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Abstract. Streams are ecosystems organized by disturbance.
One of the most frequent and variable disturbances in run-
ning waters is elevated flow. Yet, we still have few estimates
of how ecosystem processes, such as stream metabolism
(gross primary production and ecosystem respiration; GPP
and ER), respond to high flow events. Furthermore, we lack
a predictive framework for understanding controls on within-
site metabolic responses to flow disturbances. Using 5 years
of high-frequency dissolved oxygen data from an urban- and
agricultural-influenced stream, we estimated daily GPP and
ER and analyzed metabolic changes across 15 isolated high
flow events. Metabolism was variable from day to day, even
during lower flows; median and ranges for GPP and ER
over the full measurement period were 3.7 (minimum, max-
imum= 0.0, 17.3) and −9.6 (−2.2, −20.5) g O2 m−2 d−1.
We calculated metabolic resistance as the magnitude of de-
parture (MGPP, MER) from the mean daily metabolism dur-
ing antecedent lower flows (lower values of M represent
higher resistance) and estimated resilience as the time un-
til GPP and ER returned to the prior range of ambient equi-
librium. We evaluated correlations between metabolic resis-
tance and resilience with characteristics of each high flow
event, antecedent conditions, and time since last flow distur-
bance. ER was more resistant and resilient than GPP. Median
MGPP and MER were 0.38 and −0.09, respectively. GPP was
typically suppressed following flow disturbances, regardless
of disturbance intensity. The magnitude of departure from
baseflow ER during isolated storms increased with distur-
bance intensity. Additionally, GPP was less resilient and took
longer to recover (0 to > 9 d, mean= 2.5) than ER (0 to 6 d,
mean= 1.1). Prior flow disturbances set the stage for how
metabolism responds to later high flow events: the percent
change in discharge during the most recent high flow event

was significantly correlated with M of both GPP and ER, as
well as the recovery intervals for GPP. Given the flashy na-
ture of streams draining human-altered landscapes and the
variable consequences of flow for GPP and ER, testing how
ecosystem processes respond to flow disturbances is essential
to an integrative understanding of ecosystem function.

1 Introduction

Disturbances can alter stream ecosystem function by chang-
ing flow while influencing carbon and nutrient inputs, trans-
formations, and exports (Stanley et al., 2010). Stream bio-
geochemical cycles are altered by long-term “press” distur-
bances, such as land use change (e.g., Plont et al., 2020), and
by episodic “pulse” disturbances, such as transitory changes
in allochthonous inputs (e.g., Bender et al., 1984; Dodds
et al., 2004; Seybold and McGlynn, 2018). Here, we use
the definition of disturbance from White and Pickett (1985):
“any relatively discrete event in time that disrupts the ecosys-
tem . . . and changes resources, substrate availability, or the
physical environment”. Frequent disturbances generate os-
cillations that form a dynamic ambient equilibrium (sensu
Odum et al., 1995) that includes variability in processes
(Resh et al., 1988; Stanley et al., 2010). Stream disturbances
come in many forms, including rapid increases in the volume
and velocity of water, drought, substrate movement, and an-
thropogenic alterations of channel morphology, flow, or so-
lute chemistry (Resh et al., 1988).

Elevated flow is one of the most pervasive, frequent dis-
turbances to streams. Flow disturbances can scour the ben-
thos, increase turbidity, and reduce light – all of which can
change stream function (Hall et al., 2015; Blaszczak et al.,
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2019). However, flow is an inherent characteristic of streams
and may influence stream function along a “subsidy–stress”
gradient (sensu Odum et al., 1979; Fig. 1). Extreme high
flows can stress stream biota and induce conditions unfavor-
able for biotic processes, whereas more “normal”, frequent
high flows can stimulate internal biogeochemical transforma-
tions by bringing in limiting nutrients or organic matter sub-
sidies (Lamberti and Steinman, 1997; Roley et al., 2014; De-
mars, 2019). How changes in flow subsidize or stress stream
functions will depend on a variety of factors, including the
ecosystem process of interest.

Stream metabolism is an integrative whole-ecosystem es-
timate of the carbon fixed and respired by autotrophs and
heterotrophs. Metabolism is most commonly estimated via
diel changes in dissolved oxygen (Hall and Hotchkiss, 2017):
autotrophs produce oxygen during gross primary produc-
tion (GPP); autotrophs and heterotrophs consume oxygen
during respiration, which we refer to as ecosystem respira-
tion (ER) when measured at the whole-reach scale. Together,
ER and GPP can elucidate whether a stream is a net pro-
ducer (autotrophic; GPP > ER) or consumer (heterotrophic;
ER > GPP) of carbon. Ecosystem metabolism is coupled
with other ecosystem processes (e.g., nitrogen uptake; Hall
and Tank, 2003) and is used to monitor stream health (Young
et al., 2008; Jankowski et al., 2021), as well as ecosystem
responses to disturbance and restoration (e.g., Arroita et al.,
2019; Blersch et al., 2019; Palmer and Ruhi, 2019).

Metabolism on any given day is influenced by current
and past environmental factors. GPP can increase with light
(Mulholland et al., 2001; Roberts and Mulholland, 2007), nu-
trients (Grimm and Fisher, 1986; Mulholland et al., 2001),
temperature (Acuña et al., 2004), and transient storage (Mul-
holland et al., 2001). ER is controlled by organic carbon
availability (e.g., Demars, 2019), as well as the same physic-
ochemical conditions as GPP, and consequently often mir-
rors GPP (e.g., Roberts et al., 2007; Griffiths et al., 2013;
Roley et al., 2014). Antecedent conditions may also play a
role in the variability in ecosystem responses to flow (McMil-
lan et al., 2018; Uehlinger and Naegeli, 1998). GPP and
ER respond differently to flow disturbances (O’Donnell and
Hotchkiss, 2019), likely influenced by where the microbes
contributing to GPP and ER reside on or within the hetero-
geneous stream benthos (e.g., Uehlinger, 2000, 2006). Au-
totroph reliance on light for energy creates a stream bed
commonly dominated by photoautotrophic algal commu-
nities and associated heterotrophs. Many heterotrophs, on
the other hand, are established within the substrata and hy-
porheic zone, which can increase resistance and resilience of
ER relative to GPP (Uehlinger, 2000; Qasem et al., 2019).
Environmental drivers of metabolism fluctuate in response to
disturbances (e.g., Uehlinger, 2000) but also vary sub-daily
to seasonally, thus inducing temporal variation in GPP and
ER during base flows that are best characterized as a puls-
ing steady state or dynamic equilibrium (e.g., Roberts et al.,
2007).

The subsidy–stress relationship between flow and ecosys-
tem function likely induces a range of metabolic responses
to and recovery from flow changes (Fig. 1). Both GPP
and ER may decline due to disturbance during higher
flows (Uehlinger, 2006; Roley et al., 2014; Reisinger et al.,
2017); however, flow changes can also stimulate metabolism
(Roberts et al., 2007; Demars, 2019). Ultimately, resistance
is reflected in the capacity of microbial assemblages to with-
stand a flow disturbance, with metabolic processes not re-
duced or stimulated outside of a dynamic ambient equi-
librium. Resistance captures the instantaneous response of
ecosystem metabolism to a flow disturbance. We can also
quantify post-disturbance ecosystem responses by estimat-
ing resilience: the time it takes for a process to return to
equilibrium following a disturbance (Carpenter et al., 1992).
The resilience of ER and GPP following a flow disturbance
may take anywhere from days to weeks (e.g., Uehlinger and
Naegeli, 1998; Smith and Kaushal, 2015; Reisinger et al.,
2017), and it likely varies with season and the magnitude
of disturbance (Uehlinger, 2006; Roberts et al., 2007). A
flow event of lesser magnitude may yield higher resistance
and resilience for both GPP and ER by supplying subsi-
dizing, limiting nutrients and organic matter from the ter-
restrial landscape without inducing extreme scour. Stream
metabolism appears to have low resistance to disturbance
but high resilience (Uehlinger and Naegeli, 1998; Reisinger
et al., 2017). Understanding how different attributes of flow
events (e.g., magnitude, timing) control resistance and re-
covery trajectories is a critical next step in characteriz-
ing metabolic responses to flow changes within and among
ecosystems.

