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Abstract. Gross primary productivity (GPP) is the sum of
leaf photosynthesis and represents a crucial component of the
global carbon cycle. Space-borne estimates of GPP typically
rely on observable quantities that co-vary with GPP such as
vegetation indices using reflectance measurements (e.g., nor-
malized difference vegetation index, NDVI, near-infrared re-
flectance of terrestrial vegetation, NIRv, and kernel normal-
ized difference vegetation index, kNDVI). Recent work has
also utilized measurements of solar-induced chlorophyll flu-
orescence (SIF) as a proxy for GPP. However, these SIF mea-
surements are typically coarse resolution, while many pro-
cesses influencing GPP occur at fine spatial scales. Here,
we develop a convolutional neural network (CNN), named
SIFnet, that increases the resolution of SIF from the TRO-
POspheric Monitoring Instrument (TROPOMI) on board of
the satellite Sentinel-5P by a factor of 10 to a spatial res-
olution of 500 m. SIFnet utilizes coarse SIF observations
together with high-resolution auxiliary data. The auxiliary
data used here may carry information related to GPP and
SIF. We use training data from non-US regions between
April 2018 until March 2021 and evaluate our CNN over
the conterminous United States (CONUS). We show that
SIFnet is able to increase the resolution of TROPOMI SIF
by a factor of 10 with a r2 and RMSE metrics of 0.92 and
0.17 mW m−2 sr−1 nm−1, respectively. We further compare
SIFnet against a recently developed downscaling approach
and evaluate both methods against independent SIF mea-
surements from Orbiting Carbon Observatory 2 and 3 (to-
gether OCO-2/3). SIFnet performs systematically better than

the downscaling approach (r = 0.78 for SIFnet, r = 0.72 for
downscaling), indicating that it is picking up on key features
related to SIF and GPP. Examination of the feature impor-
tance in the neural network indicates a few key parameters
and the spatial regions in which these parameters matter.
Namely, the CNN finds low-resolution SIF data to be the
most significant parameter with the NIRv vegetation index
as the second most important parameter. NIRv consistently
outperforms the recently proposed kNDVI vegetation index.
Advantages and limitations of SIFnet are investigated and
presented through a series of case studies across the United
States. SIFnet represents a robust method to infer continuous,
high-spatial-resolution SIF data.

1 Introduction

Photosynthesis represents the single largest CO2 flux be-
tween the atmosphere and the biosphere. At the canopy level,
the sum of all leaf photosynthesis is termed gross primary
productivity (GPP), and accurate characterization of GPP
represents a major uncertainty in the carbon cycle (Friedling-
stein et al., 2019). Directly measuring GPP from remote sens-
ing systems (e.g., satellites) is not presently possible. Instead,
previous work has utilized stationary measurements of net
ecosystem exchange (NEE) from flux towers that can be de-
composed into GPP and respiration (e.g., Reichstein et al.,
2005). Observable quantities from satellites (e.g., vegetation
indices computed from reflectance data) are then related to
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GPP inferred from flux towers (e.g., Huete et al., 2006; Jung
et al., 2019; Sims et al., 2006; Zeng et al., 2020) in light use
efficiency (LUE) (Mahadevan et al., 2008) or machine learn-
ing models (Jung et al., 2019) to derive global estimates of
GPP.

Vegetation indices such as the normalized difference veg-
etation index (NDVI) and near-infrared reflectance of ter-
restrial vegetation (NIRv) combine two (or more) spectral
bands with different absorption characteristics (Hanes, 2013)
to infer quantities related to plant physiology and canopy
structure. The MODIS instrument was launched on the Terra
and Aqua satellites in 1999 and 2002, respectively. This in-
strument has proved particularly useful due, in part, to the
long operational lifetime, and vegetation indices can be de-
rived from the individual reflectance bands of MODIS. More
recently launched satellites, like Sentinel-5P, carry instru-
ments with the necessary signal-to-noise ratio and spectral
resolution to retrieve solar-induced chlorophyll fluorescence
(SIF). The electromagnetic signal SIF is emitted by chloro-
phylls during photosynthesis. SIF is emitted in the red–far-
red wavelengths of 650–850 nm (Magney et al., 2020). It is a
way, besides photochemistry and nonphotochemical quench-
ing, for de-excitement of the chlorophylls (Turner et al.,
2020; Köhler et al., 2018). Even though the link between
chlorophyll fluorescence and photosynthesis is nonlinear at
leaf and canopy scale, that does not hold for satellite scales,
in which a linear relationship of SIF to GPP is frequently
reported (e.g., Turner et al., 2021; Magney et al., 2020;
Frankenberg et al., 2011; Joiner et al., 2011).

Vegetation indices (also termed greenness) can be re-
garded as a measure of photosynthetic capacity (Sellers,
1985), whereas SIF indicates photosynthetic activity. SIF has
been shown to be a powerful proxy for estimating GPP (Mag-
ney et al., 2019; Turner et al., 2021), to capture the impact of
drought on photosynthetic activities across different vegeta-
tion types (Shekhar et al., 2020a; Castro et al., 2020), and
to assess the regional source of carbon emissions (Shekhar
et al., 2020b).

Köhler et al. (2018) described the first retrievals
of SIF from the TROPOspheric Monitoring Instrument
(TROPOMI), the sole instrument on the Sentinel-5P satellite.
The TROPOMI instrument has an equatorial crossing time of
13:30 local solar time and a 16 d orbit cycle. TROPOMI has a
wide swath (2600 km across track) that allows for near-daily
temporal resolution and a spatial resolution of 5.5× 3.5 km.
This was a substantial improvement to previous satellite in-
struments measuring SIF that were limited to 40× 40 km
spatial resolution (Joiner et al., 2013). Despite the higher
spatial resolution of TROPOMI, there have been efforts to
estimate SIF at finer spatial scales (e.g., Turner et al., 2020).
This is motivated by the importance of fine-scale phenomena
in the carbon cycle such as ecosystem fragmentation (e.g.,
Haddad et al., 2015).

