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Abstract. Dimethyl sulfide (DMS) is a volatile biogenic gas
with the potential to influence regional climate as a source of
atmospheric aerosols and cloud condensation nuclei (CCN).
The complexity of the oceanic DMS cycle presents a chal-
lenge in accurately predicting sea surface concentrations and
sea–air fluxes of this gas. In this study, we applied machine-
learning methods to model the distribution of DMS in the
northeast subarctic Pacific (NESAP), a global DMS hot spot.
Using nearly two decades of ship-based DMS observations,
combined with satellite-derived oceanographic data, we con-
structed ensembles of 1000 machine-learning models using
two techniques: random forest regression (RFR) and artifi-
cial neural networks (ANN). Our models dramatically im-
prove upon existing statistical DMS models, capturing up
to 62 % of observed DMS variability in the NESAP and
demonstrating notable regional patterns that are associated
with mesoscale oceanographic variability. In particular, our
results indicate a strong coherence between DMS concen-
trations, sea surface nitrate (SSN) concentrations, photo-
synthetically active radiation (PAR), and sea surface height
anomalies (SSHA), suggesting that NESAP DMS cycling
is primarily influenced by heterogenous nutrient availability,
light-dependent processes and physical mixing. Based on our
model output, we derive summertime, sea–air flux estimates
of 1.16± 1.22 Tg S in the NESAP. Our work demonstrates a
new approach to capturing spatial and temporal patterns in
DMS variability, which is likely applicable to other oceanic
regions.

1 Introduction

Dimethyl sulfide (DMS), a volatile biogenic gas, is an im-
portant component of the marine sulfur cycle. This molecule
is an important substrate for specific methylotrophic bacteria
(Vila-Costa et al., 2006; Lidbury et al., 2016; Green et al.,
2011; Hatton et al., 2012), with a recognized importance to
marine microbial metabolism (Vila-Costa et al., 2006) and
food web interactions (Nevitt, 2008). Moreover, DMS con-
stitutes the largest fraction of bulk non-sea-salt (NSS) sulfate
emissions to the atmosphere (Bates et al., 1992; Ksionzek et
al., 2016), where it is rapidly oxidized to form aerosols that
act as cloud condensation nuclei (CCN; Charlson et al., 1987;
Hegg et al., 1991; Korhonen et al., 2008), potentially influ-
encing regional albedo and climate (Charlson et al., 1987;
Ayers and Cainey, 2007). Given the ecological roles of DMS
and its potential influence on global climate, substantial re-
search has focused on characterizing the dynamics of this
compound in seawater. This work has revealed considerable
complexity in the oceanic DMS cycle, which has limited the
development of simple predictive algorithms describing its
spatial and temporal variability.

Oceanic DMS production and loss are tightly linked with
the biological cycling of the related metabolites dimethyl sul-
foniopropionate (DMSP) and dimethyl sulfoxide (DMSO).
DMS is believed to be primarily derived from the cleavage
of DMSP (Kiene and Linn, 2000), but it can also be cycled
through biological DMSO reduction (Spiese et al., 2009) and
oxidation (Lidbury et al., 2016), as well as abiotically by
light-dependent reactions (del Valle et al., 2007; Royer et al.,
2016). DMS cycling is influenced by a suite of environmental
and ecological factors, including release from phytoplankton
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cells into the dissolved pool via grazing (Dacey and Wake-
ham, 1986), viral lysis (Malin et al., 1998), or exudation. Ox-
idative stress generated by other variables such as tempera-
ture (Kirst et al., 1991), salinity (Dickson and Kirst, 1987),
UV radiation (Kinsey et al., 2016), and nutrient limitation
(Bucciarelli et al., 2013; Spiese and Tatarkov, 2014) may also
enhance the cycling of DMSP and DMSO, which may reg-
ulate DMS concentrations through cascading oxidative path-
ways (Sunda et al., 2002). Finally, variability in surface wind
fields can modulate the rates of DMS sea–air exchange, pro-
viding a significant source of heterogeneity in surface water
DMS concentrations (Royer et al., 2016). These examples il-
lustrate the complex non-linearity of the oceanic DMS cycle.

Over the past two decades, a number of approaches have
been developed to model DMS distributions at both global
(Bock et al., 2021; Galí et al., 2018; Simó and Dachs, 2002;
Vallina and Simó, 2007) and regional (Watanabe et al., 2007)
scales. These models have been largely based on linear re-
gression techniques estimating DMS concentrations using
one or two predictors. To date, these studies have focused on
a number of variables, including ratios of chlorophyll a (Chl-
a) to mixed layer depth (MLD) (Simó and Dachs, 2002),
sea surface temperature (SST) and nitrate (SSN) (Watanabe
et al., 2007), solar radiation dose (SRD) (Vallina and Simó,
2007), photosynthetically active radiation (PAR), and mod-
elled DMSP concentrations (Galí et al., 2018). Some of these
models have demonstrated reasonably good performance at
global scales, but their predictive power is generally dimin-
ished at regional scales (Herr et al., 2019), failing to accu-
rately resolve important smaller-scale features (Belviso et
al., 2003; Nemcek et al., 2008; Royer et al., 2015; Tortell,
2005b).

In recent years, machine-learning algorithms have been in-
creasingly used to derive predictions for non-linear oceanic
systems. For example, these methods have been successfully
applied to describe the spatial and temporal patterns of global
methane flux (Weber et al., 2019), nitrous oxide dynamics
(Yang et al., 2020), and carbon export (Roshan and DeVries,
2017). To our knowledge, only two studies have thus far ap-
plied machine learning to describe DMS distributions, with
one study focused on the Arctic (Humphries et al., 2012) and
the other exploring a global domain (Wang et al., 2020). De-
spite producing algorithms with reasonable predictive skill,
these two studies found limited success in resolving the un-
derlying relationships driving DMS variability. This was par-
tially due to a reliance on indirect sensitivity tests assessing
the importance of predictor variables and also, potentially,
due to the large-scale averaging applied to the underlying
data fields (1× 1◦; 111 km2). Analyses at higher spatial res-
olution may reveal mesoscale (roughly 20–200 km) and sub-
mesoscale (roughly 1–20 km) patterns that would otherwise
be obscured, thereby increasing predictive strength.

