
Biogeosciences, 19, 2059–2078, 2022
https://doi.org/10.5194/bg-19-2059-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Sensitivity of biomass burning emissions estimates to land
surface information
Makoto Saito1, Tomohiro Shiraishi1, Ryuichi Hirata1, Yosuke Niwa1, Kazuyuki Saito2, Martin Steinbacher3,
Doug Worthy4, and Tsuneo Matsunaga1

1Earth System Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Japan
2Atmosphere and Ocean Department, Japan Meteorological Agency, 1-3-4 Ote-machi, Chiyoda-ku, Tokyo, Japan
3Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland
4Climate Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario, Canada

Correspondence: Makoto Saito (saito.makoto@nies.go.jp)

Received: 18 May 2021 – Discussion started: 10 June 2021
Revised: 10 January 2022 – Accepted: 8 March 2022 – Published: 14 April 2022

Abstract. Emissions from biomass burning (BB) are a key
source of atmospheric tracer gases that affect the atmospheric
carbon cycle. We developed four sets of global BB emissions
estimates (named GlcGlob, GlcGeoc, McdGlob, and Mcd-
Geoc) using a bottom-up approach and by combining the re-
mote sensing products related to fire distribution with two
aboveground biomass (AGB) and two land cover classifica-
tion (LCC) distributions. The sensitivity of the estimates of
BB emissions to the AGB and LCC data was evaluated using
the carbon monoxide (CO) emissions associated with each
BB estimate. Using the AGB and/or LCC data led to sub-
stantially different spatial estimates of CO emissions, with a
large (factor of approximately 3) spread of estimates for the
mean annual CO emissions: 526±53, 219±35, 624±57, and
293± 44 Tg CO yr−1 for GlcGlob, GlcGeoc, McdGlob, and
McdGeoc, respectively, and 415±47 Tg CO yr−1 for their en-
semble average (EsmAve). We simulated atmospheric CO
variability at an approximately 2.5◦ grid using an atmo-
spheric tracer transport model and the BB emissions esti-
mates and compared it with ground-based and satellite ob-
servations. At ground-based observation sites during fire sea-
sons, the impact of intermittent fire events was poorly de-
fined in our simulations due to the coarse resolution, which
obscured temporal and spatial variability in the simulated at-
mospheric CO concentration. However, when compared at
the regional and global scales, the distribution of atmospheric
CO concentrations in the simulations shows substantial dif-
ferences among the estimates of BB emissions. These results

indicate that the estimates of BB emissions are highly sensi-
tive to the AGB and LCC data.

1 Introduction

The majority of biomass burning (BB) is related to human
activities, with only a small fraction caused by natural pro-
cesses such as lightning (Seiler and Crutzen, 1980; Balch
et al., 2017). Various agricultural and economic processes
involve BB; e.g., clearing of forest and brush land for agri-
cultural use, or controlling fuel accumulation in forests (An-
dreae, 1991). Such intensive activities have significant impli-
cations for changes in regional land cover from fire-resistant
to fire-prone systems (Turetsky et al., 2015). Even in savanna
where fire-adapted trees are dominant, frequent fires and/or
an abrupt increase in fire intensity can result in ecosystem
degradation with a subsequent reduction in woody biomass
(Saito et al., 2014). Furthermore, BB is a significant source
of trace gases and aerosol particles in the atmosphere (e.g.,
Bougiatioti et al., 2014; Pan et al., 2020). Water vapor and
carbon dioxide (CO2) are the primary products of the burn-
ing of organic materials. In addition, in incomplete com-
bustion, various other compounds such as carbon monox-
ide (CO), methane (CH4), nitrogen oxides, and ammonia
are emitted from the fires (Andreae, 1991). Recent studies
have shown that climate change associated with rising an-
thropogenic emissions of greenhouse gases might lead to an
increase in fire frequency over some regions (e.g., boreal re-
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gions) and emissions of greenhouse gases from terrestrial
biosphere due to enhancement of BB (Dutta et al., 2016; Hart
et al., 2019).

