of the coastal SpA (r2

= 0.79), below
51 % of the observed variance is predicted by the model over
the other regions (StA, 0.51; EA, 0.25; SA, 0.46). The large
model–data mismatch along the Atlantic continental shelves
(Fig. S3) reflects the poor reconstruction of pCO2 over re-
gions under the influence of upwelling systems (e.g. Moroc-
can coast, Benguela), large river discharges (e.g. Amazon,
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Congo, Florida, Mississippi), and the bottlenecks of gulfs or
bays (e.g. Bahamas, English Channel).

Pacific

With the exception of the Subpolar Pacific (SpP), the number
of observations has increased regularly over the Pacific basin.
In recent years, there are from 1000 to 3500 grid boxes with
observations recorded over the Subtropical Pacific (StP), the
Equatorial Pacific (EP), and the South Pacific (SP) (Fig. S4).
Forty percent of total open-ocean data belong to the StP and
the EP in the years 1985–2019. Corresponding RMSDs are
17.15 and 16.68 µatm, with r2 above 0.78. Despite a data
coverage below one-third of that reported for the two previ-
ous regions, the model proved skilful in reconstructing pCO2
over the SP (Fig. 4c) with an RMSD of 11.50 µatm and r2

of 0.76.
The overall good performance of the FFNN over these

three Pacific sub-regions contrasts with its lack of skill over
the open SpP. The data density is poor and highly variable.
From before 1994, fewer than 250 gridded data per year are
available to constrain the reconstruction, followed by sev-
eral years of intense effort and a maximum of about 1250
data in 2000 before decreasing again to the pre-1994 values.
At first order, skill scores fluctuate in line with data density.
During the first period (up to 1994), the bias varies within
[−25,25] µatm (Fig. S4); it decreases close to [−2,4] µatm
between 1997 and 2000 and increases again along with de-
creasing data density. Much like the SpA, the SpP is a region
characterized by a strong spatial and temporal variability
in pCO2 (Ishii et al., 2014), challenging any reconstruction
method. The difficulty is further aggravated by the paucity
of data in this region compared to the SpA. Skill scores are
modest over the SpP with an RMSD of 29.08 µatm and r2 of
0.64 (Fig. 4c and Table S2).

The ratio between coastal and open-ocean observation-
based data is 1 : 24. The paucity of data for the coastal
domain is reflected by lower skill scores compared to the
open ocean. Over the coastal SpP, for example, the RMSD
amounts to 54.69 µatm, while it is 29.08 µatm for the cor-
responding open-ocean region. Comparable to the SpP, data
reconstruction over the coastal regions of the StP (e.g. North
American coast, Sea of Japan), as well as over the western EP
(e.g. Peruvian upwelling) and the SP (e.g. offshore Chile), re-
mains difficult (Fig. S3). Similar results have been found by
Landschützer et al. (2020).

The EP is characterized by strong equatorial upwelling,
making it one of the major outgassing regions of CO2 (Feely
et al., 2001). Surface ocean pCO2 shows a strong interan-
nual variability predominantly in response to the El Niño–
Southern Oscillation (ENSO), the dominant regional cli-
mate mode (Rödenbeck et al., 2015; Landschützer et al.,
2016; Denvil-Sommer et al., 2019). Before the 2000s, neg-
ative (positive) peaks of bias (Fig. S4) coincide with La
Niña years, e.g. 1988–1990, 1995–1996, 1999–2001 (El

Niño years, e.g. 1986–1987, 1991–1992, 1997–1998) (see
the ENSO events highlighted in Fig. 9). A strong negative
bias is again computed in 2010–2012, which could reflect
the lack of data during that cooling phase. On the con-
trary, the reconstruction seems less sensitive to the strong
warm anomalies associated with the 2015–2016 El Niño. The
model appears to be more efficient at reconstructing surface
ocean pCO2 during the hot climate mode (El Niño) than dur-
ing the cool one (La Niña) when enhanced upwelling drives
surface ocean pCO2 up and towards unusually large val-
ues. This allows us to anticipate the effect of a general de-
crease in data collection and processing since 2020 in re-
sponse to the 2019 coronavirus disease (COVID-19) pan-
demic on the estimation of the ocean carbon sink. We ex-
pect a high negative bias in model estimates of pCO2 and
the consequent underestimation of CO2 outgassing due to the
combined impact of data decreasing and La Niña conditions
governing since August and September 2020 (https://public.
wmo.int/en/media/press-release/la-nina-has-developed, last
access: December 2020). It is worthwhile to also note that
monthly gridded SOCAT data in the eastern EP have declined
in the last 5 years compared to the other years in the 2010s.

Indian Ocean

The Indian Ocean (IO) is the third-largest oceanic region by
area but also the one with the lowest data density. With the
exception of the year 1995 (approximately 1900 grid boxes
including observations), as few as 500 gridded data have
been provided per year (Fig. S4), yielding a total number of
data often below 10 per grid cell for the entire reconstruction
period (Fig. S1a). There have been even fewer than 75 grid
boxes with observations per year over the continental shelf.
However, the reconstruction over the coastal region is com-
parable to the open IO with a low RMSD (< 19 µatm) and a
high correlation with the observation-based data (r2

= 0.65).
The overall negative bias shown in Fig. 4c for the coastal
IO points to the model underestimating coastal pCO2 levels.
Large errors are distributed along the western Arabian Sea,
western Madagascar, and the tropical eastern IO (Fig. S3).
These regions are under the influence of the southwest mon-
soon, giving rise to a seasonal upwelling regime (see Feely
et al., 2001; Sabine et al., 2002; Sarma et al., 2013, and refer-
ences therein). Strong seasonal upwelling results in a marked
seasonal cycle of surface ocean pCO2 with high levels during
the upwelling season. The paucity of data is likely to limit the
skill of the model reconstruction of the seasonal cycle over
large parts of the IO with consequences for the annual mean
analysed here.

Southern Ocean

Until recently, data coverage over the Southern Ocean (SO)
was sparse (Fig. S1a), irregular at the grid cell scale, and bi-
ased towards austral summer months (e.g. Bushinsky et al.,
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2019; Gregor et al., 2019). A strong sampling effort allowed
a recent increase in observations to reach up to 2000 grid-
ded data per year (Fig. S4). Model scores for the open and
the coastal ocean are RMSDs of 19.18 µatm and 35.73 µatm,
respectively, and r2 values of 0.62 and 0.65, respectively.
The reconstruction lacks skill over the continental shelves of
South America and Antarctica (see Fig. S3).