Machine-learning algorithms require large datasets for the
training and testing process. Traditionally, DMS measure-
ments were based on time-consuming shipboard analysis of

discrete samples, resulting in sparse data coverage over much
of the oceans. More recently, the development of several
automated DMS measurement systems (Royer et al., 2014;
Saltzman et al., 2009; Tortell, 2005a) has provided marine
DMS observations at a significantly higher resolution, yield-
ing greater spatial and temporal data coverage. These new
datasets potentially enable new insights into small-scale and
regional patterns in oceanic DMS distributions, as well as the
characterization of oceanic DMS “hot spots”. The northeast
subarctic Pacific (NESAP) is a region of notably high DMS
concentrations (Lana et al., 2011), with localized DMS accu-
mulation in both highly productive coastal upwelling regimes
and offshore, iron-limited waters (Herr et al., 2019; Asher et
al., 2017). Several factors have been proposed to account for
the elevated DMS production in the NESAP, including in-
creased primary productivity driven by nutrient entrainment
and upwelling along coastal fronts (Asher et al., 2017), a
dominance of high-DMSP-producing prymnesiophytes and
dinoflagellates in offshore waters, elevated microbial degra-
dation of DMSP to DMS (Steiner et al., 2012; Royer et al.,
2010), and the stimulation of DMS production in response
to oxidative stress in low-iron waters (Sunda et al., 2002;
Herr et al., 2020). Although multiple studies have examined
empirical relationships between DMS and various oceano-
graphic factors in the NESAP (Watanabe et al., 2007; Herr
et al., 2019; Asher et al., 2017, 2011), these have all re-
ported low predictive skill based on simple linear correlation
approaches. To date, machine-learning approaches have not
been applied to describe DMS distributions specifically in
this region.

Here, we present an approach to modelling summertime
NESAP DMS concentrations and sea–air fluxes using en-
semble random forest regression (RFR) and artificial neural
network (ANN) machine-learning algorithms. Our statistical
models leverage field observations of DMS collected across
the NESAP between 1997 and 2017 to generate a summer-
time DMS climatology mapped at a higher spatial resolu-
tion than previous efforts (Simó and Dachs, 2002; Vallina
and Simó, 2007; Galí et al., 2018; Watanabe et al., 2007;
Humphries et al., 2012; Wang et al., 2020). This new mod-
elling approach represents a significant improvement over
previous methods and predicts regional DMS distributions
that are coherent with underlying patterns of oceanographic
variability. Most notably, the modelled DMS concentrations
and sea–air fluxes can be explained, to a large extent, by re-
gional and mesoscale patterns in nutrient supply and phys-
ical mixing dynamics. Based on the output of our models,
we present summertime sea–air flux estimates in close agree-
ment with previous studies (Herr et al., 2019; Lana et al.,
2011), further highlighting the importance of the NESAP as
a globally significant sulfur source to the atmosphere.
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2 Methods

2.1 Data

A combination of data sources was used in training our
machine-learning models to build a summertime DMS cli-
matology. For this study, we restricted DMS measurements
to the months of June, July, and August between 1997
and 2017 in the NESAP (43–60◦ N, 147–122◦W). A to-
tal of 26 201 data points were obtained from the NOAA
PMEL repository (https://saga.pmel.noaa.gov/dms/; last ac-
cess: 3 February 2021), including measurements derived
from purge and trap gas chromatography and membrane inlet
mass spectrometry. The DMS data were binned to a monthly
resolution, regardless of year, and averaged into 0.25× 0.25◦

grid cells.
Predictor data used to build our machine-learning mod-

els included the following variables derived from the NASA
Aqua MODIS satellite at level L3 monthly 0.042◦ reso-
lution (R2018.0): sea surface temperature (SST), the ra-
tio of normalized fluorescence line height to chlorophyll a
(nFLH : Chl-a), instantaneous and daily observed photosyn-
thetically active radiation (iPAR and PAR, respectively), par-
ticulate inorganic carbon (PIC), the absorption of gelbstoff
and detritus at 433 nm (acdm(443)), and diffuse attenuation
coefficients at 490 nm (Kd). Satellite-based PIC is considered
as a proxy for the abundance of coccolithophores and other
calcified phytoplankton (Franklin et al., 2010), whereas the
acdm(443) product is considered a proxy for chromophoric
dissolved organic matter (CDOM; Nelson and Siegel, 2013),
which is thought to be an important photosensitizer of DMS
(see Sect. 4.1). For observations prior to 2004, data were
from either SeaWiFS (0.083◦ resolution) or Terra MODIS
(0.042◦ resolution) when SeaWiFS data were unavailable
(e.g. nFLH and iPAR). As described below,Kd and PIC were
later excluded from the final models (see Sect. 2.6) as they
did not improve predictive skill.

The following predictor variables were also used: 6 d av-
eraged sea surface height anomalies (SSHAs) derived from
the TOPEX/Poseidon satellites at 0.17◦ resolution; Level
L4 ESA Sentinel-3 Copernicus monthly averaged 0.25◦

wind speeds; net primary productivity (NPP) from the Ver-
tically Generalized Production Model (VGPM; Behrenfeld
and Falkowski, 1997) at monthly 0.25◦ resolution; sea sur-
face nitrate from the 2018 World Ocean Atlas at monthly
1◦ resolution (Garcia et al., 2019); and mixed-layer depth
(MLD) and sea surface salinity (SSS) from the MIMOC cli-
matology at 0.5◦ resolution (Schmidtko et al., 2013). Except
for MIMOC data, all predictors were restricted in time to
the corresponding years of DMS sampling (1997 to 2017).
Net community productivity (NCP) was estimated from the
algorithm of Li and Cassar (2016; using NPP and SST).
As with DMS observations, predictor data were interpolated
to a 0.25× 0.25◦ average monthly resolution using linear
radial basis interpolation functions. Interpolation was con-

strained to the oceanic region by masking out land pix-
els using ETOPO2 bathymetry (0.033◦ resolution) binned
at 0.25× 0.25◦ resolution. We note that each of these data
sources are likely to have inherent uncertainties associated
with either their collection or processing. Data sources can
be found in Table 1.

2.2 Machine-learning models

We compared the performance of random forest regression
(RFR) and artificial neural network (ANN) models at the re-
gional scale. The RFR algorithm is built upon decision tree
models, which operate by iteratively generating decision rule
nodes that dictate which branch the tree will progress through
in the next iteration. The RFR model builds an ensemble, or
“forest”, of these trees, where each tree is trained on a boot-
strapped (i.e. randomly subsampled) set of predictors, and
the resulting predictions are averaged among the trees to re-
duce overfitting to noise (Brieman, 2001). In contrast, the
ANN model is built as a fully connected network of nodes,
or “neurons”, in which each neuron consists of an activa-
tion function and is connected to other neurons by iteratively
determined weights (Gardner and Dorling, 1998). Both al-
gorithms are advantageous because they make no prior as-
sumptions on the data distributions and can fit non-linear data
(Brieman, 2001; Gardner and Dorling, 1998).

