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Abstract. Heterotrophic marine bacteria utilize organic car-
bon for growth and biomass synthesis. Thus, their physiolog-
ical variability is key to the balance between the production
and consumption of organic matter and ultimately particle
export in the ocean. Here we investigate a potential link be-
tween bacterial traits and ecosystem functions in the rapidly
warming West Antarctic Peninsula (WAP) region based on a
bacteria-oriented ecosystem model. Using a data assimilation
scheme, we utilize the observations of bacterial groups with
different physiological traits to constrain the group-specific
bacterial ecosystem functions in the model. We then exam-
ine the association of the modeled bacterial and other key
ecosystem functions with eight recurrent modes representa-
tive of different bacterial taxonomic traits. Both taxonomic
and physiological traits reflect the variability in bacterial car-
bon demand, net primary production, and particle sinking
flux. Numerical experiments under perturbed climate condi-
tions demonstrate a potential shift from low nucleic acid bac-
teria to high nucleic acid bacteria-dominated communities in
the coastal WAP. Our study suggests that bacterial diversity
via different taxonomic and physiological traits can guide the

modeling of the polar marine ecosystem functions under cli-
mate change.

1 Introduction

Microbes regulate many key ecosystem functions in the ma-
rine food web. Unicellular primary producers fix organic
carbon (i.e., an ecosystem function termed primary produc-
tion), while heterotrophic marine bacteria and archaea (here-
after bacteria) utilize the fixed organic carbon for growth and
biomass synthesis (i.e., an ecosystem function termed bac-
terial production, or BP; Azam et al., 1983). Thus, the vari-
ability in the abundance and activity of bacteria is central to
understanding the balance between production and consump-
tion of organic matter and ultimately particle export in the
ocean. In flow cytometric analyses, bacteria cluster into two
groups of cells with different nucleic acid content, includ-
ing high nucleic acid (HNA) and low nucleic acid (LNA)
cells (Bouvier et al., 2007; Gasol et al., 1999). These two
groups are suggested to represent lineages (Schattenhofer
et al., 2011; Vila-Costa et al., 2012) or physiological states
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(Bowman et al., 2017), in which HNA cells are generally
larger in both cell and genome size compared to LNA cells
(Bouvier et al., 2007; Calvo-Díaz and Morán, 2006). The
significance of HNA versus LNA cells in determining dis-
tinct ecosystem states and functions has been investigated,
but much is still unknown. In a recent study along the West
Antarctic Peninsula (WAP), the high dimensionality of the
bacterial community structure data was reduced via emergent
self-organizing maps and subdivided into a small number of
bacterial modes associated with specific taxonomic and func-
tional traits (Bowman et al., 2017). Bowman et al. (2017)
demonstrated that a combination of taxonomy, physiological
structure (i.e., HNA and LNA cells), and abundance of bacte-
rial communities explained up to 73 % of the variance in bulk
BP. Their findings imply that physiological and taxonomic
traits of bacteria may inform a predictive ecosystem model
to further explore ecologically important questions includ-
ing the following: would these bacterial traits reflect other
important ecosystem functions such as the net primary pro-
duction and particle sinking flux? If so, what would be the
potential mechanisms and how will the relationship between
bacterial traits and ecosystem functions be impacted by cli-
mate change?

The WAP is a rapidly warming marine ecosystem, with
resulting changes in physical, ecological, and biogeochemi-
cal processes (Clarke et al., 2009; Cook et al., 2005; Duck-
low et al., 2007; King, 1994; Meredith and King, 2005;
Stammerjohn et al., 2008; Vaughan et al., 2003; Vaughan,
2006; Whitehouse et al., 2008). Routine monitoring through
the Palmer Long-Term Ecological Research project (Palmer
LTER; since 1991) has revealed climate-driven variations
in seasonal phytoplankton accumulation (Saba et al., 2014;
Schofield et al., 2017), bacterial dynamics (Bowman and
Ducklow, 2015; Ducklow et al., 2012a; Kim and Ducklow,
2016; Luria et al., 2017, 2014), nutrient drawdown (Kim
et al., 2016), and micro- and macrozooplankton dynamics
(Garzio and Steinberg, 2013; Steinberg et al., 2015; Thi-
bodeau et al., 2019). The wealth of Palmer LTER obser-
vations has enabled the construction of a numerical marine
ecosystem model for the coastal WAP region (i.e., the WAP-
1D-VAR v1.0 model; Kim et al., 2021) by adapting the re-
gional test-bed models of other ocean basins (Friedrichs,
2001; Friedrichs et al., 2006, 2007; Luo et al., 2010, 2012).
The WAP-1D-VAR v1.0 model is compared against roughly
bi-weekly time-series observations over the growth season
(October–March) near Palmer Station (64.77◦ S, 64.05◦W;
the mean depth ∼ 65 m, the bottom depth ∼ 75 m) that
record seasonal variations in ecological processes modulated
by variations in surface light, mixed layer depth, and sur-
face sea-ice cover. The WAP-1D-VAR v1.0 model utilizes
a data assimilation scheme to minimize the misfits between
model results and observational data via a variational adjoint
method (Lawson et al., 1995) that assimilates the available
Palmer LTER data to objectively adjust the model param-
eters. Serving as a mechanistic model, assimilation of the

Palmer LTER observations enables the model to constrain
poorly measured bacterial processes (e.g., respiration, viral
and grazing mortality, growth efficiency, carbon demand, and
utilization of dissolved organic matter with varying lability)
and to predict microbial system states in changing environ-
ments. Yet, incorporating molecular observations into a nu-
merical ecosystem model is a challenge because of the dif-
ference in how levels of biological organization are treated
in observations and models (Hellweger, 2020), as well as
the high dimensionality of microbial molecular observations.
One argument is that molecular-level changes in microbial
dynamics may not directly translate into a clear picture of
changes in community structure or resulting changes in bulk
ecosystem functions.

In this study, we explore a potential link between bacte-
rial traits and ecosystem functions in the warming coastal
WAP using a bacteria-oriented ecosystem model modified
from the WAP-1D-VAR v1.0 model (Kim et al., 2021). The
bacterial traits examined in this study include physiological
and taxonomic traits. For physiological traits, our model ex-
plicitly simulates the time-evolving dynamics of two ubiq-
uitous bacterial groups with differing nucleic acid contents,
the HNA group and the LNA group, by directly assimilating
the group-specific carbon biomass observations estimated by
flow cytometry. For taxonomic traits, taxonomic modes de-
rived from bacterial 16S rRNA gene sequence data (Bowman
et al., 2017) are compared to final model results at the corre-
sponding time points with the assumption that bacterial tax-
onomy would provide information about bacterial ecosystem
processes and structures. Our study indirectly incorporates
bacterial molecular information into ecosystem-level dynam-
ics, in contrast to genome-scale or gene-centric models pre-
dicting the time-evolving dynamics of microbial molecular
processes.