In general, the pCO2 reconstruction over the SO has less
skill compared to the Atlantic or the Pacific due to the paucity
of observation-based data compared to its large area. Röden-
beck et al. (2015) reported inconsistent reconstructed interan-
nual variability in pCO2 between different data-based meth-
ods. The interannual variability is large due to the natural
variability in the coupled ocean–atmosphere system charac-
terized by one of the globe’s strongest ocean currents, strong
winds, and vertical mixing and upwelling of DIC-rich deep
waters (Gregor et al., 2018; Gruber et al., 2019). Efforts
to improve pCO2 reconstruction are ongoing and include
model development (e.g. Gregor et al., 2017), as well as the
increase in data coverage by the addition of data from differ-
ent sampling platforms (e.g. profiling floats; Bushinsky et al.,
2019). For the time being, CMEMS-LSCE-FFNN stands out
as one of the skilful models with respect to observation-
based data in the SO (Friedlingstein et al., 2020; Hauck et al.,
2020).

3.1.3 Time series stations

CMEMS-FFNN-LSCE estimates of pCO2 are now com-
pared with moored pCO2 time series provided by Sutton
et al. (2019). This data product comprises pCO2 measure-
ments collected from a wide range of oceanic regions since
2004 (Figs. S5–S8). Most of the stations were established
in the North Atlantic and the North Pacific and Equatorial
Pacific; one site is in the IO and another in the SO. Approx-
imately one-third of the Sutton et al. (2019) sites belong to
the coastal seas and shelves (Fig. S8). Table S3 details the
information of the moored pCO2 time series.

Observation-based data used for model–data compari-
son (black points in Figs. S6–S8) are monthly averages of
pCO2 measurements at each site. This interpolation results
in monthly time series with a number of data N between
9 (NH10) and 98 (WHOTS). The ensemble mean µensemble
and ensemble spread σensemble (Eq. 2) are computed from
the CMEMS-LSCE-FFNN ensemble of model outputs at the
four nearest model grid boxes of each location. Results con-
firm a reasonably good reconstruction of the proposed ap-
proach. The model best estimates (thick coloured lines) char-
acterize pCO2 trends and variations in in situ data well, and
the model ensembles almost catch the observation-based data
in their 99 % confidence interval (light shaded envelope).
For over 90 % of the time series stations, the model esti-
mation obtains a moderate to high coefficient of determi-
nation r2 with a linear model–data correlation r larger than
0.5 (e.g. BTM, 0.98; CRESCENTREEF, 0.92; HOGREEF,

0.84; SOFS, 0.79; TAO110W, 0.75; WHOTS, 0.73). Mean
bias µmisfit (Eq. 3) and the RMSD (Eq. 4) are relatively low
compared to mean pCO2 values of the time series stations.

Half of the open-ocean reconstructions have model errors
of less than 20 µatm and are even less than 10 µatm at KEO,
PAPA, SOLS, STRATUS, and WHOTS (Figs. S6 and S7).
Despite having less skill than the open-ocean reconstruc-
tions, the coastal-ocean reconstructions are quite compatible
with the in situ data (Fig. S8). Most of the RMSDs remain
lower than 20 % of the mean pCO2 values of coastal time
series (e.g. CCE2, 36.53 µatm; ICELAND, 12.26 µatm; M2,
36.58 µatm). For some other stations on the US west coast
and in the oceanic regimes of coral reef, the estimates differ
from the observation-based data in terms of the magnitude
of pCO2 (e.g. CRIMP2, LA PARGUERA) and/or of its sea-
sonal cycle (e.g. CHABA, CHEECAROCKS, SEAK).

The reconstructed time series cover the full period 1985–
2019, while observation-based data are still sparse and al-
most all distributed over the past 2 decades (Figs. S6–S8).
The CMEMS-LSCE-FFNN time series would be useful for
estimating and assessing long-term means, trends, and vari-
ations in CO2 surface partial pressure and the corresponding
air–sea fluxes.

3.2 Long-term mean and uncertainty estimates

Figure 5 shows temporal mean estimates, their associated un-
certainty, and RMSDs of the monthly air–sea pCO2 gradi-
ent (1pCO2) and CO2 fluxes (fgCO2) over the full period
(see also Fig. S9 for the coastal regions only). On the top
maps, the regions in blue are dominant CO2 uptake regions
(influxes) and the regions in red are dominant source re-
gions of CO2 to the atmosphere (effluxes). The uncertainty
in 1pCO2 is merely computed from the ensemble of the re-
constructed sea surface pCO2 since the randomness in the
atmospheric pCO2 field is assumed to be negligible. Due to
impacts of wind stress, the solubility of CO2, and seasonal
sea-ice coverage on the gas transfer coefficient, spatial dis-
tributions of mean estimates, their uncertainty, and RMSDs
of 1pCO2 (Fig. 5a, c, e) and fgCO2 (Fig. 5b, d, f) differ
from low to high values. The means of air–sea fluxes inte-
grated/averaged over different RECCAP1 regions (Table 1)
are shown in Fig. 6. The distribution of uncertainty estimates
and numbers of gridded SOCAT data for these regions are
also displayed in Fig. 7, wherein only values smaller than the
90 % quantile of uncertainty estimates shown in Fig. 5c and
d are plotted to reduce the effects of outliers on data visual-
ization. The seasonal average computed over the full recon-
struction period of air–sea CO2 fluxes over the global ocean
is shown in Fig. 8.
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Table 2. Yearly mean of contemporary air–sea CO2 fluxes (PgC yr−1) integrated over the global ocean and 11 RECCAP1 regions. The mean
estimate and uncertainty (µensemble± σensemble) of the CMEMS-LSCE-FFNN approach is shown for the coast (C), the open ocean (O),
and the total area (T). For a comparison, estimates derived from RECCAP1 (Canadell et al., 2011; Schuster et al., 2013; Ishii et al., 2014;
Sarma et al., 2013; Lenton et al., 2013; Wanninkhof et al., 2013) are provided. In column “RECCAP1”, values in parentheses are the “best”
estimates proposed by RECCAP1 studies which were derived from averages or medians of estimates based on the pCO2 climatology or
pCO2 diagnostic model and/or the atmospheric and ocean inversions and GOBMs. The RECCAP1 values outside of parentheses are the
estimates derived from different methods mapping observation-based data of pCO2. With an exception for the global estimate (denoted by ∗)
(Wanninkhof et al., 2013), those of the RECCAP1 sub-basins are available only for the open ocean.

