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Abstract. Disturbances, such as extreme weather events,
fires, floods, and biotic agents, can have strong impacts on the
dynamics and structures of tropical forests. In the future, the
intensity of disturbances will likely further increase, which
may have more serious consequences for tropical forests than
those we have already observed. Thus, quantifying above-
ground biomass loss of forest stands due to stem mortality
(hereafter biomass loss rate) is important for the estimation
of the role of tropical forests in the global carbon cycle. So
far, the long-term impacts of altered stem mortality on rates
of biomass loss have not been adequately described.

This study aims to analyse the consequences of long-term
elevated stem mortality rates on forest dynamics and biomass
loss rate. We applied an individual-based forest model and in-
vestigated the impacts of permanently increased stem mortal-
ity rates on the growth dynamics of humid, terra firme forests
in French Guiana. Here, we focused on biomass, leaf area in-
dex (LAI), forest height, productivity, forest age, quadratic
mean stem diameter, and biomass loss rate. Based on the
simulation data, we developed a multiple linear regression
model to estimate biomass loss rates of forests in different
successional states from the various forest attributes.

The findings of our simulation study indicated that in-
creased stem mortality altered the succession patterns of
forests in favour of fast-growing species, which increased

the old-growth forests’ gross primary production, though net
primary production remained stable. The stem mortality rate
had a strong influence on the functional species composi-
tion and tree size distribution, which led to lower values in
LAI, biomass, and forest height at the ecosystem level. We
observed a strong influence of a change in stem mortality
on biomass loss rate. Assuming a doubling of stem mor-
tality rate, the biomass loss rate increased from 3.2 % yr−1

to 4.5 % yr−1 at equilibrium. We also obtained a multidi-
mensional relationship that allowed for the estimation of
biomass loss rates from forest height and LAI. Via an ex-
ample, we applied this relationship to remote sensing data on
LAI and forest height to map biomass loss rates for French
Guiana. We estimated a countrywide mean biomass loss rate
of 3.0 % yr−1.

The approach described here provides a novel method-
ology for quantifying biomass loss rates, taking the suc-
cessional state of tropical forests into account. Quantifying
biomass loss rates may help to reduce uncertainties in the
analysis of the global carbon cycle.
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1 Introduction

Tropical forests represent an important pool in the global car-
bon cycle, as they store approximately 55 % of the amount of
global forest carbon (471± 93 PgC) in their living biomass
(Pan et al., 2011). Intact tropical forests assimilate an average
of 0.96± 0.46 PgC of carbon per year (Hubau et al., 2020).
This carbon sink behaviour of tropical forests has consider-
ably reduced the growth rate of atmospheric carbon dioxide
(Friedlingstein et al., 2019; Le Quéré et al., 2016). How-
ever, the carbon assimilation capacity of forests is affected by
stem mortality due to disturbances, which can cause rapid,
extensive carbon loss (Chambers et al., 2013; Fisher et al.,
2008; Korner, 2003; Pugh et al., 2019; Seidl et al., 2014). In-
creased stem mortality due to disturbances has been related
to a reduction in the carbon sink of tropical forests (Brienen
et al., 2015; Hubau et al., 2020). A number of studies have
discussed different climate-controlled mortality drivers, such
as temperature (Clark et al., 2010), vapour pressure deficit
(Trenberth et al., 2014), drought (Fauset et al., 2019; Phillips
et al., 2010), and windthrow (Chambers et al., 2009; Magna-
bosco Marra et al., 2016; Marra et al., 2014; Negrón-Juárez
et al., 2010, 2018; Rifai et al., 2016; Silvério et al., 2019). In
addition, mechanical disturbances, such as insect calamities
(Coley and Kursar, 2014), fires (Barlow et al., 2003; Brando
et al., 2014; Slik et al., 2010), and lianas (Ingwell et al., 2010;
Nepstad et al., 2007; Wright et al., 2015), may also lead to
increased stem mortality. The expected increase in the fre-
quency and intensity of those disturbances may result in an
overall increase in stem mortality and its associated physio-
logical mechanisms (McDowell et al., 2018). Higher levels
of stem mortality thus present a major risk to climate miti-
gation efforts (e.g. REDD+: Reducing Emissions from De-
forestation and Forest Degradation), as reductions in carbon
assimilation rates and a decrease in the carbon stocks of trop-
ical forests could counteract attempts to compensate for cli-
mate change (Gumpenberger et al., 2010; Körner, 2017; Le
Page et al., 2013).

Mortality is a complex process because the causes lead-
ing to tree death can be diverse. Trees can die naturally from
senescence or from forest disturbances, which may be abrupt
or continuous and may have abiotic or biotic, allogenic or
autogenic, and extrinsic or intrinsic causes (Franklin et al.,
1987; McDowell et al., 2018). Furthermore, drivers of stem
mortality often occur in combination, so the primary factors
of death are not obvious (Franklin et al., 1987; McDowell et
al., 2018). Stem mortality leads to temporal changes in stand
structure, tree species composition, and releases of resources,
particularly biomass (Franklin et al., 1987; Hülsmann et
al., 2018). Consequently, tree death affects important forest
growth processes, including tree growth and establishment,
which are influenced by species-specific competition strate-
gies (Snell et al., 2014) as well as by environmental and com-
petitive factors such as light availability (Kuptz et al., 2010;
Poorter, 1999; Uriarte et al., 2004). The influence of stem

mortality on forest growth dynamics is determined by the dis-
turbance intensity, which can range from the temporary loss
of vitality to the mortality (Kindig and Stoddart, 2003) of in-
dividual trees, forest stands, and entire landscapes. Finally,
stem mortality events are heterogeneously distributed such
that spatial patterns can be scattered or clustered (Franklin
et al., 1987). Empirical studies have already analysed the ef-
fects of short-term disturbances (i.e. intra-annual or over a
few years) on increases in tropical stem mortality (e.g. Bar-
low et al., 2003; Brando et al., 2014; Chambers et al., 2009,
2013; Doughty et al., 2015; Holzwarth et al., 2013; Magna-
bosco Marra et al., 2016; Marra et al., 2014; McDowell et
al., 2018; Negrón-Juárez et al., 2010, 2017; Nepstad et al.,
2007; Phillips and Brienen, 2017; Slik et al., 2010; Stovall
et al., 2019; Wright et al., 2015). Nevertheless, using empiri-
cal studies that are limited in space and time, it is difficult to
quantify the long-term effects of permanently increased stem
mortality levels and to assess the consequences of such al-
terations on the dynamics, structures, and successional states
of forests. Also, new remote sensing technologies offer en-
hanced potential for measuring the vertical and horizontal
structures of forests at country to global scales (e.g. Bi et al.,
2015; Hall et al., 2011; Lefsky et al., 2002, 2005; Myneni et
al., 2015; Simard et al., 2011; Le Toan et al., 2011). Remote
sensing products have previously been used for large-scale
identification of stem mortality following disturbances (e.g.
Pugh et al., 2019; Senf and Seidl, 2020); however, the esti-
mation of biomass loss rates due to stem mortality for forests
at different states remains still uncertain.