2 Material and methods

2.1 Bacteria-oriented ecosystem model

The model is originally derived and modified from the one-
dimensional (1-D) variational data assimilation planktonic
ecosystem model for the coastal WAP region called the
WAP-1D-VAR v1.0 model (Kim et al., 2021). The WAP-1D-
VAR v1.0 model tracks C, N, and P of its state variables with
flexible stoichiometry. For our study, we modify the original
model’s single bacterial compartment into HNA and LNA
bacterial compartments and only discuss their C stocks and
rates, as well as other state variables that remain the same
as the WAP-1D-VAR v1.0 model. The state variables in this
modified model include HNA and LNA bacteria, diatoms,
cryptophytes, microzooplankton, krill, labile dissolved or-
ganic carbon (LDOC), semi-labile DOC (SDOC), ammo-
nium (NH4), nitrate (NO3), phosphate (PO4), and particu-
late (carbon) detritus (Fig. 1). Refractory DOC (RDOC) and
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Figure 1. Model structure. The model is forced by five different
physical forcings, denoted as a horizontal row across the top of the
schematic. As the ecosystem component, heterotrophic bacteria are
divided into two groups of differing physiological states, including
high nucleic acid (HNA) and low nucleic acid (LNA) bacterial com-
partments. The flows between the prognostic state variables with the
name of the numbered flows in the legend only represent these two
bacterial compartments.

higher trophic levels are implicit to serve as model closure
terms (i.e., they are source or sink terms of other explicit state
variables, and their time derivatives are not calculated in the
model). The model is forced by mixed layer depth (MLD),
photosynthetically active radiation (PAR) at the ocean sur-
face, surface sea-ice concentration, water-column tempera-
ture, and eddy diffusivity (Fig. S1 in the Supplement) using
a constant time step of 1 h and a second-order Runge–Kutta
scheme (Texts S1 and S2 in the Supplement). The model al-
lows both LDOC and SDOC as substrate sources for bacteria,
and it is the nutrient quota of bacteria that allows the lability
of SDOC to vary. In contrast to LDOC pool that is entirely
available for bacteria, a parameter controlling the lability of
SDOC (rSDOC, Tables S2–S6 in the Supplement) regulates
the size of the portion of SDOC that can be made avail-
able for bacterial uptake. Bacterial C growth is determined

by their cellular nutrient quota, as well as available LDOC
and SDOC concentrations (Kim et al., 2021).

The time derivative of C biomass for each bacterial group
is determined as follows:
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where C is bacterial C biomass, GC
LDOC is LDOC con-

sumption, GC
SDOC is SDOC consumption, RC is respira-

tion, EC
RDOC is RDOC excretion, EC

SDOC is SDOC excre-
tion, GZC is the amount of C biomass grazed by micro-
zooplankton, and MC is mortality caused by viral attack
(unit: mmolCm−3 for C and mmolCm−3 d−1 for the rest
of the terms). The sum of the first three terms on the right-
hand side in Eqs. (1) and (2) is defined as BP for each bacte-
rial group (i.e., BPHNA =G
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CHNA are constrained by the group-specific C biomass data
estimated via flow cytometry, while only bulk BP (i.e., BP=
BPHNA+BPLNA), not the group-specific BP, is constrained
by the observations due to the lack of the group-specific BP
data at the study site. With the initial parameter values dis-
tinct to each bacterial group (Table 1), the model incorpo-
rates the observations of CHNA, CLNA, BP, and other state
and rate variables to its built-in data assimilation scheme
(Sect. 2.2) that optimizes the parameters and calculates the
resulting C stock and flows of each bacterial group (Eqs. 1
and 2). In other words, the partitioning of BP into HNA and
LNA groups is purely determined by parameter optimization
using the information about other ecosystem observations.

2.2 Modeling framework

The modeling framework consists of the mechanistic and
data-driven parts (Fig. 2). The mechanistic part represents
prognostic, time-evolving microbial processes in the model
(Fig. 1, Sect. 2.1) with its built-in data assimilation scheme
via a variational adjoint method (Lawson et al., 1995). The
data assimilation scheme minimizes the misfits between ob-
servations (i.e., assimilated data; Sect. 2.3) and model re-
sults by objectively optimizing a subset of model parameters
(Friedrichs, 2001; Spitz et al., 2001; Ward et al., 2010; de-
tails in Text S3 in the Supplement). The data-driven part rep-
resents the pairing of the optimized model results from the
mechanistic part and the bacterial taxonomic “modes” de-
rived from 16S rRNA gene sequence abundance data (Bow-
man et al., 2017). We call this latter part data-driven because
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Table 1. Initial values of bacterial model parameters. Different initial values are assigned to the model parameters of high nucleic acid (HNA)
and low nucleic acid (LNA) bacterial groups to simulate their distinct physiological processes and trophic interactions.

Parameter Definition HNA LNA

kDOC DOC half-saturation concentration for bacterial uptake, mmolCm−3 0.5 0.2
µ Maximum bacterial growth rate, d−1 2.0 1.0
bR Parameter control for bacterial active respiration versus production, (mmolCm−3 d−1)−1 0.08 0.2
remi Bacterial nutrient regeneration rate, d−1 8.0 2.0
exREFR Bacterial RDOC excretion rate, d−1 0.04 0.01
fS Bacterial selection strength on SDOC 0.1 0.7
rB Bacterial basal respiration rate, d−1 0.04 0.01
rA
min Bacterial minimum active respiration rate, d−1 0.08 0.04
rA
max Bacterial maximum active respiration rate, d−1 0.4 0.1

mort Bacterial mortality rate, d−1 0.2 0.01
g Bacterial half-saturation concentration in microzooplankton grazing, mmolCm−3 0.55 0.55

Figure 2. Modeling framework. The modeling framework in this
study consists of the mechanistic part as the processes associated
with the bacteria-oriented ecosystem model (Fig. 1) and the data-
driven part that represents how bacterial taxonomic modes are as-
sociated with the modeled bacterial and other key ecosystem func-
tions. A variational adjoint method is employed for the parameter
optimization and data assimilation processes (adapted from Glover
et al., 2011). Gradient: the sensitivity of the total cost function with
respect to the model parameter from optimization. Optimized model
results are interpreted as a function of bacterial taxonomic and phys-
iological traits.

the high dimensionality of the bacterial community structure
data is reduced to a single taxonomic mode using an unsu-
pervised machine learning algorithm called Kohonen’s self-
organizing maps (Kohonen, 2001). Each taxonomic mode
(mode hereafter) represents its specific taxonomic traits and
is expressed as a single categorical variable without linear
progression in between. For example, mode 1 is not neces-
sarily closer to mode 3 than it is to mode 7. Modes are not
necessarily correlated to the physiological traits of bacteria
(i.e., HNA and LNA C biomass) despite being derived from

the same samples. In other words, the taxonomic and physi-
ological traits are independent of each other.

We select the nearshore Palmer LTER Station B (64.77◦ S,
64.05◦W; ∼ 65 m) in the coastal WAP as the modeling site.
The Station B datasets consist of roughly bi-weekly physi-
cal, chemical, and biological profiles collected via a profiling
conductivity–temperature–density (CTD) rosette. Flow cyto-
metric data for HNA and LNA C biomass and 16S rRNA
gene amplicon data for taxonomic modes come from Arthur
Harbour Station B at 10 m depth (situated 1 km from Station
B) or Palmer Station seawater intake at 6 m depth (Bowman
et al., 2017). Three upper-ocean depth levels, 0, 10, and 20 m
(with the layer thickness of 2, 16, and 4 m, respectively),
are modeled for four consecutive growth seasons, including
November 2010–March 2011 (2010–11 hereafter), 2011–12,
2012–13, and 2013–14. However, only the results from 10 m
are presented in detail because of the availability of the bacte-
rial trait data at that depth. Despite the advantage of simulat-
ing the full water-column layers, it would be best to exclude
the depth levels without bacterial trait observations, yet to
include an adequate number of depth levels to simulate sea-
sonal MLD and light impacts on bacterial dynamics. Thus,
we choose to model three layers, that is, 0, 10, and 20 m, in a
1-D (vertical) water column.

