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Abstract. Elevated organic matter (OM) concentrations are
found in hadal surface sediments relative to the surround-
ing abyssal seabed. However, the origin of this biological
material remains elusive. Here, we report on the composi-
tion and distribution of cellular membrane intact polar lipids
(IPLs) extracted from surface sediments around the deepest
points of the Atacama Trench and adjacent bathyal margin
to assess and constrain the sources of labile OM in the hadal
seabed. Multiscale bootstrap resampling of IPLs’ structural
diversity and abundance indicates distinct lipid signatures in
the sediments of the Atacama Trench that are more closely
related to those found in bathyal sediments than to those pre-
viously reported for the upper ocean water column in the re-
gion. Whereas the overall number of unique IPL structures
in hadal sediments contributes a small fraction of the total
IPL pool, we also report a high contribution of phospholipids
with mono- and di-unsaturated fatty acids that are not asso-
ciated with photoautotrophic sources and that resemble traits
of physiological adaptation to high pressure and low temper-
ature. Our results indicate that IPLs in hadal sediments of
the Atacama Trench predominantly derive from in situ mi-
crobial production and biomass, whereas the export of the
most labile lipid component of the OM pool from the eu-
photic zone and the overlying oxygen minimum zone is ne-

glectable. While other OM sources such as the downslope
and/or lateral transport of labile OM cannot be ruled out and
remain to be studied, they are likely less important in view of
the lability of ester-bond IPLs. Our results contribute to the
understanding of the mechanisms that control the delivery of
labile OM to this extreme deep-sea ecosystem. Furthermore,
they provide insights into some potential physiological adap-
tation of the in situ microbial community to high pressure
and low temperature through lipid remodeling.

1 Introduction

The deep ocean has been classically considered a vast “bio-
logical desert” (Danovaro et al., 2003) due to the attenuation
of organic matter (OM) fluxes with increasing depth (Wake-
ham et al., 1984; Martin et al., 1987; Hedges et al., 2001;
Rex et al., 2006). However, hadal trenches (∼ 6000–11 000 m
below sea level) contradict this paradigm (Danovaro et al.,
2003; Glud et al., 2013; Leduc et al., 2016; Wenzhöfer et
al., 2016; Luo et al., 2017), as they act as depocenters of
OM (Jahnke and Jahnke, 2000) and hotspots for microbial
activity (Glud et al., 2013; Wenzhöfer et al., 2016; Liu et
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al., 2019). Indeed, OM availability is considered the major
factor controlling the abundance, biomass, and diversity of
life in the deep ocean (Danovaro et al., 2003; Ichino et al.,
2015), whereas hydrostatic pressure appears to be an impor-
tant and additional factor controlling biological activity in
hadal trench systems (Jamieson et al., 2010; Tamburini et
al., 2013). However, our understanding of the composition,
sources, and lability of OM in marine trenches remains lim-
ited. According to Xu et al. (2018), the main sources of OM
to the hadal zone include (1) the vertical sinking of particu-
late OM (POM), (2) the carrion falls of dead bodies, (3) in-
puts of terrestrial OM, (4) downslope transport of OM from
continental slopes, and (5) in situ chemosynthetic produc-
tion associated with cold seeps or hydrothermal vents. Sev-
eral studies have highlighted the importance of POM sinking
mainly from the euphotic zone (Stockton and DeLaca, 1982;
Angel, 1984; Gooday et al., 2010). In fact, POM fluxes mea-
sured at 4000 m in the North Pacific Subtropical Gyre re-
veal that a seasonal export pulse can exceed the mean an-
nual flux by ∼ 150 % (Poff et al., 2021). However, it is un-
known whether such pulses reach the hadal sediments (6000–
11 000 m). Downslope transport, on the other hand, can be
facilitated by trench topography and gravity (Jahnke et al.,
1990; Fischer et al., 2009; Inthorn et al., 2006; Ichino et al.,
2015) and/or by earthquakes (Glud et al., 2013; Kioka et al.,
2019), as recently reported in the Japan Trench (Schwester-
mann et al., 2021). Independent of the main sources of OM,
which are spatially and temporally variable, the channeling
of allochthonous OM to the hadal zone should be facili-
tated by the characteristic V-shape cross-section of trenches,
unique tectonic position in the ocean, and the physiography
of the canyons that connect to coast systems (Itou et al., 2000,
2011; Bao et al., 2018). Additionally, autochthonous OM
sources include in situ microbial biomass production (Smith,
2012; Nunoura et al., 2016; Ta et al., 2019; Hand et al., 2020),
although their overall contribution as a secondary input to
carbon budgets and energy flow in these systems remains
poorly constrained (Grabowski et al., 2019). The spatial vari-
ations in community structure seen in benthic prokaryotic
populations in hadal regions such as the Mariana, Japan, and
Izu-Ogasawara trenches have been attributed to the variabil-
ity of biogeochemical conditions, mainly nitrate and oxygen
availability (Hiraoka et al., 2020), with benthic oxygen con-
sumption exhibiting heterogeneity (Glud et al., 2021). Recent
metagenomic data have revealed the presence of abundant
heterotrophic microorganisms in sediments of the Challenger
Deep (Nunoura et al., 2018), which are likely fueled by the
endogenous recycling of available OM (Nunoura et al., 2015;
Tarn et al., 2016). Furthermore, the abundance of prokary-
otes in hadal depths can be influenced by dynamic deposi-
tional conditions (Schauberger et al., 2021), which in turn
may be influenced by the intensity of propagating internal
tides (Turnewitsch et al., 2014). All these factors likely alter
the deposition, distribution, and composition of OM present
in trench sediments.

An alternative approach to study microbial processes and
the contribution of autochthonous OM is the use of cell mem-
brane intact polar lipids (IPLs), which although less spe-
cific than genomic markers, allow for more quantitative esti-
mates of microbial biomass in nature (e.g., Lipp et al., 2008;
Schubotz et al., 2009; Cantarero et al., 2020). IPLs are com-
posed of a polar head group typically attached to a glycerol
backbone from which aliphatic chains are attached via es-
ter and/or ether bonds (Sturt et al., 2004). Their structural
diversity is given by the modifications found in the differ-
ent components of their chemical structure (e.g., polar head
groups can be comprised of phosphorous, nitrogen, sulfur,
sugars, and amino acids), whereas aliphatic chains (alkyl
or isoprenoidal) can vary in their length (number of car-
bon atoms) and their degree of unsaturation, methylation, hy-
droxylation, and cyclization (Van Mooy and Fredricks, 2010;
Brandsma et al., 2012; Schubotz et al., 2013). In bacteria and
eukaryotes, alkyl chains are most commonly linked via an es-
ter bond to the sn-glycerol-3-phosphate backbone (Koga and
Morii, 2007), although some bacteria are known to produce
di- and tetraether lipids (Weijers et al., 2007). The variabil-
ity of membrane chemical structures underlies the adaptabil-
ity of microbial lifestyles to changing environmental condi-
tions such as nutrients, temperature, oxygen, pH, and pres-
sure (DeLong and Yayanos, 1985; Somero, 1992; Van Mooy
et al., 2009; Carini et al., 2015; Sebastián et al., 2016; Sili-
akus et al., 2017; Boyer et al., 2020). Furthermore, since eu-
karyotic and bacterial ester-bond IPLs are more labile than
ether-bond counterparts (Logemann et al., 2011), they are
suitable biomarkers to evaluate sources of labile OM in ma-
rine environments.

IPLs have been previously used as microbial markers in
diverse marine settings, such as along strong redox gradi-
ents in the Black Sea (Schubotz et al., 2009) and the oxy-
gen minimum zones (OMZs) of the eastern tropical Pacific
(Schubotz et al., 2018; Cantarero et al., 2020) and the Ara-
bian Sea (Pitcher et al., 2011), as well as in surface open-
ocean waters of the eastern South Pacific (Van Mooy and
Fredricks, 2010), the northwestern Atlantic (Popendorf et al.,
2011b), and the Mediterranean Sea (Popendorf et al., 2011a),
to name a few. Their utility as markers of microbial diver-
sity and processes has also been tested in marine sediments
(Liu et al., 2011, 2012; Sturt et al., 2004), such as along the
Peru margin, equatorial Pacific, Hydrate Ridge, and Juan de
Fuca Ridge (Lipp and Hinrichs, 2009a), and in subsurface
sediment layers from the Peru margin (Biddle et al., 2006).
However, to the best of our knowledge, no IPL studies have
been reported for sediments of hadal trenches.

In this study, we investigate the chemical diversity and
abundance of microbial IPLs as markers of one the most
labile molecular fractions of OM in sediments of the deep-
est points of the Atacama Trench and compare them to IPL
stocks in bathyal surface sediments (∼ 500–1200 m) and the
overlying 700 m of the water column (Cantarero et al., 2020).
More specifically, we evaluate possible IPL provenance (in
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situ vs. allochthonous production) and the presence of unique
IPL signatures of the in situ microbial community as well as
evidence for molecular adaptations to the extreme conditions
of the hadal region.

2 Material and methods

2.1 Study areas and sampling

The Atacama Trench is located in the eastern tropical South
Pacific (ETSP) along the Peru–Chile margin, and it under-
lies the eutrophic and highly productive Humboldt Current
System (Angel, 1982; Ahumada, 1989), which includes the
fourth largest (by volume) oxygen minimum zone (OMZ) in
the world (Schneider et al., 2006). In this area, while there
is minimal river runoff (Houston, 2006), winds can trans-
fer dust from the adjacent continental desert (Angel, 1982).
With an extension of ∼ 5900 km, the Atacama Trench is the
world’s largest trench (Sabbatini et al., 2002), whereas it is
geographically isolated from other trenches in the Pacific
Ocean.