Globally, 20 % and 70 % of the remaining forests are
within a distance of 100 m and 1 km, respectively, from the

forest edges, meaning that most of the forests are fragmented
(Haddad et al., 2015). Reinmann and Hutyra (2017) show
that the carbon uptake and storage of trees near the forest
edge increase up to 13± 3 % and 10± 1 %, respectively. On
the other hand most of our understanding about forest car-
bon fluxes comes from intact ecosystems, resulting in a mis-
match between the ecosystems we are trying to quantify and
the data we are using to do so (Smith et al., 2018). Higher-
resolution estimates of photosynthetic activity might enable
us to include fragmentation effects of ecosystems to global
carbon cycle estimates or biosphere models like Jung et al.
(2019), Wu et al. (2021), and Turner et al. (2021). Addition-
ally, recent work has shown the importance of fine-scale vari-
ations in the urban biosphere on the overall carbon flux for a
city (e.g., Miller et al., 2020).

There has been some recent work with the goal of increas-
ing the resolution of existing global SIF estimates through
downscaling methods (i.e., physics-based methods). For ex-
ample, Turner et al. (2020, 2021) used NIRv to partition SIF
within a particular TROPOMI scene and oversampled it us-
ing a 16 d window afterwards, resulting in a daily 500 m SIF
estimate over the conterminous United States (CONUS). Du-
veiller et al. (2020) downscaled GOME-2 satellite SIF from
0.5 to 0.05◦ using a parameterization with a term for the
fraction of absorbed photosynthetically active radiation (fA-
PAR), one for water stress, and one for heat stress based on
MODIS data. Siegmann et al. (2021) used airborne data to
downscale far-red SIF from canopy to leaf level.

Machine learning has also been used to create global, high-
resolution SIF data sets. Li and Xiao (2019), Yu et al. (2019),
and Zhang et al. (2018) used spectral bands from MODIS as
input to neural networks that were trained with Orbiting Car-
bon Observatory 2 (OCO-2) SIF data to build global contin-
uous SIF products at 0.05◦ resolution. OCO-2 has a narrow
swath, and, therefore, the networks are trained only in the re-
gions where OCO-2 SIF is available by using MODIS data
as input. After training, the global MODIS data are used as
input to estimate SIF on a global scale. Gentine and Alemo-
hammad (2018) use MODIS reflectance data as input and
predict GOME-2 normalized by clear-sky irradiance. Mul-
tiplying that with a MODIS-derived photosynthetic active
radiation product results in a MODIS only estimated SIF,
termed RSIF. Zhang et al. (2021) trained a convolutional neu-
ral network (CNN) with MODIS data on the artificial GOSIF
data set (Li and Xiao, 2019) at a resolution of 0.05◦ and
used the trained network and MODIS data at a resolution of
0.008◦ to estimate SIF at 0.008◦. The physics-based down-
scaling approach from Turner et al. (2020) can only consider
one variable for weighting the SIF signal, while the machine-
learning-based approaches in the literature can consider more
than one variable – but many do not use SIF data as an input
to their model, meaning that they estimate SIF based on re-
flectance data.

Here we build a convolutional neural network to obtain
high-resolution SIF, named SIFnet. SIFnet increases the spa-
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tial resolution of TROPOMI SIF by considering coarse-
resolution SIF with high-resolution auxiliary data as input.
These auxiliary data consist of either proxies of SIF or pho-
tosynthetic drivers. SIFnet is trained using data with near-
global coverage. Different model parameters (structure, in-
put features, and scaling factors) are compared and evalu-
ated. After training the model, the resolution of TROPOMI
SIF is refined by a factor of 10 to a spatial resolution
of 0.005◦. This product is then compared against a re-
cent downscaling method from the literature (Turner et al.,
2020). Both high-resolution estimates are validated over
CONUS against the independent SIF measurements of the
OCO-2 and OCO-3 instruments (together OCO-2/3) (OCO-
2 Science Team/Michael Gunson, 2020; OCO-3 Science
Team/Michael Gunson, 2020).

2 Data sets

2.1 Data sources

The input data to the neural network are listed in Table 1.
These diverse global data products are expected to capture a
broad range of photosynthetic drivers. The table divides the
data into time-varying or time-invariant and training or vali-
dation data. The native spatial resolution is shown in the last
column of Table 1. In a first step, all data sets are aggre-
gated to 0.05◦ spatial resolution and 16 d time steps. In the
case of a higher native spatial resolution, the data are regrid-
ded by computing the mean value that falls into the coarse-
resolution grid cell. In the case of coarser resolutions than
0.05◦, it is resampled to the common grid. Quality control
flags and cloud filtering are applied when necessary.

MODIS measures the reflected radiance from the earth
surface in seven different spectral bands covering the visible
and infrared spectral region. Vegetation indices are computed
by combining the near-infrared (where chlorophyll is non-
absorbing) and the red band (where chlorophyll is highly ab-
sorbing) (Hanes, 2013). Specifically, the normalized differ-
ence vegetation index (NDVI) (Tucker, 1979), near-infrared
vegetation index (NIRv) (Badgley et al., 2017), the kernel
NDVI (kNDVI) (Camps-Valls et al., 2021), and the enhanced
vegetation index (EVI) (Huete et al., 2002) are computed as
follows:

NDVI=
ρNIR− ρRED

ρNIR+ ρRED
, (1)

NIRv = ρNIR ·NDVI, (2)

kNDVI= tanh(NDVI2), (3)

EVI=G ·
ρNIR− ρRED

ρNIR+C1 · ρRED−C2 · ρBLUE+L
. (4)

EVI coefficients for MODIS are as follows: L= 1, C1 = 5,
C2 = 7.5, and G= 2.5 (Huete et al., 2002). ρNIR is the near
infrared band, ρRED is the red band, and ρBLUE is the blue
band from the MODIS satellites.