In this context, individual-based forest gap models offer an
approach to analysing forest dynamics (Botkin et al., 1972;
Bugmann, 2001; Bugmann et al., 2019; Fischer et al., 2016;
Shugart, 2002). Individual-based forest models are parame-
terized with forest inventory data to allow for the investiga-
tion of forest growth dynamics over longer periods. By sim-
ulating the growth, establishment, mortality, and competition
among trees within a forest, these models can contribute to
estimating the biomass gain and loss of tropical forests (e.g.
Hiltner et al., 2018, 2021; Maréchaux and Chave, 2017). As a
result of gap formation after tree falling (Fischer et al., 2016;
Huth et al., 1998), simulation areas consist of a mosaic of for-
est stands on which the vertical and horizontal structures and
dynamics of forests in different successional states are mod-
elled (Botkin, 1993; Botkin et al., 1972; Bugmann, 2001;
Fischer et al., 2016; Shugart, 1984). Structural state vari-
ables describing successional states of forests, such as tree
size distributions and functional tree species compositions,
play a major role in the estimation of the carbon budgets of
forest stands and entire landscapes (Bohn and Huth, 2017;
Fischer et al., 2018, 2019; Rödig et al., 2017, 2018, 2019;
Rüger et al., 2020). Successional state variables of forests
can be derived on large spatial scales (e.g. country to global
levels) through a combination of individual-based forest gap
modelling and remote sensing (Rödig et al., 2017, 2019;
Shugart et al., 2015, 2018), as this allows for a quantification
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of the spatial variation in forest structure due to stem mor-
tality (Rödig et al., 2017). The combination of individual-
based forest gap models and remote sensing methods may
also provide information on the spatial distribution of the an-
nual rates of aboveground biomass loss due to stem mortality
(hereafter biomass loss rate).

The aims of this study are to investigate the impacts of
permanently increased stem mortality rates on forest dynam-
ics, to provide a framework for estimating biomass loss rates
in terra firme forests at different successional states, and to
derive a sample map of biomass loss for an entire country
(i.e. French Guiana). This biomass loss map represents an
application example to demonstrate the synergetic benefits of
linking an artificial dataset derived from an individual-based
forest model with remote sensing data. Here, we address the
following research questions in detail.

1. What are the consequences of permanently increased
stem mortality rates on the dynamics of forest attributes
(e.g. aboveground biomass, forest height, gross primary
production, net primary production, leaf area index,
quadratic mean stem diameter, mean forest age, and
biomass loss rates) in tropical forests?

2. Can the biomass loss rates of tropical forests be esti-
mated using various forest attributes that can also be
derived from remote sensing?

2 Materials and methods

We applied the “terra firme” version of the dynamic
individual-based forest model FORMIND (Fischer et al.,
2016; Hiltner et al., 2018; Köhler and Huth, 2004) and simu-
lated the effects of long-term increased stem mortality levels
on the dynamics of multiple forest attributes (Fig. 1). This
artificial dataset of forest dynamics covers a wide range of
possible forest states such as the variability in tree species
composition, successional state, and tree size distribution.
We assume that we can use it to partially cover almost ev-
ery state of forest stands in French Guiana (the so-called
forest factory approach, see Bohn and Huth, 2017). We in-
cluded aboveground biomass (hereafter biomass), mean for-
est height, gross primary production (GPP), net primary pro-
duction (NPP), leaf area index (LAI), biomass turnover time
(τB), quadratic mean stem diameter (QMD), mean forest age,
and rate of biomass loss (mAGB) in our assessment. We anal-
ysed all of these forest attributes in relation to the intensity
of increased stem mortality. Each simulated forest used in
the analysis has the area of 1 ha, with the forest states of each
hectare differing from each other in each simulated time step
and scenario. Then, we developed a multiple linear regres-
sion model by testing different forest state attributes, such
as LAI and forest height, as proxy variables. In addition, we
derived a sample map for the biomass loss rate and biomass
residence time of an entire region by using values for forest

height and LAI obtained from satellite products. Simulated
terra firme forests of French Guiana served as a case study.

2.1 Study region

The study region is French Guiana, 95 % of which is cov-
ered by humid, lowland terra firme forests (Hammond, 2005;
Stach et al., 2009). These forests are characteristic for the
Guiana Shield (Grau et al., 2017). The forests are gener-
ally species-rich, with an average of 150 to 200 tree species
per hectare (Gourlet-Fleury et al., 2004), and are dense in
biomass stock (Johnson et al., 2016; Rödig et al., 2017;
Saatchi et al., 2011).

2.2 Forest model FORMIND

2.2.1 Model description

To analyse the forest dynamics under the impacts of differ-
ent levels of disturbance, we applied the “terra firme param-
eterization” of the forest model FORMIND v3.2 (Fischer et
al., 2016) and took relevant parameter values from Hiltner
et al. (2018), including tree growth, mortality, and establish-
ment (see Tables S1 and S2 in the Supplement). FORMIND
is an individual-based forest gap model that describes forest
dynamics, tree growth, and changes in forest structures on a
simulation area (1 ha to multiple square kilometres) consist-
ing of 20 by 20 m patches that interact with each other (see
Fig. S1 in the Supplement), wherein trees are not positioned
explicitly within a patch.

Every tree with a stem diameter at breast height (DBH)
≥ 0.1 m was simulated considering the following main pro-
cesses at annual time steps: tree growth, establishment, mor-
tality, and competition for light and space. The biomass
gain of a tree results from the difference between photo-
synthetic production and respiratory losses (Fischer et al.,
2016; Hiltner et al., 2018, 2021). In the model, stem mor-
tality is a key driver of forest dynamics. Stem mortal-
ity increases if the space for canopy expansion is limited,
which depends on a tree’s position within the forest stand
(self-thinning by crowding), whether tree growth is reduced
(growth-dependent), and whether surrounding trees die after
large trees fall (gap formation). Finally, each tree is subject
to a stem mortality rate, which is stochastic. Here, we modi-
fied the stem mortality rate (Eq. 1) to induce heterogeneity in
the horizontal and vertical forest structures (i.e. tree size dis-
tribution and functional species composition) of terra firme
forests in French Guiana. Our study does not focus on short-
term disturbances, but on the effects of long-term changes
(> 100 years) in the intensity of stem mortality. Possible fac-
tors altering stem mortality rates in the forest model include
environmental drivers, such as sustained elevated tempera-
tures, altered precipitation regimes, and reduced soil water
availability. The stem mortality rate refers to individual trees
at the stand level and is not stand-replacing.
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Figure 1. Framework developed for estimating biomass loss rates by linking a dynamic forest model and remote sensing. (1) A forest model
was applied to (2) simulate the succession dynamics of forest stands of various forest attributes, such as LAI, forest height, and biomass loss
rate, in a set of different stem mortality scenarios (results used to answer research question 1). A simulated forest stand has the area of 1 ha,
with the forest states of each simulated hectare differing at each simulation time step and scenario. (3) Then, we developed a multiple linear
regression model for the simulated forest states with LAI and forest height as proxy variables and biomass loss rate as the response (results
to answer research question 2). (4) In addition, we applied the multiple linear regression model to remote sensing maps containing the values
of the investigated forest attributes (LAI and forest height) to (5) derive a sample map of biomass loss.

For the generic forest model parameterization of French
Guiana’s terra firme forests, tree species were classified into
eight plant functional types (PFTs) according to species-
specific traits, i.e. the maximum incremental rates of DBH
and maximum tree height. We assume here that major parts
of the terra firme forests can be characterized on the basis
of three functional species groups: light-requiring species,
species with intermediate light requirements, and shade-
tolerant species (see Table S2). This functional species di-
versity is considered to be sufficient to capture forest succes-
sion dynamics in tropical forests (Fischer et al., 2018; Rödig
et al., 2017; Rüger et al., 2020). Detailed model descriptions
can be found in Fischer et al. (2016), in Hiltner et al. (2018),
and online at https://www.formind.org (last access: 22 Febru-
ary 2022).