The 1-D modeling of the coastal WAP region is justifi-
able given that the WAP shows relatively weak net advection
compared with the Antarctic Circumpolar Current (ACC) or
the subpolar gyres (Meredith et al., 2008, 2013). In addition,
the CTD observations at Palmer Station do not show abrupt
changes in physical and biogeochemical tracers as a result of
lateral advection, with fairly homogeneous temperature and
salinity distributions for the years and depths modeled in our
study (Kim and Ducklow, 2016). There is a 6-month sam-
pling gap in the austral autumn and winter months, so we
optimize the model each year separately only for the austral
spring to summer months. This results in each year possess-
ing its own uniquely optimized parameter set that drives the
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minimized model–observation misfits for the given year. We
also optimize the model for the climatological year, referred
to as the climatological model, constructed by averaging 4-
year observations (2010–11 to 2013–14; Text S4 in the Sup-
plement). We do not average the whole Palmer LTER multi-
decadal period (since 1991) because of the lack of HNA and
LNA C biomass data except for those 4 years. Other mod-
eling aspects (e.g., model initialization, spin-up, and bottom
boundary conditions) are detailed in Text S4 and Kim et al.
(2021).

2.3 Assimilated data

We assimilate the Palmer LTER observations from 0,
10, and 20 m that correspond to the compartments and
flows in the model, including NO3, PO4, phytoplankton
taxonomic-specific chlorophyll (Chl) for diatoms and crypto-
phytes (Schofield et al., 2017), microzooplankton C biomass
(Garzio et al., 2013), bulk primary production (PP), bulk BP,
HNA bacterial C biomass, LNA bacterial C biomass, SDOC,
particulate organic carbon (POC), and particulate organic ni-
trogen (PON). Though not available in 2011–12, because
of the importance in constraining the group-specific phyto-
plankton dynamics, the 4-year climatological value of the
group-specific Chl is assimilated for 2011–12. NO3 is not
assimilated in 2010–11, while POC, PON, and SDOC are
not assimilated in 2012–13 and 2013–14 because of the lack
of observations in those years. Krill C biomass is not assim-
ilated due to the strong patchiness of their distribution with
many zero values that may hinder proper model optimization,
while microzooplankton C biomass (2010–11) from a single
year’s measurement is assimilated for all 4 model years to at
least provide constraints on the parameter values for phyto-
plankton grazing. The model–observation misfits for micro-
zooplankton are not examined because of the discrepancy in
the timing and location of those data assimilated compared
to our study.

SDOC is calculated by subtracting the background
(RDOC) concentration (40.0 mmolCm−3) from climatolog-
ical total DOC concentration. POC (PON) is assimilated to
represent the model detrital pool, but its measurements con-
tain living biomass from bottle filter experiments. Climato-
logical observations show that living phytoplankton and bac-
terial biomass account for 26 % of total POC and 29 % of to-
tal PON, so these fractions are used to exclude living biomass
from the bulk particulate material pool. When converting
Chl to phytoplankton C biomass, the maximum Chl / N ra-
tio is used along with the reference (Redfield) C/N ratio of
0.15. BP (mmolC m−3 d−1) is derived from 3H-leucine in-
corporation rate (pmol l−1 h−1) data using the conversion fac-
tor of 1.5 kgCmol−1 leucine incorporated (Ducklow, 2000).
The bacterial group-specific C biomass (mmolCm−3) is es-
timated from bacterial abundance measured by flow cytome-
try (i.e., bulk bacterial C biomass multiplied by the fraction

of each physiological group, fHNA or fLNA, with the con-
version factor of 10 fgC cell−1; Fukuda et al., 1998).

2.4 Cost function and portability index

The total cost function is calculated to represent the misfit
between observations and model results as follows:

J =
∑M

m=1

1
Nm

∑Nm

n=1

(
âm,n− am,n

σm

)2

, (3)

where m and n represent assimilated data types and data
points, respectively, M and Nm are the total number of as-
similated data types and data points for data type m, respec-
tively, σm is the target error for data type m, am,n is ob-
servations, and âm,n is model output. Hereafter, we present
the total cost function as the total cost function normalized
by M (J ′ = J/M) and normalized costs of individual data
types (J ′m = Jm/M) as the model–observation misfit equiva-
lent to a reduced Chi-square estimate of the model goodness
of fit (i.e., J ′ = 1 as a good fit from optimization, J ′� 1 as
a poor fit due to underestimation of the error variance or the
fit not fully capturing the data, and J ′� 1 as an overfitting
of the data, fitting the noise, or overestimation of the error
variance). The base-10 logarithm of Chl and PP is used in
Eq. (3) to account for high productivity of the WAP waters
and the approximate log-normal distribution of those data
types (Campbell, 1995; Glover et al., 2018). The target er-
ror σm is calculated for each data type m as follows:

σm = am,n ·CVm, (4)

where am,n is the climatological mean of the observations,
and CVm is the adjusted coefficient of variation (CV) of the
observations of each data type over 0, 10, and 20 m (due
to observational error and seasonal and interannual varia-
tions). CVm values for the 4 modeled years in our study
are higher than those across every measured depth within
the mixed layer for an extended year period in the original
WAP-1D-VAR v1.0 model (2002–03 to 2011–12; Kim et al.,
2021) and are therefore reduced to the levels in the mixed
layer to avoid an overestimated target error of each data type
(Text S5 in the Supplement). The rationale behind using the
adjusted CV in the target error calculation is based on Luo
et al. (2010), in which all properties should be completely
mixed in the mixed layer, a perfect measurement without sig-
nificant errors should generate similar values at every mea-
sured depth within the mixed layer, and the average CV of
all depth profiles can be used as CV in the target error calcu-
lation. The standard deviation is used as target errors of the
log-converted data types. The CV of the log-converted data
type is estimated as the average of ± 1 standard deviation in
log space converted back into normal space (Doney et al.,
2003; Glover et al., 2018).

We compute the portability index (Friedrichs et al., 2007)
to evaluate the broader applicability of the optimized model
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parameter set for each year in predicting the dynamics of the
other year as follows:

Portability index= J ′c/J
′
x , (5)

where J ′x is the normalized cross-validation total cost func-
tion when a model parameter set optimized for a given year is
used to simulate another year, and J ′c is the normalized total
cost function of the climatological model. A portability index
value close to 1 indicates a more portable model or a system
that is not particularly sensitive to year-to-year variations in
optimized parameters, while an index value� 1 indicates a
less portable model or a system that is sensitive to year-to-
year variations in optimized parameters.

2.5 Uncertainty analysis

The uncertainties of the optimized parameters are estimated
using a finite difference approximation of the complete Hes-
sian matrix during the iterative data assimilation process (i.e.,
the second derivatives of the cost function with respect to the
model parameters). When computed at the minimum of the
cost function value, the square root of a diagonal element
in the inversed Hessian matrix represents the logarithm of
the relative uncertainty of the corresponding optimized pa-
rameter. The absolute uncertainty of the optimized param-
eter is calculated as pf · e±σf , where pf is the value of
the optimized parameter, and σf is its relative uncertainty.
We denote an optimized parameter with σf larger than 50 %
as an “optimized” parameter, while an optimized parameter
with σf smaller than 50 % is denoted as a “constrained” pa-
rameter (Text S3, Tables S2–S6). We then conduct Monte
Carlo experiments to examine the impact of the uncertain-
ties of the constrained parameters on the modeled fields. The
Monte Carlo experiments consist of (1) creating an ensemble
of parameter sets (N = 1000) by randomly sampling values
within the uncertainty ranges of the constrained parameters
and (2) then performing a model simulation using each pa-
rameter set. All uncertainty estimates are calculated follow-
ing standard error propagation rules and presented herein as
± 1 standard deviation.