Temperature and precipitation are taken from ERA5-Land
data at the time step of interest and with a delay of one time
step. Soil moisture has been shown to be a strong driver of
global photosynthesis due, in part, to its impact on vapor-
pressure deficit (Humphrey et al., 2021). Here we use the
coarse-resolution NASA USDA Soil Moisture Active Pas-
sive (SMAP) soil moisture (Entekhabi et al., 2010) as a
model input and explore its correlation with TROPOMI SIF.
The cosine of the solar zenith angle (SZA) is a proxy for
photosynthetically active radiation (PAR) under cloud-free
conditions (Chen et al., 2020; Turner et al., 2021).

Time-invariant data sets consist of elevation data, frac-
tional land cover classification, and forest fragmentation
data. The land cover classification (Buchhorn et al., 2020)
is resampled to 11 fractional classes. The forest fragmenta-
tion data consist of two bands and have a native resolution
of 30 m. One band describes the share of forest within the
grid cell (forest share) and the other how much of that forest
is edge forest (defined as a maximum distance to an edge or
other land cover type of 30 m). OCO-2 and OCO-3 have high
spatial resolution (2.25× 1.29 km) but small swaths (10 km)
and a 16 d revisit time.

2.2 Covariation of input data sets with SIF

We are interested in understanding what these different data
sets are telling us about SIF and also how they co-vary with
each other. We compare all collected time variant data against
TROPOMI SIF in the spatial and temporal domain. As a
quantitative measure, we compute the Pearson correlation
coefficient (r) (Benesty et al., 2009). Figure 1 shows a scat-
ter comparison of SIF against the auxiliary data at the lowest
resolution of the two corresponding sets. Negative SIF values
(on the x axis in Fig. 1) are due to relatively high retrieval er-
rors which scale with radiance levels (Köhler et al., 2018).

Figure 2 shows spatial patterns of the Pearson correlation
coefficients between both NIRv and kNDVI to SIF. In both
our spatial (Fig. 2) and temporal (Fig. 1) analyses, we find
NIRv is a better predictor for SIF than kNDVI, which con-
tradicts the recent findings from Camps-Valls et al. (2021).
However, Camps-Valls et al. (2021) used GOME-2 SIF in-
stead of TROPOMI SIF.

The vegetation index NIRv outperforms kNDVI in nearly
all vegetated regions. Only central Asia, the Sahara, and very
high latitudes show a better correlation of kNDVI with SIF.
At the same time, these regions generally show a weaker cor-
relation of vegetation indices with SIF.

3 Development and optimization of SIFnet

3.1 Training and optimization of the neural network

Convolutional neural networks (CNNs) are supervised ma-
chine learning methods that need matching feature and
ground truth data pairs to compute the loss that is back prop-
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Table 1. Data sets used in this work. ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; DNF: deciduous needleleaf forest;
DBF: deciduous broadleaf forest; MF: mixed forest; UF: unknown forest.

Data Time Training Validation Spatial
invariant resolution

Sentinel-5P TROPOMI1 SIF at 740 nm × 0.05◦

MODIS MODIS bands NIR, red, blue, × 500 m
MCD43A4.v006 green, SWIR1,
(v06)2 SWIR2, SWIR3

Vegetation indices NIRv, kNDVI, NDVI, × 500 m
EVI

ERA5-Land Temperature Mean air temperature, × 0.1◦

Hourly – ECMWF mean air temperature
Climate Reanalysis3 with 16 d delay

Precipitation Total precipitation, × 0.1◦

total precipitation
with 16 d delay

NASA USDA Enhanced SMAP Surface soil moisture, × 10 km
Soil Moisture4 subsurface soil moisture

Solar zenith angle5 Cosine of the solar zenith × Computed
angle

USDA GMTED2010: Elevation × × 7.5 arcsec
Global Multi-resolution
Terrain Elevation Data 20106

Copernicus Corine global land cover Non-vegetated, ENF, EBF, × × 100 m
classification (CLC2018)7 DNF, DBF, MF, UF, shrubs,

grassland, crops, wetland

Forest fragmentation8 Forest share × × 30 m

Edge share × × 30 m

OCO-29 SIF at 740 nm × 2.25× 1.29 km

OCO-310 SIF at 740 nm × 2.25× 1.29 km

References: 1 Köhler et al. (2018); 2 Schaaf and Wang (2015); 3 Copernicus Climate Change Service (2017); 4 Entekhabi et al. (2010); 5 PySolar (2021); 6 Danielson and
Gesch (2011); 7 Buchhorn et al. (2020); 8 Morreale et al. (2021); 9 OCO-2 Science Team/Michael Gunson (2020); 10 OCO-3 Science Team/Michael Gunson (2020).

agated (Bishop, 2007). As such, we begin by coarsening SIF
data to 0.5◦ and use it with auxiliary data at 0.05◦ as input
to SIFnet, allowing us to estimate SIF at 0.05◦. The model
output is compared against the measured TROPOMI SIF at
0.05◦. After optimizing the model it can resolve a scaling
factor of 10 between coarse-resolution input SIF and model
output SIF. Figure 3 visualizes this method. In the following
step of estimating high-resolution SIF, the feature SIF data
have a resolution of 0.05◦ and auxiliary data of 0.005◦, re-
sulting in a model output of SIF at 0.005◦.