We quantified ecosystem resistance and resilience over
several years of isolated, higher flow events to examine con-
trols on and patterns of stream metabolic responses to dis-
turbance. We had four hypotheses (Fig. 1): (H1) ER will
be more resistant than GPP to flow disturbances, given the
protection of many heterotrophs within the streambed; (H2)
there will be a stimulation of GPP and ER at intermediate
flow disturbances due to an influx of limiting carbon and nu-
trients; (H3) metabolic resistance and resilience will change
with the size of the event, with larger flow disturbances in-
ducing more stress due to enhanced scour; and (H4) some
flow events will not push GPP and ER outside of their ambi-
ent dynamic equilibrium. In addition to testing the subsidy–
stress hypotheses and differences in how GPP and ER may
respond to and recover from higher flow events (Fig. 1), we
also analyzed the relationships between environmental vari-
ables and metabolic responses, including those prior to flow
disturbances that may influence how stream microbial com-
munities respond to flow changes. We predicted recent dis-
turbances might make microbes more vulnerable and less re-
sistant to the next high flow disturbance. We analyzed re-
sponse and recovery dynamics (i.e., resistance and resilience)
relative to a dynamic ambient equilibrium for 15 isolated
flow events across 5 years in a flashy urban- and agricultural-
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Figure 1. Potential metabolic responses along a subsidy–stress gradient of stream flow (adopted from Odum et al., 1979). Flow is on the
x axis. The y axis represents ecosystem metabolism (i.e., gross primary production and ecosystem respiration; GPP and ER), scaled to the
same “normal” starting values for comparison, and is broken into four categories as proposed by Odum et al. (1979): (1) subsidy (when flow
replenishes carbon and nutrients and metabolism increases), (2) normal (periods of dynamic equilibrium under ambient flow), (3) stress (when
ecosystem processes are suppressed by disturbance), and (4) replacement (when there is a severe reduction in metabolism and communities
are scoured or replaced). H1–H4 labels correspond to different hypotheses about how GPP and ER may respond differently to flow (H1) and
how metabolism might change with flow (H2–H4), and they are described further in the main text of the “Introduction”. The inset graph next
to the “normal” bracket depicts how ambient process rates are best represented by a dynamic ambient equilibrium rather than a fixed point
of stability (sensu Odum et al., 1995).

influenced stream. Our methods were chosen to address a
lingering knowledge gap in our understanding of ecosystem
processes, which motivated the three overall objectives of
this work: (1) quantify how biological processes (GPP and
ER) respond to and recover from discrete higher flow dis-
turbances during storms (Fig. 1, H2–H4), (2) test how the
response and recovery of GPP and ER differ (Fig. 1, H1),
and (3) identify which environmental drivers best explain
metabolic resistance and recovery.

2 Methods

2.1 Study site

Stroubles Creek is a third-order, urban- and agricultural-
influenced stream draining a 15 km2 sub-watershed of the
New River in Southwest Virginia in the United States
(Fig. A1; O’Donnell and Hotchkiss, 2019). The mean annual
precipitation of Stroubles Creek’s catchment is 1006 mm,
with more than half (54 %) of that precipitation falling from
May to October (PRISM Climate Group, 2013). Annual
mean air temperature is 11.3 ◦C (0.4–22.0 ◦C monthly mean
minimum and maximum; PRISM Climate Group, 2013). The
catchment draining into Stroubles Creek at our study location
is 85.5 % developed, 11.6 % agriculture (pasture and crops),
and 2.9 % forested (Homer et al., 2015). Stroubles Creek has
been designated an impaired waterway due to high sediment
loading, and it has NO3 concentrations that typically exceed

1 mg L−1 N-NO3 (O’Donnell and Hotchkiss, 2019); biolog-
ical oxygen demand in Stroubles Creek appears to be lim-
ited by organic carbon availability more than inorganic nutri-
ents (O’Donnell and Hotchkiss, unpublished data). Our study
site is part of the Stream Research, Education, and Manage-
ment Lab (StREAM Lab, https://www.bse.vt.edu/research/
facilities/StREAM_Lab.html, last access: 6 August 2020)
and has been monitored by Virginia Tech researchers for over
10 years.

2.2 Sensor data collection

High-temporal-resolution sensor data were collected from
8 January 2013 through 14 April 2018. Dissolved oxy-
gen (DO) (mg L−1), turbidity (nephelometric turbidity unit,
NTU), conductivity (ms cm−1), pH, and temperature (◦C)
data were logged at 15 min intervals by an in situ YSI
6920V2 sonde (Hession et al., 2020; O’Donnell and
Hotchkiss, 2019). Because a freeze event impaired DO
measurements from the YSI sonde, we gap-filled with
calibration-checked and comparable data from an adjacent
PME miniDOT from 1 September 2017 to 14 April 2018
(Fig. A2 in the Appendix; O’Donnell and Hotchkiss, 2019).
We obtained the data needed to model the relative change
in light over 24 h (Eq. 1) from a nearby weather station
(Fig. A1), which also provided estimates of barometric
pressure. A Campbell Scientific CS451 pressure transducer
recorded stage measurements every 10 min. Velocity (v) and
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width (w) measurements were taken over multiple years
to create site-specific relationships between stage, velocity,
wetted width, and discharge (Q). A stage–discharge relation-
ship was created in 2013 and updated in 2018 to allow for
daily estimates of depth (z) from Q= vwz. Sensors were
calibrated every 2–4 weeks according to best practice rec-
ommendations from the manufacturer (Hession et al., 2020)
or, in the case of the PME DO sensor, with Winkler titration
checks of our 100 % and 0 % calibration solutions (Hall and
Hotchkiss, 2017; O’Donnell and Hotchkiss, 2019).

To remove lower-quality sensor data due to sensor error or
periods of low flow, we used data cleaning and quality checks
as in O’Donnell and Hotchkiss (2019). Briefly, we excluded
values below the 1 % and above the 99 % quantile for physic-
ochemical parameters that were heavily skewed (i.e., turbid-
ity and conductivity). We removed physicochemical values
we knew to be unreasonable (e.g., turbidity was cut off at
zero). We calculated daily medians of physicochemical pa-
rameters for all days that had at least 80 % of measurements
over the course of the day after confirming the 80 % cutoff
as one that would not bias daily medians from dates with-
out gaps in sensor measurements. Data from lower flow peri-
ods when individual sensors may have been out of the water
(Hession et al., 2020) were excluded when values were out
of range of grab sample calibration checks.