2.2.2 Simulation settings

To investigate the effects of different stem mortality intensi-
ties on the dynamics and the structure of terra firme forests,
we developed seven simulation scenarios: a baseline scenario
and six scenarios with permanently altered stem mortality
rates (Table 1). The baseline scenario is based on observed
mortality rates (mbl), which were computed by averaging the
specific background mortality rates of all PFTs (Table 2).
To obtain background mortality rates for the scenarios, the
baseline’s background mortality rate (mbl) was multiplied by
a factor (f ) for each scenario (sc), resulting in the following
equation:

msc = f · mbl, with f ∈

{
1
4
,

1
3
,

1
2
, 2, 3, 4

}
. (1)

This resulted, in combination with the subsequent effects of
the other types of modelled mortality (see Sect. 2.2.1), in dif-
ferent stem mortality rates at the stand level per simulated
scenario (Table 1). The scenario with f = 1 represented the
baseline scenario. In this study, we simulated forest stands

with an area of 1 ha consisting of interacting patches on
which the forests grow (patch size 20 m× 20 m; see Fig. S1).
The one-hectare stands extended over a total simulation area
of 16 ha per scenario. Our assumption in the terra firme pa-
rameterization of FORMIND is that the 1 ha stands are not
explicitly located in French Guiana. Forest dynamics were
computed in an annual time step that started in year 0 on
bare ground and ended after 300 years. In the baseline sce-
nario, the biomass of a forest stand reached equilibrium after
210 years.

From the model outputs of all scenarios, we analysed
the average development of multiple forest attributes (av-
eraged over 16 ha), such as aboveground biomass (AGB),
LAI, forest height (mean height of the tallest three trees per
40 m× 40 m; Rödig et al., 2017; Simard et al., 2011), gross
primary production, net primary production, quadratic mean
stem diameter (square root of the sum of squared stem diame-
ters per tree divided by the number of trees in a stand), mean
forest age (arithmetic mean age of the 25 oldest trees per
simulated 1 ha area, selecting the oldest tree per patch), and
biomass loss rate (mAGB), which we defined as the annual
proportion of dead biomass (AGBdead) to total stand biomass
(AGBtotal):

mAGB = AGBdead ·AGB−1
total. (2)

In our forest model, we use a non-linear relationship between
the AGBt of a tree (t) and its stem diameter (Dt):

AGBt =
π

4
·D2

t ·Ht ·Ft ·
ρt

σt
, (3)

where Ht is the tree height, Ft is a form factor, ρt is
the wood density, and σt is the fraction of aboveground
biomass attributed to the stem (Fischer et al., 2016). Then,
the tree biomasses are summed up to yield the total biomass,
AGBtotal. We also calculated the stem mortality rate (mSN)
as the ratio of the number of dead trees to the number of total
trees in a forest stand at each simulation time step.
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Table 1. Average stem mortality rate per simulation scenario and specification (see Eq. 1). Background mortality rate msc is the unweighted
average over the mortality parameters of eight PFTs in the forest model. The resulting average stem mortality rate is the ratio of dead trees
to the total number of trees in a simulated forest stand (averaged over the entire simulation time).

Factor (f ) Background mortality Resulting average stem Specification
rate (msc) mortality rate

(yr−1) (msn yr−1)

1/4 0.0032 0.0390 Low impact
1/3 0.0043 0.0413
1/2 0.0065 0.0432

1 0.0129 0.0523 Baseline

2 0.0258 0.0723
3 0.0387 0.0845
4 0.0516 0.0951 High impact

In addition, we computed the time over which each forest
attribute reached the stable state (hereafter: equilibrium time)
as well as the mean stand biomass turnover times (τB) with
τB averaged over all successional states (simulated years 0–
300). According to Carvalhais et al. (2014), turnover times
can be defined as the ratio of the biomass stock to the flux
(i.e. influx or outflux) of biomass. However, biomass outflux
is not yet observable over large spatial scales (Thurner et al.,
2016). Therefore, biomass outflux was defined as equaling
biomass influx for forests in equilibrium (Carvalhais et al.,
2014). Transferred to our study, the stock corresponds to the
total biomass, influx to NPP, and outflux to dead biomass.
Therefore, the following holds true for forests in equilibrium:

τB = stock ·flux−1
= AGBtotal ·NPP−1

= AGBtotal ·AGB−1
dead. (4)

In our model, NPP of a stand is the sum of NPP values of all
trees within this stand. Tree NPP is calculated as the differ-
ence between GPP and autotrophic respiration. The τB value
can also be calculated from Eqs. (2) and (4) as the reciprocal
of the biomass loss rate:

τB = 1 · m−1
AGB for mAGB > 0. (5)

Using Eq. (5), we calculated τB by taking forest succession
into account.

2.3 Derivation of a multiple linear regression model to
estimate biomass loss rates

To estimate the biomass loss rates, we analysed a number
of forest simulations which produced a large number of dif-
ferent forest stands each of 1 ha (averaged over 16 ha sim-
ulation areas) in different successional states (per simulated
year) with unique functional species compositions and tree
size distributions. Thus, we generated a total of 33 600 terra
firme forest stands. We assumed that the rate of biomass loss
can be related to other forest attributes (e.g. biomass, LAI,

forest productivity, and forest height). For a multiple lin-
ear regression model, the temporal and spatial components
are not important since forest states are considered indepen-
dently of either. We acknowledged that when fitting linear
regression models, it is important that the proxy variables do
not strongly correlate. We tested this by using a covariance
matrix with the Pearson’s correlation coefficient of the proxy
variables (Table S4). Then, we tested different linear and
non-linear statistical models using different combinations of
the proxy variables (see Table S3 and Fig. S15). Important
selection criteria for the model type were good regression
statistics and interpretability of the model equation. Further-
more, remote sensing products should be available for all
proxy variables. Taking all of these criteria into account, the
most suitable estimate was made by a multiple linear regres-
sion model which describes variations in mAGB as a function
of two proxy variables: LAI and forest height (Table S3). We
estimated mAGB (in units of yr−1) as follows:

mAGB = βH ·H +βL ·L+ i+ ε, (6)

where H is the forest height, L is the LAI, i is the y inter-
cept, ε is the error term, and βi represents the regression co-
efficients of the ith forest attribute. To test whether the linear
regression model is robust, we simulated additional scenar-
ios with altered productivity rates. Based on these new data
together with the previous data, we fitted an alternative mul-
tiple linear regression model. Similarity between the two lin-
ear multiple regression models implied high robustness of the
original model. For further information, see the Supplement
(Figs. S10 and S11).

2.4 Estimation of the countrywide biomass loss rates

2.4.1 Input maps

To estimate forest height, we used a global map in the WGS-
84 geographical projection with a pixel size of approximately
1 km (Simard et al., 2011; Fig. S5a). For the mapping of
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the forest height, Simard et al. (2011) used data from the
Geoscience Laser Altimeter System (GLAS) aboard ICE-
Sat (Ice, Cloud, and land Elevation Satellite) collected in
2005. To create an LAI map, we used 139 data layers from
the MCD15A2H version 6 Moderate Resolution Imaging
Spectroradiometer (MODIS) Level 4 with a pixel size of
500 m and averaged the LAI values between 31 January 2004
and 31 December 2006 to reduce the overall LAI variance
(Myneni et al., 2015). We harmonized and stacked the two
input maps by first projecting the LAI map onto the co-
ordinate reference system of the forest height map using
the Geospatial Data Abstraction Library for French Guiana
(https://www.gdal.org, last access: 22 February 2022). Re-
sampling was conducted with the bilinear method. The spa-
tial aggregation of the LAI map (Fig. S5b) was performed
by calculating the mean values of pixels whose centres were
within 1 km cells of the forest height map.