Figure 3 shows our chosen CNN model structure for
SIFnet. The model consists of convolutional and rectified lin-
ear unit (ReLU) layers that are arranged in a sequence. After
the first convolutional block there is a residual connection
that skips one ReLU and two convolutional layers. Convolu-

tional kernel sizes are either (3,3) or (1,1). This structure is
adapted from the literature findings from, for example, Lim
et al. (2017). Further, several model structures (Sect. S4.3 in
the Supplement) with a different amount of layers, channels,
or residual blocks are compared. The chosen model structure
represents the best trade-off between complexity and perfor-
mance. The input feature collinearity and principal compo-
nent analysis (PCA) presented in Sect. S3 show that some
input features have high correlations with each other. A to-
tal of 9 out of the 19 PCs in the time variant and 13 out of
the 15 PCs in the time-invariant data carry above 99 % of the
variance. This suggests that fewer channels should be used
in the CNN layers than the feature dimension (because some
variables are similar). Therefore the number of channels in
the first layer of SIFnet reduces the complexity from 34 to
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Figure 1. Scatter comparison of SIF to timely changing auxiliary data. The time span of measurements is from April 2018 to March 2021 at
16 d resolution. Longitude and latitude borders are from −180 to 180◦ and −60 to 70◦, respectively. The comparison resolution corresponds
to the lowest resolution of the two corresponding products. For all MODIS data the resolution is 0.05◦ and for precipitation, air temperature,
surface soil moisture (ssm), and subsurface soil moisture (susm) 0.1◦. To quantify the goodness of fit we compute the Pearson correlation
coefficient (r) for each subplot (Benesty et al., 2009).

16 channels (Fig. 3). More complex model structures did not
result in a notably improved loss metrics (Sect. S4.3).

For training SIFnet we use 3 years of data (April 2018–
March 2021) in 16 d time steps. The study regions are shown
in Sect. S2. There are five folds used as training data: two
folds over Asia, one over Europe, one over the southern part
of Africa, and one over South America. Our validation re-
gion is North America (Fig. S4). The hyperparameter tuning
is done by training the model on the five folds and comput-
ing the loss of the validation data. The parameters are opti-
mized to minimize the loss of the validation data set. Due to
computational reasons and the size of the data set, we do not
apply a cross validation in the optimization process. The fi-
nal product consists of high-resolution SIF at 0.005◦ and is
validated against independent SIF measurements of the in-
struments OCO-2 and OCO-3.

We center and scale each feature individually by subtract-
ing the mean and normalizing by the standard deviation. For
data augmentation of the training data, we use random crops
and random flips. Each day of one fold has a matrix size

of 1200× 900 pixels. We analyze 69 d in 16 d steps over
3 years. For each input during the training process we ran-
domly crop a matrix with a size of 100× 100 pixels. As some
areas have a large fraction of missing values (e.g., due to wa-
ter or clouds), we only use cropped matrices that consist of
> 80 % valid pixels in the SIF product. Further, we randomly
flip vertically and horizontally, both with a probability of 0.5.
These data augmentation methods provide us with a huge
database that should avoid overfitting the network parame-
ters. During training, all missing values in the data are set to
zero. That mainly affects water regions as the share of miss-
ing values in the SIF data used is 91.2 % caused by water. In
case there is a missing value in the SIF training sample, all
feature values of this pixel are also set to zero to ensure the
network does not learn false relationships between the pre-
dictors and the target variable (that also applies to vegetated
regions). For the MODIS bands we applied the quality index
value 0 (best quality only). This filtering also removes pixels
that include clouds. To ensure a high coverage we interpo-
lated in time for MODIS. Further, training and test folds are
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Figure 2. Pearson correlation coefficient of NIRv and kNDVI to TROPOMI SIF. Data are compared at 0.05◦ spatial resolution and in 16 d
time steps starting in April 2018 until March 2021. The value per grid cell in (a) and (b) represents the Pearson correlation coefficient of the
vegetation index to SIF in time. Panel (c) represents the difference in correlation of the vegetation indices to SIF.

selected based on coverage; i.e., the regions near the Equa-
tor (between ±22.5◦) are not included in the data cubes as
MODIS reflectance is sensitive to clouds which appear fre-
quently in these regions (compare Figs. S2 and S4). All
static variables have full coverage on land. ERA5 data has
full spatial and temporal coverage. We did not apply any fur-
ther quality filtering on SMAP soil moisture data. The data
are provided as a level 3 product on Google Earth Engine.

Our individual loss function is comprised of two loss
terms. We use the mean squared error (MSE) loss in com-
bination with the structural dissimilarity index (DSSIM).
The DSSIM is the countermeasure of the structural similar-
ity index (SSIM): DSSIM= 1−SSIM (Brunet et al., 2011).
Therefore, we are not only optimizing the overall deviation
of the estimated SIF to the measured SIF but also the struc-
tural patterns. Section S4.4 shows the benefit of including
both MSE and SSIM terms in the loss function. Equation (5)
shows our loss function:
L= a ·MSE+ b ·DSSIM

= a ·
1
n
·

n∑
i=1

(yi − ỹi)
2

+ b ·

1−
2 ·µY ·µỸ ·

(
2 · σY Ỹ + c2

)(
µ2
Y +µ

2
Ỹ
+ c1

)
·

(
σ 2
Y · σ

2
Ỹ
+ c2

)
 , (5)

where n is the number of data points, yi is the data point i
in measured (target variable) SIF, ỹi is the data point i in es-
timated SIF, Y values are all data points of measured (target
variable) SIF, Ỹ values are all data points of estimated SIF,
µY is the mean of Y , µỸ is the mean of Ỹ , σY is the vari-
ance of Y , σỸ is the variance of Ỹ , σY Ỹ is the covariance of Y
and Ỹ , and c1 = (k1L)

2 and c2 = (k2L)
2 are variables for sta-

bilization with L= 2 bit px−1
− 1, k1 = 0.01, and k2 = 0.03.