In this study, we investigated the diversity and abundance
of bacterial and eukaryotic IPLs in a total of nine hadal sur-
face (0–1 cm) and subsurface (1–2 and 2–3 cm) sediments
(three sites between 7734 and 8063 m water depth) collected
during the HADES-SO261 cruise (March to April 2018)
aboard the RV Sonne (Wenzhöfer, 2019) and seven bathyal
surface sediments (seven sites; 529–1200 m water depth)
collected during the ChiMeBo-SO211 cruise (2–29 Novem-
ber 2010) aboard the RV Sonne (Matys et al., 2017) (Table 1;
Fig. 1). We compare our results against IPL results from
the overlying water column (0–700 m) recently reported in
Cantarero et al. (2020).

Sediment samples were collected using a multi-corer
(MUC) equipped with twelve 60 cm long acrylic tubes (6–
10 cm diameter for bathyal sediments and 9.5 cm diame-
ter for hadal sediments). During the HADES expedition, an
autonomous lander equipped with a Sea-Bird SBE-19 plus
CTD and two Niskin bottles (30 L) was used to obtain hy-
drographic data down to ∼ 7850 m. Hadal sediments from
the HADES-SO261 cruise were stored at 4 ◦C until they were
extruded and subsampled aboard at 1 cm resolution and then
kept frozen at−20 ◦C until their processing in the laboratory.
Further information about sample collection of bathyal and
hadal sediments during the ChiMeBo-SO211 and HADES-
SO261 cruises can be found in Matys et al. (2017) and Wen-
zhöfer et al. (2019), respectively.

We compare our IPL results from surface sediment in the
hadal and bathyal regions against samples from the overlying
water column from the LowpHOX-2 cruise recently reported
by Cantarero et al. (2020). This includes size-fractionated
suspended OM (0.3–2.7 and 2.7–53 µm) at two stations and
from six water depths that are representative of the dominant
biogeochemical zonation associated with the OMZ of this Ta
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Figure 1. Three-dimensional map of the Atacama Trench showing the sampling locations of this study. The black squares indicate the hadal
sediment sampling stations, the black circles indicate the bathyal sediment sampling stations from Matys et al. (2017), and the black triangles
indicate water-column sampling stations from Cantarero et al. (2020).

region: chlorophyll maximum (∼ 10 m), upper chemocline
(∼ 25 m), lower chemocline (∼ 45 m), upper OMZ (∼ 60 m),
core OMZ (∼ 250 m), and mesopelagic zone (∼ 750 m) (see
Table 1 and Cantarero et al., 2020, for further details).

2.2 Analytical methods

2.2.1 Lipid extraction

All samples were processed, extracted, and analyzed in the
Organic Geochemistry Laboratory at the University of Col-
orado Boulder. Sediment samples were freeze-dried before
extraction. Approximately 1–2 g of dry sediment was placed
in a combusted glass centrifuge tube and extracted using a
modified version (Wörmer et al., 2013) of the Bligh and
Dyer extraction method (Bligh and Dyer, 1959) as detailed in
Cantarero et al. (2020). Briefly, before extraction, we added
1 µg of C16 PAF (C26H54NO7P) to each sample as an in-
ternal standard. Samples were sequentially extracted using
dichloromethane /MeOH / phosphate buffer (1 : 2 : 0.8 v :

v : v; 2×), dichloromethane /MeOH / trichloroacetic buffer
(1 : 2 : 0.8 v : v : v; 2×), and dichloromethane /MeOH (1 :
5 v : v; 1×). After each addition, samples were vortexed
for 30 s, sonicated for 10 min, and then centrifuged for
5 min at 2000 rpm. Each extraction was then transferred
to a separatory funnel where a total lipid extract (TLE)
was combined and then concentrated under a gentle N2
stream. Before analysis, the TLEs were resuspended in
dichloromethane /methanol (9 : 1) v : v and filtered through
a 0.45 µm polytetrafluoroethylene (PTFE) syringe filter. The
processing and extraction of bathyal sediments from the
ChiMeBo-SO211 cruise and water-column samples from the
LowpHOX-2 cruise has been reported by Matys et al. (2017)

and Cantarero et al. (2020), respectively. TLEs were trans-
ferred into 2 mL vials with 200 µL inserts and dissolved in
100 µL of dichloromethane /MeOH (9 : 1, v : v).

2.2.2 IPL analysis

IPL were analyzed according to Wörmer et al. (2013) and
as described in Cantarero et al. (2020) using a Thermo
Scientific UltiMate 3000 high-performance liquid chro-
matograph (HPLC) coupled to a Q Exactive Focus Orbi-
trap quadrupole high-resolution mass spectrometer (HPLC-
HRMS) via electrospray ionization (ESI). The HPLC pro-
gram comprised a flow rate of 0.4 mL min−1 using a
mixture of two mobile phases: mixture A consisted of
acetonitrile / dichloromethane (75 : 25, v : v) with 0.01 %
formic acid and 0.01 % NH4OH; mixture B consisted of
methanol /water (50 : 50, v : v) with 0.4 % formic acid
and 0.4 % NH4OH. We used a linear gradient as follows:
1 % mixture B (0–2.5 min), 5 % (4 min), 25 % mixture B
(22.5 min), 40 % mixture B (26.5–27.5 min), and the HPLC
column was kept at 40 ◦C. Samples were injected (10 µL) and
dissolved in dichloromethane /methanol (9 : 1, v : v). IPLs
were separated using a Waters Acquity BEH Amide col-
umn (2.1× 150 mm; 1.7 µm particle size) that enables class-
specific separation based on their hydrophilic head group
(Wörmer et al., 2013).

ESI settings comprised sheath gas (N2) pressure 35 (arbi-
trary units), auxiliary gas (N2) pressure 13 (arbitrary units),
spray voltage 3.5 kV (positive ion ESI), capillary tempera-
ture 265 ◦C, and S-lens RF level 55 (arbitrary units). The
instrument was calibrated for mass resolution and accuracy
using the Thermo Scientific Pierce LTQ Velos ESI Positive
Ion Calibration Solution (containing a mixture of caffeine,

Biogeosciences, 19, 1395–1420, 2022 https://doi.org/10.5194/bg-19-1395-2022



E. Flores et al.: Bacterial and eukaryotic intact polar lipids point 1399

MRFA, Ultramark 1621, and N-butylamine in an acetoni-
trile /methanol / acetic acid solution).

IPLs were identified on positive ionization mode, on both
full scan and data-dependent MS2, based on their molec-
ular weights as either protonated (M+H)+ or ammonium
(M+NH4)

+ adducts compounds, fragmentation patterns,
and retention times, and they were compared against relevant
literature (Sturt et al., 2004; Schubotz et al., 2009; Wakeham
et al., 2012) and the internal database of the Organic Geo-
chemistry Laboratory at the University of Colorado Boulder.

The peak areas of individual IPLs were integrated using
the Thermo Fisher Scientific TraceFinder software using ex-
tracted ion chromatograms of their characteristic molecular
ions. IPL abundances were determined with a combination
of an internal standard (C16PAF, Avanti Polar Lipids) and an
external calibration to a linear regression between peak areas
and known concentrations of an IPL cocktail comprised of
17 different IPL classes across a five-point dilution series
(0.001–2.5 ng µL) (see Cantarero et al., 2020). Deuterated
standards (Avanti Polar Lipids: d7-PC, d7-PG, d7-PE, and
DGTS-d9) were used to correct for potential matrix effects
on ionization efficiency. Despite the limited number of
available deuterated standards, on average, we observed
that the matrix effect accounts for a loss of ∼ 7± 0.6 % in
ionization efficiency. Therefore, it is reasonable to assume
a similar loss for other IPL classes, although this remains
to be tested in future studies. We highlight the importance
of using as many IPLs classes as possible to account for
both differences in ionization efficiency and matrix effect
when performing IPL quantification in environmental
samples. The relative response factors followed the order
MGDG>DGTS>DGTA>PDME>PME>PG>PC>
PE>SQDG>DGCC>DGDG. Lipid classes were
grouped into phospholipids (PG, phosphatidylglycerol;
PE, phosphatidylethanolamine; PC, phosphatidylcholine;
and PME/PDME, phosphatidyl(di)methylethanolamine),
glycolipids (MGDG, monoglycosyldiacylglycerol; DGDG,
diglycosyldiacylglycerol; and SQDG, sulfoquinovosyl-
diacylglycerol), betaine lipids (DGTA, diacylglyceryl
hydroxymethyl-trimethyl-β-alanine; DGTS, diacylglyceryl
trimethylhomoserine; and DGCC, diacylglycerylcarboxy-
N-hydroxymethyl-choline), and other lipids (glycosidic
ceramides, Gly-Cer; PI, phosphatidylinositol; and OL,
ornithine lipids). In addition, we use DAG to designate a
diacylglycerol and AEG to designate an acyletherglycerol,
and we describe short and long chains to refer to combined
alkyl chains of C28−36 and C36−44, respectively (Rêzanka
and Sigler, 2009; Schubotz et al., 2009; Brandsma., et al.,
2012).

2.3 Statistical analyses

We used the Bray–Curtis similarity coefficient (Mirzaei et
al., 2008) to produce hierarchical clustering of the abun-
dance of classes and molecules of IPLs; two types of p val-

ues were available: approximately unbiased (AU) p value
and bootstrap probability (BP) value with the number of
bootstrap replications of 10 000 (Suzuki and Shimodaira,
2006). We performed non-metric multidimensional scaling
(NMDS) (Warton et al., 2012) to examine the dissimilarity
between the IPLs in each sample. The calculated distances to
group centroids were based on the Bray–Curtis dissimilarity
from the IPL abundance matrix, and the significance of the
associations was determined by 999 random permutations.
Significance tests of the multivariate dissimilarity between
groups were made using analysis of similarity (ANOSIM),
where complete separation and no separation among groups
is suggested by R = 1 and R = 0, respectively (Clarke and
Gorley, 2015). Statistical differences in the numbers of car-
bon atoms and double bonds were identified by ANOVA and
Tukey’s HSD (honestly significant difference) post hoc test.
We used similarity of percentage (SIMPER) analysis to iden-
tify the percentage contributions of IPLs which accounted for
> 90 % of the similarity within each cluster. The multivariate
statistical analyses as well as other statistical analyses were
calculated using the vegan package (Oksanen et al., 2013)
of open-source software R version 3.6.2 within the ggplots
package (Warnes et al., 2015).