2.4.2 Output maps

The biomass loss rate was estimated for each pixel by ap-
plying the multiple linear regression model (Eq. 6) to the
two input maps (see Fig. S5). We compared the density dis-
tributions of both input datasets with the ranges of FOR-
MIND’s simulation results (LAI and forest height). No cor-
rection factors were required for the extrapolations, since the
most abundant combinations of value pairs of both datasets
agree well, and only a few combinations differ (see Fig. S9).
The biomass loss rates were then averaged over a pixel size
of 2 km2. We simulated forest stands of 1 ha with the for-
est model. This fine resolution allowed us to scale up to
the accuracy of remote sensing products. We used a reso-
lution of 2 km for the final biomass loss map, although the
input data are available in 0.5 km (LAI, Myneni et al., 2015)
and 1 km (forest height, Simard et al., 2011). Our regression
model estimated negative biomass loss rates for a small por-
tion of pixels, which were excluded from the biomass loss
map. This was mainly the case for pixels without forest cover
(see Fig. S5) according to a land use map published by Stach
et al. (2009). To create the biomass turnover time map, we
computed the reciprocal of each pixel for the biomass loss
map (see Eq. 5).

We tested the reliability of the mapped biomass loss rate
in the underlying input maps for the LAI and forest height
via a sensitivity analysis regarding variations of±30 % com-
pared to the original input maps. We examined two meth-
ods to quantify the sensitivity of our study results concerning
the input data. In a first experiment we modified the values
of the two input maps by exactly +30% and −30 % each
(LAI and forest height). In a second experiment we sam-
pled the input data for the LAI and forest height randomly
using a uniform distribution. These values ranged between
+30% and −30% of the original input values. This resulted
in six new input maps (LAI+30 %,H+30 %, LAI−30 %,H−30 %,
Hrandom, LAIrandom). We then applied the multiple linear re-

gression model (see Eq. 6) to some possible pairwise com-
binations of these new input maps (i.e. LAI+30 %−H+30 %,
LAI−30 %−H−30 %, LAI+30 %−H−30 %, LAI−30 %−H+30 %,
Hrandom−LAIrandom) to obtain five uncertainty maps. We cal-
culated 1mAGB per pixel, which is defined as the difference
between each of these uncertainty maps and the biomass loss
map obtained from the original input maps. Thus, 1mAGB
represents the variation in the rate of biomass loss given 30 %
variation in the input variables. Note that there are accompa-
nying uncertainty products to the remote sensing products
available that could be considered in follow-up studies to
estimate error propagation. Furthermore, we compared our
biomass loss map with forest plot data, provided by Brienen
et al. (2015), and with map data of Johnson et al. (2016).
Please refer to the Supplement for details on the computer
software used in this study.

3 Results

3.1 Influence of increased stem mortality on forest
succession dynamics

To analyse the influences of varying stem mortality inten-
sities, we simulated succession dynamics, which were af-
fected by competition among individual tree species belong-
ing to species groups. Here, we show that successional stages
can be differentiated based on the development of the to-
tal stand biomass (Fig. 2). After 40 years of forest succes-
sion, the simulated stand biomass peaked at 500 tODM ha−1

(ODM: organic dry matter). This peak in stand biomass was
caused by a high GPP of the pioneer species (GPPpioneer =

83 tODM ha−1; Fig. S2a). After the early successional stage
(years 0–40), the stand biomass fell slightly until year
100 due to the rapidly declining pioneer biomass, while
the biomasses of other species increased (mid-successional
stage; Fig. 2). After 100 years, the stand biomass stabilized at
approximately 420 tODM ha−1 yr−1 (average over years 100–
300), while the functional species composition reached a
steady state after only 210 years (Fig. 2). In the late succes-
sional stage (gap dynamics), climax species and species with
intermediate light requirements fixed 5 times more carbon
in biomass than pioneer species (NPP of baseline scenario;
Fig. S2b).

Our simulation results reveal a sensitive response of the
biomass loss rate to increased stem mortality intensities
(Fig. 3a). At higher stem mortality levels, higher biomass
loss with greater variance emerged and the biomass loss
rate was on average greater than the stem mortality rate
(see Fig. S4). At the level with the highest stem mortality,
a peak in the biomass loss rates occurred at approximately
0.12 yr−1 during the early phase of forest succession be-
fore levelling off at a value of 0.08 yr−1 in the steady state
(Fig. 3a). Due to the higher biomass loss rates, the light
climate in the forest stand changed (Fig. 3c). The pioneer
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Figure 2. The baseline scenario’s aboveground biomass (AGB) per
species group and the total biomass for simulations of terra firme
forests (ODM: organic dry matter).

species were able to establish quickly in forest gaps. Hence,
the GPP of the pioneer species was highest among all species
groups (Fig. S2a), which also affected the productivity of
the total stand (Figs. 3e–f, 4a). Despite the distinctly higher
GPP values obtained in the case of higher biomass loss rates,
NPP did not change distinctly among the different scenarios
(Fig. 3f). Thus, the stem mortality rate had a strong influ-
ence on the species composition (e.g. higher pioneer GPPs;
Fig. S2a) and forest structure (e.g. QMD and mean stand age;
Fig. S3), which led to lower LAI, biomass, and mean forest
height values at the ecosystem level than those of the ref-
erence (Fig. 3b–d). In addition, structural changes gave rise
to modified forest stand dynamics, with unique succession
patterns depending on the intensity of the disturbance due to
stem mortality.

Furthermore, we analysed how the stem mortality level af-
fected the time needed to reach equilibrium (Fig. 4b). GPP
responded particularly sensitively and inversely proportion-
ally to the stem mortality rate, showing a strong decrease
with rising stem mortality levels. In contrast, other forest
attributes, such as biomass and NPP, had altogether shorter
equilibrium times than that of GPP, responding inversely pro-
portionally to the stem mortality level.

Finally, we evaluated the effect of increasing stem mortal-
ity rates on the turnover time of biomass (Eq. 5) in the forest
stands while taking forest succession into account (Fig. 4c).
The biomass turnover time τB was more than halved at a
4-fold higher stem mortality rate compared to the baseline
(τB,(f=1) = 34, sdB,(f=1) = 12, τB,(f=4) = 46, sdB,(f=4) =

43, τB,(f=1/4) = 15, sdB,(f=1/4) = 5 years). Important forest
properties are profoundly affected if the functional species
composition, tree size distribution, or forest dynamics are
changed.

3.2 Estimation of biomass loss rates using single and
multiple forest attributes

In a further analysis, we assessed how biomass loss rates can
be derived from different proxy variables, such as the mean
forest height and LAI. Including forests at different succes-

sional states, we tested the relationships between several sin-
gle forest attributes and the rate of biomass loss but did not
find distinct relationships (Fig. 5a–c; Table S3: regression
model types 3–7). The biomass loss rates showed a widely
scattered range of values and thus unclear relationships to
all single forest attributes during the early successional stage
(forest age < 20 years; Fig. 5a–c). For instance, the LAI val-
ues of less-disturbed, old-growth forests (i.e. LAI= 4 during
the gap dynamics stage of mature forests) indicated similar
biomass losses as forests in the early stages of succession.
Relationships between single forest attributes and biomass
loss rate seemed to be statistically significant (Table S3: re-
gression model types 3–7); however, this was not useful be-
cause the relationships are clearly not linear (Fig. 5a–c). The
relationships are strongly influenced by forest age and stem
mortality rate.