The parameters a and b define the weights of the overall loss
of the two individual losses. The overall model performance
did not show a notable sensitivity to different a and b val-
ues. To approximately keep the individual losses in the same
order of magnitude, we set a = 1 and b = 0.3. DSSIM is in
the range of 0 to 1, with 0 meaning structurally similar and 1
structurally dissimilar.

We use the optuna library for the hyperparameter tuning of
the learning rate, weight decay, and epoch of the CNN (Akiba
et al., 2019). Here, a tree-structured Parzen estimator sampler
suggests the parameters of the next trial which is based on a
Gaussian mixture model. Section S4.1 provides more details
on this hyperparameter tuning.
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Figure 3. CNN model structure and training and estimation method. Yellow and red blocks are convolutional and ReLU layers, respectively.
Notation of convolutional layers: k(X1,X2): kernel sizes are X1,X2; chY : number of channels is Y . For training, the data are upscaled. We
input auxiliary data at the target resolution and SIF data at a factor of 10 coarser.

3.2 Results of model optimization

Figure 4 summarizes the results of the optimized model. We
observe an overall r2 of 0.92, SSIM of 0.87, and RMSE
of 0.17 mW m−2 sr−1 nm−1 between the estimated SIF from
SIFnet and retrieved SIF from TROPOMI at 0.05◦ (Fig. 4e).
SSIM is calculated by comparing the average SIF signal of
the 3 years under investigation. Figure 4e shows the three
metrics for each month of the year. We observe the lowest r2

values in January, February, and March. These are associated
with low SIF values and, consequently, lower signal-to-noise
ratios which drive the decreased performance. SSIM also in-
dicates reduced performance during this time period. RMSE
values are correlated with overall productivity with the low-
est RMSE in winter; this is expected as this metric depends
on the magnitude of the signal.

3.3 Which features drive SIFnet?

We are particularly interested in understanding which fea-
tures drive our neural net. Here we evaluate the feature im-
portance using the permutation feature importance method

(Breiman, 2001; Fisher et al., 2019; Gregorutti et al.,
2015, 2017) with our North American validation data at a tar-
get resolution of 0.05◦. The method first computes the RMSE
including all input features (RMSEorig.). We then apply the
following three steps.

1. Shuffle all pixels of one input feature randomly in time
and space.

2. Compute the new RMSE of the estimation
(RMSEF,shuf.).

3. Compare the shuffled RMSE to the original: dF,shuf. =

RMSEF,shuf./RMSEorig.

Figure 5 shows the feature importance of clustered input
classes and individual features to the overall estimation. Mul-
tiple applications of the feature permutation yielded negligi-
ble differences in feature importance. Figure 5a shows the
RMSE share of shuffled data to the RMSE of unshuffled
data. SIFnet finds low-resolution SIF (SIFLR) to be the most
important input variable, followed by the vegetation index
NIRv and the cosine of the solar zenith angle (cos(SZA)).
All other variables do not contribute notably to the model
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Figure 4. Test set results of CNN training at 0.05◦. Panel (a) shows low-resolution SIF that is used as model input, (b) shows the estimated
SIF at 0.05◦ by SIFnet, (c) shows the measured TROPOMI SIF at 0.05◦ from Köhler et al. (2018), (d) shows the scatter comparison between
TROPOMI SIF and the SIFnet estimate at 0.05◦, and (e) shows for each investigated month the metrics r2, SSIM, and RMSE. Metrics are
calculated at 16 d resolution and averaged to monthly values afterwards.

Figure 5. Feature importance. Panel (a) shows the total RMSE of the permuted feature divided by the RMSE without feature permutation,
and (b) shows the RMSE of each pixel with permuted features divided by the RMSE without feature permutation. Some input variables are
clustered, and all variables of that class are permuted at the same time. ρMODIS: all seven MODIS bands; LULC: all 11 land cover classes;
other VIs: kNDVI, NDVI, and EVI; Mereor.: temperature, precipitation, temperature with 16 d delay, and precipitation with 16 d delay; SM:
surface soil moisture and subsurface soil moisture.
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output. This result strengthens our findings from Figs. 1 and
2 that NIRv is better correlated with SIF from TROPOMI
than kNDVI. Further, our feature importance is in line with
Dechant et al. (2022) in which they find a high correlation of
SIF with NIRv multiplied with photosynthetic active radia-
tion (PAR), of which the cos(SZA) can be used as a proxy.
The CNN is a data-driven method and is not restricted by
LUE terms. Although SM and meteorology (air temperature
and precipitation) play a key role for photosynthesis, we find
that they are not important to our model output. This does
not necessarily imply that SIF is not linked to these param-
eters. This can be explained by the following. (1) The vari-
ables SM and those from ERA-5 are at coarser resolution
than the actual model output of the training phase which is
at 0.05◦ (10 000 and 11 132 m for SM and ERA-5, respec-
tively). Therefore each pixel at the resolution of 0.05◦ does
not have its unique value for SM or ERA-5, but multiple
cells can be within one SM or ERA-5 pixel. (2) Not only
do the auxiliary data of the model estimate higher-resolution
SIF, but they are computed together with coarse-resolution
SIF. Therefore, events like heat stress that impact a bigger
area than the actual model output might be represented in the
coarse-resolution SIF. (3) We have aggregated the data used
to 16 d time steps. LUE parameters influencing SIF might
have a bigger impact on the estimation at higher temporal
resolutions.