Approach CMEMS-LSCE-FFNN RECCAP1

Regions 1985–2019 1990–2009

Globe (T) 1.643± 0.125 1.486± 0.114
(O) 1.493± 0.122 1.344± 0.111 1.18∗

(C) 0.150± 0.010 0.141± 0.009 0.18∗

Arctic (Ar) (T) 0.027± 0.001 0.024± 0.001 (0.12± 0.06)
(O) 0.016± 0.001 0.015± 0.001
(C) 0.011± 0.001 0.010± 0.001

Subpolar Atlantic (SpA) (T) 0.259± 0.011 0.255± 0.010 0.07± 0.04, 0.30± 0.13
(O) 0.202± 0.009 0.197± 0.008 (0.21± 0.06)
(C) 0.057± 0.004 0.058± 0.004

Subtropical Atlantic (StA) (T) 0.214± 0.011 0.202± 0.009 0.18± 0.09, 0.24± 0.16
(O) 0.204± 0.010 0.192± 0.009 (0.26± 0.06)
(C) 0.010± 0.001 0.010± 0.001

Equatorial Atlantic (EA) (T) −0.117± 0.009 −0.128± 0.008 −0.10± 0.05, −0.12± 0.14
(O) −0.113± 0.009 −0.123± 0.008 (−0.12± 0.04)
(C) −0.004± 0.001 −0.004± 0.001

South Atlantic (SA) (T) 0.192± 0.016 0.174± 0.015 0.25± 0.12, 0.21± 0.23
(O) 0.184± 0.015 0.167± 0.015 (0.14± 0.04)
(C) 0.008± 0.001 0.007± 0.001

Subpolar Pacific (SpP) (T) 0.040± 0.010 0.029± 0.009 0.44± 0.21, 0.37
(O) 0.008± 0.008 −0.002± 0.007 (0.47± 0.13)
(C) 0.032± 0.004 0.031± 0.003

Subtropical Pacific (StP) (T) 0.523± 0.016 0.512± 0.014
(O) 0.495± 0.015 0.485± 0.014
(C) 0.028± 0.003 0.027± 0.002

Equatorial Pacific (EP) (T) −0.503± 0.022 −0.514± 0.020 −0.51± 0.24, −0.27
(O) −0.490± 0.021 −0.500± 0.020 (−0.44± 0.14)
(C) −0.013± 0.003 −0.013± 0.003

South Pacific (SP) (T) 0.358± 0.029 0.343± 0.029 0.29± 0.14, 0.24
(O) 0.352± 0.029 0.337± 0.028 (0.37± 0.08)
(C) 0.006± 0.0004 0.006± 0.0004

Indian Ocean (IO) (T) 0.300± 0.033 0.281± 0.027 0.24± 0.12
(O) 0.305± 0.033 0.286± 0.027 (0.37± 0.06)
(C) −0.004± 0.002 −0.005± 0.002

Southern Ocean (SO) (T) 0.349± 0.070 0.307± 0.061 0.27± 0.13
(O) 0.330± 0.069 0.290± 0.061 (0.42± 0.07)
(C) 0.018± 0.002 0.017± 0.002
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Figure 5. Climatological mean (a, b) and uncertainty (c, d) of air–sea pCO2 difference (a, c) and of CO2 fluxes (b, d) over 1985–2019.
Uncertainty (Eq. 2) is computed as the standard deviation of the 100-member CMEMS-LSCE-FFNN model outputs of sea surface pCO2
and air–sea CO2 fluxes. The bottom panels (e, f) show RMSDs (Eq. 4) between the SOCAT data (or data-based estimates of fluxes for f) and
the mean CMEMS-LSCE-FFNN model outputs.

Figure 6. Distribution of contemporary fluxes (positive into the ocean) over 11 regions (see in Fig. 2) for the full period 1985–2019.
Uncertainties in the mean estimates of air–sea fluxes integrated (a) or averaged (b) over each region are shown with error bars.

3.2.1 Arctic

The Arctic Ocean stands out as the region with the strongest
CO2 uptake per unit area with 2.336±0.104 molC m−2 yr−1

for the open sea and 1.522± 0.108 molC m−2 yr−1 for the
continental shelf margins (Figs. 5b and 6b). At the scale of
grid cells, air–sea gradients of pCO2 are large, but the down-
ward fluxes are relatively modest over the shelves of eastern
Greenland, the Barents and Kara seas, and the Siberia seas
(Figs. 5 or S9). During the sea-ice-covered seasons, these
coastal regions are neutral while the open-ocean Arctic sec-

tors (e.g. the Norwegian Sea, the Barents Sea, the Kara Sea)
are CO2 sinks with moderate influx densities (Fig. 8). The
open-ocean influx density exceeds 3 molC m−2 yr−1 in the
Arctic summer. This substantial amount of CO2 uptake is
driven by low surface ocean temperature, seasonal changes
in sea-ice cover, and intense biological production. Increas-
ing light availability and input of nutrients through meltwa-
ters and river discharges sustain high levels of primary pro-
duction and CO2 drawdown (Bates and Mathis, 2009; Arrigo
et al., 2010; Yasunaka et al., 2016, 2018). Notwithstanding,
the Arctic Ocean represents roughly 0.58 % of the total sur-
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Figure 7. Distribution (violin) of all uncertainty estimates (Fig. 5c and d) and the total number (star) of gridded SOCAT data (Fig. S1a)
split for 11 RECCAP1 regions. A violin plot shows the range, median, and density of uncertainty estimates for pCO2 (µatm) and fgCO2
(molC m−2 yr−1).

Figure 8. Seasonality of downward CO2 fluxes (molC m−2 yr−1) in 1985–2019. Temporal means of the reconstructed fgCO2 field for
January to March (JFM), April to June (AMJ), July to September (JAS), and October to December (OND) are shown.

face ocean area (Table 1), and the yearly mean CO2 uptake
integrated over the Arctic for the full period amounts to only
1.64 % of the global ocean sink (Table 2 and Fig. 6a).