2.3 Estimating ecosystem metabolism

We estimated GPP, ER, and K (the air–water gas exchange
coefficient) from diel O2 (DO), light, and temperature sen-
sor data using the same inverse modeling approach and data
as O’Donnell and Hotchkiss (2019). Conservative tracer ad-
ditions (Hotchkiss and O’Donnell, unpublished data) sug-
gested there are no substantial groundwater inputs to this
study reach that would otherwise bias our estimates of GPP
and ER (Hall and Hotchkiss, 2017). We selected the stream-
Metabolizer R package for our analyses (Appling et al.,
2018a), which uses Bayesian parameter estimation and a hi-
erarchical state space modeling framework to generate daily
estimates of GPP, ER, and K that create the best fit between
modeled and observed DO data (Appling et al., 2018b; Eq. 1;
Table 1). In Eq. (1), GPP is multiplied by the proportion of
modeled light at the previous measurement (PARi −1t) to
total daily light (

∑
PAR) to inversely model diel changes in

DO (mDO).

mDOi =mDOi−1t +
GPP×PARi−1t

z×6PAR
+

ER
z

1t

+KO(DOsat(i−1t)−mDOi−1t )1t (1)

We modeled GPP, ER, and K with both observation er-
ror and process error. We used most of the default model
specs for streamMetabolizer. Model convergence was visu-
alized via traceplot in the rstan package (Stan Development
Team, 2019) to identify the proper number of burn-in steps

Table 1. Parameter symbols, descriptions, and units used in Eq. (1).

Parameter Parameter description (units)
symbol

mDO Modeled O2 (g O2 m−3)
1t Measurement interval (d)
GPP Gross primary production (g O2 m−2 d−1)
ER Ecosystem respiration (g O2 m−2 d−1)
z Mean stream channel depth (m)
KO Air–water gas exchange of O2 (d−1)
DOsat DO at saturation (g O2 m−3)
PAR Photosynthetically active radiation (µmol m−2 s−1)

(500); we saved 2000 Markov chain Monte Carlo (mcmc)
steps from four chains after burn-in. We calculated credible
intervals for posterior estimates of GPP and ER derived from
the mcmc-derived distributions of GPP and ER. Additionally,
to decrease the chances of equifinality between GPP, ER, and
K estimates (Appling et al., 2018b), we constrained day-
to-day variability in K by binning the range of possible K

estimates according to discharge (O’Donnell and Hotchkiss,
2019). We divided yearly discharge into six bins, which the
hierarchical modeling framework of streamMetabolizer then
used to create K–Q relationships to constrain model K es-
timates (O’Donnell and Hotchkiss, 2019). We used night-
time linear regression of DO as another way to estimate the
range in K in Stroubles (Hall and Hotchkiss, 2017) and used
regression-derived estimates of K to quality-check values
of modeled K from streamMetabolizer (e.g., Fig. A3). We
quality-checked metabolism model output as in O’Donnell
and Hotchkiss (2019). We removed all metabolism estimates
that were biologically impossible, such as negative GPP or
positive ER (ER is modeled as a negative flux of O2 con-
sumption). Next, we used diagnostics from fit() in stan to re-
move values resulting from a poor model fit or lack of chain
convergence (Stan Development Team, 2019). We removed
dates with poor model convergence when Rhat exceeded 1.1
and poor model fit when N_eff (effective sample size) ended
at or exceeded the product of the number of chains (4) and the
number of saved mcmc steps (2000) specified for our model.
Additionally, to avoid using biased estimates of metabolism,
we removed days with K values below the 1 % (< 3.38 d−1)
and above the 99 % (> 27.21 d−1) quantile of model esti-
mates. A total of 246 d of metabolism estimates were ulti-
mately removed due to these model output evaluation crite-
ria, resulting in 1375 d (of 1621 total from 8 January 2013 to
14 April 2018) of quality-checked GPP and ER for further
analyses.

2.4 Selection of isolated flow events

To identify flow events for our analyses of metabolic resis-
tance and resilience, we calculated the percent change in cu-
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mulative daily discharge (Q) relative to the day prior (Eq. 2).

%1Q=
Qi −Qi−1

Qi−1
× 100, (2)

where Qi is the discharge of the day of interest and Qi−1 is
the discharge during the previous day. We selected isolated
flow events that had a greater than 50 % Q change relative to
the antecedent cumulative daily Q. We defined isolation as
a period of 3 d before and 3 d after a high flow event when
no other flow events exceeding 10 % Q change occurred. In
total, there were 15 isolated flow events across all 5 years
that met our criteria for isolated flow events and had quality-
checked metabolism estimates (Fig. 2). A hydrograph and
metabolism time series plot for each isolated flow event are
available in Figs. A4–A18.

The goal of this work was to assess how metabolism re-
sponded to and recovered from higher flow events that were
also isolated flow events. The designation of 50 % change
in flow for high flow events ensured analyzed events were
outside of the range of baseline flows. We defined a flow
event as > 10 % change in Q when comparing the high flow
changes to prior metabolic rates as smaller changes in Q may
still influence metabolism. In testing different thresholds of
flow change and different discharge metrics, we settled on
our current method to optimize the thresholds for a change
in Q that resulted in the highest number of quality-checked
events while ensuring differences between classifications of
ambient stream flow and higher flow events. We focused
on quality over quantity when selecting for and analyzing
stream metabolism results before, during, and after high flow
events. To calculate resistance and recovery, we needed con-
secutive days of high-quality metabolism estimates, which
further limited the number of high flow events appropriate
for our analyses. For example, in 2016, there were 52 (out of
352) days with quality-checked sensor data that had a 50 %
flow change relative to the day prior. After looking at these
52 storms and selecting those that had 3 d before and 3 d af-
ter without any other flow events, we had 12 that were iso-
lated. After quality-checking our metabolism estimates for
all of those days, we had four high flow events from 2016
that passed all quality-checking steps required for this analy-
sis.

2.5 Characterizing metabolic resistance and resilience

To acknowledge the ambient day-to-day variability in GPP
and ER, we used metabolism estimates from 3 d prior to each
isolated flow event to calculate a mean value of antecedent
metabolism. We quantified metabolic responses to flow dis-
turbances by comparing the pre-event metabolic means with
event and post-event metabolism rates. We estimated the
metabolic magnitude of departure (M) during events to quan-
tify the resistance of GPP and ER to higher flow distur-
bances. We calculated M per isolated flow event by compar-
ing the difference between GPP and ER to the mean of the

antecedent range (Eq. 3; Fig. 3),

M = 1−
Xevent

Xprior
, (3)

where Xevent is either GPP or ER (g O2 m−2 d−1) on the day
of the isolated flow event. Xprior is the mean value of GPP or
ER from the antecedent range, and whether M is positive or
negative depends on if the isolated flow event resulted in a
stimulated (increased) or suppressed (reduced) metabolic re-
sponse. For instance, if GPP declined during a flow event, M

was calculated as the difference between GPP for the isolated
flow event and the mean value from the antecedent 3 d range
(Fig. 3). A negative M represents a suppression and a posi-
tive M a stimulation of GPP or ER relative to the antecedent
mean. If GPP or ER on the event day did not fall above or be-
low the antecedent mean, M was zero, thus indicating high
resistance.

To quantify the resilience of GPP and ER, we estimated re-
covery intervals (RIs) by counting the number of days until
metabolic rates returned to or exceeded pre-event mean GPP
or ER, signifying a return to antecedent ambient conditions
(Fig. 3). If metabolism (mean and 2.5 %–97.5 % credible in-
tervals) during the isolated flow event did not fall outside of
the antecedent mean, the RI was 0 d (metabolism cannot re-
cover if it never shifts outside the ambient values). To ensure
additional flow events did not obscure the recovery interval
of GPP or ER, we stopped counting RI the day before the
next event (i.e., if another flow event happened 4 d later, we
stopped counting RI at 3 d). To test for statistically significant
differences between ER and GPP recovery intervals (RIER
and RIGPP) and ER and GPP magnitude of departure (MER
and MGPP), we ran Welch’s t tests in R (R Core Team, 2018).