Figure 5b shows the spatial feature importance over the
validation set in North America for the four most important
features. We observe that SIFLR has the biggest impact in
the eastern US, which corresponds strongly to the high vs.
low productivity regions in the US. NIRv is a strong predic-
tor in the southeastern US and in shrub regions in the west-
ern US. The contribution of cos(SZA) is highest at high lat-
itudes and weakens at lower latitudes. NIRv is found to be
less predictive of SIF at high latitudes. The land mask is the
fourth most important input feature and contributes most in
shrub regions. These four features consistently stand out as
the strongest predictors. Other inputs such as fragmentation
and soil moisture were not found to be strong predictors here.
In Sect. S4.6 we test higher scaling factors between low- and
high-resolution SIF. Even with scaling factors of 20 and 50
low-resolution SIF stays the most and second most important
input feature, respectively.

We also examined different combinations of inputs such
as directly including the MODIS bands as opposed to veg-
etation indices derived from MODIS bands (see Fig. S11).
Low-resolution SIF remains the most important feature, fol-
lowed by the NIR band ρNIR. The land cover products in-
crease in relevance. Interestingly, when low-resolution SIF is
omitted as input for the model, we observe contrasting re-
sults to Fig. 5 in which NIRv is no longer a leading predictor.
We find that cos(SZA), ρNIR, kNDVI, and NDVI are the four
most important features in this case (see Fig. S12). This may
result from the collinearity between input features or sug-
gests that another combination of ρNIR and ρRED is better

correlated to SIF than, for example, NIRv or kNDVI. This
finding was robust to multiple optimizations and permuta-
tions.

3.4 Comparison of SIFnet to downscaled SIF

Figure 6 shows the 0.005◦ SIF estimated by SIFnet and
downscaled SIF from Turner et al. (2020). The difference be-
tween the two SIF estimates can be seen in Fig. 6c. SIFnet
predicts lower SIF in the western US drylands and higher
SIF over forested regions in the eastern US. This prediction
of lower SIF in drylands is interesting because Turner et al.
(2020) resorted to an ad hoc bias correction in these regions
due to a low signal-to-noise ratio. Recent work from Wang
et al. (2022) concluded that SIF and NIRv capture comple-
mentary events in western US drylands as a proxy for GPP
and that the linear correlation of SIF to GPP was substan-
tially lower in these regions compared to other vegetation
types. We also observe systematic differences in the pre-
dicted SIF in urban areas. These regions are further evalu-
ated in Fig. S17. Notably, the SIFnet estimate is systemati-
cally lower than the downscaling estimate in most urban re-
gions examined here, Seattle being a notable exception. Both
SIFnet and the downscaling approach allocate SIF to large
urban parks and green spaces, but SIFnet predicts little-to-
no SIF over the rest of the urban area. In particular, SIFnet
estimates nearly zero SIF in the urban core of Los Angeles
and San Francisco. SIFnet and the downscaling method pre-
dict comparable SIF as we move away from the urban core.
Fine-scale features in the urban region are visible in both SIF
estimates such as the Schiller Woods in Chicago (42.0◦ N,
87.8◦W).

4 Validation against OCO-2/3 SIF

The differences in SIF predicted from SIFnet and the
downscaled SIF beg the question: which is correct?
Here we evaluate both SIF products against indepen-
dent SIF observations from OCO-2 and OCO-3 (OCO-
2 Science Team/Michael Gunson, 2020; OCO-3 Science
Team/Michael Gunson, 2020). These instruments have
higher spatial resolution than TROPOMI and, as such, can
be used to evaluate the high-resolution patterns predicted
by both SIFnet and the downscaling approach. Specifi-
cally, OCO-2 and OCO-3 have nadir footprint sizes of
2.25× 1.29 km. However, OCO-2 and OCO-3 do not provide
full spatial coverage. They observe narrow swaths that are
∼ 10 km across-track. OCO-3 also provides a scanning mode
to observe urban areas. Here, we use quality-checked OCO-
2 data from April 2018 until March 2021 and OCO-3 data
from July 2019 until March 2021. To compare the ungrid-
ded OCO-2 and OCO-3 data against the SIF estimated from
TROPOMI, we compute the weighted average of all 0.005◦

grid cells that fall within the bounds of an OCO footprint.
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Figure 6. SIFnet estimated SIF at 0.005◦ for CONUS and its comparison to downscaled SIF. Panel (a) shows the SIFnet estimated SIF at
0.005◦, (b) shows the downscaled SIF from Turner et al. (2020), and (c) shows the difference between SIFnet and downscaled SIF. Negative
values imply a higher SIFnet SIF and positive values a higher downscaled SIF value.

Here, the TROPOMI estimates are subsampled to 0.0005◦

(approx. 50 m at Equator), and the mean value is computed
for all values which fall into the OCO footprint. For a quan-
titative comparison between OCO-2/3 and the SIFnet and
downscaled estimate, the metrics r , r2, and RMSE are com-
puted.