3.2.2 Atlantic

The open-ocean Subpolar Atlantic (SpA) sink contributes ap-
proximately 78 % to the total SpA annual C uptake (0.259±
0.011 PgC yr−1), as well as 12.29 % to the total ocean
sink (1.643± 0.125 PgC yr−1, Table 2). Per unit area, the
open-ocean influx amounts to 2.012± 0.092 molC m−2 yr−1

and the coastal-ocean influx is 30.51 % less than its open-
ocean counterpart and slightly lower than the coastal Arc-
tic sink (Fig. 6b). However, when integrated over the re-
gion, the yearly uptake of 0.057±0.004 PgC yr−1 makes the
coastal SpA the strongest sink among the 11 coastal regions

(Fig. 6a). The interplay between temperature- and biology-
driven effects results in changes in the seasonal and spatial
distributions of surface ocean pCO2 and ultimately air–sea
CO2 fluxes. During boreal winter–spring, high wind speeds
enhance gas transfer velocities and contribute to a strong
cooling and an increase in CO2 solubility (Takahashi et al.,
2009; Feely et al., 2001), both enhancing uptake of CO2 over
the Labrador Sea, the North Atlantic and Norwegian cur-
rents, and the Barents and Kara seas (Fig. 8). High wind
speeds also strengthen vertical mixing, a process supplying
dissolved inorganic carbon (DIC) and nutrients to the sur-
face ocean. During the spring and summer months, vigor-
ous biological activity (Sigman and Hain, 2012) counter-
acts the warming-induced decrease in CO2 solubility and in-
crease in pCO2 by drawing down DIC (Feely et al., 2001).
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Along the coast of the Barents and Kara seas, inputs of fresh
water (decrease in salinity and increase in CO2 solubility)
and nutrients (biological activity and DIC drawdown) com-
bine to strengthen CO2 uptake (Arrigo et al., 2010; Yasunaka
et al., 2016, 2018; Olafsson et al., 2021). This contrasts with
other coastal regions (e.g. southern North Sea and Baltic Sea)
where the respiration of terrestrial particulate organic carbon
from river run-off contributes to making these areas a strong
seasonal source of CO2 (Borgesa and Gypensb, 2010; Becker
et al., 2021).

The Subtropical Atlantic (StA) is characterized
by weak to moderate mean flux densities per unit
area (open, 0.733± 0.036 molC m−2 yr−1; coastal,
0.457± 0.064 molC m−2 yr−1). The total integrated
C uptake amounts to 0.214± 0.011 PgC yr−1, with
0.204± 0.010 PgC yr−1 contributed by the open ocean.
As for the SpA, the net uptake reflects the combined effect
of cooling, mixing, and biological activity. Figures 5 and S9
show the regional distribution of sources and sinks. Regions
of intense CO2 uptake are associated with the warm Gulf
Stream and its northeastward extension, the North Atlantic
Drift. Strong uptake is also found over the western continen-
tal shelf where strong river discharges sustain high levels of
biological productivity, in particular during spring (Jamet
et al., 2007; Kealoha et al., 2020). Weaker sinks or sources
of CO2 in the southwestern StA and the eastern subtropical
gyre are primarily driven by high surface temperature and
enhanced stratification (Schuster et al., 2013). The latter
restricts the vertical supply of nutrients and limits biological
production. Finally, a relatively strong source of CO2 is
found over the Canary upwelling system in summer (Fig. 8).

The Equatorial Atlantic (EA) stands out as the second-
strongest source region of CO2 after the Equatorial Pacific
(EP) with a yearly outgassing of −0.117± 0.009 PgC yr−1

(Fig. 6a). Most CO2 is released from the open ocean with an
average efflux of −0.407± 0.031 molCm−2 yr−1 (Figs. 5b
and 6b). This intense source of CO2 stems from upwelling of
cool and CO2-rich waters in the eastern EA. A westward in-
crease in outgassing is observed along with the advection of
CO2-rich waters (Schuster et al., 2013). The coastal EA re-
gions release an average of −0.288± 0.064 molC m−2 yr−1

of CO2. Over large areas, the opposing effects of primary
production and high surface temperature combine to weaken
the coastal sink or seasonally switch it from a weak to a mod-
erate source (e.g. the northeast EA, Caribbean Sea, Venezue-
lan and Guiana basins, Gulf of Guinea) (Fig. 8). The Amazon
River is a notable exception. Its large discharges of fresh wa-
ter and nutrients, as well as of dissolved and particulate car-
bon, turn the coastal and adjacent shelf seas into a net sink of
CO2 (Medeiros et al., 2015; Ibánhez et al., 2015).

The South Atlantic (SA) uptake amounts to 0.192±
0.016 PgC yr−1. Regions north of 30◦ S act as weak sources
or are neutral with respect to air–sea exchanges of CO2,
as opposed to regions to the south which are signifi-
cant sinks of CO2 (Fig. 5b). For the full period, densities

over the open and coastal regions are 0.862± 0.072 and
0.776± 0.125 molC m−2 yr−1, respectively. Coastal regions
are changing from moderate sources to sinks with increas-
ing latitude (Fig. S9). The SA has similar seasonal dynamics
to the StA with CO2 uptake in winter and outgassing in sum-
mer (Takahashi et al., 2009; Schuster et al., 2013). During the
austral winter, deep mixed layers result in cold surface waters
which absorb CO2 from the atmosphere. By contrast, warm-
ing during the summer reduces the solubility of CO2, leading
to a weak sink or even a source (Fig. 8). As explained before,
biological production counteracts the effect of warming, and
the vigorous spring bloom contributes to the uptake south of
30◦ S (Sigman and Hain, 2012; Carvalho et al., 2020).