3 Results

3.1 Hydrographic conditions

A physical–chemical characterization of the water column
during the ChiMeBo-SO211, LowpHOX-2, and HADES-
SO261 cruises has been reported in Matys et al. (2017),
Cantarero et al. (2020) and Vargas et al. (2021), and
Fernández-Urruzola et al. (2021), respectively. Briefly,
the potential-temperature–salinity–dissolved oxygen (θ -s-
O2) diagrams revealed an oxygenated and well-mixed wa-
ter mass occupying the deeper parts of the Atacama Trench
(Fig. S1). However, the upper 1000 m shows variability in
temperature (12–23 ◦C), salinity (34.4–34.8 psu), and oxy-
gen (0.5–267 µM). More stable physical–chemical condi-
tions are apparent in the mesopelagic and bathypelagic zone
of the Atacama Trench between 1000 and 4000 m (tempera-
ture ∼ 2.3 ◦C, salinity ∼ 34.6 psu, oxygen ∼ 120.6 µM). Be-
low 4000 m, average conditions were characterized by a po-
tential temperature∼ 1.8 ◦C, salinity∼ 34.7 psu, and oxygen
∼ 143 µM (Fig. S1).

3.2 IPLs in surface sediments of the Atacama trench

3.2.1 Distribution of IPL classes by polar head groups

The 16 sediment samples from bathyal and hadal regions
statistically grouped into four clusters based on their dom-
inant polar head group classes (Fig. 2, chemical structures in
Fig. S2). Clusters 1 and 2 had approximately unbiased (AU)
p values of 91 % and 88 %, respectively. Cluster 3 had the
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highest AU p value of ≥ 97 %, whereas cluster 4 had the
lowest AU p value of 61 %. The cluster analysis revealed
a degree of spatial heterogeneity between bathyal and hadal
depths and between the top three centimeters of hadal sed-
iments, which results in the lack of a clear separation be-
tween hadal and bathyal environments. In addition, the 0–
1 cm hadal sediments at the A4 station were un-clustered,
consistent with a distinct distribution pattern of IPL classes.
Cluster 1, composed of only hadal samples from three differ-
ent stations and depths, included phospholipids as the most
abundant IPL class (Fig. 2). Clusters 2, 3, and 4, composed of
mixed bathyal and hadal samples, were mostly differentiated
by changes in the relative abundances of non-phosphorous
IPLs including betaine classes. The un-clustered sample was
characterized by the lowest relative abundance of phospho-
lipids and the highest relative abundance of betaine lipids
(especially DGCC).

3.2.2 Distribution of individual IPLs

An overview of the most important IPLs contributing to dis-
similarity between samples was obtained through a SIM-
PER analysis based on the Bray–Curtis coefficient within
each cluster (Fig. 3). Samples in cluster 1 were on average
59.5 % similar, with 14 individual IPLs contributing 50.6 %
of the total similarity. This cluster exhibited a high con-
tribution of PE-DAG (32 : 1, 33 : 1, and 34 : 2), PG-DAG
(36 : 2), and DGCC (26 : 0, 27 : 0, and 28 : 0) molecules (Ta-
ble 2). Additionally, this cluster exhibited a large diversity
of PC molecules, although with a low relative abundance
(Fig. 3). Samples in cluster 2, on the other hand, which in-
cludes mainly bathyal stations, were on average 58.8 % sim-
ilar and exhibited a high contribution of PC-DAG (35 : 0,
32 : 1, 36 : 2, 33 : 1, and 35 : 1) (Table 2). While this clus-
ter shows a wide range of molecules, including PG, PE, and
MGDG, their relative contributions are low (Fig. 3). Sam-
ples in cluster 3 were on average 57.3 % similar and included
three bathyal and one hadal stations. This cluster exhibited a
high contribution of DGCC (42 : 6) and PC-DAG (35 : 0, 33 :
2, 30 : 1, and 29 : 2) molecules (Table 2). Samples in cluster 4
were on average 63.6 % similar and exhibited a high contri-
bution of PC-DAG (30 : 2, 33 : 2), DGCC (42 : 6), MGDG
(28 : 0), and PE-DAG (33 : 2 and 31 : 2) molecules (Table 2).
The un-cluster sample (hadal sediment of 0–1 cm at A4 sta-
tion) is mainly composed by the DGCC 42 : 6 (Fig. 3). In
general, phospholipids showed a wide distribution and were
found across all sediment samples. The total dissimilarity
between cluster 1 and 2 was 59.17 %, with PC-DAG-35 : 0,
PE-DAG-32 : 1, PI-AR, PG-DAG-36 : 2, DGCC 27 : 0, PC-
DAG-36 : 2, PC-DAG-34 : 1, PC-DAG-32 : 1, DGCC 26 : 0,
and PC-DAG-35 : 1 contributing 32.4 % of it (Table 2). The
total dissimilarity between cluster 1 and 3 was 60.7 %, with
DGCC 42 : 6, PC-DAG-35 : 0, PI-AR, PE 32 : 1, PG-DAG-
36 : 2, DGCC 27 : 0 and 26 : 0, and PC-DAG-33 : 2 con-
tributing 38.1 % of it (Table 2). The total dissimilarity be-

tween cluster 1 and 4 was 62.5 %, with DGCC 42 : 6, PC-
DAG-30 : 2, PE 32 : 1, PC-DAG-35 : 0, PG-DAG-36 : 2, PC-
DAG-33 : 2, and DGCC 27 : 0 contributing 37.62 % of it (Ta-
ble 2).

3.3 Distribution of alkyl chains based on length and
degree of unsaturation

The difference in the total number of acyl carbon atoms in
both alkyl chains, rather than in individual fatty acids, and
in the number of acyl double bonds within each cluster is
shown in Fig. 4. Statistical differences of IPLs classes within
each cluster were obtained through a Tukey HSD post hoc
test at a significant level of p<0.05 (Fig. 4a, b). The average
number of carbon atoms in the diglyceride moieties of IPLs
in the cluster 1 presented that DGCC, MGDG, others, PC,
and PG were all distinct from one another (n= 283; P<0.05;
Fig. 4a). PG and others were characterized by relatively long
alkyl chains (35–36 C atoms, respectively) and DGCC for
shorter alkyl chains (32 C atoms). In general, cluster 1 ex-
hibited a wide range of chain lengths among DAGs (28–36
C atoms). Cluster 2 showed a narrower range than cluster 1
(30–36 C atoms). This cluster also displayed no statistical
difference (p>0.05) among IPL classes (Fig. 4a), follow-
ing pairwise comparisons with Tukey’s HSD post hoc test,
despite the wide range of DGCC structures. For cluster 3,
while it exhibited low variability in betaine lipids, it also re-
vealed the highest number of carbon atoms in DGCCs (42).
On the contrary, cluster 4 presented high viability in DGCCs,
which did not exceed 42 carbon atoms. Within the phospho-
lipid class, PG showed the highest number of carbon atoms
in all clusters; the mean we observed was 34 carbon atoms
and a range of 32–37 (Fig. 4a). The un-cluster sample (hadal
sediment of 0–1 cm at A4 station) was characterized by rel-
atively longer alkyl chains (up to 42 C atoms) than cluster 1
(Fig. 4a).

Overall, the degree of unsaturation (i.e., number of dou-
ble bounds) within clusters was variable (Fig. 4b). Clus-
ter 1 predominantly consisted of fully saturated and mono-
unsaturated IPLs, except for PG that showed 2 double bonds
on average. In cluster 2, the fatty acids of DGCCs were dis-
tinctly variable, although they exhibited 2 unsaturations on
average. A similar pattern was observed in DGDGs with
an average of 2.5 unsaturations (Fig. 4b). DGTS, MGDG,
PC, and SQDG showed zero to 1 unsaturation, whereas
DGTA, PE, and PG exhibited between 1 and 2.5 unsatura-
tions. Cluster 3 showed more than 5 unsaturations on aver-
age for DGCC, unlike other IPL classes that did not exceed 2
unsaturations. In cluster 4, PG and DGCC presented ∼ 3 and
∼ 5 unsaturations on average. Also, on average, DGDG and
SQDG exhibited 2 unsaturations, MGDG and others were
mono-unsaturated, and DGTS was saturated (Fig. 4b). Addi-
tionally, the ratio of total unsaturated fatty acids to total satu-
rated fatty acids in IPLs increased from (on average)∼ 0.9 in
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Table 2. Similarity percentage (SIMPER) analysis. The average abundance and contribution of IPLs that explain the main differences among
the sediment samples is based on the hierarchical clusters shown in Fig. 2.