Figure 5d illustrates a three-dimensional relationship be-
tween LAI, forest height, and the rate of biomass loss. Only
when combined in a multiple linear regression model did the
LAI (L) and forest height (H ) explain the biomass loss rates
of forests at different successional states well (R2

= 0.731,
RMSE= 0.0093, p value= 0.0; Fig. 6; Table S3):

mAGB = 0.005698 ·H − 0.033831 ·L− 0.042064+ ε. (7)

The LAI negatively influenced biomass loss rates, whereas
forest height is positively correlated with it. The obtained
residuals were normally distributed around the expected
value (E(mAGB)= 0.0; Fig. S6b), and depending on the es-
timated biomass loss rates, the residuals were homoscedastic
with overall only a small remaining trend (Figs. S6c; S7),
which could be further improved by using a non-linear ap-
proach (e.g. generalized additive models; Fig. S15). Specif-
ically, the residuals attributed to the LAI contained some
“smile” effect (i.e. negative trend for 2.5 <LAI< 3.5 and
positive trend for 3.5 <LAI< 4.5), and the ones attributed
to forest height showed only a small remaining trend (see
Fig. S7). On the basis of the selection criteria we have de-
fined (see Sect. 2.3), we conclude that forest height and LAI
can be used as proxy variables to estimate biomass loss rates
using the linear approach.

The one-to-one comparisons of biomass loss rates for the
simulated forest stands estimated by the multiple linear re-
gression model (see Eq. 7) versus those simulated within the
dynamic forest model fit well (Fig. 6). Other forest attributes,
such as GPP and NPP, were not included in the multiple lin-
ear regression model because they did not improve the esti-
mation of the biomass loss rates substantially (Table S3).

3.3 Estimation of biomass loss rates from remote
sensing by deriving a sample map

By combining simulated forest states with the maps of LAI
and forest height obtained via remote sensing (Myneni et
al., 2015; Simard et al., 2011), we derived a biomass loss
map for terra firme forests of French Guiana (Fig. 7a).
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Figure 3. Simulation results of the (a) biomass loss rate (mAGB), (b) aboveground biomass (AGB), (c) leaf area index (LAI), (d) mean
forest height (H ), (e) gross primary production (GPP), and (f) net primary production (NPP) of terra firme forest stands under different stem
mortality intensities. Grey lines indicate the entire set of scenarios under varying stem mortality rates (Eq. 1) (ODM: organic dry matter; for
further details see Table 1, Figs. S2 and S3).

Figure 4. Influence of different mortality levels in simulated terra firme forests on (a) mature forests’ mean GPP and mean NPP (averages
over simulation years 250–300), (b) the time until the forest attributes reached equilibrium states, and (c) the mean biomass turnover times,
represented as the reciprocal values of the biomass loss rate (see Eq. 5; averages over years 0–300). Dashed lines indicate the baseline
scenario (GPP: gross primary production, NPP: net primary production, H : forest height, LAI: leaf area index, AGB: aboveground biomass,
ODM: organic dry matter).

Based on this sample map, we obtained a mean biomass
loss rate of 0.030 yr−1 (standard deviation of 0.012 yr−1;
Fig. 7b). The values of biomass loss rate varied among
regions, with higher values in the southern part of the
country and lower rates in the northern part of the coun-
try. The highest biomass loss rates can be observed in the
centre and at the southwestern country borders (mAGB>

0.06). Such high values resulted from a combination of tall

forest height together with low LAI values (Fig. S8). In
the region surrounding the Paracou and Nourage sites, the
biomass loss rates had values of 0.012 and 0.015 yr−1, re-
spectively, which agree well with the mean biomass loss
rates we derived from the empirical data of the Brienen et
al. (2015) study (mAGB,Par = 0.011 yr−1, sdPar = 0.127 yr−1;
mAGB,Nou = 0.015 yr−1, sdNou = 0.027 yr−1; Fig. 7c). The
sensitivity analysis revealed the dependence of the mapped
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Figure 5. Dependence of biomass loss rates from the single attributes (a) biomass, (b) LAI, and (c) forest height versus (d) the multiple
forest attributes (LAI and forest height) of simulated forest states, including all stem mortality scenarios. Each dot represents a terra firme
forest stand with a unique forest structure (i.e. tree size distribution and functional species composition). All simulated years are included in
the analyses. The colours of the dots show the mean forest ages characterizing the successional states (ODM: organic dry matter).

biomass loss on the quality of the input data (Fig. 7d, e).
The sensitivity is moderate (i.e. 1mAGB is small) if the
LAI and forest height change uniformly by a certain amount
(Fig. S14). If the changes in the LAI and forest height are
contrary, the sensitivity of the mapped biomass loss is high
(i.e. 1mAGB is large), though we assume that a contrary
change in the input data rarely occurs (Fig. S14). Considering
forests at all successional states, we derived another sample
map for biomass residence time (Fig. S12) calculated from
the reciprocal of the biomass loss rate (Eq. 5). We estimated
a mean countrywide biomass residence time of 40 years with
a standard deviation of 9 years.

4 Discussion

4.1 Mechanism of tropical forests in dealing with the
increasing intensity of stem mortality

In this study, we analysed dynamics in tropical forests in re-
lation to stem mortality. We demonstrated that most of the
analysed forest stand attributes (biomass, forest height, LAI,

GPP, biomass loss rate, QMD) had specific responses during
succession. Moreover, we showed that the rate of biomass
loss is strongly affected by succession dynamics as well as by
the stem mortality rate. The period until the stand’s equilib-
rium was reached differed in duration among each simulation
scenario. Additionally, the mean turnover time of biomass,
i.e. the reciprocal value of biomass loss rate (Eq. 5), varied
considerably.

There were multiple reasons for the unique succession pat-
terns of each forest attribute. Succession dynamics are influ-
enced by assimilation rates (e.g. photosynthesis rates, light
requirements) and physiognomic characteristics (e.g. maxi-
mum stem diameter increment rates, maximum heights, and
wood densities), both of which are specific to each species
group (Hiltner et al., 2018). Functional traits are crucial in
simulations of the succession dynamics in forests because
they determine the competitiveness of species groups (Fis-
cher et al., 2018; Rüger et al., 2020).

The relationship between successional stages and stem
mortality rate has been investigated in empirical studies
to estimate mortality in tropical forests (Aubry-Kientz et
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Figure 6. One-to-one density plot of biomass loss rates simulated
by the dynamic forest model versus biomass loss rates estimated
using a multiple linear regression model, with the forest height
and leaf area index as proxy variables (Eq. 7 and Table S3). The
dashed line shows the line of perfect fit. Each dot represents a
forest stand with a unique forest structure (i.e. tree size distribu-
tion and functional species composition), while the colours repre-
sent the density distributions of the combinations. The black solid
line indicates the mean deviation of the biomass loss rate simulated
with the forest model from the estimated ones (mAGB,DFM = 1.0 ·
mAGB,LM−0.0+ε, R2

= 0.7312, RMSE= 0.009, p value< 0.01)
(mAGB: biomass loss rate).

al., 2013; Chambers et al., 2013; Doughty et al., 2015;
Holzwarth et al., 2013). Aubry-Kientz et al. (2013) intro-
duced a method that estimated the stem mortality probability
of terra firme forests at Paracou. Similar to our results, they
found that the stem mortality probability depends on the suc-
cessional stages of the forests as well as on the functional
traits of species, such as the specific leaf area, wood density,
stem diameter increment, and potential height.