Both our ANN and RFR models followed a similar de-
sign to Weber et al. (2019). Our ANNs were built using a
feed-forward framework consisting of a single input node,
two hidden layers each consisting of 30 neurons (using a
sigmoidal activation function), and a single output layer (us-
ing a linear activation function). A Bayesian L2 (ridge) reg-
ularization parameter was tuned to minimize overfitting, and
the L-BFGS (limited-memory Broyden–Fletcher–Goldfarb–
Shanno) algorithm was used to solve for weights (Byrd et
al., 1995). Each individual decision tree within the RFR was
trained using the standard CART algorithm (Brieman, 2001)
and constrained to a max depth of 25 decision splits, the sim-
plest configuration determined to perform well and minimize
overfitting. These models were built using the scikit-learn
(v0.24.2) implementation of the ANN (“MLPRegressor”)
and RFR (“RandomForestRegressor”) algorithms in Python
3.8 (see Sect. “Code availability”).

In both cases, the models were built as an ensemble of ei-
ther 1000 individual decision trees or individual networks to
minimize bias in predictions. The input data were randomly
divided for use in model training (80 %) and external testing
(20 %). Although RFR is not sensitive to large differences in
predictor variance, predictor data were standardized in both
models by normalization to their respective mean and stan-
dard deviation. Additionally, we applied an inverse hyper-
bolic sine (IHS) transformation to the DMS data prior to
training (Weber et al., 2019). Testing results indicated that
IHS yielded slightly better performance than the more tradi-
tional logarithmic transformations for both of our models.
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Table 1. Data sources and spatial and temporal resolution of predictor variables used to develop the RFR and ANN algorithms. Data pro-
cessing levels are indicated where relevant. All variables were used as predictors (excluding bathymetry) and post-processed to monthly
averaged, 0.25◦ resolution (see Sect. 2.1–2.2).

Variable Spatial Temporal Source Level
resolution (◦) resolution (last access: 14 March 2022)

Sea surface temperature (SST) 0.042 6 d average SeaWiFS/AquaTERRA (1997–2003) or
AquaMODIS (2004–2017):
https://oceancolor.gsfc.nasa.gov/l3/

3

Chlorophyll-normalized fluores-
cence (nFLH : Chl-a)

0.042 Monthly SeaWiFS/AquaTERRA (1997–2003) or
AquaMODIS (2004–2017):
https://oceancolor.gsfc.nasa.gov/l3/

3

Instantaneous photosynthetically
active radiation (iPAR)

0.042 Monthly SeaWiFS/AquaTERRA (1997–2003) or
AquaMODIS (2004–2017):
https://oceancolor.gsfc.nasa.gov/l3/

3

Daily photosynthetically active
radiation (PAR)

0.042 Monthly SeaWiFS/AquaTERRA (1997–2003) or
AquaMODIS (2004–2017):
https://oceancolor.gsfc.nasa.gov/l3/

3

Particulate inorganic carbon
(calcite; PIC)

0.042 Monthly SeaWiFS/AquaTERRA (1997–2003) or
AquaMODIS (2004–2017):
https://oceancolor.gsfc.nasa.gov/l3/

3

Absorption of gelbstoff and detri-
tus at 433 nm (acdm(443))

0.042 Monthly SeaWiFS/AquaTERRA (1997–2003) or
AquaMODIS (2004–2017):
https://oceancolor.gsfc.nasa.gov/l3/

3

Diffuse attenuation coefficients at
490 nm (Kd)

0.042 Monthly SeaWiFS/AquaTERRA (1997–2003) or
AquaMODIS (2004–2017):
https://oceancolor.gsfc.nasa.gov/l3/

3

Sea surface height anomalies
(SSHA)

0.17 Monthly TOPEX/Poseidon:
https://podaac.jpl.nasa.gov/dataset/SEA_SURFACE_
HEIGHT_ALT_GRIDS_L4_2SATS_5DAY_6THDEG_
V_JPL1812

4

Monthly wind speeds 0.25 Monthly ESA Sentinel-3 Copernicus:
https://resources.marine.copernicus.eu/?option=com_
csw&view=details&product_id=WIND_GLO_PHY_
CLIMATE_L4_REP_012_003

n/a

Net primary productivity (NPP) 0.25 Monthly Vertically Generalized Production Model (VGPM):
http://www.science.oregonstate.edu/ocean.productivity/

n/a

Sea surface nitrate (SSN) 1 Monthly World Ocean Atlas 2018 (WO18):
https://www.ncei.noaa.gov/access/
world-ocean-atlas-2018/

n/a

Mixed layer depth (MLD) 0.5 Monthly MIMOC climatology:
https://www.pmel.noaa.gov/mimoc/

n/a

Sea surface salinity (SSS) 0.5 Monthly MIMOC climatology:
https://www.pmel.noaa.gov/mimoc/

n/a

Bathymetry 0.033 n/a ETOPO2:
https://rda.ucar.edu/datasets/ds759.3/

n/a

n/a – not applicable.
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2.3 Sea-to-air fluxes

Sea–air DMS fluxes (FDMS, µmol m−2 d−1) were calculated
from the monthly averaged observed and modelled DMS val-
ues for June, July, and August. FDMS was calculated using
the gas transfer velocity (k, cm h−1) following the modified
approach of Webb et al. (2019):

FDMS = k(DMS)(0.24), (1)

where the factor of 0.24 converts the values to daily fluxes.
The gas transfer velocity has typically been calculated us-
ing a non-linear parameterization (Nightingale et al., 2000),
but recent work has suggested a linear parameterization is
more appropriate for DMS (Bell et al., 2013; Blomquist et al.,
2017; Zavarsky et al., 2018). Since satellite-derived predic-
tors are used to build our models, we calculated the gas trans-
fer velocity using the linear Goddijn-Murphy et al. (2012) k
parameterization, which is both derived from satellite altime-
ter data and normalized to a Schmidt number of 660:

kw,660 = 2.1U10− 2.8, (2)

where U10 is the wind speed (m s−1) at 10 m above sea sur-
face.

Regional summertime fluxes (FDMS, Tg) were calculated
as the average (±SD) quantity of DMS-sulfur emitted over
92 d (June, July, and August) through the area of the mapped
study region (1.28× 107 km2 or 85.0 % of the total bounded
area).

2.4 Comparison against existing algorithms

Simple linear regression (LR) and multiple linear regres-
sion (MLR) models were built for comparison against the
machine-learning algorithms. We also tested the perfor-
mance of our RFR and ANN models against the published al-
gorithms of Simó and Dachs (2002), Watanabe et al. (2007),
Vallina and Simó (2007), and Galí et al. (2018) (hereafter re-
ferred to as SD02, W07, VS07, and G18, respectively). Solar
radiation dose, SRD, used in the VS07 algorithm was calcu-
lated using MLD as described by Vallina and Simó (2007):

SRD=
PAR

Kd×MLD
× (1− e−Kd×MLD). (3)

Each of the four algorithms was assessed using both their
original coefficients and coefficients tuned to our NESAP
dataset using non-linear least squares optimization at both
0.25 and 1◦ spatial resolution (Table 2). In each case, the
algorithms were run using the same monthly averaged pre-
dictors used to develop the RFR and ANN ensembles (see
Sect. 2.1). Predictors were spatially matched to either the full
DMS dataset (i.e. all monthly averaged DMS observations)
or to only the testing partitioned dataset (see Sect. 2.2) for
direct comparison with the RFR and ANN ensemble perfor-
mance (Fig. 2, Table 2).