The high-resolution SIF estimates from SIFnet, the down-
scaling, and OCO are instantaneous SIF measurements taken
at a specific time of the day, while the time of TROPOMI
observations can differ substantially. Here, we compute
the daily average SIF by scaling with the cosine of the
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SZA (Frankenberg et al., 2011):

Daily SIF(x,y)= SIF(τs,x,y) ·

∫ τf
τo

cos[SZA(τ,x,y)]dτ

cos[SZA(τs,x,y)]
, (6)

where Daily SIF(x,y) is the daily integrated SIF estimate,
SIF(τs,x,y) is the instantaneous SIF at the individual mea-
surement time, SZA is the solar zenith angle, τs is the time
of the satellite measurement, τo is the time of sunrise, and τf
is the time of sunset. This implicitly assumes that both PAR
and SIF scale with cos(SZA) under cloud-free conditions,
and we neglect Rayleigh scattering, as well as gas absorption.
Although this approach neglects several water or light condi-
tions, it provides our best estimate of daily SIF and enables
comparison between multiple SIF products with different
measurement times (Turner et al., 2021; Köhler et al., 2018;
Frankenberg et al., 2011). The method is equivalent to the
daily correction scheme for OCO-2, OCO-3, and TROPOMI
(OCO-2 Science Team/Michael Gunson, 2020; OCO-3 Sci-
ence Team/Michael Gunson, 2020; Frankenberg et al., 2011).
Additionally, we performed a sensitivity study in which we
trained SIFnet using daily corrected SIF and found the re-
sults to be generally insensitive to the use of instantaneous
vs. daily corrected SIF (see Fig. S18). Following this, we
chose to apply the daily correction after deriving the high-
resolution SIF.

Figure 7 shows a comparison of both SIFnet and the down-
scaled SIF to OCO-2 and OCO-3. Specifically, Fig. 7a shows
the correlation of SIFnet and the downscaled estimate with
OCO-2/3 for every 1◦ pixel over CONUS. Both SIFnet and
the downscaled SIF generally show good agreement with r in
excess of 0.7 for most of the high-productivity regions. We
observe weaker correlations in the western drylands due, in
part, to a lower signal-to-noise ratio. Overall, we find SIFnet
to perform systematically better than the downscaled SIF, as
shown in the difference plot. Figure 7b summarizes these
spatial patterns in a scatterplot comparison. SIFnet again
shows better performance than the downscaled SIF against
OCO-2, OCO-3, and OCO-2/3. The Pearson correlation co-
efficient r is 0.78 and 0.72 for the SIFnet and downscaled es-
timate, respectively, when comparing to all OCO data (right
column in Fig. 7b). The generally high RMSE indicates dif-
ferent scales and variability in the data sets.

Deviations between TROPOMI and OCO-2/3 also ap-
pear at a grid of 0.05◦ (Fig. S19). The r2 coefficient is
0.61 and 0.62 between TROPOMI and OCO-2 and OCO-
3 SIF, respectively. Indeed, one might expect better corre-
lations here as both present SIF at 740 nm. However, as
pointed out in Köhler et al. (2018), the uncertainty of both
TROPOMI and OCO-2 SIF is expected to lead to a cer-
tain spread between the data sets. In addition, we do not
account for differences in acquisition times and viewing–
illumination geometry, which can lead to additional uncer-
tainties in this comparison. For reference, when compar-
ing single footprints of TROPOMI SIF to aggregated OCO-
2 SIF for June 2018 globally, Köhler et al. (2018) found

a r2 of 0.67; only additional aggregation leads to a r2 of
0.88. The mean deviation of TROPOMI SIF to OCO-2 SIF
is close to the average standard deviation of TROPOMI
SIF (0.4 mW m−2 sr−1 nm−1). In our analysis, from the 16 d
product from TROPOMI SIF for April 2018 until March
2021 at 0.05◦, we observe an average error in the TROPOMI
SIF of 0.43 mW m−2 sr−1 nm−1 for the CONUS. That error
is close to the RMSE between instantaneous TROPOMI SIF
and instantaneous OCO-2 SIF (0.37 mW m−2 sr−1 nm−1). To
compare TROPOMI and OCO-2/3 SIF we aggregate the
OCO-2/3 footprints to the same grid as our TROPOMI data
(0.05◦). As we aggregate multiple OCO-2 or OCO-3 foot-
prints to match one TROPOMI grid cell at 0.05◦, the cer-
tainty of the OCO measurements increases, and therefore the
RMSE between TROPOMI and OCO SIF decreases.

Figure 8 presents a detailed comparison of SIFnet and the
downscaled SIF in four US cities. The first column shows
the SIFnet estimate, the second the downscaled SIF from
Turner et al. (2020), the third the difference between SIFnet
and downscaled SIF, and the last column the difference in
correlation of the high-resolution SIF estimates to combined
OCO-2 and OCO-3 data on a 0.02◦ grid multiplied by the
L1 norm between the SIFnet and the downscaled SIF. The
column on the right highlights both regions where the dif-
ferences in predicted SIF are large and which product is per-
forming better. As such, the right column will show white
in areas where the difference in predicted SIF is small or
the correlation with OCO is similar. While we observe large
differences in predicted SIF for the urban areas (column 3),
we do not find one product to perform systematically bet-
ter in urban areas. This likely indicates the complexity in the
SIF signal arising from urban areas. Additionally, urban ar-
eas make up a small fraction of the overall land mass and,
as such, do not represent a large share of the training data in
SIFnet. These factors likely contribute to the heterogeneous
performance observed in the right column of Fig. 8.