Interestingly, we observed similar NPP values at differ-
ent stem mortality levels for forests in equilibrium. Erb et
al. (2016) argued that the NPP of vegetation is effectively
independent of the stem mortality rate, which is supported
by our results. The observed stability of NPP under differ-
ent disturbance regimes can be explained by shifts within
the functional species compositions and tree size distribu-
tions. Pioneer species, which typically have lower wood den-
sities (Chave et al., 2009; Zanne et al., 2009) and lower po-
tential heights than those of slow-growing climax and inter-
mediate species (Hiltner et al., 2018), store less carbon in
their living biomasses. Since pioneer species grow faster,
they can bind as much carbon per time as slow-growing
climax species. Therefore, at the forest stand level, higher
stem mortality rates result in similar NPP values as those ob-
served with lower stem mortality rates, although the individ-
ual trees show different growth behaviours. Our simulation

results show how the carbon storage of forests in equilibrium
changes across different levels of stem mortality rates, de-
spite constant levels of NPP. Instead, our findings indicate
that carbon storage depends on the functional species com-
position. At high stem mortality rates (e.g. a high-impact sce-
nario), more pioneer trees of a younger age were present in
the forest stands. Thus, to achieve a high forest carbon stor-
age capacity, there is a trade-off between large, old, and less
productive trees (e.g. climax species) and smaller, younger,
and more productive trees (e.g. pioneer species).

4.2 Performance of the regression model for estimating
biomass loss rates

One of the main findings of this study is that the simulated
biomass loss rates of terra firme forests can be estimated
using multiple linear relationships among several forest at-
tributes. The premise was that all forest attributes used could
be provided by remote sensing and could give information
about the forest structure and productivity. We recognized
the relationship between biomass loss rates to LAI and forest
height when fitting many different statistical models with dif-
ferent simulated forest attributes (Table S3, Fig. S15). If stem
mortality rates increased, this led to a higher biomass loss
rate. However, it is impossible to directly infer stem mortality
rates from biomass loss rates because forest structural state
variables differed for each simulated forest stand, depending
on its successional stage (Bohn and Huth, 2017; Rödig et al.,
2017). For example, the stem number distribution of dying
trees is not evenly distributed across tree size classes (Aubry-
Kientz et al., 2013; Holzwarth et al., 2013; Muller-Landau et
al., 2006; Rowland et al., 2015).

In our approach for identifying appropriate forest at-
tributes to infer biomass loss rates, we considered results
from empirical studies that have investigated stem mortal-
ity in tropical forests (Aubry-Kientz et al., 2013; Esquivel-
Muelbert et al., 2019; Stovall et al., 2019). Esquivel-
Muelbert et al. (2020) investigated the stem mortality of the
Amazon by using empirical data to show that stem diameter
growth rate and tree size are strong predictors. Fast-growing
species with low wood densities are at a higher risk of mor-
tality, whereas the effect of tree size varies. Aubry-Kientz
et al. (2013) used functional traits, such as potential tree
height and specific leaf area, to estimate the probability of
stem mortality. Based on large-scale remote sensing obser-
vations, tree height was identified as an important predic-
tor of stem mortality during drought, with large trees hav-
ing twice the mortality rate of small trees, while environ-
mental drivers (i.e. temperature, soil water, and competition)
controlled the intensity of the height–mortality relationship
(Stovall et al., 2019). The results of these studies underline
the importance of productivity (e.g. increment rates and tree
size), biomass, and functional characteristics (e.g. wood den-
sities, potential stem diameter increment rates, leaf areas, and
potential tree heights) of trees or tree species in the context
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Figure 7. (a) Map of biomass loss for terra firme forests in French Guiana (∼ 2 km resolution) and (b) its histogram. The dashed line in
(b) indicates the estimated countrywide mean (3.0 % with a standard deviation of 1.2 %). The black squares in the map show the locations of
forest plots at Paracou (PAR) and Nourage (NOU), from which (c) census data were used to compare estimated and field-based biomass loss
values. The census data originate from Brienen et al. (2015). (d) Sensitivity analysis for the mapped biomass loss rates of terra firme forests
in French Guiana (see Fig. 7a) and (e) its histogram. The values for the input maps of leaf area index (LAI) and forest height were randomly
sampled using a uniform distribution ranging ±30% from their original values (see Fig. S4). 1mAGB represents the variation in biomass
loss rates given this variation in the input variables. For further results about the uncertainty analysis performed, see Figs. S7, S8, S9, S10,
S11, and S14.

of stem mortality. In our forest model, such characteristics
are included in the derivation of stem mortality rates of spe-
cific PFTs (see Tables S1, S2). In forest gap models, forest
structural state variables, such as the stem number distribu-
tion, tree size distribution, and functional species composi-
tion, of the dying trees emerge rather than being specified
as input parameters (Botkin et al., 1972; Bugmann, 2001;
Shugart, 2002). This fact is a useful model behaviour for
estimating the biomass loss rate of simulated forest stands
and, moreover, holds true for the derivation of other forest
attributes, which we considered when fitting our regression
model. Besides the LAI and forest height, we tested GPP,
NPP, and biomass as proxy variables for the rate of biomass
loss. On the forest stand level, however, these variables did
not improve the performance of the multiple linear regres-
sion model substantially. These results suggest using forest
height and LAI as proxy variables to estimate the biomass
loss rates of forest stands. Despite the simplicity of the mul-
tiple linear regression model, meaning that we included only
two proxy variables, its statistical performance proved to be
robust (see Eq. 6; Table S3, Figs. S6, S7, S8, S9). Thus, it
was possible to derive biomass loss rates from LAI and for-
est height with simulated data for forests in different succes-
sional states. It was important that the signs of the regres-

sion coefficients of our linear model plausibly reflected the
relationships that were observed in the field. In the regres-
sion model, forest height was directly proportional, and LAI
was indirectly proportional to the biomass loss rates of the
forest stands. For example, tall forests with low LAI values
resulted in high biomass loss rates (see Fig. S8). We would
like to note that to further improve the regression model (e.g.
further minimize the residual’s remaining trend), additional
proxy variables could be included, non-linear components
can be acknowledged, and spatially variable effects of en-
vironmental factors on simulated forest states may be inves-
tigated in more detail. In this study, we tested non-linear sta-
tistical methods (see Fig. S15) and various forest attributes
available as remote sensing products as potential proxy vari-
ables for the statistical models (see Tables S3, S4). We de-
cided to use the simplest possible linear regression model (in
terms of the number of included proxies and interpretability
of the model equation) that estimated biomass loss rates best.