2.5 Controls on DMS variability

Principal component analysis (PCA) was applied to assess
the relationships between DMS and the nine predictors used
to build the RFR and ANN ensembles. Additionally, non-
parametric Spearman rank correlations were calculated be-
tween each variable and both the modelled and observed
DMS concentrations. Correlation analysis was also extended
to assess the role of taxonomy on predicted DMS concentra-
tions, using the outputs of a chlorophyll-a-based taxonomic
algorithm by Hirata et al. (2011) with NESAP-tuned coeffi-
cients (Zeng et al., 2018).

2.6 Sensitivity tests and predictor selection

To inform our selection of grid size, we assessed the perfor-
mance of both the RFR and ANN models using grid cells
ranging from 0.25 to 5◦ (Fig. 1). From this analysis, we
found that model accuracy was highest at 0.25◦ resolution
(see Sect. 3.1). Smaller grid sizes would presumably further
improve model accuracy but at a significantly higher compu-
tational cost.

We also tested the influence of other biological predictor
variables on the performance of the RFR and ANN mod-
els using either NCP, NPP, Chl-a, or PIC. These sensitiv-
ity tests indicated no significant difference between the var-
ious biological predictor variables, although accuracy was
slightly reduced when PIC was used. We therefore selected
NCP as the biological predictor variable within our model
framework. We also removedKd as a predictor variable after
further sensitivity testing indicated that its exclusion slightly
improved results.

The inclusion of nFLH : Chl-a represents a proxy for
iron limitation (see Sect. 4.1). However, fluorescence yields
corrected for non-photochemical quenching (NPQ) have
been suggested to yield a better iron limitation proxy than
nFLH : Chl-a (Behrenfeld et al., 2009). We therefore calcu-
lated NPQ-corrected fluorescence yields (ϕf) by

ϕf =
nFLH

Chl-a×α× S
×

iPAR

iPAR
, (4)

where α = 0.0147×Chl-a−0.316 and S =

100 mW cm−2 µm−1 sr1 m as described by Behrenfeld
et al. (2009). Our tests indicated nFLH : Chl-a yielded
slightly improved performance overall, whereas ϕf de-
creased both models’ performance. We therefore retained
nFLH : Chl-a and excluded ϕf in our final model design.

3 Results

3.1 Model evaluation

To benchmark the performance of our RFR and ANN mod-
els, we first evaluated the predictive skill of four existing
empirical DMS algorithms (SD02, W07, VS07, and G18),
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Figure 1. Sensitivity of RFR and ANN models to grid size reso-
lution. DMS fluxes (black) and R2 values (red) derived from sen-
sitivity tests of (a) RFR and (b) ANN models to pixel resolutions
of 0.25–5◦. The negative R2 values observed at the lowest resolu-
tion (largest grid cells) indicate that the predicted values explain less
variance than the overall mean of the dataset.

in addition to simple and multiple linear regression models.
Previous studies have demonstrated that these empirical al-
gorithms show strong predictive skill (R2

= 0.53–0.84) over
large scales and in some oceanic regions (Simó and Dachs,
2002; Galí et al., 2018; Watanabe et al., 2007) but signifi-
cantly poorer performance in the NESAP (Herr et al., 2019).
Consistent with these results, we found that the SD02, W07,
VS07, and G18 did not accurately predict NESAP DMS dis-
tributions, even with regionally tuned coefficients improving
performance (Fig. 2, R2

= 0–0.01 at 0.25× 0.25◦; Table 2,
r =−0.15 to 0.36). We also found that simple and multiple
linear regressions performed poorly, yielding virtually no ex-
planatory power for surface water DMS distributions in the
NESAP (R2

= 0–0.05; Figs. 2, 3).
Relative to other published modelling approaches, both

the RFR and ANN models dramatically improved the repre-
sentation of NESAP DMS variability, achieving significantly
higher predictive accuracy (Figs. 2, 3). The collective ensem-
bles of both the RFR and ANN models yielded strong perfor-
mance, explaining up to 62 % of the observed DMS variabil-
ity (R2

= 0.61–0.62; Fig. 3). For individual models within
the ensembles, the ANN method provided slightly better
results (R2

= 0.16–0.50), compared to the individual RFR
models (R2

= 0.16–0.43). However, predicted DMS concen-
trations and sea–air fluxes derived from the ANN ensembles
were more sensitive to the spatial resolution used, although
the predictive accuracy of both models degraded significantly
with coarser resolutions (Fig. 1).

3.2 DMS distributions and sea–air fluxes

In both the RFR and ANN methods, the predicted spatial dis-
tribution of DMS was generally consistent with observations
(Fig. 4a, c, d). The average model-derived DMS concentra-
tions were 4.0± 2.1 and 4.7± 3.0 nM (mean±SD) for the
RFR and ANN ensemble models, respectively, with a sim-
ilar range from 0.3 to 84.3 nM. In both models, the highest
DMS concentrations were largely constrained to coastlines

Figure 2. Taylor diagram showing comparative performance met-
rics of each individual random forest regression (RFR) and artifi-
cial neural network (ANN) model (1000-model ensembles) against
multiple linear regression (MLR) and other statistical DMS models
(see Sect. 2.1 and 2.4). The Pearson correlation coefficients (“Corre-
lation”; outer radius), root mean squared error (“RMSE”; red radial
contours), and standard deviations (SDs; grey radial contours from
origin) are all computed with respect to the observed DMS sam-
ples after inverse hyperbolic sine (IHS) transformation. The refer-
ence of a perfect model fit is shown with a gold star. SDs of the
model outputs are normalized to the SDs of the DMS observations.
RMSE represents a normalized trigonometric derivation from both
the correlation coefficients and normalized SDs. Performance of the
SDO2, W07, VS07, and G18 algorithms reported here are calcu-
lated using regionally tuned coefficients to the NESAP derived from
non-linear least squares optimization (see Sect. 2.4).

and within the Alaska Gyre adjacent to the Aleutian Islands
(Figs. 4b–c, 8c). The greatest discrepancy between DMS
concentrations from the two models was observed in these
regional “hot spots”, where the ANN models emphasize high
DMS within the Alaska Gyre, while the RFR models empha-
size elevated coastal DMS concentrations (Fig. 4b). On av-
erage, the models deviated from each other by 0.49 nM, with
the greatest offsets observed in an area of particularly sparse
DMS observations in the Alaska Gyre (Fig. 4a, b). Future
observational data in this region should help improve model
agreement.