3 Results

3.1 Model skill assessment

The iterative optimization procedure reduced by 24 %–93 %
the misfits between observations and model results for each
year and for the climatological year compared to those ob-
tained using the initial parameter values (Table 2). The op-
timized parameter sets satisfied the pre-set convergence cri-
teria, including the local minima achieved by the total costs,
low gradients of the total costs with respect to each optimized
parameter, and positive eigenvalues of the Hessian matrix
(details in Kim et al., 2021). The total costs were reduced by

optimizing only a subset of the parameters: five–seven con-
strained and three–six optimized parameters (Tables S2–
S6). The optimized parameters in common across all years
were αDA (the initial slope of photosynthesis versus irra-
diance curve of diatoms, molC (gChl a)−1 d−1 (Wm−2)−1),
µHNA (the maximum HNA bacterial growth rate, d−1), µLNA
(the maximum LNA bacterial growth rate, d−1), and gCR (the
half-saturation density of cryptophytes in microzooplankton
grazing, mmolCm−3). gHNA (the half-saturation density of
HNA bacteria in microzooplankton grazing, mmolCm−3),
gMZ (the half-saturation density of microzooplankton in krill
grazing, mmolCm−3), and µKR (the maximum krill growth
rate, d−1) were the next most frequently optimized, at least
for 4 years out of a total of 5 modeled years including the
climatological year.

Because of this study’s focus on the modeled bacterial and
other ecosystem functions as a function of bacterial traits
(Sect. 3.3) rather than of year (Figs. S2–S5 in the Supple-
ment), we combined the observations and model results from
all 4 years together for model skill assessment. According
to the Taylor diagrams, model skills were overall similar
among the 4 study years (Fig. 3a) and the climatological
year (Fig. 3b). Three core variables in this study, including
HNA biomass, LNA biomass, and BP, had better model–
observation agreements than other data types, with relatively
high correlations, a low centered (bias removed) root-mean-
square difference (RMSD), and the normalized standard de-
viation closer to 1. These variables also had better fits to the
4-year seasonal cycles of the observations than other data
types (Fig. S7 in the Supplement). However, the model skill
for HNA biomass slightly degraded in the climatological
model (Fig. 3b), with the insignificant correlation (p = 0.61
versus r = 0.53 and p = 0.003 in Fig. 3a), lower normalized
standard deviation, and higher RMSD than the 4 years to-
gether (Fig. 3a). After optimization, the models tended to
underestimate PP with relatively larger errors than for other
data types (Fig. S7), while its temporal and spatial (depth)
variability was captured well as shown by high correlations
(Fig. 3). By contrast, there were slight positive model biases
for POC and PON (Fig. S7), and their variability was not well
captured as shown by their negative correlations (Fig. 3).

Cross-validation cost analyses showed the increased
model–observation misfits when a set of parameters opti-
mized for a given year was applied to simulate another year’s
dynamics (Tables 2 and 3), suggesting that each year was
best modeled using its own unique set of the optimized pa-
rameters. The magnitude of increase in the cost function var-
ied by year pair, with the average portability index values
indicating that the optimized model parameters for 2012–
13 was most portable (0.76± 0.11), followed by those for
2013–14 (0.73± 0.17), 2010–11 (0.68± 0.08), and 2011–12
(0.61± 0.12; Table 3), though the differences were not al-
ways significantly different among the years.
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Table 2. Data types, observed means, coefficient of variation, target errors, and costs before and after optimization. The observed mean (a),
coefficient of variation (CV), and target error (σ ) of each assimilated data type used for calculating the normalized cost function (unitless;
Eq. 3) before (J ′0) and after optimization (J ′f ). Data type unit: mmolNm−3 for nitrate (NO3); mmolPm−3 phosphate (PO4); mgm−3 for
diatom chlorophyll (ChlDA) and cryptophyte chlorophyll (ChlCR); mmolCm−3 for HNA and LNA bacterial biomass, SDOC, and POC;
mmolNm−3 for PON; and mmolCm−3 d−1 for primary production (PP) and bacterial production (BP). NO3 was not assimilated in 2010–
11, while SDOC, POC, and PON were not assimilated in 2012–13 and 2013–14 (denoted as ”–” in the table).

Data types a CV σ 2010–11 model
parameter set

2011–12 model
parameter set

2012–13 model
parameter set

2013–14 model
parameter set

Climatological
model para-
meter set

J ′0 J ′f J ′0 J ′f J ′0 J ′f J ′0 J ′f J ′0 J ′f

NO3 19.70 0.04 0.76 – – 8.04 5.23 11.74 8.88 27.82 13.52 10.41 9.62
PO4 1.31 0.03 0.04 9.20 7.08 86.26 21.03 41.41 6.64 2.70 7.05 45.76 10.47
log10(ChlDA) 0.16 0.08 0.09 12.94 5.69 6.55 9.49 12.19 12.66 10.57 7.76 6.57 8.52
log10(ChlCR) −0.90 0.10 0.10 8.75 6.41 11.04 7.33 10.02 8.37 9.92 8.23 11.10 6.95
log10(PP) 1.32 0.21 0.21 4.50 4.71 4.51 2.69 9.81 6.26 9.86 7.61 7.19 3.83
HNA biomass 0.21 0.08 0.02 20.39 2.08 0.15 0.20 24.86 8.49 36.34 10.28 23.78 10.87
LNA biomass 0.33 0.08 0.02 4.26 3.06 673.73 21.05 860.14 1.99 10.65 6.15 590.29 9.27
BP 0.11 0.16 0.02 3.54 3.83 16.72 0.65 24.20 13.23 5.65 5.05 12.82 3.50
SDOC 10.52 0.20 2.13 3.88 3.96 1.38 1.42 – – – – 2.76 2.68
POC 11.24 0.13 0.78 12.03 12.68 33.39 23.19 – – – – 39.23 16.26
PON 2.40 0.12 0.43 48.44 48.26 42.77 26.19 – – – – 43.86 27.30

Total cost 127.94 97.77 884.53 118.46 994.38 66.51 113.51 65.65 793.77 109.29

Table 3. Cross-validation cost and portability index. J ′c is the normalized optimized cost from the climatological model (equivalent to J ′f
under the climatological model parameter set in Table 2), and J ′x is the normalized cross-validation cost (Eq. 5), in which, for example,
J ′x,2011–12 under the row “2010–11 model parameter set” in Table 3 indicates the normalized cross-validation cost from simulating the
2010–11 model parameter set against 2011–12.

Data types J ′c 2010–11 model parameter set 2011–12 model parameter set 2012–13 model parameter set 2013–14 model parameter set

J ′x,2011–12 J ′x,2012–13 J ′x,2013–14 J ′x,2010–11 J ′x,2012–13 J ′x,2013–14 J ′x,2010–11 J ′x,2011–12 J ′x,2013–14 J ′x,2010–11 J ′x,2011–12 J ′x,2012–13

NO3 9.62 4.88 10.35 30.82 NA 10.61 31.96 NA 4.68 20.32 NA 6.54 10.26
PO4 10.47 24.36 5.42 1.46 9.15 5.47 0.88 8.33 28.54 2.70 7.56 37.74 10.70
log10(ChlDA) 8.52 8.66 13.93 8.45 7.42 13.92 8.67 5.95 7.37 7.91 5.64 7.34 12.45
log10(ChlCR) 6.95 12.00 17.38 19.62 8.47 8.44 9.50 10.22 7.24 8.99 9.50 7.16 7.54
log10(PP) 3.83 1.86 8.45 10.71 6.08 10.38 12.94 3.87 1.70 8.18 4.68 2.28 5.88
HNA biomass 10.87 22.93 11.57 12.57 26.90 25.86 43.08 6.11 9.44 16.01 2.75 27.71 14.95
LNA biomass 9.27 22.54 4.64 16.39 4.60 17.14 7.57 12.91 28.98 27.43 7.03 25.40 28.47
BP 3.50 3.39 14.14 5.48 6.76 16.32 10.02 3.80 1.66 5.86 3.02 3.21 13.69
SDOC 2.68 1.40 NA NA 3.90 NA NA 3.53 1.85 NA 3.47 2.46 NA
POC 16.26 23.70 NA NA 12.02 NA NA 12.63 21.51 NA 14.35 20.23 NA
PON 27.30 26.04 NA NA 47.53 NA NA 47.92 27.48 NA 49.58 29.47 NA
Total cost 109.29 151.77 85.86 105.51 132.85 108.15 124.62 115.27 140.47 97.39 107.57 169.54 103.93

Portability index 0.68± 0.08 0.61± 0.12 0.76± 0.11 0.73± 0.17

NA: not available.