While limiting our assessment to isolated flow events de-
creased the number of suitable events for analysis, our choice
of methods allowed us to focus on metabolic response and
recovery to discrete disturbances and avoid biased compar-
isons of multiple high flow (but not isolated) events that en-
compass time periods long enough (e.g., weeks) for which
pre–post comparisons are less meaningful. Because flow was
so variable, we chose 3 d to balance best practices from past
work on metabolic responses to storms (e.g., 4 d of prior sta-
ble baseflow; Reisinger et al., 2017) while ensuring we could
analyze as many events with quality-checked data as possi-
ble.

2.6 Testing controls on metabolic resistance and
resilience

We assessed three categories of potential predictors of
metabolic resistance and resilience: antecedent conditions,
characteristics of the isolated flow event, and characteristics
of the most recent prior flow event. Antecedent conditions
included median GPP, ER, turbidity, water temperature, and
light. Antecedent medians for turbidity were estimated from
7 d prior due to missing sensor data. We had to remove poor-
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Figure 2. (a) Time series of cumulative daily discharge (m3 d−1) on all days with quality-checked metabolism estimates from 8 January 2013
to 14 April 2018. The 15 isolated flow events analyzed for metabolic responses to higher flow are represented by open squares. (b) Frequency
distribution of cumulative daily discharge for days with quality-checked metabolism estimates. Vertical dashed lines denote the cumulative
daily discharge values of the 15 different isolated flow events. (c) Box plots of cumulative daily discharge for all days with metabolism
estimates and those isolated flow event days that fit our criteria for analyzing metabolic resistance and resilience.

Figure 3. Example calculations of metabolic resistance (magnitude
of departure; M) and resilience (recovery interval; RI). Daily gross
primary production (GPP) was estimated for the 3 d before, 1 d
during, and 2 d following an isolated flow event that occurred on
9 February 2017. The solid (prior to the flow event) and dashed
(during and after the flow event) horizontal line represents the mean
of GPP estimates from 3 d prior to the flow event. In this case, GPP
declined with higher flow, and the magnitude of departure (M with
arrow) is the difference between mean prior GPP (dashed line) and
GPP during the event. After this flow event, GPP recovered to its
prior mean on day two.

quality data from the turbidity dataset and chose to set meth-
ods that would accommodate inclusion of the most storms
for our analysis. We compared the outcome of changing the
number of days prior to events with turbidity data available
for both 3 and 7 d analyses and found no difference in the
results. For all other variables, we estimated values from 3 d
prior to the flow event for correlations between metabolism
M and RI. Flow event characteristics included flow magni-
tude (percent change in cumulative daily discharge; Eq. 2),
time of peak discharge, and environmental conditions (e.g.,
light, temperature, turbidity, season) on the event day. Char-
acteristics of the most recent flow event included the magni-
tude of and days since the last flow event. We visually identi-
fied the most recent flow event (percent change in cumulative
daily discharge > 50) prior to each isolated flow event. We
ran bivariate correlation analyses to quantify the strength and
directions of linear relationships between predictor variables
and metabolic resistance and resilience using the R cor.test
function (R Core Team, 2018). We interpreted correlation
strengths as follows: negligible (r = 0.0–0.3), low (0.3–0.5),
moderate (0.5–0.7), or high (0.7–1.0) (Hinkle et al., 2003).
All modeling and analyses were conducted in R (R Core
Team, 2018).
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Figure 4. Gross primary production (GPP, a) and ecosystem res-
piration (ER, b) in Stroubles Creek, VA, from 8 January 2013 to
14 April 2018. ER is represented here as a negative rate because it is
the consumption of oxygen. Dashed vertical lines mark the isolated
flow events that fit our criteria for analyzing metabolic responses to
flow change (Fig. 2).

3 Results

3.1 Flow and metabolism

Stroubles Creek is a hydrologically dynamic stream with fre-
quent high flow events (Fig. 2). Cumulative daily discharge
for days with quality-checked metabolism estimates ranged
from 66 to 114 408 m3 d−1, with a median of 6230 m3 d−1.
The 15 isolated flow events selected for analyses were within
the mid–high range of all cumulative daily discharge values
and were of magnitudes that occurred multiple times a year
(Table 2, Fig. 2). We identified isolated flow events of inter-
est based on percent changes in flow, so changes in cumu-
lative daily discharge are proportional across seasons. Dur-
ing the entire measurement period, GPP ranged from 0.00
to 17.3 g O2 m−2 d−1 (median= 3.7); ER ranged from −2.2
to −20.5 g O2 m−2 d−1 (median=−9.6) (Fig. 4; O’Donnell
and Hotchkiss, 2019). Stroubles was heterotrophic (|ER|>
GPP), except for 38 d (3 %) when GPP > ER, all of which
occurred in spring except for 1 d in the fall.

3.2 Metabolic resistance and resilience

GPP most often declined following an isolated flow event
(11 of 15 events had suppressed GPP on the high flow day),
whereas ER was less likely to deviate from the antecedent
equilibrium during higher flows (10 of 15 events had ER
credible intervals that overlapped with antecedent mean ER).
The magnitude of departure for GPP (MGPP) ranged from
−0.95 to 0.34, with a mean of −0.38 (Table 3; Figs. 5, 6).
GPP was inhibited during 11 and slightly stimulated (cred-
ible intervals still overlapped prior mean GPP) during 3 of
15 isolated flow events. The magnitude of departure for ER

Figure 5. Resistance (i.e., magnitude of departure) of gross primary
production (GPP) versus ecosystem respiration (ER) in Stroubles
Creek, VA. Dashed line is the 1 : 1 line; solid line is the linear model
fit through all data (R2

= 0.25, p = 0.03).

Figure 6. Flow event magnitude (percent change in cumulative
daily discharge (Q) relative to the day prior) was negatively cor-
related with magnitude of departure (M) for gross primary produc-
tion (GPP; R2

= 0.10, p = 0.143) and ecosystem respiration (ER;
R2
= 0.18, p = 0.066). The solid purple line is the regression line

for the relationship between MGPP and percent change in discharge,
while the dashed orange line is the regression line for the relation-
ship between MER and percent change in discharge.

(MER) ranged from−0.74 to 0.45, with a mean of−0.09 (Ta-
ble 3; Figs. 5, 6). ER (mean and credible intervals) did not
deviate from the antecedent mean for 10 events (i.e., MER
was close to zero). ER responses to elevated flow were more
variable than those of GPP; ER was both stimulated and sup-
pressed during different high flow periods.

GPP exhibited stronger responses across isolated flow
events than ER; MGPP and MER were positively corre-
lated (R2

= 0.25, p = 0.03, Fig. 5) and significantly differ-
ent (t (26.3)= 2.15, p = 0.04). MGPP was lower than MER
for nearly all flow events, except for three in which MGPP
and MER were near zero (Table 3, Figs. 5, 6, A19). The
isolated flow event that induced the greatest stimulation of
GPP (MGPP = 0.34) also stimulated ER (MER = 0.08), but
the credible intervals of GPP and ER on the high flow day
overlapped with prior GPP and ER (Fig. A6). The one flow
event that stimulated ER (MER = 0.45) had a GPP response
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Table 2. Cumulative daily discharge (CDQ), percent change in CDQ relative to the prior day, metabolism (gross primary production (GPP),
ecosystem respiration (ER)), and air–water gas exchange (K) of isolated flow events analyzed for metabolic recovery.