Sea–air DMS fluxes (Fig. 4e, f) derived from ANN pre-
dictions were 18 % higher, on average, than RFR predictions
largely due to higher predicted values in the Alaska Gyre
(Fig. 4d–e, Table 3). The distribution of ANN sea–air fluxes
was also closer to ship-based observations (Fig. 5). Predicted
regional fluxes ranged from 0.8 to 167 µmol m−2 d−1 be-
tween the two models (Figs. 4e, f, 5), with the highest pre-
dicted DMS emissions in August when derived sea–air fluxes
were approximately 1.6- to 2-fold greater than in June and
July (Table 3). Our models yielded a summertime integrated
sea–air flux of 1.16± 1.22 Tg of DMS-derived sulfur, which
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Table 2. Performance of statistical DMS algorithms on NESAP DMS observations binned to monthly 1 and 0.25◦ resolution. Pearson
correlation coefficients (r) and root mean square error (RMSE, in nM) are obtained from the SD02, VS07, W07, and G18 algorithms (see
Sect. 2.4) using either their original published coefficients or coefficients derived from non-linear least squares optimization. Algorithm
performance is evaluated using either the full monthly binned observational dataset or using the testing partitioned dataset (see Sect. 2.2).

SD02 VS07 W07 G18

Original Optimized Original Optimized Original Optimized Original Optimized

1◦ r =−0.09 r = 0.17 r =−0.03 r = 0.03 r =−0.10 r = 0.07 r = 0.02 r = 0.16
All data RMSE= 18.03 RMSE= 4.82 RMSE= 6.67 RMSE= 4.96 RMSE= 11.74 RMSE= 4.83 RMSE= 6.77 RMSE= 4.84

1◦ r =−0.22 r = 0.36 r = 0.11 r = 0.20 r =−0.03 r = 0.02 r =−0.15 r = 0.30
Testing RMSE= 19.09 RMSE= 3.34 RMSE= 5.36 RMSE= 3.47 RMSE= 10.46 RMSE= 3.47 RMSE= 6.19 RMSE= 3.40
dataset

0.25◦ r =−0.05 r = 0.12 r =−0.09 r = 0.11 r =−0.09 r = 0.04 r = 0.06 r = 0.09
All data RMSE= 11.02 RMSE= 7.84 RMSE= 9.57 RMSE= 7.88 RMSE= 13.02 RMSE= 7.80 RMSE= 8.42 RMSE= 7.88

0.25◦ r =−0.03 r = 0.07 r =−0.09 r = 0.10 r =−0.06 r = 0.04 r = 0.04 r = 0.08
Testing RMSE= 9.79 RMSE= 6.79 RMSE= 8.60 RMSE= 6.79 RMSE= 12.02 RMSE= 6.78 RMSE= 7.47 RMSE= 6.80
dataset

Figure 3. Performance of three modelling approaches in predicting observed DMS distributions: (a) multiple linear regression (MLR),
(b) ensemble of artificial neural networks (ANN), and (c) ensemble of random forest regression (RFR). For consistency, all predictions are
partitioned by the training and testing datasets used to build the ensembles (see Sect. 2.2). Model performance (R2) is computed only for the
testing dataset predictions. The dashed line demonstrates a 1 : 1 relationship. Modelled DMS concentrations depicted range from 0.4 to 84.3
(RFR, nM) and 0.3 to 74.6 (ANN, nM).

is consistent with the Lana et al. (2011) climatological esti-
mate of 1.64 ± 0.51 Tg (Table 3).

3.3 Drivers of DMS variability

In addition to modelling the spatial and temporal distribu-
tion of surface water DMS in the NESAP, we examined the
influence of different oceanographic variables as model pre-
dictors. As expected based on previous work (Herr et al.,
2019), no single predictor was found to exert a dominant con-
trol on modelled DMS distributions from either the RFR or
ANN models (Figs. 6, 7). Rather, the relationship between
DMS and other oceanographic variables exhibited significant
region-specific patterns. One of the most compelling regional
signatures was the apparent relationship between DMS and
SSHA. In both models, we found significant positive correla-
tions between DMS and SSHA (ρ = 0.35 and 0.42 for RFR
and ANN, respectively) across the full spatial domain, with a
particularly notable relationship along the northern Alaskan
coastline (Figs. 8, 9). Here, strong winds (Fig. 9j–l), cou-
pled with the northeastern Alaska current flow, produce two

characteristic oceanographic features in the NESAP: strong,
semi-permanent mesoscale eddies collectively referred to as
the Haida, Sitka, and Yakutat eddies (Fig. 8a), as well as
the formation of the high-nutrient, low-chlorophyll (HNLC)
Alaska Gyre (Fig. 8c; Okkonen et al., 2001; Whitney et
al., 2005). Both the monthly (Fig. 9a–i) and summertime-
averaged (Fig. 8a, b) RFR- and ANN-derived DMS concen-
trations are low where these downwelling eddies form. In
contrast, elevated DMS concentrations were associated with
the negative SSHA coastal upwelling areas (Fig. 8a, b) where
phytoplankton productivity is stimulated by nutrient inputs
into the mixed layer.

Modelled DMS concentrations also significantly corre-
lated with hydrographic frontal patterns. We found signifi-
cant correlations between DMS and SST (ρ = 0.36 and 0.35
for RFR and ANN, respectively) which suggested the cen-
tral Alaska Gyre and offshore of Vancouver Island are ar-
eas of elevated DMS variability (Fig. 8b). Both models pre-
dict high DMS levels in the northern frontal zone of the gyre
(140–145◦W) between the 10.5 and 12 ◦C isotherms and the
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Figure 4. Predicted maps of sea surface DMS concentrations and sea–air fluxes. (a) Ship-based observations of mean summertime (June–
August) DMS concentrations used to construct the predictive models. (b) Differences between the (c) random forest regression (RFR) and
(d) artificial neural network (ANN) ensemble-predicted DMS concentrations. (e, f) DMS sea–air fluxes derived from the predicted DMS
concentrations. Colormap ranges are restricted to illustrate trends, with < 1 % of DMS data exceeding the colorbar limits. The inset map
in (b) shows the NESAP study region as a shaded green patch in a global orthographic projection.

Table 3. Monthly and mean summertime NESAP sea–air DMS fluxes. Total cumulative fluxes of DMS-derived sulfur (Tg, mean±SD) are
calculated from the random forest regression (RFR) and artificial neural network (ANN) model predictions (based on an ensemble of 2000
models). Total cumulative NESAP sea–air flux derived from the Lana et al. (2011) climatology is shown for comparative purposes.