3.2.3 Pacific

The Subpolar Pacific (SpP) is the second-smallest region
by area (2.78 % of the total surface ocean area) and with
0.040± 0.010 PgC yr−1 (net coastal and open-ocean sinks)
provides the smallest contribution to the total yearly ocean C
uptake (Table 2 and Fig. 6a). The coastal ocean contributes
about 0.032± 0.004 PgC yr−1 to the total yearly C uptake,
making the SpP the only region for which coastal fluxes ex-
ceed open-ocean fluxes. The strength of its coastal C sink
ranks second among all coastal regions (Fig. 6a). Seasonal
features of CO2 fluxes are shown in Fig. 8. The SpP is ice-
covered during the winter months, which results in close-to-
zero air–sea fluxes per unit area north of 60◦ N (e.g. Beaufort,
Siberia, and Chukchi seas). Besides, vertical convection dur-
ing winter brings up old DIC-rich waters, leading to CO2 out-
gassing exceeding −3 molC m−2 yr−1 in the south of the re-
gion (Bates and Mathis, 2009; Arrigo et al., 2010; Ishii et al.,
2014; Yasunaka et al., 2016). Intense biological production
during the boreal summer drives intense uptake of CO2 over
the entire SpP (Feely et al., 2001; Sigman and Hain, 2012;
Ishii et al., 2014). The interplay of these two seasonal mech-
anisms and their opposing effects make the open SpP a weak
yearly net sink (Fig. 6). The average flux density per unit area
is 0.044± 0.123 molC m−2 yr−1 over the open ocean, much
smaller than the value determined for the coastal ocean of
0.775± 0.127 molC m−2 yr−1 (Fig. 6b). As shown in Bates
(2006), Arrigo et al. (2010), and Ishii et al. (2014), surface
DIC concentration is higher over the open, deep basins than
the shallow coastal seas of the SpP, particularly induced by
deep mixing during winter and spring. Over the same period,
seasonal sea ice also restricts gas exchange; the coastal sec-
tor thus acts as a neutral region of CO2 fluxes (Fig. 8). Dur-
ing spring and summer, a substantial amount of CO2 is also
absorbed in the coastal shelf seas influenced by high biolog-
ical production in large ice-free areas (e.g. Chukchi and Gulf
of Alaska) and/or by dilution of seawaters from river fresh
water with low salinity and DIC concentration (e.g. Beau-
fort, Laptev, and East Siberian seas) (Arrigo et al., 2010; Ya-
sunaka et al., 2016, 2018).

Biogeosciences, 19, 1087–1109, 2022 https://doi.org/10.5194/bg-19-1087-2022



T. T. T. Chau et al.: pCO2 and air–sea CO2 flux estimates 1101

A total mean uptake of 0.523± 0.016 PgC yr−1 makes
the Subtropical Pacific (StP) the largest sink region. The
open-ocean contribution dominates the regional sink with
0.495± 0.015 PgC yr−1 (Table 2 and Fig. 6a). The cor-
responding mean flux density per unit area is 1.136±
0.036 molC m−2 yr−1 (Fig. 6b) and makes the StP rank third
after the open-ocean Arctic and SpA regions. As discussed
for the StA, during winter months cooling and high wind
intensities along the Kuroshio and North Pacific currents
enhance the uptake of CO2 (Takahashi et al., 2009; Ishii
et al., 2014). By contrast, summer warming drives the StP to-
wards close-to-neutral conditions or a weak source (Fig. 8).
With a yearly mean uptake of 0.028± 0.003 PgC yr−1, the
coastal StP sink ranks third in terms of intensity among
the coastal sinks (Fig. 6a). The influx density is 1.444±
0.130 molC m−2 yr−1. Western coastal systems and shelf
seas are under the influence of the delivery of fresh water
and nutrients by large river systems (Liu et al., 2014). The
resulting intense biological production contributes to influx
densities per unit area that are higher over the western conti-
nental shelf and seas (e.g. East China Sea, Sea of Japan) than
over the California upwelling system (Figs. 5b, S9b, and 8).

The Equatorial Pacific (EP) is the strongest source region
of CO2 to the atmosphere with a yearly average efflux of
−0.490±0.021 PgC yr−1 from the open ocean and−0.013±
0.003 PgC yr−1 from the continental shelves. On average per
unit area, the open sea emits−0.616±0.027 molC m−2 yr−1

of CO2. This high rate of outgassing is a distinct feature of
the EP (e.g. Feely et al., 2001; Takahashi et al., 2009; Röden-
beck et al., 2015; Landschützer et al., 2016; Denvil-Sommer
et al., 2019; Landschützer et al., 2019) and is primarily due
to the upwelling of DIC-rich deep waters. The magnitude of
CO2 release decreases westwards – from eastern boundary
upwelling (e.g. Peru, Panama) to the International Date Line
– in line with decreasing upwelling intensity, warmer sea sur-
face temperature, and lower salinity (Ishii et al., 2014). Com-
pared to the open EP, the efflux density of the coastal regions
(−0.334± 0.071 molC m−2 yr−1) is roughly half that of the
open ocean.

The South Pacific (SP) ranks second as a sink region
for CO2 with a yearly net flux of 0.358± 0.029 PgC yr−1,
mostly contributed by the open ocean (Fig. 6a). Uptake
rates per unit area are very similar to those obtained
for the SA (Fig. 6b). A detailed assessment reveals the
open-ocean influx density to be slightly lower (0.791±
0.066 molC m−2 yr−1) and the coastal one to be slightly
higher (0.987±0.063 molC m−2 yr−1) over the SP compared
to the SA. Due to the larger area of the SP (Table 1), its inte-
grated sink is approximately twice that of the SA. Similarly
to the processes discussed above for the SA, vertical mixing
drives the uptake of CO2 during austral winter (Takahashi
et al., 2009; Ishii et al., 2014), and the effect of warming on
CO2 solubility during spring and summer is offset by biolog-
ical production. The biological production leads to moderate
to high uptake of CO2 over the coasts and the southwest open

sea (e.g. East Australian Current, southern Australia, New
Zealand) (Fig. 8). The influx density decreases eastwards un-
der the influence of the strong upwelling of DIC driven by the
Peru Current.

3.2.4 Indian Ocean

The total integrated Indian Ocean (IO) sink is evaluated to
0.300± 0.033 PgC yr−1, with 0.305± 0.033 PgC yr−1 con-
tributed by the open ocean and a weak coastal source of
−0.004± 0.002 PgC yr−1. The spatial distribution of flux
densities (Fig. 5b) reveals the northwestern IO to be a
net source of CO2 to the atmosphere, while the northeast-
ern IO is close to neutral and latitudes south of 18 ◦S act
as a strong sink. This regional compensation leads to a
small open-ocean influx density per unit area of 0.482±
0.052 molC m−2 yr−1 and a small coastal efflux per unit area
of −0.131± 0.061 molC m−2 yr−1 (Fig. 6b). The northern
IO is a strong source of CO2 sustained by the monsoon-
driven seasonal upwelling along the Arabian and Somali
coasts (Behrenfeld et al., 2006; Sarma et al., 2013). The
northeastern IO regions including the Bay of Bengal and its
continental shelves receive fresh waters discharged from the
river Ganges and lateral inputs from Indonesian outflows (see
Sarma et al., 2013, and references therein) and switch be-
tween mild sources and sinks (Fig. 8). A subtropical front
(40◦ S) divides the region south of 18◦ S into a weak sink to
the north and over an oligotrophic gyre and a band of vig-
orous uptake to its south over the Subantarctic Zone (SAZ)
between 40 and 44◦ S (Fig. 5b). Similarly to the SA and SP,
this entire region is identified as a significant net sink of CO2
in winter (Fig. 8), possibly driven by enhanced solubility in
response to cooling and mixing. While biological production
maintains the sink over the SAZ during austral spring and
summer months, warming reduces CO2 uptake over the olig-
otrophic gyre.