The quantification of BB emissions is crucial to our un-
derstanding of the role of BB with respect to the global car-
bon cycle and its interaction with climate change. At present,
several global BB emission inventories are available thanks
to advances in satellite observation technology. The satel-
lite remote sensing products for fires, such as fire radiative
power, active fires, and burned area, have been used to de-
velop inventories of BB emissions (e.g., Wiedinmyer et al.,
2011; Kaiser et al., 2012; van der Werf et al., 2017). These in-
ventories provide BB emissions covering a variety of tempo-
ral and spatial resolutions and have facilitated improvements
in our understanding of greenhouse gas emissions from BB.
Research efforts, including the continuous improvement of
land surface information, are important to the study of the
global carbon cycle, as they have reduced estimation uncer-
tainties. However, estimates of annual greenhouse gas and
aerosol particle emissions based on these inventories still
show significant differences of 1.5× and 3.8× for CO2 and
organic carbon, respectively, as well as variations in the spa-
tiotemporal patterns of the emissions (Shi et al., 2015; Pan
et al., 2020). These divergences mean that our ability to rep-
resent BB processes at the global scale remains limited, and
a basic research question regarding which of the available
estimates better represents BB emissions over regional and
global scales remains to be answered. Consequently, there is
further need for information related to the development of
better estimates of BB emissions.

Our analysis of BB emissions inventories used a bottom-
up approach and incorporated land surface information re-
garding vegetated biomass density and land cover classifica-
tions (LCC), information on fire events, and several parame-
ters related to burning efficiency. Although land use mapping
has improved over recent decades (e.g., Popescu et al., 2011;
Rodriguez-Galiano et al., 2012), differences of between 10 %
and 20 % remain in estimates of regional carbon stocks based
on different land surface maps (Mitchard et al., 2013), which
can cause divergence in estimates of BB emissions. In this
study, we aim to evaluate the sensitivity of estimates of BB
emissions to land surface information and compare our find-
ings with the newly proposed BB emissions estimates. A de-
tailed description of our BB emissions estimates, as well as
a broad summary of the comparison of our estimates with
four published reference BB datasets covering CO2 emis-
sions, can be found in Shiraishi et al. (2021). This study
takes an additional step towards evaluation of BB estimates
in terms of atmospheric CO variability, which can be used
as a tracer to investigate the transport of BB emissions (e.g.,
Chen et al., 2009; Mu et al., 2011), using independent ref-
erence data from ground-based and satellite observations of
atmospheric CO concentrations.

Table 1. BB emissions estimates and the LCC and AGB data used.

Product LCC map AGB map

GlcGlob GLC2000 Globbiomass
GlcGeoc GLC2000 GEOCARBON
McdGlob MCD12Q1 Globbiomass
McdGeoc MCD12Q1 GEOCARBON

2 Methods

2.1 Biomass burning estimates

This study expresses CO emissions from BB (E;
g CO month−1) at a grid (i) at a resolution of 500 m
with the LCC (j ) in each month (k), using the burned area
method (e.g., Michel et al., 2005; Mieville et al., 2010):

Ei,k = BAi,k ·Fi,k ·EFj , (1)

Fi,k = BEj ·
n∑

l=m+1

(
AGBi(1−BEj )l−1), (2)

where BA, F , EF, BE, and AGB are the burned area (m2); the
flammable fuel (kg m−2); the emission factor (g CO kg−1);
the burning efficiency (which ranges from 0 to 1); and the
above-ground biomass (kg m−2), respectively. The values of
EF and BE are defined by LCC (Tables A1 and A2). The
parameters m and n are the cumulative number of fire occur-
rences during the previous (k− 1) and current month k, re-
spectively. Equation (2) represents decreases in F owing to
reductions of AGB by frequent fires in a year. The biomass
density, i.e., flammable fuel, decreases with increasing fire
occurrence l. Note that the largest values of E and F oc-
cur during the first fire event in a year, as shown in Eqs. (1)
and (2), and then E and F decline as more fire events occur.
AGB is reset to its original magnitude, i.e., before the fires,
at the beginning of each year.