RFR ANN Summertime sulfur emissions

This Study Lana et al. (2011)
µmol m−2 d−1 µmol m−2 d−1 Tg S Tg S

June 8.0± 5.3 8.0± 5.5 0.29± 0.19 0.59± 0.24
July 8.2± 3.5 9.7± 4.6 0.33± 0.14 0.41± 0.16
August 12.7± 3.5 16.5± 4.6 0.54± 0.25 0.65± 0.25
June–August 9.7± 2.8 11.4± 4.0 1.16± 0.35 1.64± 0.51

southern frontal zone (42–45◦N) between the 13.5 and 15 ◦C
isotherms (Fig. 8b, c). By comparison, our models suggest
that DMS concentrations are predominantly low in relation
to high sea surface nitrate (SSN) concentrations within the
HNLC gyre (Figs. 8, 9). As discussed below, the relation-
ship between DMS and macronutrient concentrations in the
HNLC waters of the central Gulf of Alaska could indicate
an important role for iron limitation as a controlling factor in
the DMS cycle. The presence of elevated summer nutrients in
offshore waters is taken as a proxy for iron limitation, which
increases over the course of the summer growing season.

Other variables appear to exhibit a more localized or min-
imal influence on DMS cycling. For instance, both NCP
and DMS are elevated in productive nearshore waters, but
NCP generally correlates weakly with both RFR- and ANN-

derived DMS concentrations (ρ = 0.08 and 0.07 for RFR
and ANN, respectively). It should be noted, however, the
empirically derived NCP estimates may carry more uncer-
tainty than other predictors obtained from direct satellite ob-
servations (Li and Cassar, 2016). Similarly to NCP, mod-
elled phytoplankton taxonomic composition (Hirata et al.,
2011; Zeng et al., 2018) was not significantly correlated with
predicted DMS concentrations (ρ < 0.1). Although strong,
persistent winds appear to sustain low DMS concentrations
off the coast of Oregon and Vancouver Island (Fig. 9), and
wind speeds only weakly correlate with DMS overall for the
region (ρ =−0.15 and −0.12 for RFR and ANN, respec-
tively). Additionally, high PAR in these areas corresponds
with low DMS concentrations (Fig. 6d), and there is an over-
all negative correlation between PAR and DMS for the region
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Figure 5. Histograms of DMS sea–air flux distributions derived
from the 1000-model ensemble random forest regression (RFR)
and artificial neural network (ANN) predictions, as well as cruise
observations (Obs.). The sample sizes of both models are equiv-
alent (n= 49 632) and are significantly higher than the observa-
tional dataset (n= 2063). Note that the distribution is restricted to
show trends, with a maximum flux of 238 nM (Obs.). The upper tail
(> 50 nM) consists of only 2.9 % (Obs.) and< 0.1 % (both RFR and
ANN) of the values. Note that the ANN better predicts the upper tail
of DMS observations greater than 20 nM.

Figure 6. Principal component analysis (PCA) showing the rela-
tionships between variables used to construct the predictive algo-
rithms. Eigenvectors (arrows) are superimposed over the principal
components (PCs; data points) for the first two significant modes
obtained from PCA. PCs are normalized and clustered by month
(June–August, see legend for colours), while the eigenvectors are
grouped by ensemble model predictions (gold) and nine predictor
variables (black). The percentage of variance explained by each
mode is indicated along the axes.

Figure 7. Heatmap of Spearman rank correlations (ρ). (a) Correla-
tions of pooled data (June–August) for DMS observations (Obs.),
RFR and ANN predictions per variable. (b) Correlations per month
for the RFR and ANN DMS predictions. All model correlations are
computed on the 1000-model ensembles.

(Figs. 6, 7; ρ =−0.21 and−0.27 for RFR and ANN, respec-
tively). Finally, despite hypothesized links between DMS cy-
cling and iron limitation in the NESAP (Levasseur et al.,
2006; Merzouk et al., 2006; Royer et al., 2010), nFLH : Chl-
a ratios (taken as a proxy for phytoplankton iron stress;
Behrenfeld et al., 2009; Westberry et al., 2013) did not ex-
hibit any coherent spatial patterns and only weakly corre-
lated with our modelled DMS concentrations (ρ = 0.15 and
ρ = 0.16 for RFR and ANN, respectively).

4 Discussion

The relative sparsity of DMS data in many oceanic regions
and the complexity of DMS cycling have limited previous
attempts to model oceanic distributions of this compound
(Simó and Dachs, 2002; Vallina and Simó, 2007; Galí et al.,
2018; Watanabe et al., 2007; Herr et al., 2019). Taking ad-
vantage of expanding data resources, we employed a new
approach to statistically describe DMS distributions in the
NESAP. Our results show that both our RFR and ANN mod-
els substantially improved predictive strength over traditional
empirical approaches (Figs. 2, 3) while identifying several
key DMS relationships and regional patterns across the NE-
SAP (Figs. 8, 9). Although our statistical approach does not
directly elucidate the underlying mechanisms driving these
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Figure 8. Physical drivers of summertime (June–August) NESAP
DMS distributions. (a) Sea surface height anomalies (SSHAs),
(b) predicted DMS concentrations derived from the mean of all
2000 RFR and ANN machine-learning models, (c) sea surface ni-
trate (SSN), and (d) photosynthetically active radiation (PAR). Con-
tours in (b) and (c) show sea surface temperature (SST) isotherms.
Coherent features of elevated sea surface height indicate the pres-
ence of mesoscale eddies, whereas nearshore low SSHA features
reveal areas of upwelling. Colormap ranges are restricted to illus-
trate trends with < 1 % of data exceeding the colorbar limits.

relationships, and not all variability in predictors may be cap-
tured at the single spatial scale used here, we can nonethe-
less make some reasonable inductive inferences. These in-
ferences are discussed below, along with the implications of
the improved predictive performance observed here.

4.1 Relationships with other oceanographic variables

Among the more prominent spatial relationships we ob-
served was the coherence between predicted DMS concen-
trations and SST, as well as the negative correlation between
predicted DMS concentrations and sea surface nitrate (SSN)
within and surrounding the Alaska Gyre (Figs. 6–9). No-
tably, regional SSN, NCP, and Chl-a distributions did not
vary appreciably inside versus outside the gyre, and these
variables were poorly correlated with DMS concentrations
(r =−0.02, ρ = 0.08 with NCP; r = 0.09, ρ =−0.12 with
Chl-a). This suggests that the patterns in surface DMS across
the Alaska Gyre were not simply driven by changes in phyto-

plankton biomass or productivity. The DMS–nitrate relation-
ship may be partially explained by the so-called sulfur over-
flow hypothesis (Stefels, 2000), which suggests that nutrient-
limited phytoplankton increase DMSP production and its
subsequent cleavage to DMS in order to regulate intracel-
lular sulfur quotas when protein synthesis is limited (Hatton
and Wilson, 2007; Kinsey et al., 2016; Simó and Vila-Costa,
2006; Spiese and Tatarkov, 2014; Stefels, 2000). This mech-
anism may help explain the higher predicted DMS concen-
trations at the northern extent of the Alaska Gyre where SSN
concentrations begin to decrease (Fig. 6). Nutrient-dependent
effects may also be important in explaining seasonal variabil-
ity as the DMS–nitrate relationship becomes positive in Au-
gust as phytoplankton growth becomes increasingly nutrient
limited (Fig. 7b).