3.2 Bacterial carbon stocks and flows

C stocks and flows for each bacterial group represented
significant seasonal and interannual variability (Figs. 4a
and S8 in the Supplement). Across years, HNA bacte-
ria had significantly higher seasonal maximum values
than their LNA counterparts when normalized by the
group-specific biomass. These so-called cell-specific,
seasonal maximum rates of the HNA group ranged
from 0.10± 0.004 to 0.59± 0.24 d−1, 0.03± 0.001
to 0.18± 0.12 d−1, 0.07± 0.003 to 0.18± 0.08 d−1,
0.05± 0.002 to 0.57± 0.26 d−1, and 0.07± 0.03 to

0.36± 0.17 d−1 for LDOC uptake, SDOC uptake, respi-
ration, BP, and grazing rates, respectively (Fig. 4). For
the LNA group, the maximum cell-specific rates ranged
from 0.01± 0.002 to 0.12± 0.02 d−1, 0.004± 0.002
to 0.03± 0.01 d−1, 0.01± 0.001 to 0.02± 0.002 d−1,
0.01± 0.003 to 0.13± 0.02 d−1, and 0.02± 0.0004 to
0.17± 0.03 d−1 for LDOC uptake, SDOC uptake, respi-
ration, BP, and grazing rates, respectively (Fig. 4). For
each year, C stocks and flows averaged over the growth
season (Fig. 5) and those normalized by NPP (net primary
production; normalized by NPP in 1 d for C stocks; Fig. S9
in the Supplement) summarized an annual snapshot of
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Figure 3. Model skill assessment. A Taylor diagram using a polar-coordinate system summarizing the model–observational correspondence
for each model stock and flow for individual annual simulations for the 4 modeled years together (2010–11 to 2013–14; a) and for the
climatological year (b). The angular coordinate denotes the Pearson correlation coefficient (r), the distance from the origin denotes the
standard deviation normalized by the standard deviation of the observations, and the distance from point (1,0), marked as REF on the x axis,
describes the centered (bias removed) root-mean-square difference (RMSD) between model results and observations.

the group-specific bacterial dynamics. The annual mean
LNA biomass was ∼ 17 times larger than that of HNA
biomass in 2011–12 (Fig. 5b), in contrast to relatively
similar average biomass values of both groups in other years
(Fig. 5a, c, and d). Bacterial carbon demand (BCD; i.e.,
BCD=BP+ bacterial respiration; blue arrows in Fig. 5) was
mostly supported by LDOC (67 %–81 %) for both bacterial
groups.

The rest of the modeled C stocks and flows fell into one
of the following categories: (1) the variable for which a sin-
gle year’s values were assimilated (i.e., microzooplankton
C biomass), (2) the variables for which observational values

for the given year were assimilated (i.e., nutrients, POC or
detritus, and SDOC), and (3) the variables that were not as-
similated at all (i.e., krill C biomass, LDOC, NH4, and parti-
cle sinking flux). Compared to bacterial variables, there was
little interannual variability in the average microzooplankton
C biomass (Fig. 5). Even in the years when NO3, POC, and
SDOC were not assimilated, their values were modeled sim-
ilarly to those modeled in other assimilated years (Fig. 5).
Modeled LDOC and NH4 were also within the reasonable
ranges of their typically small values (< 1 µM).
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Figure 4. Seasonal progression of modeled HNA and LNA bacterial carbon stocks and rates and key ecosystem functions across years.
Seasonal patterns of HNA and LNA bacterial carbon stocks and flows, NPP and POC sinking flux at 10 m depth over the growth season
(November–March) for each of the 4 simulation years (a), and coefficient of variation (the Monte-Carlo-derived standard deviation divided
by each data point from Fig. 4a) from 1000 Monte Carlo experiments (b).
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Figure 5. Annual mean carbon stocks and flows. Carbon stocks (mmolCm−3) and flows (mmolCm−3 d−1), particle sinking flux
(mmolCm−2 d−1), and other stocks (e.g., nutrients, mmolm−3) averaged over the growth season in each year are denoted as the num-
bers on the first row, while the numbers in the second row or in the parentheses are the standard deviation propagated from averaging over
the growth season and the Monte-Carlo-derived uncertainties. Numbers around the arrows represent intercompartmental flows and do not
necessarily balance to zero due to the build-up or loss in a compartment over the growth season. The magnitude of the N and P flows, as well
as the flows smaller than 0.01 mmolCm−3 d−1, are omitted. RDOC and higher levels are implicit.

3.3 Bacterial physiological and taxonomic association
with ecosystem functions

Each mode was dominated by unique bacterial taxa, thereby
representing taxonomic traits (Fig. S10 in the Supple-
ment). Candidatus Pelagibacter was the most abundant in

mode 6 (Fig. S10c), Dokdonia sp. MED134 in mode 7
(Fig. S10d), Candidatus Thioglobus singularis PS1 in
mode 1 (Fig. S10e), Owenweeksia hongkongensis DSM
17368 in mode 2 (Fig. S10f), Rhodobacteraceae in mode 5
(Fig. S10g), and Planktomarina temperata RCA23 in mode 4
(Fig. S10h). To explore a potential link between the bacte-
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Figure 6. Bacterial physiological and taxonomic association with modeled ecosystem functions. The results from linear regression of the
key modeled ecosystem functions on a categorical predictor of the observed mode (a–c) and on the observed fraction of HNA cells (d–f).
Regression statistics: (a) number of observations (N)= 43, error degrees of freedom (df)= 35, root-mean-square error (RMSE)= 0.68,
r2
= 0.39, adjusted r2

= 0.27, F statistic value= 3.22, p value= 0.01; (b) N = 43, df= 35, RMSE= 2.88, r2
= 0.48, adjusted r2

= 0.37,
F statistic value= 4.55, p value= 0.001; (c) N = 43, df= 35, RMSE= 0.03, r2

= 0.81, adjusted r2
= 0.77, F statistic value= 20.7,

p value < 0.001; (d) N = 43, df= 41, RMSE= 0.65, r2
= 0.36, adjusted r2

= 0.34, F statistic value= 22.8, p value < 0.001; (e) N = 43,
df= 41, RMSE= 2.57, r2

= 0.51, adjusted r2
= 0.50, F statistic value= 43.0, p value < 0.001; (f) N = 43, df= 41, RMSE= 0.04,

r2
= 0.57, adjusted r2

= 0.56, F statistic value= 53.5, p value < 0.001.

rial taxonomic traits and the key ecosystem functions, we
first extracted the modeled NPP, POC sinking flux, and BCD
from the ecosystem model (i.e., the “final optimized output”
in Fig. 2) at the time the bacterial samples and depth (10 m)
were placed into a single mode derived from the observa-
tions. We then performed a linear regression with the mode
as a factor, in which the mode is a categorical predictor with
eight modes rather than an ordinal or continuous variable
(i.e., equivalent to a one-way ANOVA with eight different
categories). 27 %, 37 %, and 77 % of the total variance in the
modeled NPP, POC sinking flux, and BCD were explained
by the bacterial taxonomic mode (Fig. 6a–c). In particular,
modes 3, 5, and 7 were associated with 2–3 times higher NPP,
POC sinking flux, and BCD compared to when mode 4 dom-
inated (two-sample t test with unequal sample size, p = 0.02
for NPP and p< 0.001 for POC sinking flux and BCD) or to
when mode 6 dominated (p = 0.03 for NPP, p = 0.003 for
POC sinking flux, and p< 0.001 for BCD).