To determine the sensitivity of the BB emissions estimates
to the land surface information used, we calculated E based
on four scenarios that combined two types of LCC and two
types of AGB data. The LCC maps derived from the Global
Land Cover 2000 project (GLC2000) (Bartholomé and Bel-
ward, 2005) and the Moderate Resolution Imaging Spectro-
radiometer (MODIS) Land Cover Type (MCD12Q1) version
6 (Sulla-Menashe et al., 2019) data products were used to
classify the land cover types in each grid. The GLC2000 pro-
vides a global LCC map with 22 land cover types (Table A1)
based on daily data from the VEGETATION sensor aboard
the Satellite Probatoire de l’Observation de la Terre (SPOT-
4) satellite. It covers 14 months from 1 November 1999 to
31 December 2000 with a 1 km spatial resolution. We also
used the MCD12Q1 International Geosphere-Biosphere Pro-
gramme (IGBP) legend as another LCC map. This product
provides a global LCC map with 17 land cover types (Ta-
ble A2) with a spatial resolution of 500 m and yearly tempo-
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ral resolution after 2001. The AGB maps were obtained from
two datasets: the GEOCARBON global forest biomass map
(Avitabile et al., 2016) and the Globbiomass AGB map (San-
toro, 2018). The GEOCARBON map is a combined AGB
map based on two pan-tropical datasets published by Saatchi
et al. (2011) and Baccini et al. (2012) with reference field
data and biomass maps and provides the global AGB map
at a 1 km spatial resolution. The Globbiomass map is an
AGB product based on satellite observations from the radar
backscattered intensity recorded by the Phased Array type L-
band Synthetic Aperture Radar (PALSAR) instrument, which
is aboard the Advanced Land Observing Satellite (ALOS),
and the Advanced Synthetic Aperture Radar (ASAR) instru-
ment operating at C-band, which is aboard the Environmental
Satellite (Envisat) and uses lidar-based metrics and surface
reflectances. This AGB product is produced by the European
Space Agency (ESA) with a 25 m spatial resolution. These
LCC and AGB maps were used in Eqs. (1) and (2) by ag-
gregating or disaggregating them to a spatial resolution of
500 m.

The BA was obtained from the MODIS Thermal Anoma-
lies and Fire Daily (MOD14A1) version 6 dataset (Giglio
et al., 2016). MOD14A1 provides daily fire mask composi-
tions at a 1 km resolution, and we used the low-, nominal-,
and high-confidence fire classes (FireMask = 7, 8, and 9,
respectively) to detect BA. This study disaggregated the
MOD14A1 product into a 500 m resolution and assigned
BAi,k = 250000 m2 for any grid showing a fire flag. Fire oc-
currences over a grid i in a month k were not involved in BA
in this study, but they vary E with changes of F in Eq. (2).
The fire occurrences were determined by counting the num-
ber of discontinuities of fires in a month. This means that, if
the FireMask shows flags for fires (FireMask = 7, 8, 9) con-
tinuously over a month, the fire occurrence was set to l = 1.

The EF for CO was derived from the study of van der Werf
et al. (2017). They compiled an EF dataset for six biomes
based on the studies of Andreae and Merlet (2001) and Akagi
et al. (2011). For this study, we reallocated the EF to the 22
land cover types used in GLC2000 (Table A1) and the 17
LCC types used in MCD12Q1 (Table A2). In this process,
we classified the globe into 14 regions (after Giglio et al.,
2006, and van der Werf et al., 2017; Fig. A1), and then the
EF from the six biomes was adapted to the corresponding
LCC types based on the location of the objective grid in a
region. The BE was derived from the study by Mieville et al.
(2010). As their LCC conformed to GLC2000 (Table A1), the
BE values were assigned to 17 LCC types on the MCD12Q1
map (Table A2).

We hereafter refer to BB emissions estimates based
on GLC2000 using Globbiomass and GEOCARBON as
GlcGlob and GlcGeoc, respectively, and those based on
MCD12Q1 using Globbiomass and GEOCARBON as Mcd-
Glob and McdGeoc, respectively (Table 1). Further, to obtain
a single estimate from these four estimates, an ensemble av-
erage (EsmAve) of the four BB emissions estimates is used.

This value approximates the center of the probability distri-
bution of BB emissions estimates derived from two AGB and
two LCC datasets. We used E data that were aggregated onto
a grid with a resolution of about 0.837◦ in the following anal-
ysis.

2.2 Atmospheric tracer transport model

We used the Non-hydrostatic ICosahedral Atmospheric
Model (NICAM)-based transport model (NICAM-TM; Niwa
et al., 2011) to simulate atmospheric CO concentrations in
this study. NICAM has a unique characteristic in its dynam-
ical core; i.e., a non-hydrostatic system in the flux form that
guarantees the conservation of tracer mass (Satoh, 2002).
NICAM implements this non-hydrostatic scheme using an
icosahedral grid configuration.