Using a forest model to derive the relationships among dif-
ferent forest attributes has several advantages. First, the sim-
ulated LAI and forest height data were generated mechanisti-
cally, integrating a broad spectrum of information about for-
est dynamics and successional states emerging from differ-
ent physiological processes. This can lead to a lower level of
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noise in the simulation data compared to that in the observed
field data. Nevertheless, forest models also include stochas-
tic processes, including stem mortality rates and establish-
ment (Bugmann, 2001; Fischer et al., 2016; Hiltner et al.,
2018; Shugart, 2002). By using plant functional types to sim-
ulate forest dynamics, we reduced the possible uncertainties
in species traits. Simplifications allow for a transferability
of the regression analysis to forests with similar characteris-
tics and succession states. These simplifications also enabled
the estimation of the biomass loss rates of terra firme forests
across the entirety of French Guiana. With the approach pur-
sued here, it might be possible to derive regression models
for estimating biomass loss rates in other locations world-
wide. Forest model simulation results contain structural in-
formation about the conditions of forests in different succes-
sional states, allowing the data to be used as training data
for the development of statistical regression models. Whether
LAI and forest height are also suitable as proxy variables for
the biomass loss rates of other forest types remains to be in-
vestigated.

4.3 Mapping of biomass loss rates of terra firme forests
in French Guiana

We combined remote sensing maps of forest height (Simard
et al., 2011) and LAI (Myneni et al., 2015) with forest
modelling to derive a sample map of biomass loss rates in
French Guiana. In doing so, we presented an innovative ap-
proach for estimating biomass loss rates in tropical forests.
A comparison of estimated biomass loss rates with census-
based values for two sites showed reasonable similarity, al-
though in perspective, it would be important to further val-
idate such maps using more field data (not available to us
at present). In another comparison of biomass loss rates ob-
tained for French Guiana with census-based values for the
entire Guiana Shield (i.e. French Guiana, Suriname, Guyana,
northern Brazil, eastern Venezuela; Johnson et al., 2016),
our estimate is about 50 % higher, though it is noteworthy
that Johnson et al. (2016) estimated the rate of biomass loss
for the entire Guiana Shield, with higher values on average
in French Guiana. Capabilities for improved projections of
biomass loss rates are indispensable in the context of im-
proved estimates of the role of tropical forests in the global
carbon cycle (Anderegg et al., 2020; Friedlingstein et al.,
2019; Friend et al., 2007; IPCC, 2014). Remote sensing by
airborne and satellite-based instruments provides large-scale
data on forests, such as the forest height (Simard et al., 2011)
and LAI (Myneni et al., 2015). However, remote sensors can
record measurements only at certain time points; hence, the
successional stages of forest variables are uncertain in re-
motely sensed data. Such forest dynamics can be simulated
by individual-based, dynamic forest models. A combination
of remote sensing data and forest models therefore has the
potential to improve predictions of large-scale ecosystem dy-
namics (Plummer, 2000; Shugart et al., 2015).

Forests can be in different successional stages due to dis-
turbances that influence forest height and LAI (Dubayah
et al., 2010; Kim et al., 2017). In the forest height and
LAI maps, disturbed regions can be detected visually (see
Fig. S5); these regions have been identified as disturbed ar-
eas in other studies (Asner and Alencar, 2010; Piponiot et al.,
2016a; Stach et al., 2009). Such areas include disturbed ar-
eas in the floodplains of lakes and rivers, along the coast, near
roads and settlements, and in the secondary forests of French
Guiana, where the forest height and the crown coverage are,
on average, lower than that in primary forests (Piponiot et al.,
2016a; Stach et al., 2009; forest height map from Simard et
al., 2011, in Fig. S5).

Remotely sensed products often include uncertainties. In
this study, we demonstrated the sensitivity of the sample
biomass loss map to variations in the LAI and forest height
maps (Figs. 7d, S14). Accuracy of the input remote sensing
data is beneficial.

Balanced deviations of LAI and forest height (e.g. LAI
+30% andH+30%) result in smaller deviations in biomass
loss rates than opposite deviations (e.g. LAI +30% and
H − 30%). Small-scale fluctuations in the LAI (e.g. on the
individual tree level) were not captured due to the coarse res-
olution of the MODIS data (500 m). However, by using an
individual-based dynamic forest model, the small-scale pro-
cesses that manifest as variations in the LAI and forest height
are accounted for in the simulations. Because simulated for-
est structures were the basis upon which the regression model
was derived, the multiple linear regression model (Eq. 7) ac-
counts for successional states and small-scale dynamics of
forests. It is plausible that the LAI alone is not representative
of the forest successional state. Therefore, we analysed forest
succession (resulting from model-inherent processes), taking
species diversity and interactions between trees into account,
and we linked this information to the remote sensing prod-
ucts. Such approaches have already been successfully car-
ried out in several studies (Rödig et al., 2017, 2018, 2019;
Shugart et al., 2015). We obtained a good proxy for the suc-
cessional state and, thus, for biomass loss rates only when
forest height was also included in the analysis. It may also
be the case that the forest height estimated by FORMIND
and the forest height mapped by Simard et al. (2011) at the
1 km scale (Fig. S5a) are subject to a certain bias. Simard
et al. (2011) used the mean height of the three tallest trees
to validate the GLAS data at the footprint level, though not
to validate the gridded 1 km data product, which tends to be
shorter and less variable. The gridded product is based on a
biome-level random forest model using other auxiliary data
(e.g. percentage of tree cover, precipitation, altitude, temper-
ature, conservation status) so that the variation in 1 km reso-
lution forest height does not necessarily reflect the simulated
variation in forest structure; rather, it reflects the predicted
variation based on biome-level correlations with other fac-
tors.
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4.4 Introduction of an alternative method for
estimating biomass turnover time

Information on the carbon balance of forests is important
for quantifying the biomass accumulation rates of trees. Var-
ious studies have estimated the turnover time of biomass,
which we defined here as the reciprocal value of the rate
of biomass loss, in forests worldwide (Carvalhais et al.,
2014; Erb et al., 2016; Pugh et al., 2019). Carvalhais et
al. (2014) were the first to estimate biomass turnover times
for forests in equilibrium from biomass and GPP (see Eq. 4:
τ = AGBtotal ·NPP−1). For the French Guiana region, the
authors estimated biomass turnover times of approximately
20 to 40 years and discussed the fact that disturbances can
shorten the biomass turnover time by increasing biomass loss
rates. Our study quantifies the extent to which stem mortal-
ity leads to high biomass loss rates and thus to short biomass
turnover times.

Erb et al. (2016) observed decreases caused by land use in
the biomass turnover time. They found turnover times of 20
to 30 years for the French Guiana region, which are similar
to our results (Fig. 4c). Pugh et al. (2019) showed that stand-
replacing disturbances also shortened the biomass turnover
times. We found that the biomass turnover time is strongly
affected by succession dynamics and stem mortality rates.
For our full simulation dataset, we found a mean biomass
turnover time of 40 years (standard deviation of 20 years;
Fig. S13). We derived an alternative framework to estimate
the turnover time from biomass loss rates. This framework
allows both turnover time and rate of biomass loss to be mod-
elled in a simple way, considering succession dynamics and
disturbances due to stem mortality.