Group cluster 1
Cluster 1: average similarity= 59.53

IPLs Average Average Similarity/ Contribution Cumulative
cluster 1 similarity SD (%) (%)

PI-AR 0.06 4.76 2.46 7.99 7.99
PE-DAG-32 : 1 0.06 4.37 1.45 7.34 15.33
PG-DAG-36 : 2 0.05 3.79 2 6.36 21.69
PE-DAG-33 : 1 0.03 2.06 33.49 3.45 25.14
PE-DAG-34 : 2 0.03 1.89 1.74 3.17 28.31
DGCC-26 : 0 0.04 1.84 2.04 3.09 31.4
PC-DAG-30 : 1 0.03 1.76 2.21 2.96 34.36
DGCC-27 : 0 0.04 1.74 1.8 2.93 37.3
PE-DAG-30 : 0 0.02 1.7 13.1 2.86 40.15
PE-DAG-32 : 2 0.02 1.39 1.07 2.34 42.49
PC-DAG-35 : 0 0.02 1.31 1.52 2.2 44.69
DGCC-28 : 0 0.02 1.22 1.96 2.05 46.74
PC-DAG-26 : 0 0.02 1.18 1.46 1.99 48.73
PC-DAG-28 : 0 0.02 1.14 1.59 1.91 50.63

Group cluster 2
Cluster 2: average similarity= 58.79

IPLs Average Average Similarity/ Contribution Cumulative
cluster 2 similarity SD (%) (%)

PC-DAG-35 : 0 0.08 5.63 7.54 9.58 9.58
PC-DAG-32 : 1 0.03 3.12 31.24 5.3 14.88
PC-DAG-36 : 2 0.05 2.74 1.13 4.67 19.55
PC-DAG-33 : 1 0.02 2.04 10.17 3.46 23.01
PC-DAG-35 : 1 0.03 1.63 4.48 2.77 25.78
PI-AR 0.02 1.61 3.9 2.74 28.53
MGDG-32 : 1 0.02 1.44 1.35 2.45 30.98
PE-DAG-32 : 1 0.02 1.38 5.03 2.35 33.33
PE-DAG-34 : 2 0.02 1.38 2.75 2.35 35.68
PE-DAG-32 : 2 0.02 1.22 2.79 2.08 37.76
PC-DAG-32 : 0 0.01 1.14 5.69 1.94 39.69
PG-DAG-36 : 2 0.02 1.1 3.23 1.87 41.57
PG-DAG-35 : 2 0.02 1.09 1.23 1.86 43.43
PC-DAG-34 : 1 0.04 1.06 0.41 1.8 45.23
PC-DAG-30 : 1 0.01 1.05 7.23 1.79 47.02
PC-DAG-32 : 2 0.01 0.95 11.7 1.61 48.64
PC-DAG-29 : 2 0.01 0.95 2.69 1.61 50.25

Group cluster 3
Cluster 3: average similarity= 57.31

IPLs Average Average Similarity/ Contribution Cumulative
cluster 3 similarity SD (%) (%)

DGCC-42 : 6 0.16 12.84 6.72 22.4 22.4
PC-DAG-35 : 0 0.08 4.78 1.14 8.33 30.74
PC-DAG-33 : 2 0.03 2.07 1.19 3.61 34.35
PC-DAG-30 : 1 0.03 1.96 1.82 3.42 37.77
PC-DAG-29 : 2 0.03 1.79 1.2 3.12 40.89
PI-AR 0.05 1.69 1.09 2.95 43.84
MGDG-32 : 1 0.01 1.22 7.66 2.14 45.98
PE-DAG-32 : 1 0.01 1.18 10.45 2.05 48.03
PC-DAG-30 : 0 0.02 1.13 1.22 1.97 50
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Table 2. Continued.

Group cluster 1
Cluster 1: average similarity= 59.53

IPLs Average Average Similarity/ Contribution Cumulative
cluster 1 similarity SD (%) (%)

Group cluster 4
Cluster 4: average similarity= 63.64

IPLs Average Average Similarity/ Contribution Cumulative
cluster 2 similarity SD (%) (%)

PC-DAG-30 : 2 0.12 9.04 14.21 14.21
DGCC-42 : 6 0.14 8.91 13.99 28.2
PI-AR 0.05 4.14 6.5 34.71
PC-DAG-33 : 2 0.04 3.71 5.83 40.54
MGDG-28 : 0 0.04 3.44 5.41 45.95
PE-DAG-33 : 2 0.03 2.52 3.97 49.92
PE-DAG-31 : 2 0.03 2.14 3.37 53.28

Groups cluster 1 and cluster 2
Average dissimilarity= 59.17

IPLs Average Average Average Dissimilarity/ Contribution Cumulative
cluster 1 cluster 2 dissimilarity SD (%) (%)

PC-DAG-35 : 0 0.02 0.08 3.18 1.34 5.37 5.37
PE-DAG-32 : 1 0.06 0.02 2.35 1.73 3.98 9.35
PI-AR 0.06 0.02 2.21 1.74 3.73 13.08
PG-DAG-36 : 2 0.05 0.02 1.98 1.64 3.35 16.43
DGCC-27 : 0 0.04 0 1.93 1 3.26 19.69
PC-DAG-36 : 2 0.01 0.05 1.79 1.57 3.02 22.71
PC-DAG-34 : 1 0 0.04 1.79 1.03 3.02 25.73
PC-DAG-32 : 1 0.01 0.03 1.36 5.58 2.3 28.03
DGCC-26 : 0 0.04 0.01 1.34 0.95 2.27 30.3
PC-DAG-35 : 1 0.01 0.03 1.27 0.9 2.15 32.45
PE-DAG-33 : 1 0.03 0.01 1.02 1.2 1.73 34.18
PC-DAG-33 : 1 0 0.02 0.96 7.61 1.63 35.8
DGCC-28 : 0 0.02 0 0.93 1.28 1.57 37.37
PC-AEG-34 : 3 0.02 0 0.9 1.03 1.52 38.89
PE-DAG-34 : 2 0.03 0.02 0.88 1.2 1.49 40.38
MGDG-32 : 1 0 0.02 0.83 1.81 1.4 41.78
PC-DAG-30 : 1 0.03 0.01 0.83 1.15 1.4 43.18
PG-DAG-34 : 2 0.02 0 0.77 1.05 1.3 44.48
PE-DAG-33 : 0 0.02 0 0.76 1.11 1.29 45.77
PG-DAG-35 : 1 0.02 0.01 0.74 1.22 1.26 47.03
PE-DAG-34 : 1 0.02 0 0.74 2.06 1.25 48.27
PC-DAG-26 : 0 0.02 0 0.72 1.74 1.21 49.48
DGCC-30 : 0 0 0.01 0.68 1.32 1.15 50.64
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Table 2. Continued.

Groups cluster 1 and cluster 3
Average dissimilarity= 60.69

IPLs Average Average Average Dissimilarity/ Contribution Cumulative
cluster 1 cluster 3 dissimilarity SD (%) (%)

DGCC-42 : 6 0 0.16 8.02 3.2 13.21 13.21
PC-DAG-35 : 0 0.02 0.08 3.05 1.87 5.02 18.23
PI-AR 0.06 0.05 2.66 1.6 4.39 22.62
PE-DAG-32 : 1 0.06 0.01 2.49 1.74 4.1 26.72
PG-DAG-36 : 2 0.05 0.02 1.9 1.49 3.14 29.86
DGCC-27 : 0 0.04 0.01 1.84 0.97 3.03 32.89
DGCC-26 : 0 0.04 0.01 1.59 1.12 2.62 35.52
PC-DAG-33 : 2 0 0.03 1.58 1.7 2.61 38.12
PE-DAG-34 : 2 0.03 0.01 1.13 1.35 1.86 39.98
PE-DAG-33 : 1 0.03 0.01 1.07 1.33 1.76 41.75
PC-AEG-34 : 3 0.02 0 0.95 1.08 1.57 43.31
PC-DAG-29 : 2 0.02 0.03 0.95 1.88 1.56 44.87
DGCC-28 : 0 0.02 0 0.9 1.25 1.49 46.36
PC-DAG-30 : 1 0.03 0.03 0.87 1.35 1.43 47.79
PE-DAG-33 : 0 0.02 0 0.76 1.07 1.26 49.05
PG-DAG-34 : 2 0.02 0.01 0.76 1.1 1.26 50.3

Groups cluster 1 and cluster 4
Average dissimilarity= 62.47

IPLs Average Average Average Dissimilarity/ Contribution Cumulative
cluster 1 cluster 4 dissimilarity SD (%) (%)

DGCC-42 : 6 0 0.14 6.99 2.57 11.19 11.19
PC-DAG-30 : 2 0.01 0.12 5.66 3.64 9.06 20.24
PE-DAG-32 : 1 0.06 0 3.17 2.09 5.07 25.31
PC-DAG-35 : 0 0.02 0.04 2.22 1.6 3.55 28.86
PG-DAG-36 : 2 0.05 0.01 2.12 1.64 3.4 32.27
PC-DAG-33 : 2 0 0.04 1.9 15.16 3.04 35.3
DGCC-27 : 0 0.04 0.02 1.45 0.78 2.32 37.62
PE-DAG-34 : 2 0.03 0 1.35 1.44 2.16 39.78
PI-AR 0.06 0.05 1.3 1.6 2.08 41.86
DGCC-26 : 0 0.04 0.01 1.26 0.89 2.02 43.88
DGDG-34 : 2 0 0.03 1.25 1.17 2 45.88
PE-DAG-31 : 2 0 0.03 1.21 4.58 1.93 47.81
PE-DAG-33 : 1 0.03 0.01 1.2 1.46 1.92 49.73
PE-DAG-33 : 3 0 0.02 1.16 4.61 1.86 51.59

all water-column samples (2–76 bar) to ∼ 2.7 in the bathyal
(54–113 bar) and hadal sediments (777–810 bar) (Fig. 5).