NICAM-TM includes a module for the reaction processes
among hydroxyl radical (OH) and CO, as well as the oxi-
dation of CH4 with OH, which yields CO, to simulate at-
mospheric CO variability (Niwa et al., 2021). We used at-
mospheric OH field data from the TransCom-CH4 project
(Patra et al., 2011). The atmospheric CH4 concentration in
the simulation was fixed at 1800 ppb, which is the maxi-
mum value of whole atmospheric CH4 concentration derived
from the Greenhouse gases Observing SATellite observations
(Yokota et al., 2009) for 2009 and 2015. In this study, we
used a globally uniform grid system with a horizontal res-
olution of about 220 km and 40 vertical layers. Horizontal
winds in NICAM-TM are nudged using the Japanese 55-year
Reanalysis (Kobayashi et al., 2015) to simulate substantial
atmospheric transport. We used the NICAM-TM version de-
scribed by Niwa et al. (2017) for the transport of CO.

Fossil fuel, biogenic, and biomass burning CO emission
inventories were used as the CO emission sources at the
Earth’s surface. The fossil fuel CO emissions were derived
from the Emissions Database for Global Atmospheric Re-
search (EDGAR v4.3.2; Janssens-Maenhout et al., 2019)
with an annual resolution. Biogenic CO emissions from veg-
etation were derived from a process-based model, the Veg-
etation Integrative SImulator for Trace gases (VISIT; Ito,
2019). The biogenic CO emissions in VISIT are simulated
as a part of processes associated with biogenic volatile or-
ganic compound emissions and have a monthly resolution.
For CO emissions from BB, the abovementioned four sce-
narios are based on the various combinations of the LCC and
AGB maps.

2.3 Observational data

Ground-based observations of atmospheric CO concentra-
tions were downloaded from the World Data Centre for
Greenhouse Gases (WDCGG) for 2009–2015. From the 28
WDCGG stations with hourly observation data, we selected
those showing abrupt increases in atmospheric CO concen-
trations during dry seasons. Consequently, two ground-based
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sites: Bukit Kototabang, Indonesia (BKT, 0.20◦ S, 100.32◦ E;
Zellweger et al., 2019), and East Trout Lake, Canada (ETL,
54.35◦ N, 104.99◦W; Kim, 2016), were selected to evaluate
the estimates of BB emissions from local fire events. Mina-
mitorishima, Japan (MNM, 24.29◦ N, 153.98◦ E; Watanabe
et al., 2000), was also used as spatially representative back-
ground information. The MNM site is situated on a remote
coral island in the western North Pacific where the influence
of local fire events is usually not significant, because there is
no other island for over 1000 km in any direction, whereas
the data from the BKT and ETL sites may be influenced by
wildfires.

We also used the column-averaged dry-air concentration
of CO (XCO; ppb) recorded by the Measurements of Pol-
lution in the Troposphere (MOPITT) (Deeter et al., 2003)
instrument on NASA’s Earth Observing System Terra plat-
form. The monthly mean XCO distribution was calculated by
dividing the retrieved CO total column data (mol cm−2) by
the dry-air column data (mol cm−2) in the MOPITT version
9 level 3 multispectral (thermal infrared and near-infrared)
products (MOP03JM-L3V95.6.3; Deeter et al., 2014, 2021)
for the period 2013–2015. The XCO was calculated sepa-
rately for daytime and nighttime MOPITT observations, and
the average of these data were used in this study.