Date CDQ %1 GPP ER K

(m3 d−1) CDQ (g O2 m−2 d−1) (g O2 m−2 d−1) (d−1)

12 March 2013 33 970 713 1.5 −4.8 9.0
31 March 2013 13 849 188 2.4 −8.0 13.0
23 May 2013 11 923 69 3.7 −12.6 15.2
2 June 2013 6545 93 3.2 −10.6 13.1
2 February 2015 18 842 210 1.4 −4.7 20.9
17 May 2015 19 683 94 7.2 −13.5 15.9
3 September 2015 4447 120 6.5 −11.2 12.8
1 April 2016 13 869 67 4.8 −7.6 13.9
7 April 2016 12 478 53 5.0 −9.7 19.2
22 April 2016 18 340 114 1.9 −10.4 13.0
21 August 2016 9418 94 0.3 −2.6 4.8
9 February 2017 20 383 149 2.2 −7.4 17.6
21 August 2017 44 543 1105 2.5 −4.3 4.1
6 September 2017 11 600 269 0.6 −12.1 17.3
16 October 2017 8761 54 3.4 −11.4 17.8

Table 3. Magnitude of departure (M , unitless) and recovery inter-
vals (RIs, days) of gross primary production (GPP) and ecosys-
tem respiration (ER) during and after 15 isolated flow events be-
tween 8 January 2013 and 14 April 2018. A negative M repre-
sents a suppression. A positive M is a stimulation, in which GPP
or ER increase relative to the prior mean GPP or ER calculated over
3 d. Estimates of M differed between GPP and ER (t (26.3)= 2.15,
p = 0.04), while the RIs for GPP and ER were not significantly dif-
ferent (t (25.8)=−1.22, p = 0.23). The two instances when GPP
did not recover during the isolated flow event analyzed are noted
with an “n/a” (not applicable) and the number of days without re-
covery (X+) that could be counted before the next high flow event
occurred.

Date MGPP RIGPP (d) MER RIER (d)

12 March 2013 −0.78 n/a (6+) −0.34 6
31 March 2013 −0.60 2 0.14 0
23 May 2013 0.34 0 0.08 0
2 June 2013 −0.34 2 0.27 0
2 February 2015 −0.30 1 0.05 0
17 May 2015 0.04 0 0.45 6
3 September 2015 −0.27 2 −0.17 0
1 April 2016 −0.38 4 −0.29 2
7 April 2016 −0.28 5 0.01 0
22 April 2016 −0.87 6 −0.23 0
21 August 2016 −0.95 2 −0.74 1
9 February 2017 −0.12 0 0.11 0
21 August 2017 −0.67 n/a (9+) −0.63 1
6 September 2017 −0.90 2 −0.01 0
16 October 2017 0.32 0 −0.10 0

Average −0.38 2.5 −0.09 1.1

near zero (MGPP = 0.04). Similarly, the only other event that
stimulated GPP (MGPP = 0.34) had a minor ER response
(MER = 0.08), suggesting many flow disturbances may de-
couple GPP and ER.

Both GPP and ER typically recovered from flow-related
stimulation or reduction in less than 3 d (Table 3). There
were many isolated flow events when GPP took multiple
days to recover, but ER never departed from the antecedent
mean (i.e., RI= 0; Fig. 5). When MGPP and MER were both
greater than zero, ER almost always recovered faster than
GPP. RIGPP ranged from 0 to 9+ d, with an average of 2.5 d
(Table 3). RIER ranged from 0–6 d, with an average of 1.1 d
(Table 3). There were only two isolated flow events when
GPP recovered before ER. While ER always recovered be-
fore another flow event occurred, GPP did not recover before
another flow event for 2 of 15 analyzed events. The recov-
ery intervals for GPP and ER were not significantly different
across all isolated flow events (t (25.8)=−1.22, p = 0.23).

3.3 Controls on metabolic resistance and resilience
after a flow disturbance

Although GPP and ER are linked processes, the variables
that were moderate or strong predictors of resistance or re-
silience (r > 0.5) differed between ER and GPP (Table 4).
The two predictors with moderate or stronger relationships
with both MGPP and RIGPP were the percent change in Q

during the most recent high flow event and antecedent mean
GPP. The percent change in Q during the most recent high
flow event was positively correlated with MER (r = 0.51).
The magnitude of each disturbance, characterized by the
percent change in cumulative daily discharge, was nega-
tively correlated with MGPP (r =−0.40, p = 0.14) and MER
(r =−0.49, p = 0.07) (Fig. 6) and positively correlated with
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RIGPP (r = 0.71, p = 0.003). Overall, there were multiple
environmental controls on metabolic resistance or resilience
that had low correlations with either GPP or ER but no sig-
nificant drivers of both GPP and ER resistance and resilience
(Table 4).

4 Discussion

4.1 Metabolic resistance and resilience

GPP and ER responded differently to flow events in a het-
erotrophic stream draining an urban–agricultural landscape.
Notably, ER was more resistant than GPP to metabolic
changes induced by higher flow (Figs. 5, 6). Of the 15
isolated flow events analyzed here, 3 events suppressed
ER, and there were 11 instances of GPP suppression (Ta-
ble 3). Although heterotrophic activity was disturbed by flow
changes, 10 of 15 events analyzed in this study had MER
near zero. Furthermore, a pattern emerged in Stroubles Creek
metabolism when analyzed across all flows in a previous
study: GPP decreased, but ER was relatively constant on days
with higher than median flow (O’Donnell and Hotchkiss,
2019), suggesting a balance between subsidy (e.g., increased
inputs of organic carbon from terrestrial sources) and stress
buffered changes in ER during higher flows (Roberts et al.,
2007; Demars, 2019).

ER was also more resilient than GPP. Differences in ER
and GPP resilience were likely a result of flow-induced
changes to physicochemical parameters (e.g., increasing tur-
bidity with higher flows) that decrease GPP (O’Donnell and
Hotchkiss, 2019). For instance, sustained periods of high tur-
bidity following a flow disturbance can prolong the recov-
ery of GPP by inhibiting light attenuation (Blaszczak et al.,
2019). In contrast, higher ER resilience is likely a function
of greater resistance of ER to disturbances (i.e., smaller M;
Table 3), as well as flow-induced ER stimulation. The corre-
lation of MGPP and MER, but a lack of correlation between
RIGPP and RIER (Fig. 5, Table 3), suggests GPP and ER were
temporarily decoupled while recovering despite similar ini-
tial responses of GPP and ER to flow disturbances.

We do not discuss net ecosystem production results in
the context of this work as the patterns mirror those for ER
(O’Donnell and Hotchkiss, 2019); however, we note that dur-
ing the high flows when GPP and ER responses differed,
Stroubles Creek was even more heterotrophic due to the
higher resistance and resilience of ER relative to GPP. How
often and when GPP and ER respond similarly to flow dis-
turbances may differ among ecosystems as a function of
their metabolic balance (GPP : ER), nutrient limitation sta-
tus, and history of flow disturbance. Ultimately, flow-induced
changes disproportionately disturbed GPP relative to ER,
even in a stream like Stroubles Creek with frequently dy-
namic flows and relatively short recovery times.