The observed mode was also positively correlated to the
observed fHNA (r2

= 0.52, p< 0.001; not shown). Thus, we
examined a potential link between the bacterial physiological
traits and the key ecosystem functions as described above,
using a linear regression with the observed fHNA as a pre-
dictor and the modeled ecosystem functions as dependent
variables. The observed fHNA was positively correlated to

the modeled NPP (r2
= 0.34, p< 0.001; Fig. 6d) and to a

stronger extent to the modeled POC sinking flux (r2
= 0.50,

p< 0.001; Fig. 6e) and to the modeled BCD (r2
= 0.56,

p< 0.001; Fig. 6f). The stepwise addition of one predictor
variable to the other predictor variable (i.e., fHNA adding to
mode or vice versa) did not improve the model performance
(not shown). These results suggest a clear link between the
modeled ecosystem functions and the bacterial taxonomic
(modes) and physiological (fHNA) trait observations.

3.4 Climate change experiments

We explored the responses of the modeled bacterial dynam-
ics and other ecosystem functions (Sects. 3.2 and 3.3) to
changing climates along the WAP (Fig. 7). Due to the varying
portability of the optimized parameter sets among the 4 study
years, we used the optimized parameter set for the climato-
logical year (Table S6) to simulate an overall WAP system
response under perturbed ocean temperatures (i.e., +0.5 ◦C
and +1.0 ◦C relative to observed temperatures) and sea-ice
forcing fields (i.e., 5 % and 10 % loss of sea-ice concentra-
tions relative to observed sea-ice concentrations). These ex-
periments were conducted under each perturbed condition
separately (i.e., warming alone in Fig. S11 in the Supplement
versus melting alone in Fig. S12 in the Supplement), as well
as simultaneously (i.e., climate change; Fig. 7). We only ana-
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Figure 7. Climate change experiments. Seasonal progression of the modeled HNA and LNA bacterial carbon stocks and rates and key
ecosystem functions under observed physical forcing and climate change experiments (a) and the percent change in the corresponding
variable compared to observed fields in the second and third row of each panel, with the first row of each panel as zero to represent base
states (b). For example, the percent anomaly of HNA biomass in (b)= (HNA biomass under +1 ◦C and −10 %−HNA biomass under
observed forcing) · 100/HNA biomass under observed forcing.
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lyzed the results from the climate change experiments, given
that despite different impacts of each forcing change (i.e.,
the impact of warming on rate processes versus the impact
of melting on light and photosynthesis but not MLD in our
model), climate change would cause simultaneous changes
in sea ice and water temperature along the WAP.

The climate change experiments resulted in a combina-
tion of changes in overall bacterial C stocks and rates, as
well as the key ecosystem functions, and shifts in their sea-
sonal timing (Fig. 7a) compared to the base state (the first
row as the base state in Fig. 7a and b, while the second
and third rows as anomalies under perturbed conditions in
Fig. 7b). HNA bacterial C stock and rates responded more
strongly to the perturbed climate conditions compared to
their LNA counterparts. Under combined warming and melt-
ing (+1.0 ◦C and −10 %) conditions, there were the max-
imum increases in the HNA C stock and rates by 19 %–
35 % (29± 89 % for biomass, 22± 67 % for LDOC uptake,
35± 111 % for SDOC uptake, 26± 79 % for respiration,
25± 78 % for BP, 29± 89 % for viral mortality, 19± 26 %
for grazing, and 29± 89 % for RDOC excretion) compared
to the maximum increases in the LNA C stock and rates by
3 %–15 % (3± 2 % for biomass, 6± 11 % for LDOC uptake,
15± 27 % for SDOC uptake, 8± 3 % for respiration, 7± 6 %
for BP, 3± 2 % for viral mortality, 7± 18 % for grazing,
and 3± 2 % for RDOC excretion). In contrast to bacterial
C stocks and rates that increased consistently throughout the
growth season, microzooplankton grazing rates showed sea-
sonally mixed responses for both HNA and LNA cases, with
the maximum decreases of 8± 32 % for HNA bacteria and
of 4± 32 % for LNA bacteria. Similarly, there were the max-
imum increases in NPP and POC sinking flux by 14± 15 %
and 3± 22 % and the maximum decreases in NPP and POC
sinking flux by 4± 11 % and 3± 13 %, respectively. SDOC
exhibited the maximum increase by 2± 1 % early in the sea-
son but became depleted strongly as the season progressed.
LDOC decreased consistently in response to the perturbed
conditions, with the maximum decrease by 10± 43 %.

4 Discussion

4.1 Model skill assessment

Despite the important role that heterotrophic marine bacteria
play in the ocean carbon cycle, the vast majority of mechanis-
tic biogeochemical models neither include them as a model
state variable nor explicitly simulate their physiological pro-
cesses. Most models parameterize the bacterial remineral-
ization of sinking organic matter with depth by fitting the
power law functions or other similarly derived empirical ap-
proaches (Buesseler et al., 2020; Cael and Bisson, 2018).
Cellular functions, taxa, and functional gene expression of
other prokaryotes, such as cyanobacteria (Hellweger, 2010;
Martín-Figueroa et al., 2000; Miller et al., 2013), or a di-

verse suite of microbial functional groups (Coles et al., 2017;
Dutkiewicz et al., 2020) have been modeled so far. However,
our study is the first to explicitly model heterotrophic bacte-
rial groups of different physiological traits and to link their
relationship with the key ecosystem functions.

Only a subset of the parameters was optimized in our
model to simulate microbial and ecological patterns for each
year, consistent with other data assimilation modeling stud-
ies (Friedrichs, 2001; Friedrichs et al., 2006, 2007; Luo et al.,
2010, 2012). In general, optimization of this class of marine
ecosystem model requires adjustment of a small number of
independent parameters to achieve well-posed model solu-
tions because of the highly cross-correlated nature of the pa-
rameters in the inherently nonlinear model equations (Fen-
nel et al., 2001; Harmon and Challenor, 1997; Matear, 1996;
Prunet et al., 1996a, b). In our study, most of the constrained
parameters were directly associated with the bacterial pro-
cesses, and there were overall better model–observation fits
for the bacterial data types compared to other data types.
These results provide confidence in the simulated bacterial
C stocks and rates.

Optimization also sheds light on major unknown parame-
ters in bacterial grazing processes involving gHNA and gLNA
(the half-saturation densities of HNA and LNA bacteria in
microzooplankton grazing, respectively). Microzooplankton
grazing of the given bacterial group is simulated using a
Holling type 2 density-dependent grazing function with a
preferential prey selection on diatoms, cryptophytes, and
the other bacterial group, in which a single microzooplank-
ton maximum grazing rate is implemented for both bac-
terial groups for model simplicity purposes (Tables S2–S6
in the Supplement; Kim et al., 2021). Thus, it is the half-
saturation density that determines the degree of preferential
grazing by microzooplankton on the given bacterial group,
the change in which may ultimately depend on the group-
specific C biomass. Due to the lack of a priori knowledge
on the relative magnitude of gHNA and gLNA, we assigned an
identical initial parameter value (Table 1) to let the data as-
similation scheme determine the values that best fit the over-
all observations. Compared to gLNA, smaller optimized gHNA
values (Tables S2–S6) reflect preferential grazing of HNA
cells by microzooplankton, consistent with previous specu-
lations that grazers selectively remove larger and more ac-
tive bacterial cells (del Giorgio et al., 1996; Gonzalez et al.,
1990; Sherr et al., 1992), so HNA bacteria (Garzio et al.,
2013). Together with the higher mean cell-specific grazing
rates for HNA bacteria (Sect. 3.2), our results suggest prefer-
ential grazing of HNA cells by microzooplankton.