3.4 Unique IPLs in hadal sediments of the Atacama
Trench

Water-column particles and bathyal–hadal sediments shared
242 (96.1 %) IPL structures (Fig. 6a), while hadal sediments
and water-column particles shared 14 (0.02 %), and hadal
and bathyal sediments shared 55 (3.6 %). Of all the analyzed
IPLs reported in this study, eight of them were unique to
the Atacama Trench sediments and are not present in shal-
lower sediments or the overlying water column. They include

five glycolipids (SQDG-42 : 11, SQDG-23 : 0, DGDG-35 :
1, DGDG-35 : 2 and DGDG-37 : 1), two phosphatidylinos-
itols (PI-diOH-Ext-AR and PI-OH-AR), and one ornithine
lipid (OL-37 : 6). While unique to hadal sediments, their
total concentration was low (∼ 53.32 ng per gram of sed-
iment), and they contributed ∼ 0.00012 % of the total IPL
pool (Fig. 6a). We then performed a cluster analysis to com-
pare IPLs in deep-sea surface sediments against IPLs re-
ported in the overlying water column (Cantarero et al., 2020;
Fig. 6b). Cluster 1 comprised samples from the core OMZ
in the free-living fraction (AU p value of 100 %). Cluster 2
comprised samples from both the upper and lower oxyclines
(∼ 14–60 m) as well as from the chlorophyll maximum (AU
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Figure 2. Cumulative bar charts of the fractional abundance of IPL classes in each surface sediment sample from the bathyal and hadal
regions (left panel). Samples were grouped according to arithmetic mean (UPGMA) hierarchical clustering based on Euclidean distances.
The p values are shown at branches, with AU in red and BP in green (right panel). Clusters 3 with an AU≥ 95 % confidence are indicated
by the red rectangles (left) and are considered to be strongly supported by the data.

p value of 99 %). Cluster 3 comprised bathyal and hadal sam-
ples (AU p value of 99 %). Cluster 4 mostly comprised the
deepest water-column sample (mesopelagic region at 750 m)
and hadal samples (AU p value of 98 %; Fig. 6b). We also
compared IPLs in hadal and bathyal sediments against the
pool of IPLs reported as diagnostic of the planktonic commu-
nity inhabiting the chlorophyll maximum in the upper water
column (Cantarero et al., 2020) and thus assess their export
and stability through their transit to the deep sea. Notably,
these IPLs from this region of the water column only repre-
sent∼ 0.001 %–0.005 % and 0.002 %–0.03 % of the total IPL
pool in hadal and bathyal sediments, respectively (Fig. S3).

We found a high degree of heterogeneity in total IPL con-
centrations among sites and different sediment levels (0–1,
1–2, 2–3 cm) in the Atacama Trench, which were an order
of magnitude higher than bathyal sediments (see Fig. S4a,
b). Hadal sediments at station A10 (7734 m) showed a large
range of phospholipid concentrations (∼ 47–2698 ng per
gram of sediment) (Fig. S4b). Although the highest total IPL
abundances were observed at hadal station A10 (Fig. S4b),
the greatest diversity in IPL composition was observed in the

0–1 cm of the hadal station A4, previously referred to as un-
clustered (see Fig. 2). The most abundant IPL class in hadal
sediments was phospholipids, PCs (∼ 41–2698 ng per gram
of sediment), PEs (∼ 26–1813 ng per gram of sediment), and
PGs (5–937 ng per gram of sediment). The concentration of
IPLs normalized by total organic carbon (TOC) (ng IPL per
gram of TOC) showed maximum values in the hadal station
A10 (∼ 497 µg IPL per gram of TOC), followed by lower val-
ues in the hadal stations A5 and A4 of∼ 291 and∼ 75 µg IPL
per gram of TOC, respectively (Fig. S5).

4 Discussion

4.1 Potential sources of phospholipids

PG (phosphatidylglycerol)

Phospholipids are common constituents of cellular mem-
branes in most microorganisms (Ratledge and Wilkinson,
1988). Since PGs play an essential role in photosynthesis
(Wada and Murata, 2007), they have therefore been mainly
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Figure 3. Relative abundance of individual IPLs contributing most
of the dissimilarity between the four clusters shown in Fig. 2. Sam-
pling stations are organized left to right and are shown using the
same order from hierarchical clusters in Fig. 2, whereas IPL classes
are organized from top to bottom. The circle size is proportional to
the relative abundance of IPLs in each sample (bottom panel).

identified in algal and bacterial photoautotrophs (Dowhan,
1997; Sato et al., 2000; Gombos et al., 2002). However,
their biological origin is highly diverse and also includes het-
erotrophic bacteria (Oliver and Colwell, 1973; Van Mooy et
al., 2009; Popendorf et al., 2011b; Carini et al., 2015; Se-
bastián et al., 2016), methylotrophs (Batrakov and Nikitin,
1996), methanotrophic bacteria (Makula, 1978), Pelagibac-
ter ubique (Van Mooy et al., 2009), and barophilic bacteria

(e.g., DB21MT-2 and DB21MT-5) isolated from sediments
from the Mariana Trench (Fang et al., 2000).

The hierarchical cluster analysis on variations in the rel-
ative abundance of PGs suggests that several compounds
maintained a similar proportion in bathyal and hadal sedi-
ments, which differs from the water column (Fig. S6). Most
PGs in the bathyal and hadal sediments have long acyl
carbon chains (C34–C41), and they show odd- and even-
numbered polyunsaturated fatty acids (Fig. S6). The aver-
age chain lengths of even-numbered n-C18, n-C20, and n-
C22 fatty acids, mostly in PCs and PGs, are indicative of al-
gal inputs (Kaneda, 1991; Thompson, 1996; Bergé and Bar-
nathan, 2005; Brandsma et al., 2012). However, since these
PGs were not dominant in the water column, a source from
deeper environments is likely. Specifically, PG-DAG-36 : 2,
PG-DAG-35 : 2, PG-DAG-36 : 5, PG-DAG-37 : 2, and PG-
DAG-41 : 4 are the dominant constituents of this IPL class in
hadal–bathyal sediments (Figs. 7, S6). PG-DAG-36 : 2 has
been described in surface waters of the North Sea and also
detected in picoeukaryotes (Brandsma et al., 2012) and in
heterotrophic bacteria in surface waters of the open South Pa-
cific Ocean (Van Mooy and Fredricks, 2010). However, these
PGs are not dominant in the water column near the Atacama
Trench (Cantarero et al., 2020). On the other hand, PG-DAG-
35 : 2, PG-DAG-36 : 5, PG-DAG-37 : 2, and PG-DAG-41 : 4
are not commonly reported in water-column studies. Thus, it
is possible that PGs present in the Atacama Trench sediments
derive from in situ microbial production, although downslope
and lateral transport of labile OM cannot be ruled out. PG-
DAG-36 : 2 (Fig. 3) is the PG contributing most to the dis-
similarity within the cluster containing only hadal sediments
(cluster 1 in Fig. 2). Thus, this lipid appears to be more repre-
sentative of in situ microbial production in this environment.

PE (phosphatidylethanolamine)

PE and its methylated derivatives (PME, PDME) have
been predominantly reported in membranes of diverse
bacterial sources, including heterotrophic bacteria (Van
Mooy and Fredricks, 2010; Schubotz et al., 2018), ni-
trifying/denitrifying bacteria (Goldfine and Hagen, 1968),
sulfate-reducing bacteria (Rütters et al., 2001; Sturt et al.,
2004), sulfur-oxidizing bacteria (Barridge and Shively, 1968;
Imhoff, 1995; Wakeham et al., 2012), methanotrophic bacte-
ria (Makula, 1978; Sturt et al., 2004), and barophilic bacteria
(Fang et al., 2000).

PEs showed a similar distribution in bathyal and hadal
sediments (Fig. S7), where they are dominated by long-
chain (C36−44) polyunsaturated fatty acids, contrary to the
shorter chains (C28−36) of saturated and monounsaturated
fatty acids present in the water column. PE-DAG-32 : 1, PE-
DAG-32 : 2, and PE-DAG-33 : 1 are the dominant PE com-
pounds of bathyal and hadal sediments (Fig. 7). These IPLs
have been previously reported in heterotrophic bacteria (Van
Mooy and Fredricks, 2010; Brandsma et al., 2012). On the
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Figure 4. Total number of acyl carbon atoms (a) and acyl double bonds (b) in IPL classes across the distinct clusters shown in Fig. 2.
The letters “a” and “b” indicate the presence of statistically distinct groups (p<0.05) from both ANOVA and post hoc Tukey HSD tests,
respectively.

other hand, fatty acids in PEs including monounsaturated and
polyunsaturated (e.g., C20:5 and C22:6) have been reported in
barophilic bacteria isolated from sediments from the Mariana
Trench (Fang et al., 2000). Thus, although we cannot confi-
dentially rule out other sources, it is possible that PEs present
in the AT sediments predominantly derive from in situ pro-
duction by barophilic heterotrophic bacteria. PE-DAG-32 : 1,
PE-DAG-32 : 2, and PE-DAG-33 : 1 (Fig. 3) are the PEs that
contributed most to the dissimilarity within the cluster con-
taining only hadal sediment samples (cluster 1 in Fig. 2).
Thus, this cluster appears to be representative of in situ mi-
crobial production in this environment.

PC (phosphatidylcholine)

PCs were amongst the most diverse (43 structures:
Fig. S8) and abundant phospholipid class in hadal sediments
(Fig. S4). PC is the major membrane-forming phospholipid
in eukaryotes (Lechevalier, 1988; Sohlenkamp et al., 2003;

Van Mooy et al., 2006; Van Mooy and Fredricks, 2010). Ad-
ditionally, PC has been reported to be a major DAG in zoo-
plankton, from protozoa to copepods and krill (Patton et al.,
1972; Mayzaud et al., 1999; Lund and Chu, 2002). However,
genomic data indicate that more than 10 % of all bacteria pos-
sess the genetic machinery for PC biosynthesis (Sohlenkamp
et al., 2003). PC has also been reported in nitrifying bacte-
ria (Lam et al., 2007), photoheterotrophic bacteria (Koblížek
et al., 2006; Van Mooy et al., 2006), and barophilic bacte-
ria (Fang et al., 2000). In surface sediments of the Black Sea
(2000 m), PCs were related to algal material rapidly exported
from surface waters (Schubotz et al., 2009).