Figure 7. A synthesis of metabolic recovery intervals (days) and
percent reduction of gross primary production (GPP) and ecosys-
tem respiration (ER) in response to flow disturbances. A negative
percent reduction is a stimulation. Included in Table A1 are addi-
tional studies that have reported either recovery intervals or percent
metabolic reduction in response to flow disturbances, but not both,
and consequently could not be included here.

The dynamic nature of stream metabolism, even during
low flow periods, must guide how we quantify metabolic re-
sponses to disturbance. We estimated resistance as a devia-
tion from an antecedent average (e.g., as in Reisinger et al.,
2017; Roley et al., 2014) and leveraged posterior information
about our certainty in GPP and ER estimates (i.e., Bayesian
credible intervals). Additionally, we assigned RIs of 0 d when
the mean and credible intervals of high flow GPP or ER over-
lapped the mean of GPP or ER from 3 d prior to the high flow
event. We thus reduced the potential bias of assuming more
discrete differences between day-to-day metabolism esti-
mates that may come with using means or medians instead of
the full posterior distributions provided by Bayesian parame-
ter estimation. Without acknowledging the dynamic ambient
equilibrium of metabolism in many streams and rivers, we
may overestimate disturbances in ecosystem function. In as-
sessing metabolic responses and recovery from smaller flow
events relative to dynamic metabolism during ambient flows
and acknowledging the uncertainty of metabolism model es-
timates, we found some of the shortest metabolic recovery
intervals recorded in the literature (Fig. 7; Table A1 in the
Appendix). Incorporating the dynamic nature of metabolism
and standardizing calculations of metabolic recovery dynam-
ics will enable more robust, cross-site comparisons of com-
plex ecosystem response to changes in flow.

Our analysis of 15 isolated flow events provided exam-
ples of all four hypothesized changes in metabolism with
flow (Fig. 1; H1–H4). ER was more resistant than GPP to
most flow disturbances (H1). At small-to-intermediate sized
flow disturbances, the response of metabolism was variable
(H2, H3), with the greatest range of metabolic stimulation
or reduction (i.e., subsidy or stress) observed at smaller flow
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Table 4. Pearson correlations (r) between predicted drivers of gross primary production (GPP) and ecosystem respiration (ER) magnitudes
of departure (M) and recovery intervals (RIs) of isolated flow events. Predictor variables with moderate or stronger relationships (r > 0.5;
Hinkle et al., 2003) are bolded. The p values are included in parentheses. CDQ = cumulative daily discharge.

Predictor variable (units) r , RIGPP r , MGPP r , RIER r , MER

Isolated flow event of interest

Daily median light 0.19 (0.51) 0.17 (0.55) −0.10 (0.74) −0.06 (0.84)
Daily peak discharge (Q) 0.65 (0.01) −0.23 (0.42) 0.37 (0.18) −0.39 (0.15)
Daily median temperature 0.10 (0.72) −0.02 (0.94) 0.00 (1.00) −0.29 (0.30)
Event median Q 0.14 (0.63) −0.13 (0.65) 0.50 (0.06) 0.09 (0.75)
Percent change in CDQ during event 0.71 (0.00) −0.40 (0.14) 0.30 (0.28) −0.49 (0.07)
Season 0.02 (0.94) −0.10 (0.73) −0.19 (0.50) −0.27 (0.34)
Time of peak Q 0.14 (0.61) −0.06 (0.82) 0.07 (0.81) −0.04 (0.89)
Turbidity 0.46 (0.13) −0.41 (0.19) 0.26 (0.42) −0.07 (0.83)

Most recent flow event

Days since last event 0.05 (0.86) −0.07 (0.82) −0.12 (0.67) −0.08 (0.78)
Last event cumulative daily Q −0.40 (0.14) 0.49 (0.06) −0.21 (0.45) 0.14 (0.62)
Percent change in CDQ during last event −0.56 (0.03) 0.63 (0.01) 0.38 (0.16) 0.51 (0.05)

Antecedent conditions

Antecedent GPP 0.62 (0.01) −0.54 (0.04) 0.13 (0.64) −0.29 (0.29)
Antecedent ER −0.21 (0.46) 0.00 (1.00) 0.21 (0.46) 0.33 (0.23)
Antecedent median gas exchange 0.26 (0.36) −0.07 (0.81) −0.11 (0.70) −0.41 (0.13)
Antecedent median light 0.06 (0.82) 0.03 (0.92) 0.06 (0.83) 0.26 (0.36)
Antecedent median Q −0.22 (0.41) 0.44 (0.10) 0.21 (0.44) 0.47 (0.08)
Antecedent median water temperature 0.08 (0.79) −0.02 (0.95) −0.09 (0.75) −0.29 (0.29)
Antecedent median turbidity −0.12 (0.69) −0.02 (0.95) 0.11 (0.71) −0.29 (0.34)

changes (Fig. 6). ER and GPP also did not increase or de-
crease relative to their ambient values during several high
flow events (H4). With increasing intensity of flow distur-
bance, stress and replacement may indeed scale with inten-
sity (H3). We note that many smaller streams, even those
draining heavily modified landscapes, may continue to play
an important role in carbon cycling and nutrient removal, es-
pecially during smaller flow disturbances. Further work ex-
ploring when and why metabolism–flow dynamics adhere to
predicted disturbance responses is critical for a predictive un-
derstanding of disturbances, biogeochemical processes, and
ecosystem health.

4.2 Controls on metabolic resistance and resilience
after a flow disturbance

In addition to testing potential subsidy–stress responses of
metabolism to higher flow disturbances, a major objective
of this work was to identify controls of metabolic resistance
and resilience. While GPP responded similarly to flows re-
gardless of magnitude, ER was more resistant to smaller iso-
lated flow events. Our prediction that isolated flow events of
greater magnitudes (i.e., larger percent change in cumulative
daily discharge) would result in less resistance and higher
M due to increased scouring was supported only marginally
for MGPP and MER (Fig. 6, Table 4). GPP appears to have

low resistance to flow disturbances, regardless of flow mag-
nitude (Table 4, Fig. 7; Reisinger et al., 2017; Roley et al.,
2014). Of the other stream metabolism studies that provided
results suitable to be included in our comparison of percent
reduction in GPP or ER and metabolic recovery intervals
(RIGPP, RIER; Fig. 7), two were from streams draining more
heavily urbanized watersheds (Reisinger et al., 2017; Qasem
et al., 2019) and one was from a stream draining an agricul-
turally dominated landscape (Roley et al., 2014). It appears
streams draining more urbanized landscapes have higher re-
ductions in metabolism and longer recovery intervals; addi-
tional analyses at sites covering a range of land cover types
and flow regimes will provide exciting opportunities to see if
the trends in Fig. 7 are more broadly applicable.

The different responses of GPP and ER to variable
flow may be attributed to differences in energy sources
and locations of autotrophs and heterotrophs (Uehlinger,
2000, 2006). Primary producers reside in exposed areas on
the streambed to access light required for photosynthesis
and are thus more vulnerable to scour than heterotrophic
biofilms tucked within, and protected by, substrates in the
streambed and hyporheic zone (Uehlinger, 2000). At some
threshold of higher flows that disturb more protected areas
within and below streambeds, we expect ER will decline
as flow-induced stress exceeds flow-induced carbon and nu-
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trient subsidies. Analyses of the interactions between flow-
induced changes in shear stress, water depth, and light avail-
ability may provide additional insights to tests of potential
subsidy–stress dynamics related to stream metabolism. Fu-
ture analyses that include event duration may also provide
new insights into flow–metabolism dynamics: do sustained,
higher flows change GPP and ER in the same way as a more
instantaneous, intense flow event? As is common with long-
term characterizations of metabolism in streams, many high
flow days had metabolism model outputs that did not hold
up to quality checks and thus were not included in our anal-
yses. Overcoming the logistic and computational challenges
of estimating metabolism during extreme flows that disturb
deeper substrates will also allow us to better test predictions
relating flow magnitude with ecosystem functions.

