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Figure S1. Calibration of absolute concentration of CO2 in silica matrix (System 1 Dual) between observed and controlled 

dilution mixtures using linear regression relationship 

  

Figure S2.   Δ 13C-CO2 calibration from the concentration dependent relationship of dual δ13C-CO2 vs observed [CO2].  The 

Gaussian equation was used to fit the relationship between (δ13C-CO2 observed - δ13C-CO2 true and CO2 concentration.  δ13C-

CO2 calibration offset  calibration curve was used to correct observations.                                                                
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Figure S3. Allan-Werle plots of precision for individual minor isotopes N2O 456 and 546 (top), 448 and 13C-CH4 (bottom). 
Precision for δ456 = 1.3 ‰, δ456 =1.4 ‰, δ448 = 2.2 ‰, and δ13C = 0.7 ‰ 



 

 

 
Figure S4. Improvement in the time response with the addition of the insert. Time Response of 76m standard cell with insert. 

P=30 Torr, flow 1 slpm. 

 

 

 

Table S1. Soil matrix description and particle size distribution  

Type of 

Matrix 
Soil ID Vendor Particle size distribution (units) Type of soil 

Granusil 

40951 
Silica 

Covia 

Corporation 

8 (0%), 16 (0.28%), 20 (27.66%), 30 (52.55%), 

40 (15.99%), 50 (3.22%), 70 (0.22%), 100 

(0.04%), 140 (0.02%), 200 (0.28%)a 

High purity industrial 

quartz, Hardness (Mohs) 

7.0, Moisture content 

<0.1%.  

Type of Soil  Soil ID Source Site Sampling Location  Properties 

Tropical 

Rainforest 
Soil 1 Biosphere 2 

Tropical 

Rainforest 

Shaded Lowland (dieffenbachia, vine) 
Sandy, silty loam (40-70% 

sand 36% silt and 30% 

clay)b; and C:N 8.75;   pH 

7-8c 

Tropical 

Rainforest 
Soil 3 South facing terrace (ginger, hibiscus) 

a Mesh units ASTM; b (Lin et al., 1999) in (Smith et al., 2020); c (Van Haren et al., 2005) 

 

 

https://paperpile.com/c/94zJDS/csEB3
https://paperpile.com/c/94zJDS/mDHAZ
https://paperpile.com/c/94zJDS/tQ4qQ
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 Mixing Ratio 

(ppb) 

δ546 N2O 

(15N14N16O) 

0.46 1.4 

 0.42 1.3 

δ448 N2O 

(14N14N18O) 

0.72 2.2 

13C-CH4 1.3 0.7 

 

 

 
Table S3. References used to estimate the 3D map for N2O isotopic signatures of bulk δ15N (x-axis), δ18O (y-axis), and site 

preference (z-axis) (Figure 12b). 

Microbial activity Reference 

Bacterial Denitrification 
(Frame and Casciotti, 2010; Sutka et al., 2006; Toyoda 

et al., 2005; Zou et al., 2014) 

Chemodenitrification 
(Jones et al., 2015; Toyoda et al., 2005; Wei et al., 

2017) 

Bacterial nitrification (Jung et al., 2014; Sutka et al., 2006; Yoshida, 1988) 

AOA (Hu et al., 2015) 

Fungal denitrification (Sutka et al., 2008) 
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