Hadal and bathyal sediments, in addition to two OMZ
core stations, were clustered in the PC class (AU p value of
97 %; Fig. S8). This cluster showed PCs with long (C33−38)
and polyunsaturated fatty acids (up to 10 unsaturations). The
dominant constituents were PC-DAG-35 : 0, PC-DAG-30 : 2,
PC-DAG-30 : 1, PC-DAG-33 : 2, PC-DAG-35 : 1, PC-DAG-
29 : 2, PC-DAG-32 : 1, and PC-DAG-36 : 2 (Figs. 7, S8). PC-
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Figure 5. Boxplot showing the ratio of total unsaturated fatty acids to total saturated fatty acids derived from IPLs present in water-column
samples (Cantarero et al., 2020) and sediments of the Atacama Trench (this study). Red circles indicate the average value in each environment.
The Wilcoxon test (p value<0.001) indicates that sediments have statistical ratios higher than the water column (horizontal lines and red
starts).

DAG-36 : 2 and PC-DAG-30 : 1 have been associated with
phytoplankton detritus (Schubotz et al., 2009) and bacteria
(Brandsma et al., 2012), whereas PC-DAG-32 : 1 has been
associated with picoeukaryotes (Brandsma et al., 2012).

Since the most abundant PCs in cluster 1 have not been re-
ported as dominant structures in any specific environment be-
fore, they are possibly produced in situ, although downslope
and/or lateral transport cannot be ruled out. Among bacteria,
those membranes reported to contain PC belong to the alpha
and gamma subgroups of the Proteobacteria (Sohlenkamp et
al., 2003). Given that these bacterial groups are abundant in
trench samples from Puerto Rico (Eloe et al., 2011), the Mar-
iana Trench (Nunoura et al., 2015), and recently in the Ata-
cama Trench (Schauberger et al., 2021), it is possible that
PCs present in high abundance in the Atacama Trench are
consistent with high abundance of Proteobacteria in these
regions. Given their general known association and abun-
dance in Atacama Trench sediments (Fig. S4), they likely
derive primarily from bacterial but also possibly from fungi
or metazoan sources that have not yet been studied and to a
lesser extent from phytoplankton. Indeed, fungal strains iso-
lated from the water column and sediment in the ESTP off
Chile reported high levels of polyunsaturated fatty acids and
PCs (Gutiérrez et al., 2020), whereas a high fungal diversity
associated with denitrification potential was reported in the
Yap Trench (Gao et al., 2020). The latter suggests that eu-

karyotic PCs in hadal sediments could be much more diverse
in origin than previously thought.

PME/PDME (phosphatidyl(di)methylethanolamine)

PME/PDMEs have been observed in association with
methanotrophic bacteria (Makula, 1978; Goldfine, 1984;
Fang et al., 2000); sulfide-oxidizing bacteria (Barridge and
Shively, 1968); sulfate-reducing bacteria, mainly Desulfob-
ulbus spp. (Rossel et al., 2011), Proteobacteria (Oliver and
Colwell, 1973; Goldfine, 1984); and barophilic bacteria from
the Mariana Trench (Fang et al., 2000). Additionally, the oc-
currence of PME-DEG at some hadal stations suggests the
presence of sulfate-reducing bacteria (Rütters et al., 2001;
Sturt et al., 2004).

PME/PDMEs exhibited their lowest abundance (∼ 10 ng
per gram of sediment) in sediment samples compared to
other phospholipids (Fig. S4b). In the bathyal and hadal sed-
iments they were clustered (AU p value of 97 %) and domi-
nated by PDME-DAG-33 : 1, PME-DAG-37 : 2, PME-DAG-
34 : 2, PME-DAG-31 : 1, and PME-DEG-33 : 0 (Fig. S9a).
PME-DEG-33 : 0 has been shown to correlate with high
NO−2 in the overlying water column of this area (Cantarero et
al., 2020), which could suggest a potential association with
denitrification processes. These structures have also been re-
ported in the deep chemocline of the Cariaco Basin (Wake-
ham et al., 2012), suggesting a potential chemoautotrophic
and/or heterotrophic source. The distribution of these com-
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Figure 6. Comparison of IPLs in bathyal and hadal sediments (this study) and the overlying water column (Cantarero et al., 2020). (a) Venn
diagram showing the number and percentage of unique and shared IPL molecules between these three environments. (b) Cumulative bar
charts of IPL fractional abundances in each sample. Samples were grouped according to arithmetic mean (UPGMA) hierarchical clustering
based on Euclidean distances. The cluster analysis on the right-hand side shows approximately unbiased (AU) and bootstrap probability (BP)
in red and green numbers, respectively, whereas p values are shown at branching points. Clusters with AU≥ 95 % confidence are highlighted
in red on the left-hand side.

pounds is different from the water column, which is dom-
inated by the saturated PME-32 : 0, PME-DAG-30 : 0, and
PME-DAG-31 : 0 (Figs. S9a and S16; Cantarero et al., 2020).
Thus, and similar to other lipid classes, they most likely
derive from in situ production in hadal sediments rather
than from the water column, although other sources such as
downslope and/or lateral transport cannot be ruled out. No
particular PME/PDMEs were found to contribute to the dis-
similarity between the cluster containing only hadal sediment
samples (cluster 1 in Fig. 2) and other sediment samples.

4.2 Potential sources of glycolipids

MGDG (monoglycosyldiacylglycerol)

Due to their dominant occurrence in chloroplast thylakoid
membranes (Murata and Siegenthaler, 1998) and particularly
in cyanobacteria (Heinz, 1977; Harwood, 1998; Wada and
Murata, 2007; Van Mooy and Fredricks, 2010), but also in
heterotrophic bacteria (Popendorf et al., 2011b), MGDGs are

probably the most abundant IPLs on earth (Gounaris and Bar-
ber, 1983).

The hierarchical cluster suggests that several MGDG com-
pounds maintained a similar proportion in bathyal (AU
p value of 90 %) and hadal (AU p value of 98 %) sediments
(Fig. S10). The most abundant MGDGs in the bathyal and
hadal sediments were MGDG-28 : 0, MGDG-32 : 1, MGDG-
30 : 1, MGDG-32 : 0, and MGDG-37 : 3. MGDG-28 : 0 and
MGDG-30 : 1 are ubiquitous along the oxycline of the over-
lying OMZ (Fig. 7; Cantarero et al., 2020). In addition,
MGDG-32 : 1 has been previously reported in waters of the
eastern South Pacific (Van Mooy and Fredricks, 2010). Thus,
the occurrence of these MGDGs in sediment could indicate
at least some export of labile OM from surface waters. On
the other hand, MGDG-37 : 3 does not appear to be a dom-
inant structure in any specific environment in the literature,
which suggests a likely in situ production.
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DGDG (diglycosyldiacylglycerol)

DGDGs are commonly found in membranes of eukaryotic
algae and cyanobacteria (Wada and Murata, 1998; Sakurai et
al., 2006; Kalisch et al., 2016). DGDGs clustered together in
bathyal and hadal sediments (AU p value of 96 %), whereas
their distribution differed from the water column (Fig. S11).
The most abundant DGDGs in hadal and bathyal sediments
of the Atacama Trench was DGDG-34 : 2 (Fig. 7), which has
been previously reported in cyanobacterial strains isolated
(da Costa et al., 2020) but has not been previously reported
as abundant in the water column. In contrast, DGDG-30 : 0,
which is widely distributed in the water column of this region
(Cantarero et al., 2020), is consistently present in hadal and
bathyal sediment samples although at very low abundances
(Fig. 7). Thus, although DGDGs account for less than ∼ 5 %
of the total IPL pool (Fig. 6b), except for station A10 (2–
3 cm) where they reach∼ 10 %, their presence in bathyal and
hadal sediments is indicative of at least some export of labile
OM from surface waters.

SQDG (sulfoquinovosyldiacylglycerol)

SQDGs are predominantly produced by photoautotrophs
(Van Mooy et al., 2006; Popendorf et al., 2011b), including
various groups of diatoms, brown and green algal chloroplast
membranes (Harwood, 1998), and cyanobacteria (Siegen-
thaler, 1998; Wada and Murata, 1998). SQDGs have also
been found in bacteria from the α- and γ -proteobacterial lin-
eages (Benning, 1998). In the overlying water column of the
Atacama Trench, Cantarero et al. (2020) suggested a higher
contribution of SQDGs from cyanobacteria than algae. Also,
SQDGs found in the deep Atlantic (down to∼ 4000–5000 m)
appear to indicate a source and export from surface waters
(Gašparović et al., 2018).

SQDGs showed a consistent distribution in bathyal and
hadal sediments, where they are dominated by long-chain
(C36−44) fatty acids (Fig. S12). This is contrasting to their
distribution in the overlying water column where they are
dominated by shorter-chain (C28−36) saturated fatty acids
(Cantarero et al., 2020). SQDG-30 : 0, SQDG-32 : 0, SQDG-
30 : 2, and SQDG-38 : 4 were the dominant SQDG con-
stituents of bathyal and hadal sediments (Fig. 7). SQDG-30 :
0 and SQDG-30 : 2 have been reported in bacteria in North
Sea surface waters (Brandsma et al., 2012), in cyanobacte-
ria of the eastern subtropical South Pacific (Van Mooy and
Fredricks, 2010), and in plankton detritus from surface sedi-
ments of the Black Sea (Schubotz et al., 2009). Furthermore,
SQDG-30 : 0 is abundant in surface waters of our study area,
and SQDG-38:4 has been correlated with NO−3 (Cantarero
et al., 2020). The observed differences in the distribution of
SQDGs in deep sediments compared to the water column
suggests an in situ production of previously poorly charac-
terized compounds, in addition to at least some export from
surface waters.