However, there are some notable successes of SIFnet in
urban areas that can be mapped directly to features in the
urban area. Figure 9 shows both SIFnet and the downscaled
SIF along with NIRv from MODIS and a true color image of
Chicago. A feature clearly stands out in both the downscaled
SIF and NIRv image. This is a region with missing NIRv
and effectively no downscaled SIF. However, SIFnet does not
show a strong gradient here. This region corresponds to the
Chicago airport. In the MODIS NIRv image it is visible that
there are no valid data available for that region for the 3 in-
vestigated years. The downscaling method from Turner et al.
(2020) relies only on NIRv in the weighting function. If there
are no data available for the region, they are interpolated in
space and time. Here, it shows that the method seems to fail
in urban regions where no MODIS NIRv signal is available.
SIFnet handles this region better and seems to rely on other
auxiliary data if there is no MODIS NIRv available. In Fig. 8
it is also visible that the SIFnet estimate correlates better with
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Figure 7. Validation of SIFnet and downscaled SIF to OCO-2 and OCO-3 SIF over CONUS. Comparison from April 2018 until March 2021
in 16 d time steps. Daily OCO-2 and OCO-3 data are assigned to the closest 16 d time step. Panel (a) shows the gridded correlation of the
two products against the combined data of OCO-2 and OCO-3. We first compute the SIF data from SIFnet and downscaling estimate that
falls into the OCO footprint. Then we assign every OCO footprint to the closest grid point on the 1◦ grid dependent on the center location
of that footprint and compute the Pearson correlation coefficient. Panel (b) shows the scatter comparison of the weighted average of all grid
cells on the 0.005◦ estimated SIFnet SIF (ours) and downscaled SIF (Turner et al., 2020) that fall into the OCO-2 or OCO-3 footprint.

the OCO-X data than the downscaled SIF for the region of
the Chicago airport.

5 Conclusions

Here, we develop a convolutional neural network (CNN)
model named SIFnet to increase the resolution of TROPOMI
SIF by a factor of 10. The novelty of our method consists
of using coarse-resolution SIF measurements together with
high-resolution auxiliary data as model input to estimate
high-resolution SIF. After optimization and hyperparameter
tuning of SIFnet, the estimated SIF at 500 m resolution yields
an r2 and RMSE of 0.92 and 0.17, respectively, when com-
pared against validation data (Fig. 4). We further compare the
output of SIFnet against a recently developed downscaling

method to estimate high-resolution SIF (Turner et al., 2020)
and evaluate both methods against independent observa-
tions from the Orbiting Carbon Observatory 2 and 3 (OCO-
2/3). SIFnet is found to perform systematically better than
the downscaling approach when compared against indepen-
dent measurements. Through interpretable machine learning
methods, we identify the key features that SIFnet utilizes to
accurately predict high-resolution spatial patterns of SIF. We
find that SIFnet relies heavily on the low-resolution SIF fea-
ture (SIFLR) and the vegetation index NIRv (Fig. 5).

SIFnet is a multi-layer CNN that increases the spatial res-
olution of the TROPOMI SIF by a factor of 10. Our model
uses auxiliary data sets related to gross primary productivity
and SIF as inputs and yields a high-resolution SIF estimate.
The model is trained using three years of data from Asia, Eu-
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Figure 8. SIFnet and downscaled SIF, the difference between these, and the difference in correlation to OCO-2 and OCO-3 for four urban
regions. The first column shows the SIFnet estimate, the second the downscaled SIF from Turner et al. (2020), the third the difference
between SIFnet and downscaled SIF, and the last the difference in correlation of the high-resolution SIF estimates to combined OCO-2 and
OCO-3 data on a 0.02◦ grid multiplied with the L1 norm between the SIFnet and downscaled estimate.

rope, Africa, and South America. North America is used as
the validation data set. Our loss function is comprised of two
terms: the mean squared error and the structural dissimilar-
ity index. The combination of these two terms improved the
performance of our model.

SIFnet was further compared to the recent downscaled SIF
product developed by Turner et al. (2020). The two high-
resolution estimates showed pronounced differences across
the western US drylands. This difference is particularly in-
teresting because these drylands tend to be low-productivity
regions and traditionally have been difficult for SIF to accu-

rately capture due to the low signal-to-noise ratio. Both high-
resolution SIF estimates were compared to independent ob-
servations from OCO-2/3. SIFnet performed systematically
better than the downscaled SIF (r = 0.78 for SIFnet, r =
0.72 for downscaling). SIFnet and the downscaling method
also yielded differences in urban regions. However, there was
substantial heterogeneity in the performance of SIFnet and
downscaling in urban areas. One product did not perform
systematically better than the other within urban areas. The
mixed results in urban areas likely relates to both the com-
plexity of the photosynthetic activity in urban areas, as well
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Figure 9. SIFnet SIF, downscaled SIF, MODIS NIRv, and a Google Earth cut-out for a part of Chicago. Left panel shows the SIFnet estimate,
second panel shows the downscaled estimate from Turner et al. (2020), third panel shows MODIS NIRv for Chicago, and last panel shows
the Google Earth cut-out (Google LLC, 2021). For panels 1–3 the average data for April 2018 until March 2021 is shown.

as the lack of training data, as urban areas represent a small
fraction of the total landmass.

We adapted techniques from the area of interpretable ma-
chine learning to assess the key features driving SIFnet.
Specifically, we conducted random permutations to input
data sets and assessed the impact on the resulting RMSE.
From this, we found that SIFnet relies most heavily on the
low-resolution SIF feature (SIFLR). The second most impor-
tant factor is the MODIS vegetation index NIRv. NIRv is
also found to outperform the recently proposed kNDVI veg-
etation index, in contrast to Camps-Valls et al. (2021). The
interpretable machine learning approach also allowed us to
identify spatial regions of importance for the different pa-
rameters. Interestingly, SIFnet relies more heavily on NIRv
in the western drylands where the SIF signal-to-noise ratio
is low. This implies that SIFnet is picking up on key physics
that lead to the improved performance relative to the down-
scaling method. Overall, SIFnet represents a robust method
to infer continuous high-spatial-resolution information about
processes related to gross primary productivity.
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