The portability index in our study reflects the extent to
which a single model framework represented by its distinctly
optimized parameters in the same model equations captures
the observed variability in different years, given variable en-
vironmental forcing and the accompanying shift in plankton
ecosystem structure. The model parameter set optimized for
2012–13 was the most portable, while the model parameter
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set optimized for 2011–12 was the least portable (Table 3), in
which the most (n= 7 out of total 11) and the least numbers
(n= 5 out of total 11) of parameters were constrained, re-
spectively (Tables S3 and S4). The other two years exhibited
intermediate levels of model portability, with similar porta-
bility index values characterized by the same number of the
constrained parameters (n= 6 out of total 10 for 2010–11
and n= 6 out of total 12 for 2013–14; Tables S2 and S5).
In other words, it is the number of the constrained parame-
ters that matters the most in driving high model portability,
suggesting a connection between overfitting and the porta-
bility of the optimized parameter sets. Also, varying degrees
of portability across the 4 study years rendered it difficult to
choose one particular year’s model solution to perform the
climate change experiments (Sects. 3.4 and 4.4), consistent
with the characteristics of the original WAP-1D-VAR v1.0
model. Instead, better model skill was found by utilizing the
parameters from assimilating the climatological observations
(i.e., the climatological model).

4.2 Bacterial carbon stocks and flows

The fact that cell-specific BP, respiration, and SDOC uptake
rates of HNA bacteria were significantly higher than those of
LNA bacteria (Sect. 3.2) is mainly because of the way the
parameter optimization was conducted (Text S3). The higher
initial parameter values assigned for HNA bacterial growth,
RDOC excretion, mortality, and respiration rates (Table 1)
might drive not only their faster cell-specific growth rates
but also their higher DOC uptake rates to coexist with their
LNA counterparts when the loss rates were relatively large
for HNA bacteria. Though driven by the model assumptions,
the important aspect of these results lies in the fact that the
model can leverage such assumptions to examine the impli-
cations for the WAP food-web dynamics and biogeochem-
istry. As with phylogenetic groups (Fuchs et al., 2000; Teira
et al., 2009; Yokokawa et al., 2004), cell-specific bacterial
growth rates are expected to differ among distinct bacterial
physiological groups, but there are limited studies focus-
ing on group-specific cell activities (Gasol et al., 1999; del
Giorgio et al., 1996; Günter et al., 2008; Longnecker et al.,
2005; Moràn et al., 2011). Moràn et al. (2011) showed that
HNA bacteria greatly outgrew LNA bacteria in Waquoit Bay
estuary, with a cell-specific growth rate of up to 2.26 d−1

for HNA cells versus < 0.5 d−1 for LNA cells. Other stud-
ies have demonstrated that HNA bacteria might depend on
phytoplankton substrates more than LNA bacteria (Li et al.,
1995; Morán et al., 2007; Scharek and Latasa, 2007). The
hypothesis that WAP bacteria might rely on SDOC when
limited by LDOC availability has received indirect support
previously (Ducklow et al., 2011; Kim and Ducklow, 2016;
Luria et al., 2017), providing the basis for bacterial SDOC
utilization in our model formulation.

The model also captured the rest of the ecosystem vari-
ables fairly well. The modeled nutrient stocks were above

the detection limits, indicating no evidence of macronutri-
ent limitations at the study site. The WAP typically ex-
hibits strong interannual variability in physical forcing and
ecological and biogeochemical processes (Ducklow et al.,
2007), but the lack of strong interannual variability in the
modeled microzooplankton C biomass is due to assimilat-
ing their climatological observations. One exception is krill
C biomass that was modeled 3–8 times larger than the max-
imum value from the available field measurement in 2017–
2018 (0.57 mmolCm−3; not shown). It should be noted that
there were inconsistences in the nature of the assimilated
data types, including a single-year observation of microzoo-
plankton C biomass (versus each year-specific observation of
other variables) and two unassimilated data types (e.g., krill
C biomass). Also, there can be compensating errors in krill
grazing rate and metabolism values given that krill are mo-
bile laterally. These observational limitations make it chal-
lenging to construct a complete bacterial C budget without
significant uncertainties. A more complete assimilation of
zooplankton data should be the next effort to improve the
model fits and minimize uncertainties in the bacterial vari-
ables. Another source of uncertainty in our study is that the
model forcing does not seem to have sufficient information to
capture small-scale and high-frequency sources of variability
(e.g., local circulation and tidal flow near Palmer Station),
resulting in relatively low standard deviation values of the
modeled bacterial and ecosystem variables than those of the
observations (e.g., Figs. 3 and S2). By contrast, our model
adequately captures seasonal variations in modeled ecosys-
tem dynamics likely because such high frequency processes
do not strongly rectify in the seasonal cycles in the WAP
ecosystem.

4.3 Bacterial physiological and taxonomic association
with ecosystem functions

The positive associations of the observed fHNA with the
modeled NPP and POC sinking flux suggest a relatively
strong resource control on these actively growing HNA cells
compared to slow-growing LNA cells. This is consistent with
previous studies showing increased HNA growth rates in re-
sponse to enhanced phytoplankton-derived organic substrate
(Morán et al., 2011) and more abundant HNA cells in areas or
periods in which bacterial assemblages were predominantly
controlled by resources rather than grazing (Morán et al.,
2007). It has been hypothesized that due to minimal inputs
of terrestrial organic matter, bacteria must ultimately rely on
in situ NPP as an organic matter source in the WAP (Ducklow
et al., 2012a), supporting the importance of resource control
on these actively growing bacterial populations.

In our study, modes 3, 5, and 7, characterized by co-
piotrophic taxa with large genomes and more 16S rRNA
gene copies (Bowman et al., 2017), were associated with
high values of the modeled NPP, POC sinking flux, and
BCD, while modes 4 and 6, characterized by taxa asso-
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ciated with more oligotrophic conditions, were associated
with low values of the modeled NPP, POC sinking flux, and
BCD. Dokdonia sp. MED134, a common bacterial species
of the modes associated with high NPP, POC sinking flux,
and BCD, is a proteorhodopsin-containing marine flavobac-
terium that grows faster with light (Gómez-Consarnau et al.,
2007; Kimura et al., 2011) and in conditions under which re-
sources are abundant (Gómez-Consarnau et al., 2007). Given
the coastal WAP being primarily light-limited (Ducklow
et al., 2012b), the correspondence of D. Dokdonia MED134
to high values of the modeled NPP suggests light-enhanced
growth rates and cell yields from sufficient irradiance. By
contrast, mode 4, dominated by Planktomarina temperata
RCA23, is a slow-growing bacterium that specializes in us-
ing complex organic substrates (Giebel et al., 2013). These
attributes are consistent with the high occurrence of mode
4 during the periods of low values of the modeled NPP
and POC sinking flux. Candidatus Pelagibacter, abundant
in mode 6, is generally known as an oligotrophic special-
ist with a low DOC requirement but often appears during
Antarctic phytoplankton blooms (Delmont et al., 2014; Luria
et al., 2014), the characteristics of which support its occur-
rence during the periods of high values of the modeled NPP.
In summary, our study provides a novel numerical frame-
work combining the dynamics of different ecosystem func-
tions and microbial physiology and taxonomy. Certain modes
represent distinct WAP ecosystem states, and the mode–state
associations are reasonably explained from microbial per-
spectives. However, we did not investigate a seasonal suc-
cession and development in mode itself or the mode associa-
tion of the key WAP ecosystem states. Future investigations
should focus on including a few dominant or seasonally dis-
tinct modes in the data assimilation process in order to fully
resolve the seasonality of the mode–ecosystem state associa-
tions along the WAP.