4.3 Potential biological sources of betaine lipids

DGTS (diacylglyceryl trimethylhomoserine)

DGTSs have diverse biological origins, being found in a
wide range of eukaryotes (Sato, 1992; Dembitsky, 1996;
Kato et al., 1997; Van Mooy et al., 2009), photoheterotrophic
bacteria (Benning et al., 1995; Geiger et al., 1999), pho-
toautotrophic bacteria (Popendorf et al., 2011b) includ-
ing cyanobacteria (Řezanka et al., 2003), and members of
the α-Proteobacteria subdivision (López-Lara et al., 2003).
Schubotz et al. (2018) showed DGTS with varying fatty
acid compositions in the OMZ system of the eastern tropi-
cal North Pacific, especially in OMZ waters, indicating that
these compounds can be biosynthesized by a wider range of
source organisms than previously thought.

Consistent with other IPL classes, DGTSs of the bathyal
and hadal samples were grouped in the same cluster (AU
p value of 98 %) and differed from the water column
(Fig. S13). However, several DGTSs are shared between sur-
face waters (9–60 m) and deep sediments. Indeed, the most
abundant DGTSs in bathyal and hadal sediments (DGTS-
34 : 0, DGTS-32 : 1, DGTS-26 : 0, DGTS-34 : 1, DGTS-32 :
0, and DGTS-25 : 0; Figs. 7, S13) are also prominent in the
chlorophyll maximum in the eastern subtropical South Pa-
cific (Van Mooy and Fredricks, 2010; Cantarero et al., 2020).
Therefore, their presence in hadal sediments suggest the ex-
port of some labile OM from the euphotic zone, although we
cannot rule out other sources.

DGTA (diacylglyceryl
hydroxymethyl-trimethyl-β-alanine)

DGTAs have been widely reported in eukaryotic phytoplank-
ton (Araki et al., 1991; Dembitsky, 1996; Cañavate et al.,
2017), mainly in diatoms (Volkman et al., 1989; Zhukova,
2005; Gómez-Consarnau et al., 2007), and are also espe-
cially abundant in cultures of prymnesiophytes and crypto-
phytes (Kato et al., 1997). DGTAs have also been found in
cyanobacteria (Brandsma et al., 2012) and heterotrophic bac-
teria (Popendorf et al., 2011a; Sebastián et al., 2016).

DGTAs in bathyal and hadal sediments are mainly com-
posed of longer (C28–C42) and polyunsaturated (1–12) fatty
acids compared to those present in the shallowest region of
the overlying water column, composed of shorter and satu-
rated fatty acids (Fig. S14). In the overlying water column,
these compounds are associated with relatively high chloro-
phyll and O2 concentrations (Cantarero et al., 2020), similar
to North Sea surface waters (Brandsma et al., 2012). To the
best of our knowledge, the dominant DGTAs in hadal and
bathyal sediments (Figs. 7, S14) have not been previously
reported as dominant IPLs in other environments. Whereas
no specific biological sources in hadal sediments are known,
the structures containing between 30 and 38 carbon atoms
might be characteristic of this type of environment.
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DGCC
(diacylglycerylcarboxy-N-hydroxymethyl-choline)

Our knowledge of DGCC sources is limited. They have been
found in membranes of prymnesiophyte algae (Kato et al.,
1994), mainly in Pavlova lutheria (Kato et al., 1994; Eichen-
berger and Gribi, 1997) and in E. huxleyi (Volkman et al.,
1989; Pond and Harris, 1996; Van Mooy and Fredricks,
2010). Additionally, they have also been reported in the di-
atom Thalassiosira pseudonana (Van Mooy et al., 2009).

The most abundant IPL from the entire data set of bathyal
and hadal sediments is DGCC-42 : 6 (Figs. 7, S15). This is
the compound with the largest number of C atoms (42) and
unsaturation (6) in all IPLs detected in this study. DGCCs
with long-chain, polyunsaturated fatty acids (i.e., C38:6,
C40:10, C42:11, and C44:12) have been previously reported
in phytoplankton (Hunter, 2015; Van Mooy and Fredricks,
2010). However, the most abundant DGCCs in hadal sedi-
ments have, to the best of our knowledge, not been previously
reported, which highlights their potential as biomarkers of
deep-sea sediments. However, three hadal stations clustered
in a separate group (see Fig. S15) were dominated by DGCC-
27 : 0 and did not contain DGCC-42 : 6, indicating that this
IPL probably derives from allochthonous sources.

4.4 Potential biological sources of other lipids

Glycosidic ceramides (Gly-Cer) have been reported in eu-
karyotic algae such as prymnesiophyte (Vardi et al., 2009)
and have also been shown to be abundant in water columns of
OMZ systems (Schubotz et al., 2009, 2018; Cantarero et al.,
2020). In general, the overlying water column shows Gly-Cer
with a ceramide chain and polyunsaturated fatty acids with
C21−38. However, these structures are scarce in the bathyal
and hadal sediments (see Fig. S9b), which could reflect a
deficient export from surface waters due to intense reminer-
alization. On the other hand, ornithine lipids (OL), phos-
phatidylinositol (PI), PC-AEGs, and other unidentified phos-
pholipids were also present in deep sediments (Fig. S9b).
Some PIs and OLs have been reported in sulfate-reducing
bacteria (Sturt et al., 2004; Bühring et al., 2014), whereas
PC-AEGs have been reported in bacteria inhabiting water
columns with reduced oxygen concentration (Schubotz et al.,
2018). Thus, the high relative abundance of PC-AEG-34 : 3
in hadal and bathyal sediments (Figs. S9b and S16) could be
indicative of anaerobic microbial processes. PC-AEG-34 : 3
contributed the most to the dissimilarity between the cluster
containing only hadal sediment samples (cluster 1 in Figs. 2
and 3), thus suggesting an in situ microbial production, al-
though we cannot confidentially rule out other sources.

4.5 Allochthonous versus autochthonous IPLs in the
Atacama Trench

Given their rapid degradation after cell death (White et al.,
1979; Harvey et al., 1986; Logemann et al., 2011; Schouten
et al., 2010), IPLs are typically considered markers of liv-
ing or recently dead cells (White et al., 1979; Harvey et
al., 1986; Petersen et al., 1991; Lipp et al., 2008). The dis-
tribution of IPLs in bathyal and hadal sediments exhibits
a high degree of similitude, as demonstrated by the hierar-
chical analysis (cluster 1 in Fig. 8a), the NMDS (Fig. 8b),
and the SIMPER analysis (cluster 1 in Table S1). The deep-
sea surface sediments showed weak clustering with the IPLs
reported in the overlying water column by Cantarero et
al. (2020) (Fig. 9a). Additionally, water-column samples ex-
hibit a larger degree of separation than sediments (ANOSIM,
R= 0.78; P<0.01; Fig. 8b) and are broadly clustered by
geochemical environments (Cantarero et al., 2020). The low
abundance of IPLs characteristic of organisms inhabiting the
chlorophyll maximum in deep-sea sediments of the Atacama
Trench (< 0.005 % of the total IPL pool; Fig. S3) suggests
minimal export of labile organic compounds from the up-
per ocean. This result implies rapid IPL degradation during
sinking in the water column, which is consistent with exper-
imental degradation rates (Westrich and Berner, 1984; Lo-
gemann et al., 2011) and first-order POM sinking rates. In-
deed, by using the experimentally calculated kinetic degrada-
tion rate constants (k′) of ester-bound IPLs by Logemann et
al. (2011) and the sinking rate of particles from surface wa-
ters to 4000 m (20–100 m d−1; Billett et al., 1983; Danovaro
et al., 2014), we calculated that∼ 86 %–98 % (k′t=80 = 0.033
and k′t=400 = 0.011) of IPLs from surface waters should de-
grade by the time that particles reach depths of ∼ 8000 m.
These results are also in accord with studies indicating ele-
vated benthic oxygen consumption rates resulting from in-
tense microbial respiration of sinking OM reaching the sed-
iment (Glud et al., 2013; Wenzhöfer et al., 2016). Thus, the
pool of IPLs in hadal sediments appears to predominantly
represent in situ microbial production, whereas the deep-sea
microbial community in both bathyal and hadal sediments is
similar despite their bathymetric zonation (∼ 1000–8000 m).
Alternatively, we cannot rule out the possibility of new IPL
production, particularly from heterotrophic and chemoau-
totrophic bacteria in micro niches of sinking particles reach-
ing the deep sea and/or downslope and lateral sediment trans-
port.

Marine trenches receive organic carbon from a variety of
sources and transport mechanisms. These include canyons
and river systems that channel OM from land to coastal re-
gions, aeolian transport, surface water productivity, and in
situ production, to name a few (Wenzhöfer et al., 2016; Tarn
et al., 2016; Luo et al., 2017; Xu et al., 2018; Guan et al.,
2019; Xu et al., 2021). Carbon flux events can increase the
delivery of particulate carbon from surface waters to the
seafloor (Poff et al., 2021), whereas river discharge and ae-
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Figure 7. Relative abundance of the five most abundant individual IPLs contributing to each IPL class. Circle size is proportional to the
relative abundance of IPL compounds per sample. Samples are organized along the vertical axis by depth, whereas phospholipids, glycolipids,
and betaine lipids are shown in colors. The legend provides a scale for circumference size.

olian transport can result in enhanced terrestrial carbon (Xu
et al., 2021). Mass wasting events are also known to create
dynamic depositional conditions and strong spatial hetero-
geneity in OM distribution in marine trenches (Schauberger
et al., 2021; Xu et al., 2021). While marine organic carbon
appears to dominate sediments in the Japan (Schwestermann
et al., 2021), Massau (Xu et al., 2020a), and New Britain (Xu
et al., 2020b) trenches, the Atacama and Kermadec trenches,
on the other hand, have been reported to be dominated by ter-
rigenous OM. Since our study only focuses on the most labile
component of the total lipid pool, it predominantly traces la-
bile and indigenous OM and not recalcitrant fractions of the
lipid pool. The latter warrants further investigation.