Quantifying how different antecedent conditions induce
variable responses from GPP and ER is critical to further-
ing our understanding of stream ecosystem responses to flow
disturbances. Contrary to our prediction that past scouring
might reduce future resistance to disturbances, the size of
the most recent antecedent flow disturbance had a positive
relationship with both MGPP and MER (Table 4, Fig. A19).
MGPP was smaller and GPP was more resistant when the
most recent flow events were larger. Similarly, the percent
change in cumulative daily discharge from the last event was
positively correlated with MGPP and MER. Stream biota still
recovering and regenerating biomass lost from scour might
respond differently to flow events depending on the succes-
sional stage (Peterson and Stevenson, 1992). Furthermore,
biomass growth initially stimulated by a preceding event may
have been limited by one or more nutrients later supplied by
the isolated flow event. Antecedent GPP and RIGPP were pos-
itively correlated, while MGPP was negatively correlated with
antecedent GPP. We ultimately do not know what caused the
negative relationships between the magnitude of the most re-
cent event and MGPP, as well as MER, in Stroubles Creek;
quantifying the interactions between recovery of biofilm as-
semblages and changes in nutrient limitation across multi-
ple flow events may provide greater insights into the mech-
anisms linking metabolism responses to higher flows with
antecedent flow and GPP.

Environmental conditions on the day of isolated flow
events that promote biomass growth, such as high light and
temperature, were not significant predictors of ER or GPP
recovery intervals. Metabolic recovery trajectories often in-
crease with temperature and light (Uehlinger and Naegeli,
1998; Uehlinger, 2000) and consequently may change sea-
sonally, with faster recoveries in spring and slower recover-
ies in winter (Uehlinger, 2000, 2006). While we did not find
strong predictors of RIER among the environmental variables
in our dataset, changes in the source, magnitude, and bio-
logical reactivity of organic matter inputs may alter RIER
(Roberts et al., 2007). Combining high-frequency nutrient
and organic matter quality measurements with metabolic re-
sistance and resilience estimates will offer an improved un-

derstanding of how changing nutrients and organic matter
mediate metabolic responses to flow changes.

5 Conclusions

Metabolic regimes are punctuated by high flow events that
create frequent pulses of stimulated or reduced GPP or ER
(e.g., Uehlinger, 2006; Beaulieu et al., 2013; Bernhardt et al.,
2018). As such, changes in flow play an influential role in
the trends and variability in metabolism. While geomorphol-
ogy and disturbance regimes may control metabolic resis-
tance across sites (Uehlinger, 2000; Blaszczak et al., 2019),
within-site variability in M and RI may be controlled by the
characteristics of each flow event, as well as prior flow dis-
turbances. Differences between ER and GPP response and re-
covery to flow disturbances at our study site were controlled
by the higher resistance and resilience of ER relative to GPP.
Within this study, our prediction that ER would be more re-
sistant than GPP to flow disturbances was supported as ER
frequently did not even deviate from the antecedent ambient
equilibrium. However, ER had less resistance to events of
greater magnitude. Indeed, both MER and MGPP were nega-
tively correlated with the percent change in discharge of flow
event, but MER had a stronger negative relationship with the
percent change in discharge than MGPP. Metabolic responses
to small and intermediate flow disturbances were variable:
GPP and ER were both stimulated and suppressed. We sug-
gest there may be a resistance threshold to flow disturbances,
in which controls other than flow magnitude (e.g., season,
light, turbidity) might regulate metabolic responses to lower
flow changes. Using segmented process–discharge relation-
ships to quantify a resistance threshold of processes to flow
disturbances (O’Donnell and Hotchkiss, 2019) may support a
more predictive understanding of metabolic response to flow
disturbances as it provided insights on how patterns of water-
quality parameters and metabolism changed across the full
range of flow, thus supporting the inferences we were able to
make from storm-specific analyses in this paper.

One motivation of our work was to better understand
metabolic dynamics in less pristine ecosystems. Dynamic
hydrology makes estimating metabolism more challenging
and consequently decreased the number of events with ap-
propriate data for our analysis. Although we analyzed only
15 high flow events in this study, many of the past analy-
ses on related topics included a similar or lower number of
events over a shorter time period. Our work fills in substan-
tial knowledge gaps: we analyzed across seasons (not only
summer months or a short sensor deployment period) and
high flow magnitudes (not only base flow or the highest flow
disturbances), which allowed us to show a suite of different
metabolic responses to changing flow. We are also left with
questions about how ecosystem processes respond to discrete
changes: how might environmental drivers of metabolic sub-
sidy or stress determine thresholds of resistance and time-
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lines of recovery? How do recent high flow events facilitate
improved resistance to flow disturbances? What is the role
of flow duration in altering metabolism within and after high
flow events? Ultimately, we are entering an era of metabolic
data opportunity (e.g., Bernhardt et al., 2018). As time se-
ries of metabolism lengthen and modeling tools improve,
we envision exciting opportunities to better assess the con-
sequences of isolated flow events, as well as the impacts of
multiple, sequential high flow disturbances that did not meet
our criteria for analyzing isolated flow events in this paper.
While the short periods between high flow events in many
streams and rivers make isolating and quantifying functional
resistance and resilience an ongoing challenge, including dy-
namic flow in our assessment of metabolic regimes is a crit-
ical next step toward a more holistic understanding of fre-
quently disturbed ecosystems.

Appendix A

Figure A1. Stroubles Creek watershed and land cover types in the area that drains to the StREAM Lab monitoring site at Bridge 1, Blacks-
burg, VA, USA (coordinates in decimal degrees: 37.21013, −80.44511). The nearby weather station that provided light and barometric
pressure is just west of the watershed boundary and within the same valley. We created this map using ArcGIS, NHDplus version 2.1, and
the US Geological Survey’s 2011 National Land Cover Database.
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Figure A2. Dissolved oxygen measurements from the two sensors – YSI Sonde and PME miniDOT – at Bridge 1 on Stroubles Creek. The
spread of YSI Sonde values spanning from the end of January to mid-April was likely a result of a freeze event. We used PME data during
the period of record when YSI data did not pass our quality assurance checks. Date format is month/year.

Figure A3. Example of data used to confirm modeled K600 (d−1) using a regression of the nighttime dissolved oxygen saturation deficit
versus changes in saturation (as in Hall and Hotchkiss, 2017). These data are from 4 September 2017, when the estimated value for K600
was 22 d−1.
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Figure A4. Cumulative daily discharge and metabolism (gross primary production and ecosystem respiration; GPP and ER) time series for
the Stroubles Creek flow event on 12 March 2013 (noted with a dashed vertical red line in all three panels). The dashed horizontal black
lines are mean values of GPP and ER prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5 % and 97.5 %
Bayesian credible intervals.

Figure A5. Cumulative daily discharge and metabolism (gross primary production and ecosystem respiration; GPP and ER) time series for
the Stroubles Creek flow event on 31 March 2013 (noted with a dashed vertical red line in all three panels). The dashed horizontal black
lines are mean values of GPP and ER prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5 % and 97.5 %
Bayesian credible intervals.
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Figure A6. Cumulative daily discharge and metabolism (gross primary production and ecosystem respiration; GPP and ER) time series for
the Stroubles Creek flow event on 23 May 2013 (noted with a dashed vertical red line in all three panels). The dashed horizontal black lines
are mean values of GPP and ER prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5 % and 97.5 % Bayesian
credible intervals.