3.2.5 Southern Ocean

The total Southern Ocean (SO) sink amounts to 0.349±
0.070 PgC yr−1, including coastal uptake of 0.018±
0.002 PgC yr−1. The mean influx per unit area over the
open SO is 0.468± 0.104 molC m−2 yr−1 and close to
the one obtained for the open IO (Fig. 6b). The area-
averaged CO2 drawdown over the coastal SO is 0.599±
0.089 molC m−2 yr−1 with strong coastal sinks distributed
over the South American and Antarctic shelves (60◦ west-
wards as seen in Figs. 5b or S4b). During the austral spring
and summer, intense phytoplankton blooms enhance the con-
sumption of CO2 over the Subantarctic Zone and the Polar
Frontal Zone between 44 and 58◦ S (Sigman and Hain, 2012;
Lenton et al., 2013), leading to a large sink with a flux den-
sity exceeding 1.667 molC m−2 yr−1 (Fig. 8). South of 58◦S,
sea-ice retreat and vertical stratification contribute to a mild
sink over the Antarctic Zone. During winter, vertical mixing
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brings DIC-rich deep waters to the surface, triggering strong
outgassing of CO2 along the Antarctic Circumpolar Current.

4 Discussion

4.1 Contemporary air–sea CO2 flux estimates

Our estimates of contemporary net fluxes of CO2 for the
global ocean and 11 open-ocean regions are compared to
estimates from RECCAP1 in Table 2 after adjusting them
to the same period (1990–2009). RECCAP1 best estimates
were derived from averages or medians of estimates based
on the pCO2 climatology or pCO2 diagnostic model and/or
the atmospheric and ocean inversions and GOBMs (see
Schuster et al., 2013; Ishii et al., 2014; Sarma et al., 2013;
Lenton et al., 2013, and references therein). The observation-
based estimates of regional net fluxes reported in these
studies were computed from the reconstruction of SOCAT
pCO2 data (only used in Schuster et al., 2013), Lamont-
Doherty Earth Observatory (LDEO) data (https://www.ldeo.
columbia.edu/res/pi/CO2/, last access: 16 February 2022),
and their climatology (Takahashi et al., 2009). With the ex-
ception of the global ocean, coastal fluxes were not part of
the earlier assessment. The global open-ocean uptake ob-
tained in this study of 1.344± 0.111 PgC yr−1 lies between
the observation-based net sink estimate by Wanninkhof et al.
(2013) (1.18 PgC yr−1) and the global sum of regional best
estimates given in Table 2 (1.8 PgC yr−1). Net regional fluxes
computed from CMEMS-LSCE-FFNN are mostly within
the range of fluxes derived from observation-based recon-
structions and multi-approach best estimates. Our South-
ern Ocean open-ocean sink (0.290± 0.061 PgC yr−1) com-
pares well with previous observation-based estimates (0.27±
0.13 PgC yr−1) but is lower than multi-approach best es-
timates (0.42± 0.07 PgC yr−1). A significant discrepancy
between the present and previous estimates is also found
over the Arctic Ocean, for which the regional open-ocean
net CO2 uptake is about 1 order of magnitude lower in
CMEMS-LSCE-FFNN compared to the RECCAP1 best es-
timate (Schuster et al., 2013).

Based on the MARCATS mask (Fig. 2), the CMEMS-
LSCE-FFNN estimate of the yearly net coastal sink over
the full reconstruction period is 0.150± 0.010 PgC yr−1. For
1990–2011, we estimate a yearly net coastal sink of 0.147±
0.009 PgC yr−1, which is lower than the one based on SO-
CATv2 data by Laruelle et al. (2014) (0.19±0.05 PgC yr−1).
Despite the fact that the present estimate was obtained with
a model at a lower spatial resolution, the flux density of
coastal sources and sinks, as well as their spatial distribu-
tion (Fig. S9b), is, in general, consistent with Laruelle et al.
(2014) (Fig. 2), with exceptions found in northern polar and
subpolar regions. For instance, Laruelle et al. (2014) sug-
gested the Okhotsk shelf was a strong source of CO2 in ex-
cess of −3 molC m−2 yr−1. To the contrary and in line with

Otsuki et al. (2003), it is identified as a significant sink in this
study taking up 1 to 2.333 molC m−2 yr−1 (Fig. 5).

Our estimates for the mean annual open-ocean and coastal-
ocean uptake over the Arctic (> 76◦ N) are 0.015±0.001 and
0.010±0.001 PgC yr−1 (Table 2), which are less than the best
estimate of 0.12± 0.06 PgC yr−1 by Schuster et al. (2013)
and that of 0.07 PgC yr−1 by Laruelle et al. (2014), respec-
tively. The discrepancy is possibly due to an overestimation
of Arctic pCO2 by the CMEMS-LSCE-FFNN (see “Arctic”
in Sect. 3.1.2) and to the lack of estimates over a large portion
of the seasonally-sea-ice-covered regions (see Figs. 5 and 8).
Further improvements would include using additional prod-
ucts of sea surface height and input from river discharge and
sea-ice melt available over the Arctic. Besides, in Eq. (1), the
air–sea flux density is a linear function of the sea-ice fraction
leading to fgCO2 = 0 as fice = 1. Loose et al. (2009) suggest
that the flux density in such regions is larger than evaluated
by Eq. (1). A suggestion for a better assessment of air–sea
fluxes over the Arctic and other regions with sea-ice cover
(i.e. Antarctic and partly subpolar regions) would be to im-
pose a sea-ice concentration of 99 % for values exceeding
99 % (Bates et al., 2006).

4.2 Model errors and uncertainties

Our uncertainty evaluation for estimates of pCO2 and air–
sea CO2 fluxes is based on a Monte Carlo approach. Statistics
(i.e. ensemble standard deviation, Eq. 2) are based on ensem-
bles of CMEMS-LSCE-FFNN model realizations. This al-
lows producing spatially and temporally varying uncertainty
fields of pCO2 and fgCO2 estimates covering the global
ocean and the full period. This asset can be used for quantify-
ing the uncertainty for different spatial and temporal resolu-
tions (e.g. monthly/yearly integrated fluxes at regional/global
scales).