In regions like the Japan Trench, downslope sediment
transport has been linked to earthquake-driven remobiliza-
tion (Bao et al., 2018; Schwestermann et al., 2021). Whereas
we lack sedimentological/geochemical data to discriminate
whether the top 3 cm of our hadal stations represent debris
flows, turbidite, or mass wasting events, ongoing work in
the Atacama Trench indicates heterogenic sediment deposi-
tion along the hadal zone (Matthias Zabel, personal commu-
nication, 2021). Thus, the role of downslope transport as a
mechanism to explain the high statistical similarity between
bathyal and hadal sediments remains to be tested.

4.6 Characteristic IPLs of hadal and bathyal sediments

The IPLs that contribute most to the dissimilarity between
the hierarchical cluster containing samples from the hadal
and bathyal sediments (cluster 1 of Fig. 8) and the water
column (cluster 2, 3, 4, and 5 of Fig. 8) are represented in
Fig. 9. The most characteristic IPLs of hadal and bathyal
sediments are DGCC-42 : 6, DGCC-27 : 0, DGCC-26 : 0,
PC-DAG-35 : 0, PC-DAG-30 : 1, PC-DAG-30 : 2, PC-DAG-
33 : 2, PC-DAG-32 : 1, PC-DAG-29 : 2, PE-DAG-32 : 1, PE-
DAG-32 : 2, PE-DAG-33 : 1, PG-DAG-36 : 2, and DGDG-
34 : 2, which we propose as potential markers for these en-
vironments. Even though DGCCs have been mainly related
to algae membranes (Kato et al., 1994; Van Mooy et al.,
2009), they are minor components of the water column in
this area, suggesting the occurrence of an alternative source.
In addition to DGCCs, the two other betaine lipids, DGTA
and DGTS, exhibited five IPLs that were almost exclusively
present in sediment samples (DGTA-34 : 1, DGTA-32 : 1,
DGTA-34 : 2, DGTS-34 : 0, and DGTS-32 : 1; see Fig. 11).
We note that almost all the PC phospholipids in our study
have not, to the best of our knowledge, been previously re-
ported in the literature, which reinforces their use as markers
of sedimentary in situ bathyal and hadal production.
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Figure 8. (a) Arithmetic mean (UPGMA) hierarchical clustering based on Euclidean distances calculated from IPLs in each sampling station.
Red values are approximately unbiased (AU) p values, and green values are bootstrap probability (BP) for each node. Red boxes highlight
clusters with 95 % confidence. The number of bootstrap replicates is 10000. (b) Non-metric multidimensional scaling (NMDS) analysis
of IPLs at each sampling station. The distance matrix was calculated based on the Bray–Curtis dissimilarity. The stress value of the final
configuration was 15.8 %. Different symbols and colors represent the sample grouping from hierarchical clusters shown in panel (a).

The presence of a few MGDGs and SQDGs in hadal and
bathyal sediments (∼ 7 % of the total IPL pool) indicates
that at least some labile OM could derive from the shal-
low water column (see Sect. 4.2). However, the most abun-
dant IPLs in our sediment samples, DGCC-42 : 6, PC-DAG-
35 : 0, PE-DAG-32 : 1, and PG-DAG-36 : 2 (19.8 % of the
total IPL pool; Fig. S16), are almost completely absent in
the overlying water column (Fig. 9). This reinforces the idea
that these IPLs most likely originate from in situ microbial
production in sediments. The single most abundant IPL in
sediments, DGCC-42 : 6, was not present in cluster 1, which
only contains hadal sediments (Figs. 2 and 3). Instead, this
compound is prominent in cluster 3, 4, and 5, containing
both hadal and bathyal samples. Thus, DGCC-42 : 6 and PC-
DAG-35 : 0, which has the lowest relative abundance in the
cluster with only hadal sediments, could be indicators of
downslope transport from bathyal to hadal regions.

We acknowledge that temporal variability in IPL produc-
tion in the water column and sediment and the lack of data on
the largely uncharacterized hadal endemic microbial commu-
nity could complicate some of the phylogenetic and source
associations of IPLs and warrant further investigation. De-

spite this, our study represents a step forward on the charac-
terization of labile sources of OM sustaining hadal ecosys-
tems.

4.7 Do IPLs reveal homeoviscous adaptation to the
deep-sea environment?

Environmental factors such as pH, conductivity, tempera-
ture, and pressure impact the permeability and fluidity of
cell membranes (Shaw, 1974; Macdonald, 1984; DeLong and
Yayanos, 1985; Somero, 1992; Komatsu and Chong, 1998;
Van Mooy et al., 2009; Carini et al., 2015; Sebastián et
al., 2016; Siliakus et al., 2017; Boyer et al., 2020; Allen
et al., 1999). Thus, organisms adapt to changes in environ-
mental factors to maintain physiological homeostasis by al-
tering their fatty acid composition (DeLong and Yayanos,
1985; Fang et al., 2000; Nichols et al., 2004; Siliakus et al.,
2017). For instance, the combined physiological effects of
high hydrostatic pressure and low temperature on prokary-
otic membranes in laboratory cultures leads to the production
of unsaturated lipids (DeLong and Yayanos 1985; Fang et al.,
2000; Nichols et al., 2004; Zheng et al., 2020). However, few
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Figure 9. Relative abundance of individual IPLs that contribute most to the dissimilarity between clusters of Fig. 8 derived from the SIMPER
analysis (Table S1). Circle size is proportional to the relative abundance of IPL compounds per sample. Samples are organized along the
vertical axis and shown in colors that match the hierarchical cluster analysis in Fig. 8. The legend shows the scale for circumference size.

studies have been conducted using culture-independent tech-
niques in search for potential adaptation mechanisms in or-
ganisms inhabiting the deep ocean (i.e., Zhong et al., 2020).
We sought to understand whether the chemical composition
of core fatty acids within different IPL classes (i.e., carbon
length and unsaturation degree) reflects the combined ef-
fects of the low temperature and high pressure typical of
hadal settings. We show that PGs are abundant in hadal sedi-
ments of the Atacama Trench (Fig. S4). Bacterial strains iso-
lated from Mariana Trench sediments contain PG as the most
abundant class of phospholipids (Fang et al., 2000), which
these authors presumed could represent a physiological re-
sponse to high pressure and low temperature. This has been
confirmed by subsequent studies (Winter et al., 2009; Peri-
asamy et al., 2009; Jebbar et al., 2015, Allemann et al., 2021).
Cluster 1 in the boxplot analysis (Fig. 4) likely contains the
most characteristic IPL classes of the hadal zone. In general,
the phospholipids in this cluster exhibited fatty acid chains
that are monounsaturated and saturated compared to other
environments (Fig. 4a, b). Additionally, we observed an in-
crease in the ratio of total unsaturated to saturated fatty acids
in deep sediments compared to the water column (Fig. 5),
which could reflect physiological adaptations of their bio-
logical producers. These results are in accord with studies
indicating biosynthesis and incorporation of polyunsaturated
fatty acids into phospholipid membranes of piezophilic bac-

teria (DeLong and Yayanos, 1985; Baird et al., 1985; Yano
et al., 1998; Winter, 2002; Mangelsdorf et al., 2005; Winter
and Jeworrek, 2009; Allemann et al., 2021). Thus, the chem-
ical characteristics (C length and degree of unsaturation) of
the most abundant IPLs in sediments of the Atacama Trench
suggest homeoviscous adaptation to this type of environment
by their source organisms, in addition to potentially indicat-
ing the occurrence of compounds that are unique to the en-
dogenous community.

5 Conclusions

Bacterial and eukaryotic IPLs in surface hadal sediments
from the deepest points of the Atacama Trench share char-
acteristics with those in bathyal sediments and differ from
those found in suspended particles from the upper 750 m of
the water column, including the oxygen minimum zone. This
indicates that (a) most IPLs abundant in the upper water col-
umn are almost entirely degraded during their descent to the
hadal seafloor and (b) IPLs found in hadal sediments are pre-
dominantly derived from in situ microbial communities.

The most dominant ester-bound IPL structures found in
bathyal and hadal sediments show a great variety of phospho-
lipids with varying degrees of unsaturation, most of them yet
to be described, that are likely derived from as of yet poorly
characterized bacterial and/or eukaryotes sources. Hadal sed-
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iments also exhibit unique glycolipid structures, such as
SQDG-42 : 11, SQDG-23 : 0, DGDG-35 : 1, DGDG-35 : 2,
and DGDG-37 : 1, that to the best of our knowledge have not
been reported in other environments. However, these lipids
are present in low abundance and represent a small fraction
(∼ 0.00012 %) of the total IPL pool. Furthermore, elevated
ratios of unsaturated/saturated fatty acids in hadal sediments
are likely indicative of homeoviscous adaptation to the high
pressure and low temperatures characteristic of this extreme
deep-sea environment.

An improved understanding of the phylogenetic, ecologi-
cal, and metabolic association of IPLs present in the Atacama
Trench could be achieved in future studies by the pairing of
lipidomics with genomic techniques (e.g., microbial commu-
nity composition, functional groups, lipid biosynthesis), in
addition to a detailed sedimentological and biogeochemical
characterization of sediments.
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Řezanka, T. and Sigler, K.: Odd-numbered very-long-chain fatty
acids from the microbial, animal and plant kingdoms, Prog. Lipid
Res., 48, 206–238, 2009.
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