2.4 Application of MOPITT averaging kernels to
simulations

To compare our simulation results with MOPITT XCO, MO-
PITT averaging kernels and a priori information used in
the MOPITT retrievals were incorporated as follows into
the simulated CO total column cs with units of mol cm−2

(Deeter, 2002):

cs = ca+ a(xs− xa), (3)

where ca, a, xs, and xa are a priori CO total column data, the
CO total column averaging kernel, and simulated and a priori
CO profiles, respectively. The CO profiles x are described
using the common logarithm of CO volume mixing ratios v,
log10v, at particular levels in the profile. Both a and x are
vectors, and c is a scalar. The a priori CO total column ca is
calculated by multiplying the total column operator t and xa:

ca = tTxa, (4)

where the superscript T denotes the transpose operator. The
total column operator t defines the layer width between the
particular pressure levels p,

t = k1p, (5)

where k is the conversion factor between v and the column
amount (k = 2.120× 1013 mol cm−2 hPa−1 ppb−1). Surface
pressure psfc and nine fixed pressure levels of 900, 800, 700,
600, 500, 400, 300, 200, and 100 hPa are used as the MO-
PITT retrieval levels. For psfc higher than the bottom layer

of 900 hPa, a 10-level vertical layering is used in Eqs. (3)–
(5), whereas the number of layers decreases as psfc decreases
below 900 hPa. The total column averaging kernel is deter-
mined as follows using t and the averaging kernel matrix A:

a = tTA. (6)

We used the values of xa, psfc, and A derived from the MO-
PITT level 3 product, while xs is the simulated CO concen-
trations using NICAM-TM with the BB emissions estimates.
As all parameters in the MOPITT products are provided with
a spatial resolution of 1◦ grid, the simulated monthly CO
concentrations with a 2.5◦ spatial resolution were interpo-
lated to 1◦ grids. Then cs values for daytime and nighttime
were calculated using the corresponding MOPITT parame-
ters and converted to XCO using the corresponding MO-
PITT dry-air column data. The average values of daytime and
nighttime XCO were used as the simulated XCO.

2.5 Reference inventories

To quantify uncertainties in the spatial distributions of BB
emissions, we compared our BB emissions estimates to
two widely used inventories: the Global Fire Emissions
Database (GFED4.1s; van der Werf et al., 2017) and the
Global Fire Assimilation System (GFASv1.2; Di Giuseppe
et al., 2018). GFED4.1s estimates 3-hourly BB emissions at
0.25◦ grid using the burned area method, but the emissions
from small fires are also combined using information about
thermal anomalies and surface reflectance derived from
MODIS products. Fuel components in GFED4.1s are based
on a terrestrial biosphere model, called the Carnegie–Ames–
Stanford Approach (CASA; Potter et al., 1993). GFASv1.2
estimates daily BB emissions at 0.1◦ grid based on fire radia-
tive power from MODIS products. This estimate models fire
persistence by considering weather conditions using the fire
weather index modeling (Van Wagner, 1987).

2.6 Modified index of agreement and standardized
anomaly

We used the modified index of agreement (MIA) (Willmott
et al., 1985) to compare the observed and simulated atmo-
spheric CO concentrations, as follows:

MIA= 1.0−
∑N
i=1|xi − yi |∑N

i=1(|yi − x| + |xi − x|)
, (7)

where x and y are the observed and simulated CO concen-
trations (ppb) and x is the sample mean of x. The MIA cal-
culates normalized value from 0.0 to 1.0, with higher val-
ues indicating better agreement between the observations and
the model simulations. The correlation coefficient indicates a
higher value for agreement of phase variations in the variabil-
ity, whereas the MIA indicates a higher value for both agree-
ments of phase and amplitude gain variations in the variabil-
ity.
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Figure 1. Comparisons of (a) AGB for 2009 based on Globbiomass
and GEOCARBON and (b) their histograms.

The observational time series from the BKT and ETL sites
were used to classify the “no-fire” or “fire” months based on
the standardized anomaly z:

zi = (xi − x)/σx, (8)

where x is the observed daily CO concentration (ppb) and σx
is the corresponding sample standard deviation. In this study,
fire months were empirically identified as having observed
CO concentrations corresponding to zi ≥ 1.5.

3 Results

3.1 Comparisons of emissions estimates

AGB is a source of flammable fuels for BB in our esti-
mate. A comparison of the two AGB datasets (i.e., GEO-
CARBON and Globbiomass) for 2009 and the cumulative
probabilities within the range of biomass availability of 0<
AGB≤ 40 kg m−2 are shown in Fig. 1. The distribution of
AGB differs between the two products (Fig. 1a), but there is
a relationship between them with a correlation of r = 0.93.
AGB is most often less than 5 kg m−2 in both AGB prod-
ucts. AGB availability of ≤ 1, 5, and 10 kg m−2 accounts
for 43 %, 76 %, and 94 %, respectively, all grids for Glob-
biomass, and 51 %, 83 %, and 96 %, respectively, for GEO-

Table 2. Global area totals (106 km2) for forest, shrub/savanna/-
grass, and crop land in GLC2000 and MCD12Q1.