4.5 Limitations and outlook

Our simulation results revealed complex relationships be-
tween stem mortality rate and biomass loss rate. The growth
stage of a tree evidently has an effect on stem mortality,
which often results in a U-shaped relationship of stem mor-
tality as a function of the tree size distribution in a forest
(Aubry-Kientz et al., 2013; Holzwarth et al., 2013; Muller-
Landau et al., 2006). With regard to tree age, it is more
likely that the youngest and oldest trees will die (Aubry-
Kientz et al., 2013; Rüger et al., 2011) due to intense com-
petition for light and space between the juvenile trees in
the understorey and the senescence of the old trees in the
canopy layer. Such mortality processes are often represented
in forest models (Bugmann et al., 2019). Although empiri-
cal mortality algorithms which mechanistically describe the
main causes of stem mortality and their effects on entire
ecosystems (e.g. self-thinning, death of trees by crushing,
and growth-dependent mortality) have already been devel-
oped, other causes of stem mortality with unclear signals are
often summarized as stochastic processes (Bugmann et al.,
2019; Hülsmann et al., 2017, 2018). In our study, biomass

loss rates at the stand level arose from different mortality
processes that occurred at the tree level (competition due to
crowding, death of other trees by crushing, growth depen-
dency, gap formation, and stochastic stem mortality). Com-
pared to the U-shaped stem mortality distribution across stem
diameter classes, the biomass loss rates of a forest stand de-
pended in more complex ways on the functional species com-
position and the levels of carbon fluxes (GPP and NPP). We
analysed the relationships between different levels of stem
mortality rate with biomass loss rate, GPP, NPP, and biomass
stock. It would be interesting to explore simulation results
for different modes of stem mortality in future studies.

In our study, the effects of disturbances were represented
in a simplified manner by modifying the mortality rates of
tree species. We analysed the effects of permanently increas-
ing the stem mortality rates in the studied forests. How-
ever, it is also necessary to consider the effects of discrete
or continuously changing disturbance patterns (e.g. Barlow
et al., 2003; Brando et al., 2014; Chambers et al., 2009,
2013; Doughty et al., 2015; Holzwarth et al., 2013; Magna-
bosco Marra et al., 2016; Marra et al., 2014; McDowell et
al., 2018; Negrón-Juárez et al., 2010, 2017; Nepstad et al.,
2007; Phillips and Brienen, 2017; Slik et al., 2010; Stovall
et al., 2019; Wright et al., 2015). The impacts of single,
discrete disturbance events (e.g. selective logging) on the
dynamics of terra firme forests were studied by Hiltner et
al. (2018). A follow-up study investigated the impacts of re-
peated logging events under continuously changing air tem-
peratures and precipitation rates (Hiltner et al., 2021). If ad-
ditional effects, such as climate change and forest manage-
ment, were added to the dynamic forest model’s simulations
of the present study, the reasons for biomass losses could be
determined more accurately. Assessing this aspect would be
interesting for future studies in which the methodology pre-
sented here can be applied.

It was also found that the temporal patterns of establishing
trees can change after disturbances such as modifications to
the seed mortality of specific tree species, as such changes
influence the competitive processes of trees within commu-
nities (Dantas de Paula et al., 2018). Here, we did not con-
sider the influences of stem mortality rates on establishment
processes, though this factor should be considered in future
studies.

Regarding the mapping of the biomass loss rates in French
Guiana, there are four important aspects. First, it is impor-
tant to verify the quality of the forest model parameterization
with field data as was done for biomass loss rates in this study
and by Hiltner et al. (2018, 2021), who analysed biomass dy-
namics, tree size distribution, and functional species compo-
sition by comparing model results with data from forest in-
ventories in French Guiana. The amount of available “ground
truth data” was small, so a comprehensive validation of the
simulation results and the biomass loss map was not possi-
ble. In future studies, the addition of more data sources will
allow for more extensive validation of the study results. Sec-
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ond, a multiple linear regression model predicting biomass
loss rates can be valid only for a certain type of forest. In
mapping biomass loss rates at the country level, we assumed
the predominance of a similar type of forest: the terra firme
forests in French Guiana (Hammond, 2005). For this forest
type, Stach et al. (2009) calculated a forest cover of 95 % of
the country’s land area. Third, site parameters across entire
landscapes can be heterogeneous, affecting forest dynamics
and structure. Various studies demonstrated that natural envi-
ronmental factors, such as soil properties (Rödig et al., 2017;
Soong et al., 2020), relief (Guitet et al., 2018), and climatic
variations (Rödig et al., 2017; Wagner et al., 2012), as well
as the silvicultural history (Hiltner et al., 2018; Piponiot et
al., 2016b, 2019), can affect the succession dynamics and
states of tropical forests. In this study, such spatially hetero-
geneous environmental influences on forest dynamics in terra
firme forests are indirectly considered in the forest model
and the regression model via stochastic stem mortality. Some
of these environmental factors, which vary at the regional
level, can be considered in future studies by including further
processes (see Tables S1, S2, Fischer et al., 2016). Exam-
ples are (1) implementing the effects of forest management
and fire, (2) taking into account the effects of weather vari-
ables such as temperature, rainfall variability, and solar ra-
diation, and (3) varying the relationships describing tree ge-
ometry in space and time. Moreover, species diversity could
play an important role, which was aggregated in this study
using the plant functional type approach (Maréchaux and
Chave, 2017). In further investigations, it is recommended
that climatic and topographic effects or short-term distur-
bance events and forest management be implemented to fur-
ther improve the approach developed here. Finally, changes
in climatic conditions and tree coverage have an impact on
forest height, LAI, and subsequently biomass loss rates. For
example, drought, uprooting due to storms or flooding, forest
fire, insect calamity, and forest management can be possible
drivers of variability in the LAI. Furthermore, forest height
can vary, e.g. due to uprooting from storms and flooding, fire,
and forest management. Those environmental drivers may
also interact with each other. The effects of tree coverage
and climate as well as their importance for driving the maps
of forest height and LAI and subsequently the estimations of
biomass loss rates should be explored in follow-up studies.

5 Conclusions

Here, we developed a framework for estimating biomass loss
rates in tropical forests. We analysed the effects of stem mor-
tality rate and its relation to forest productivity, forest struc-
ture, and biomass based on the example of terra firme forests
in French Guiana. By quantifying such effects through sim-
ulation experiments, it was possible to derive complex re-
lationships between biomass loss rates and other forest at-
tributes. Our approach revealed the strong influences of the

succession states and stem mortality rates on the biomass loss
rates of forests.

We also linked individual-based forest modelling with re-
mote sensing so that an estimation of biomass loss rates due
to stem mortality was feasible. The resulting sample map of
biomass loss predicted that biomass is dying at a faster rate
in the central, southern, and eastern regions than in the north-
ern parts of French Guiana. The forest areas in the north and
northeast are used for timber production, agricultural activ-
ities, and housing (Bovolo et al., 2018; Stach et al., 2009),
whereas the forest areas in the south are predominantly nat-
ural rainforests (Hammond, 2005).

The approach we developed here can be easily transferred
to other forest biomes (e.g. boreal and temperate forests) us-
ing forest models that capture biome-specific forest dynam-
ics and available remote sensing products. Estimating the
spatiotemporal distribution of forest biomass loss rates has
recently been identified as particularly relevant for the mon-
itoring of mortality hotspots (Hartmann et al., 2018). More-
over, improved estimations of the turnover times of carbon in
forest stands have been made possible so that uncertainties in
the global carbon cycle (Friend et al., 2014) can be reduced.

Code and data availability. The FORMIND parameteriza-
tion (Hiltner et al., 2018) and the source code of FOR-
MIND can be downloaded for free on the following website:
https://formind.org/downloads/download-formind-model/ (For-
mind Team, 2022). We included a comprehensive description of the
model parameters used here in the Supplement (Tables S1 and S2).
The full simulation dataset of the stem mortality scenarios and the
biomass loss map of French Guiana are freely available in the Sup-
plement. The input data of the MCD15A2H version 6 MODIS for
the LAI and the forest height map can be downloaded for free (My-
neni et al., 2015, https://doi.org/10.5067/MODIS/MCD15A2H.006;
Simard et al., 2011, https://doi.org/10.1029/2011JG001708).
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