The apparent relationship between DMS and nitrate could
also result indirectly from the underlying effects of iron lim-
itation. Excess summertime nitrate concentrations are taken
as evidence for iron limitation in the NESAP (Boyd and Har-
rison, 1999; Boyd et al., 2004; Martin and Fitzwater, 1988;
Whitney et al., 2005). Under iron-limiting conditions, DMS
is thought to function, together with DMSP and DMSO, as
part of an antioxidant response to oxidative stress (Sunda
et al., 2002). This hypothesis suggests that iron limitation
should stimulate net production of DMS and DMSP (Buc-
ciarelli et al., 2013; Sunda et al., 2002), which is inconsis-
tent with the overall negative dependence predicted between
DMS and SSN (Fig. 8b, c).

Satellite-based, chlorophyll-normalized fluorescence has
been suggested as an additional proxy for iron limitation.
Low-iron conditions can lead to both a reduction in photo-
system I relative to photosystem II (Strzepek and Harrison,
2004) and an apparent increase in energetically decoupled
light harvesting complexes (Allen et al., 2008; Behrenfeld
and Milligan, 2013), resulting in elevated fluorescence-to-
chlorophyll-a ratios (nFLH : Chl-a) (Westberry et al., 2013).
To our knowledge, this proxy has not been widely investi-
gated with respect to DMS cycling. In our analysis, we found
that nFLH : Chl-a ratios, and the NPQ-corrected fluorescence
yields (ϕf), exhibited only weak positive correlations with the
RFR- and ANN-predicted DMS concentrations (Figs. 6, 7).
Moreover, neither of these metrics exhibited coherent spa-
tial patterns with predicted DMS concentrations, suggesting
a limited role for iron in driving spatial patterns of DMS cy-
cling within the NESAP. However, it is important to note the
potential temporal mismatch between our monthly DMS pre-
dictions and these more instantaneous metrics of iron limi-
tation, which reflect short-term physiological changes (days
to weeks; Behrenfeld et al., 2009; Westberry et al., 2019)
that depend on sporadic iron loading (e.g. aerosol deposi-
tion; Mahowald et al., 2009). Indeed, both natural and artifi-
cial iron-fertilization events have thus far been detected from
satellite-derived nFLH : Chl-a at daily resolution (Westberry
et al., 2013) in contrast to the monthly averaged data used
here. Therefore, modelling frameworks utilizing shorter tem-
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Figure 9. Predicted spatial and temporal (June–August) DMS distributions in relation to underlying oceanographic variables. DMS concen-
trations predicted from (a–c) the random forest regression (RFR) and (d–f) the artificial neural network (ANN) ensemble models are mapped
alongside the monthly averaged (g–i) sea surface height anomalies (SSHAs), (j–l) wind speed (Wind), and (m–o) sea surface nitrate (SSN)
for each month. Colormap ranges are restricted to illustrate trends, with at most 1.5 % of the data beyond the colorbar limits.

poral scales may find a clearer connection between DMS cy-
cling and iron limitation using the chlorophyll a fluorescence
proxy.

Beyond nutrient limitation effects, ambient light fields are
believed to exert significant direct and indirect effects on
DMS cycling (del Valle et al., 2007). At the community level,
high irradiance may inhibit bacterial consumption of DMS
(Slezak et al., 2001; Toole et al., 2006; Lizotte et al., 2012),
while co-varying changes in mixing and high irradiance can
induce transient selectivity for high-light-acclimated species
and influence the proportion of high DMS/P producers within
assemblages (Galí et al., 2013; Vance et al., 2013). Ultravio-
let radiation has been noted to induce high DMS production
and turnover through a proposed cascading oxidation path-
way, which acts to remove harmful reactive oxygen species
(Sunda et al., 2002; Archer et al., 2010). In contrast, more
recent evidence has indicated the potential for elevated DMS
production in the NESAP from the reduction of DMSO due
to light-induced oxidative stress over diurnal cycles (Herr et
al., 2020). Although our modelled DMS concentrations ex-
hibited an overall negative correlation with PAR (Figs. 6, 7a),
monthly correlations indicate a stronger positive correlation
between DMS and PAR in June when the summer solstice
drives high irradiance. In contrast, July and August exhibit
much weaker negative correlations as the summer bloom de-
clines (Fig. 7b). These results provide indirect evidence that

light-induced oxidative stress, possibly coupled with inhibi-
tion of microbial DMS consumption, may influence regional
NESAP DMS distributions, particularly early in the summer.

The overall negative association of DMS and incident light
(Figs. 6, 7a) may also indicate a role for photolysis in DMS
loss (del Valle et al., 2007). Since DMS does not have strong
light absorption properties, the presence of photosensitisers
is necessary for the abiotic photo-oxidation of DMS (Brim-
blecombe and Shooter, 1986). To account for this process,
our models incorporated nitrate (SSN) and acdm(443) (as a
proxy for CDOM; Nelson and Siegel, 2013), both of which
are thought to be dominant photosensitisers of DMS in ma-
rine systems (Taalba et al., 2013; Bouillon and Miller, 2004,
2005; Galí et al., 2016). In the NESAP, nitrate appears to
exert a stronger influence than CDOM on the apparent quan-
tum yields (AQYs) of DMS (Bouillon and Miller, 2004). In
support of this, our results suggest a stronger negative de-
pendence of predicted DMS concentrations on nitrate com-
pared to CDOM within the NESAP, particularly in June when
irradiance is high (Figs. 6, 7). We acknowledge, however,
that the DMS–nitrate relationship likely also reflects phys-
iological impacts of nutrient limitation, as discussed above.
Nonetheless, our results are consistent with elevated rates of
DMS photo-oxidation in the nitrate-replete, low-iron waters
of the Alaska Gyre, where photolysis may drive strong DMS
oxidation and explain the low predicted DMS concentrations
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(Figs. 8, 9). Further in situ work will be required to resolve
the relative contributions of these biotic and abiotic processes
to DMS cycling within these areas.