4.4 Climate change experiments

The WAP has experienced significant atmospheric and ocean
warming and resulting changes in marine ecological pro-
cesses, and further climate change is projected for the next
several decades. The magnitudes of the perturbations used in
the climate change experiments (+0.5 ◦C and +1.0 ◦C com-
pared to observed temperature fields and −5 % and −10 %
compared to observed sea-ice fields) are within the range
of the long-term changes in temperature and sea-ice dura-
tion along the WAP continental shelf. The temperature of
the ACC water that has direct access to the WAP shelf has
shown a large increase after the 1980s, equivalent to a uni-
form warming of the upper 300 m layer by 0.7 ◦C (Ducklow
et al., 2012b). The trend in the annual ice season duration is
−1.5 dyr−1 over 1979–80 to 2017–18 field season (Henley
et al., 2019). The degree of melting (5 %–10 %) chosen for
the climate change experiments is translated into the short-

ening of the ice season duration by 1–3 d (not shown), falling
within the range of the trend in Henley et al. (2019).

Under combined warming and melting conditions, we ex-
pected that increased NPP and phytoplankton accumulations
early in the season would result in a significant build-up of
all DOC pools. However, this was the case only for SDOC,
and bacteria were soon LDOC-limited due to their prefer-
ential LDOC uptake for their primary C source. Nonethe-
less, the growth of bacteria and increased bacterial rates un-
der LDOC limitation were still possible because bacteria de-
pended on SDOC to meet the rest of their C demand, re-
sulting in the strong depletion of the SDOC pool later in the
season (Fig. 7b). In other words, bacteria were more likely
resource-limited, in particular by the labile DOC pool, and
SDOC subsequently played an increasingly important role.
This change was particularly important in HNA bacteria,
as shown by the relatively large increase in HNA bacterial
C demand via SDOC compared to LNA bacteria. Temper-
ature is often regarded as a major factor regulating physi-
ological rates by changing the rate of enzymatic reactions
(Kirchman et al., 2009; White et al., 1991). In our study, the
modeled C stock and rates of HNA bacteria increased un-
der the warming alone conditions (Fig. S11) but equally or
more than under the melting alone conditions (i.e., increased
photosynthesis and resource availability; Fig. S12). This sug-
gests that temperature per se is not necessarily a more im-
portant limiting factor for bacterial growth, at least for HNA
bacteria, than resource availability (Ducklow et al., 2012a),
and warming may rather enhance HNA bacterial utilization
of the already increased organic matter from the increased
phytoplankton productivity. Also, future climate may impact
the (re)distribution of bacterial taxonomic groups, with a po-
tential shift to more abundant HNA cells in the WAP bacterial
communities owing to their preferential SDOC utilization.

The major limitation of our climate change experiments is
the short duration of the simulations. An ideal set of climate
change simulations should be performed for longer-term pe-
riods, as well as continuously across many years. However,
our study could not accommodate these requirements be-
cause of the limited observations and existing data gaps in
each year. Despite these challenges, we were able to validate
the capacity of the climatological model to partly reproduce
the already observed, climate-driven trends of some ecosys-
tem variables along the WAP. Under each year’s forcing
fields, the climatological model parameter set reproduced the
interannual variability fairly well compared to the observed
interannual variability, except for only a few cases (e.g., over-
estimated BP and HNA biomass in 2011–12, underestimated
PP in 2012–13 and 2013–14; Table S7). The period of 2011–
12 was characterized by a negative temperature anomaly
(−0.13± 0.83 ◦C versus 0.03± 0.84 ◦C for the 4-year cli-
matology) and a positive sea-ice anomaly (24± 38 % versus
21± 29 % for the 4-year climatology), with lower tempera-
ture and higher sea-ice concentrations than the other 3 years
(all p< 0.05, two-sample t test). This coldest year had the

https://doi.org/10.5194/bg-19-117-2022 Biogeosciences, 19, 117–136, 2022



132 H. H. Kim et al.: Modeling polar marine ecosystem functions

lowest values of BP, HNA biomass, and PP observations (Ta-
ble S7), consistent with increases in the modeled BP, HNA
biomass, and PP under the combined warming and melting
conditions. A combination of low HNA biomass, low PP, and
low POC flux was also modeled in 2011–12, being largely
responsible for driving the positive association of the ob-
served fHNA with the modeled NPP and POC sinking across
years (Sect. 4.3). Sea ice did not retreat until mid-December
in 2011–12 (Fig. S1), and as a result of subsequently low
light levels PP was modeled to be low. The low modeled PP
drove both low HNA biomass and low particle sinking flux,
reinforcing the strong resource control on these fast-growing
bacterial populations and the conventional “high PP-high ex-
port” paradigm along the WAP.

Finally, our climate change simulations share similar re-
sults with those performed using the WAP-1D-VAR v1.0
model with one bacterial compartment (Kim et al., 2021). In
the original WAP-1D-VAR v1.0 model, combined warming
and reduced sea-ice conditions also increased NPP, net com-
munity production, POC sinking flux, bulk bacterial produc-
tivity and biomass, and SDOC, in contrast to LDOC that was
strongly limited early in the season. This potential shift to a
more productive and efficient export system state is partially
in agreement with the speculations suggested by previous
studies that warming may induce more recycling-favorable
and microbial-dominated food webs (Moline et al., 2004;
Sailley et al., 2013). Despite the increased productivity and
plankton accumulations, LDOC may become strongly de-
pleted, and, therefore, bacteria may need to depend more on
SDOC to meet a significant part of their C demand (i.e., an
increasingly important role of SDOC for bulk bacterial com-
munities). Most of these results convey the same story as our
experiments, thereby adding confidence to the results of the
climate change experiments in our study. Yet, it should be
noted that the increased complexity of bacterial dynamics in
our study’s bacteria-oriented model adds two important con-
tributions to the original WAP ecosystem model including
(1) the dominance of HNA bacteria over LNA bacteria in
the warming WAP waters and (2) bacterial taxonomic (i.e.,
mode) and physiological (i.e., fHNA) traits being a signifi-
cant indicator of the key WAP ecosystem functions.

5 Conclusions

Heterotrophic microbial diversity has seldom been consid-
ered in detail in the formulation and analysis of marine
pelagic ecosystem models, reflecting in part the lack of suit-
able field data for model evaluation. Utilizing genomic prod-
ucts to prescribe the taxonomic aspects of bacterial dynam-
ics, our study demonstrates the association of bacterial abun-
dance with different physiological states, bacterial commu-
nity structure, and key ecosystem functions. The modeling
approach in our study enables the observations in differ-
ent bacterial populations to constrain the group-specific pro-

cesses and model parameters that have been poorly under-
stood. These include the partitioning of BP specific to HNA
and LNA groups, the partitioning of the bacterial uptake of
DOC pools with different lability, and the half-saturation
density of each bacterial group in microzooplankton graz-
ing. The model also serves as an effective numerical plat-
form to explore the WAP microbial response to changing cli-
mate conditions, in which ocean warming and melting sea
ice would induce a potential shift to the dominance of HNA
bacteria in more productive waters due to their increasing de-
pendence on SDOC.
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