As a complement to Fig. 3 (bottom plots), which gener-
ally evaluates the reliability of model uncertainty estimates
compared to model–data misfit deviations, Fig. 5 shows
some similarity between their spatial distributions for pCO2
(Fig. 5c and e) and for fgCO2 (Fig. 5d and f). For pCO2,
large model–data misfits and uncertainties are found over re-
gions not only with sparse density or devoid of SOCAT data
(see Figs. S1a and S4) but also with high temporal and/or
spatial pCO2 variations (partly shown in Fig. S1b and c).
High temporal/spatial gradients of pCO2 are typically as-
sociated with upwelling systems (e.g. eastern boundary up-
welling systems, Arabian Sea upwelling), western boundary
currents (e.g. Gulf Stream, Kuroshio), intense biological pro-
duction (e.g. spring bloom in temperate northern/southern
latitudes), coastal and shelf dynamics including river run-off
(e.g. the Amazon, Congo, and Mississippi and great subpolar
and Arctic rivers such as the Ob, Yenisey, Lena, Mackenzie).
Comparing between Fig. 5c and Fig. 5d (Fig. 5e and Fig. 5f),
the magnitude of the uncertainty estimates (model errors) of
air–sea CO2 flux estimates appears to be much less corre-
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lated to measurement density (Fig. S1) than the pCO2 field
(see also Fig. 7a and b). The model uncertainty and errors
in fgCO2 estimates are highest over the open SO (> 44◦ S),
the subpolar regions, the Indian Ocean gyre, and upwelling
systems.

In this study, the uncertainty quantified for the reconstruc-
tion of pCO2 and ultimately fgCO2 is a result of randomly
sampling training and validation datasets from predictors and
SOCAT observation-based data for 100 FFNN model runs
(see Sect. 2.2). This sub-sampling approach permits taking
into account an assumption about uncertainties in predictors
and SOCAT data; i.e. random errors exist through changes in
the range between their sub-samples. For a better assessment
of the reconstruction uncertainty, future studies would need
to include realistic uncertainties in these data, and also in lo-
cal (sub-)skin effects of temperature and salinity as suggested
in Watson et al. (2020). Additional sources of uncertainty
in the computation of air–sea fluxes are discussed by Wan-
ninkhof (2014), Woolf et al. (2019), and Fay et al. (2021).
These studies have demonstrated the strong impact of dif-
ferent wind field products and model parameterizations on
the gas transfer velocity k in Eq. (1) and the corresponding
air–sea flux estimates. For instance, using the eight expres-
sions for the parameterization of k proposed in Woolf et al.
(2019) and references therein would inflate the uncertainty in
the global mean annual uptake from 5 % to 10 %. However,
it would not significantly impact the spatial distribution of
uncertainty, only its magnitude.

4.3 Quantification of the global ocean carbon sink

Table 3 presents the comparison of estimates between the
CMEMS-LSCE-FFNN, an ensemble of data-based recon-
struction approaches, and an ensemble of global ocean bio-
geochemical models (GOBMs) used in the Global Car-
bon Project (GCP; Friedlingstein et al., 2019, 2020; Hauck
et al., 2020) for the reconstruction of air–sea CO2 fluxes.
The reconstructed CMEMS-LSCE-FFNN field covers ap-
proximately 88.9 % of the total ocean area used by the
GCP (361.9× 106 km2). The annual contemporary uptake
over the global ocean and the full period 1985–2019 was
1.643± 0.125 PgC yr−1 with a starting net influx of 0.784±
0.178 PgC yr−1, a growth rate of +0.062± 0.006 PgC yr−2,
and an interannual variability (temporal standard deviation)
of 0.526± 0.022 PgC yr−1 (Fig. 9). The contemporary sink
amounted to 2.301± 0.126 PgC yr−1 for the last decade
(2010s) and 2.877± 0.154 PgC yr−1 in the year 2019 (Ta-
ble 3). The long-term positive trend of the global ocean car-
bon sink estimates tracks the growth rate of atmospheric
CO2 concentration since the mid-1980s (Friedlingstein et al.,
2019, 2020). The interannual to multi-annual variability in
the global ocean carbon sink co-varies with cold and hot
ENSO phases (Fig. 9), confirming ENSO as a leading mode
of variability in the ocean carbon sink (Feely et al., 1999).

Taking into account the total ocean area of 361.9×106 km2

and the outgassing of river carbon of 0.78 PgC yr−1 (Res-
plandy et al., 2018) yields an anthropogenic sink estimate
of 2.423±0.125 PgC yr−1 for the years 1985–2019, 3.141±
0.129 PgC yr−1 for the 2010s, and 3.732± 0.158 PgC yr−1

for 2019. As shown in Table 3, the CMEMS-LSCE-FFNN
estimates of the annual anthropogenic C uptake for differ-
ent decades (1990s to 2010s) are in line with the data-based
estimates but above the model-based estimates in the GCP
publications. Hauck et al. (2020) demonstrated that the spa-
tial distribution of CO2 sources and sinks, as well as decadal
trends of the annual mean flux estimates derived from the
data-based reconstruction methods and the GOBMs, is con-
sistent at the global and regional scales. However, the mis-
matches in the magnitude of these estimates, seasonal cy-
cles, and their interannual variability are still large and re-
main to be resolved. Note that the uncertainties computed
in Hauck et al. (2020) (see estimates in parentheses in Ta-
ble 3) are defined as the ensemble standard deviation of
multiple data-based or model-based products and are lower
than the uncertainties reported in the GCP (Friedlingstein
et al., 2019, 2020). The latter published a total estimate of
±0.6 PgC yr−1, which corresponds to the combination of the
interannual variability derived from GOBM-based estimates
(±0.4 PgC yr−1) and the uncertainty in the ensemble mean
ocean sink (±(0.2–0.4) PgC yr−1).

5 Summary and conclusions

In this paper, we proposed an ensemble of 100 feed-forward
neural network models for the reconstruction of air–sea
fluxes of CO2 (fgCO2) over the global ocean for the pe-
riod 1985–2019. This CMEMS-LSCE-FFNN model was first
used to reproduce the pCO2 fields, and we have evaluated
its skill. The corresponding monthly fields of fgCO2 were
then deduced by applying the air–sea CO2 flux formulation
(Eq. 1). Mean state estimates and uncertainty (Eq. 2) from
the CMEMS-LSCE-FFNN ensemble-based estimates of air–
sea CO2 fluxes have been analysed for the global ocean and
11 RECCAP1 sub-basins (Fig. 2) from the open seas to the
continental shelves.