Among all the statistical relationships we observed, per-
haps the most striking was the association of DMS variabil-
ity with SSHA, particularly along the Alaskan coast and in
relation to mesoscale eddies (Okkonen et al., 2001; Whit-
ney et al., 2005; Figs. 8, 9). To our knowledge, only one
other study has linked SSHA to DMS within the NESAP.
Herr et al. (2019) demonstrated contrasting positive and neg-
ative correlations between DMS and SSHA in offshore and
coastal waters, respectively, in general agreement with our
results. Presently, the underlying mechanisms explaining the
relationship between SSHA and DMS cycling remain un-
clear, yet it is likely that physical mixing processes are impor-
tant. For example, enhanced biological production is known
to be stimulated by eddy re-supply of iron and macronu-
trients via vertical advection and diffusion (Whitney et al.,
2005; Bailey et al., 2008). These nutrient supply processes
would also be expected to influence DMS cycling, as out-
lined above. Elevated abundances of high DMS producers
within anticyclonic eddies with positive sea surface height
anomalies have been noted in the Sargasso Sea (Bailey et
al., 2008), while eddy-induced vertical transport likely sup-
plements nearshore, current-driven upwelling that can also
resupply iron into the coastal waters of the NESAP (Cullen
et al., 2009; Freeland et al., 1984). In addition, eddy propa-
gation can allow cross-shelf transport, distributing micronu-
trients to offshore waters (Fiechter and Moore, 2012), poten-
tially contributing to the apparent elevated DMS concentra-
tions in the outer Alaska Gyre between the 10.5 and 12 ◦C
isotherms (Fig. 8). These mixing and transport mechanisms
could partially explain the influence of elevated productivity
in driving increased nearshore and northern NESAP DMS
concentrations (Figs. 4, 7–9), representing a novel source of
DMS variability in this region.

The taxonomic composition of plankton assemblages is
also a likely source of variability influencing DMS cycling.
Significant changes to DMS production and consumption
rates within the NESAP are expected in response to variable
microbial and phytoplankton taxonomy (Vila-Costa et al.,
2006; Lidbury et al., 2016; Sheehan and Petrou, 2020). Such
taxonomic variability may, in turn, reflect transient commu-
nity composition shifts in response to mixing (Bailey et al.,
2008) and nitrate (Bouillon and Miller, 2004) and iron avail-
ability (Levasseur et al., 2006; Merzouk et al., 2006). The
monthly averaging used in our data processing removes auto-
correlation associated with individual sampling expeditions
(Wang et al., 2020), but it may preclude capturing these tran-
sient taxonomic responses. For instance, coccolithophores
are believed to influence DMS cycling in the NESAP (Herr
et al., 2019; Asher et al., 2011), yet monthly averaged calcite
distributions did not yield increased predictive strength for
DMS concentrations in our analysis (see Sect. 2.6). However,
as satellite PIC preferentially reflects the optical signature

of detached coccoliths, monthly averaged satellite PIC ob-
servations may represent the senescence of coccolithophore
blooms rather than active growth phases. Additionally, ap-
plying a chlorophyll-a-based taxonomic algorithm (Hirata
et al., 2011; Zeng et al., 2018) yielded no further explana-
tion of the DMS variability predicted. The influence of tax-
onomic composition thus remains cryptic within our mod-
elling framework.

4.2 Implications of improved predictive power

As noted above, both the RFR and ANN approaches demon-
strate significantly improved accuracy over existing models,
explaining up to 62 % of observed DMS variability (Figs. 2,
3). This predictive skill is somewhat lower than that achieved
for methane fluxes (Weber et al., 2019) and dissolved in-
organic carbon dynamics (Roshan and DeVries, 2017), in
which R2 values ranging from 0.7 to 0.95 were obtained.
Nonetheless, the dramatic accuracy improvement of our al-
gorithms over traditional methods (Figs. 2, 3) encourages the
further use of these techniques in modelling DMS distribu-
tions.

Improved predictive accuracy provides opportunities to
gain insight into the mechanisms driving DMS cycling. Our
approach has yielded accurate DMS predictions at a 4- to
40-fold higher resolution than previous algorithms (Simó
and Dachs, 2002; Vallina and Simó, 2007; Galí et al., 2018;
Watanabe et al., 2007), enabling the description of mesoscale
patterns and processes (Fig. 8). Extending these methods
to sub-mesoscale resolution will enable investigations into
the dependence of DMS on finer-scale hydrographic pro-
cesses, particularly stratification and frontal dynamics, which
have been increasingly linked to DMS cycling but remain
unresolved mechanistically (Royer et al., 2015; Asher et
al., 2011). Moreover, coupling machine-learning algorithms
with biophysical and tracer export models holds promise to
resolve the contributions of eddy dynamics and upwelling
intensity on DMS variability, likely through nutrient avail-
ability and physiological mechanisms (Asher et al., 2011;
Bailey et al., 2008; Cullen et al., 2009). Recent work has
also developed a new database of DMS apparent quantum
yields (Galí et al., 2016). As the availability of these mea-
surements increases, simultaneous mapping of both DMS
quantum yields and concentrations will become feasible, en-
abling future studies to better parse out the contribution of
photolysis, physical mixing, and biological drivers of DMS
cycling.

Although used in a diagnostic capacity here, our statisti-
cal models also hold potential for prognostic applications.
Frameworks utilizing shorter timescales will likely be able to
detect underlying mechanisms driving observed diel cycling
(Galí et al., 2013; Royer et al., 2016) even if the underlying
mechanisms are still unresolved. We note, however, that cau-
tion will need be exercised as machine-learning models have
a tendency to overfit noise (Weber et al., 2019; Roshan and
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DeVries, 2017; Wang et al., 2020), thus requiring appropri-
ately large training datasets and the use of known “future”
observations to validate predictive accuracy in this context.
The significant variability in DMS cycling across oceanic
regimes will likely also render predictions more successful at
regional, rather than global, scales (Galí et al., 2018; Royer
et al., 2015). Nonetheless, prognostic applications of these
algorithms should be investigated to aid in the future devel-
opment of improved mechanistic models.

5 Conclusions

We have presented a statistical approach for modelling DMS
distributions, which provides significantly higher predictive
skill than traditional methods (Simó and Dachs, 2002; Val-
lina and Simó, 2007; Galí et al., 2018; Watanabe et al., 2007;
Lana et al., 2011) and yields estimates of the summertime
NESAP DMS sea–air fluxes to 1.16± 1.22 Tg S in agree-
ment with previous findings (Herr et al., 2019; Lana et al.,
2011). Our results further underscore the importance of the
NESAP to global DMS production and motivate further ob-
servations in traditionally under-sampled areas such as the
Alaska Gyre and Aleutian Islands. Although we are unable
to directly examine the mechanistic drivers of DMS variabil-
ity, our findings suggest nutrient limitation, light-driven pro-
cesses, and eddy-induced mixing are potentially key drivers
of DMS cycling in the NESAP. Future studies will benefit
from using such statistical algorithms, in conjunction with
field-based process studies and mechanistic models, to bet-
ter understand the underlying dynamics and driving factors
in the oceanic DMS cycle.
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