Figure A7. Cumulative daily discharge and metabolism (gross primary production and ecosystem respiration; GPP and ER) time series for
the Stroubles Creek flow event on 2 June 2013 (noted with a dashed vertical red line in all three panels). The dashed horizontal black lines
are mean values of GPP and ER prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5 % and 97.5 % Bayesian
credible intervals.
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Figure A8. Cumulative daily discharge and metabolism (gross primary production and ecosystem respiration; GPP and ER) time series for
the Stroubles Creek flow event on 2 February 2015 (noted with a dashed vertical red line in all three panels). The dashed horizontal black
lines are mean values of GPP and ER prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5 % and 97.5 %
Bayesian credible intervals.

Figure A9. Cumulative daily discharge and metabolism (gross primary production and ecosystem respiration; GPP and ER) time series for
the Stroubles Creek flow event on 17 May 2015 (noted with a dashed vertical red line in all three panels). The dashed horizontal black lines
are mean values of GPP and ER prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5 % and 97.5 % Bayesian
credible intervals.
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Figure A10. Cumulative daily discharge and metabolism (gross primary production and ecosystem respiration; GPP and ER) time series for
the Stroubles Creek flow event on 3 September 2015 (noted with a dashed vertical red line in all three panels). The dashed horizontal black
lines are mean values of GPP and ER prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5 % and 97.5 %
Bayesian credible intervals.

Figure A11. Cumulative daily discharge and metabolism (gross primary production and ecosystem respiration; GPP and ER) time series for
the Stroubles Creek flow event on 1 April 2016 (noted with a dashed vertical red line in all three panels). The dashed horizontal black lines
are mean values of GPP and ER prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5 % and 97.5 % Bayesian
credible intervals.
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Figure A12. Cumulative daily discharge and metabolism (gross primary production and ecosystem respiration; GPP and ER) time series for
the Stroubles Creek flow event on 7 April 2016 (noted with a dashed vertical red line in all three panels). The dashed horizontal black lines
are mean values of GPP and ER prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5 % and 97.5 % Bayesian
credible intervals.

Figure A13. Cumulative daily discharge and metabolism (gross primary production and ecosystem respiration; GPP and ER) time series for
the Stroubles Creek flow event on 22 April 2016 (noted with a dashed vertical red line in all three panels). The dashed horizontal black lines
are mean values of GPP and ER prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5 % and 97.5 % Bayesian
credible intervals.
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Figure A14. Cumulative daily discharge and metabolism (gross primary production and ecosystem respiration; GPP and ER) time series for
the Stroubles Creek flow event on 21 August 2016 (noted with a dashed vertical red line in all three panels). The dashed horizontal black
lines are mean values of GPP and ER prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5 % and 97.5 %
Bayesian credible intervals.

Figure A15. Cumulative daily discharge and metabolism (gross primary production and ecosystem respiration; GPP and ER) time series for
the Stroubles Creek flow event on 9 February 2017 (noted with a dashed vertical red line in all three panels). The dashed horizontal black
lines are mean values of GPP and ER prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5 % and 97.5 %
Bayesian credible intervals.
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Figure A16. Cumulative daily discharge and metabolism (gross primary production and ecosystem respiration; GPP and ER) time series for
the Stroubles Creek flow event on 21 August 2017 (noted with a dashed vertical red line in all three panels). The dashed horizontal black
lines are mean values of GPP and ER prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5 % and 97.5 %
Bayesian credible intervals.

Figure A17. Cumulative daily discharge and metabolism (gross primary production and ecosystem respiration; GPP and ER) time series for
the Stroubles Creek flow event on 6 September 2017 (noted with a dashed vertical red line in all three panels). The dashed horizontal black
lines are mean values of GPP and ER prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5 % and 97.5 %
Bayesian credible intervals.
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Figure A18. Cumulative daily discharge and metabolism (gross primary production and ecosystem respiration; GPP and ER) time series for
the Stroubles Creek flow event on 16 October 2017 (noted with a dashed vertical red line in all three panels). The dashed horizontal black
lines are mean values of GPP and ER prior to the high flow event. Error bars for posterior estimates of GPP and ER are 2.5 % and 97.5 %
Bayesian credible intervals.

Figure A19. The magnitude of the previous high flow event (percent change in cumulative daily discharge) had a positive relationship with
MGPP and MER. GPP is represented by purple squares, and the orange circles are ER. The solid purple regression line reflects the relationship
between magnitude of the last event and MGPP, whereas the dashed orange regression line represents the relationship between the magnitude
of the last event and MER.

https://doi.org/10.5194/bg-19-1111-2022 Biogeosciences, 19, 1111–1134, 2022



1132 B. O’Donnell and E. R. Hotchkiss: Stream metabolism resistance and resilience

Table A1. Literature review of published reduction and recovery intervals (RIs) of stream gross primary production (GPP) and ecosystem
respiration (ER) after high flow events. If not enough information was given to calculate reduction or RI, we listed it as “n/a”.

Source Reduction Reduction RIGPP RIER
in GPP (%) in ER (%) (days) (days)

Uehlinger and Naegeli (1998) 0.53 0.24 n/a n/a
Uehlinger (2000) 0.53 0.37 n/a n/a
Uehlinger (2000) 0.37 0.14 n/a n/a
Uehlinger (2006) 0.49 0.19 n/a n/a
Roberts et al. (2007) 0.90b n/a 5.0 5.0
Roberts et al. (2007) n/a n/a 4.0a 4.0
Roley et al. (2014) −1.10 −1.10 3.8 2.8
Roley et al. (2014) −0.10 −1.50 5.2 1.8
Roley et al. (2014) 0.50 −0.80 16.9 1.4
Roley et al. (2014) −0.10 −1.20 7.6 4.0
Smith and Kaushal (2015) 0.50b n/a 14–21 n/a
Reisinger et al. (2017) 0.92 0.86 18.2 15.7
Reisinger et al. (2017) 0.84 0.72 7.2 10.3
Reisinger et al. (2017) 0.99 0.88 5.4 6.9
Reisinger et al. (2017) 0.99 0.81 10.1 14.1
Reisinger et al. (2017) 0.53 0.89 7.1 11.2
Reisinger et al. (2017) 0.94 0.79 7.6 13.1
Reisinger et al. (2017) 0.71 0.11 4.3 No recovery
Reisinger et al. (2017) 0.88 0.70 6.9 11.2
Reisinger et al. (2017) 0.97 0.84 9.0 8.8
Reisinger et al. (2017) 0.83 0.20 13.8 9.9
Reisinger et al. (2017) 0.17 0.50 11.3 11.7
Qasem et al. (2019) 0.06 −0.49 3.8 1.7
Qasem et al. (2019) −0.25 −0.68 6.7 3.7
Qasem et al. (2019) 0.01 −0.80 4.5 2.0
Qasem et al. (2019) 0.25 −0.10 2.0 5.4
Qasem et al. (2019) 0.11 −1.43 2.6 9.5
Qasem et al. (2019) −1.20 −1.02 2.3 1.6
this study (mean) −0.38 −0.09 2.5 1.1

a Approximated days of recovery from figure in publication. b Approximation given in publication.
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