Our estimate for the contemporary net global sink over
the period 1985–2019 is 1.643± 0.125 PgC yr−1 including
0.150± 0.010 PgC yr−1 for the coastal sink. The model sug-
gested a net flux of 0.784± 0.178 PgC yr−1 in the year 1985
followed by an increase in the global ocean uptake with a
growth rate of +0.062±0.006 PgC yr−2. CO2 absorption by
the ocean showed little fluctuation in the 1990s followed by
an anomalous reduction in the years 1999–2001 (Fig. 9).
Thereafter, the ocean sink strengthened, leading to a global
uptake rate of 2.301±0.126 PgC yr−1 in the 2010s. The large
interannual to multi-year variations in the global carbon sink
with a temporal standard deviation of 0.526±0.022 PgC yr−1

are associated with the ENSO climate variability.
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Figure 9. Yearly global integrated air–sea flux estimates derived from the CMEMS-LSCE-FFNN ensemble (mean± uncertainty) for 1985–
2019. The multivariate El Niño–Southern Oscillation index (MEI; Wolter and Timlin, 1993, https://psl.noaa.gov/enso/mei/, last access:
December 2020) is used to generally indicate a link between variations, e.g. yearly uptake–trend, in the CMEMS-LSCE-FFNN sink estimate
and the ENSO climate mode (El Niño, MEI> 0.5; La Niña, MEI<−0.5; neutral: otherwise).

Table 3. Comparison of the global anthropogenic CO2 uptake (mean ± uncertainty) between CMEMS-LSCE-FFNN and data-based and
model-based estimates used in the Global Carbon Project (Friedlingstein et al., 2019, 2020; Hauck et al., 2020). The CMEMS-LSCE-FFNN
approach provides contemporary flux estimates. Anthropogenic flux estimates are derived from contemporary fluxes adjusted with the global
ocean area of 361.9×106 km2 and the riverine flux of 0.78 PgC yr−1. The estimates in parentheses were provided in Hauck et al. (2020) as
the ensemble mean and standard deviation (µensemble± σensemble) of the model- or data-based estimates.

Methods Periods

1985–1989 1990–1999 2000–2009 2009–2018 2010–2019 2019

CMEMS Contemporary 0.952± 0.162 1.347± 0.124 1.624± 0.103 2.212± 0.120 2.301± 0.126 2.877± 0.154
Anthropogenic 1.757± 0.166 2.162± 0.127 2.446± 0.106 3.049± 0.123 3.141± 0.129 3.732± 0.158

GCP2019 Data (2.32± 0.18) (2.44± 0.14) (3.09± 0.10)
Model 2± 0.6 (1.99± 0.25) 2.2± 0.6 (2.17± 0.26) 2.5± 0.6 (2.52± 0.29)

GCP2020 Model 2± 0.5 2.1± 0.5 2.5± 0.6 2.6± 0.6

The global ocean sink and regional sources and sinks of
CO2 computed by CMEMS-LSCE-FFNN (Tables 2 and 3)
were compared to the estimates by RECCAP1 (Canadell
et al., 2011; Wanninkhof et al., 2013; Schuster et al., 2013;
Ishii et al., 2014; Sarma et al., 2013; Lenton et al., 2013)
and GCP (Friedlingstein et al., 2019; Hauck et al., 2020;
Friedlingstein et al., 2020). We showed that the magnitude,
spatial distribution, and seasonal variations in CMEMS-
LSCE-FFNN CO2 fluxes are generally consistent with those
suggested in the preceding studies (Feely et al., 2001; Taka-
hashi et al., 2009; Laruelle et al., 2014, 2017) for both the
open and the coastal seas. Mechanisms shaping the regional
distribution (Figs. 5b and 6) and seasonal variations (Fig. 8)
of net sinks and sources of CO2 were briefly discussed in
Sect. 3.2. The results in Fig. 6 also suggest a difference be-
tween the rank of 11 RECCAP1 sub-basins with respect to
their total net sinks or sources and with respect to their mean
flux densities per unit area:

– Ranking regional contributions to the global integration
of air–sea fluxes. The EP is confirmed as the predom-

inant ocean source region compensating for approxi-
mately 25 % of the total sinks for both the open and the
coastal seas. The EA regions and the coastal IO are di-
agnosed as weak sources. Due to its large area, the open
StP contributes the largest regional sink of CO2 to the
global ocean net flux (the StP sink is equivalent to the
EP source), followed by the SO, the IO, and the SP. For
the coastal regions, the largest sink is computed for the
SpA (one-third of the total coastal uptake), followed by
the North Pacific and the SO.

– Ranking mean regional flux densities per unit area. The
EP remains the strongest source of CO2 followed by the
EA and the coastal IO. The CO2 absorption is higher
over the Northern Hemisphere than over the Southern
Hemisphere, with the strongest uptake per unit area over
the open Arctic and SpA. The coastal Arctic, SpA, and
StP are identified as the dominant coastal sinks with
similar flux densities.

Though statistics and relevant analyses throughout the pa-
per have confirmed that the CMEMS-LSCE-FFNN estimates
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of sea surface pCO2 and air–sea CO2 fluxes are reasonably
reliable, we believe that the model skill can be further im-
proved. The spatial patterns of model–data misfit (RMSD be-
tween SOCAT data and the reconstructed fields, Eq. 4) and
model uncertainty (ensemble standard deviation, Eq. 2) com-
puted by the proposed approach (Fig. 5) agree in pointing
out where the model poorly recovers evaluation data and/or
results in large uncertainty estimates. We showed that the un-
certainty fields (e.g. Fig. 5c and d) produced by the CMEMS-
LSCE-FFNN approach are more informative than the stan-
dard error maps (e.g. Fig. 5e and f). Thus, the CMEMS-
LSCE-FFNN uncertainty fields could be used to identify
regions that should be prioritized in future extensions of
the observational network and confirmed through dedicated
observing system simulation experiments (Denvil-Sommer
et al., 2021).

Data availability. The dataset of sea surface pCO2 and air–sea
CO2 fluxes analysed in this study is under the quality con-
trol of the European Copernicus Marine Environment Monitor-
ing Service (CMEMS) and has been available for use since
2019. Our dataset can be downloaded through the CMEMS portal
(https://doi.org/10.48670/moi-00047, Chau et al., 2020).
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