Type GLC2000 MCD12Q1

Forest1 55.8 28.0
Shrub/Savanna/Grass2 56.4 98.6
Crop3 28.2 15.6

1 Tree cover, broadleaved, evergreen, tree cover, broadleaved,
deciduous, closed and open, tree cover, needle-leaved, evergreen and
deciduous, tree cover, mixed leaf type, and mosaic: tree cover, other
natural vegetation for GLC2000; evergreen needleleaf forest,
evergreen broadleaf forest, deciduous needleleaf forest, deciduous
broadleaf forests, and mixed forests for MCD12Q1.
2 Shrub Cover, closed–open, evergreen and deciduous, herbaceous
cover, closed–open, and sparse herbaceous or sparse shrub cover for
GLC2000; closed shrublands, open shrublands, woody savannas,
savannas, and grassland for MCD12Q1.
3 Cultivated and managed areas, mosaic: cropland, tree cover, other
natural vegetation, and mosaic: cropland, shrub, and/or grass cover
for GLC2000; croplands and cropland/natural vegetation mosaics for
MCD12Q1.

CARBON (Fig. 1b). Figure 1b clearly indicates that the prob-
ability distribution of AGB availability for Globbiomass re-
flects larger values relative to that of GEOCARBON in the
range of AGB≤ 10 kg m−2. Overall, Globbiomass indicates
approximately 1.35× more AGB than GEOCARBON; how-
ever, in the range of AGB≥ 25 kg m−2, the AGB for GEO-
CARBON is greater than that for Globbiomass. This is partly
associated with a tendency for the AGB estimates in GEO-
CARBON to be higher than those in previous studies of
dense forest areas, mainly tropical evergreen broadleaf forest
(Avitabile et al., 2016) (Figs. S1 and S2 in the Supplement).

The emission factor (EF) and burning efficiency (BE),
which are related to the nature of the flammable materi-
als that comprise the AGB and control the BB emissions
(Eqs. 1 and 2), are defined by the LCC. To quantify the dif-
ferences between the two LCC maps used (Fig. S2), we cal-
culated global area totals for three vegetation classes: forest,
shrub/savanna/grass, and crop, as defined in the GLC2000
and MCD12Q1 LCCs (Table 2). The LCC data from 2009
were used for MCD12Q1 in this comparison. The forest area
in GLC2000 was 55.8× 106 km2, 199 % more than that in
MCD12Q1 (28.0×106 km2); the area of shrub/savanna/grass
in GLC200 is 56.4× 106 km2, 43 % less than MCD12Q1
(98.6× 106 km2); that of crop in GLC2000 was 28.2×
106 km2, 181 % more than MCD12Q1 (15.6× 106 km2). At
the global scale, it is noteworthy that there are large differ-
ences in the area totals of the vegetation classes between
the two products; e.g., GLC2000 possesses larger forest ar-
eas, whereas MCD12Q1 has more shrub/savanna/grass. Giri
et al. (2005) found that the spatial distribution of vegetation
in eight LCC classes shows agreement of 59.5 % between the
GLC2000 and MCD12Q1 products, and the discrepancies
between them occur in southern Siberia, the Sahel region,
southeastern Brazil, Southern Australia, and on the Tibetan
Plateau.
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Figure 2. Spatial distributions of the annual average of CO emissions (g CO m−2 yr−1) for (a) GlcGlob, (b) GlcGeoc, (c) McdGlob, (d) Mcd-
Geoc, and (e) EsmAve and (f) their standard deviation based on four BB emissions estimates over the period 2009–2015.

These differences in AGB and LCC distributions can be
expected to result in differing BB CO emissions estimates
among the four AGB/LCC scenarios. We first calculated
annual average of BB CO emissions (g CO m−2 yr−1) for
2009–2015 for each estimate (Fig. 2). The four estimates and
their ensemble average show a similar spatial pattern of BB
emissions, at least at the global scale: large emissions in trop-
ical regions over northern and southern tropical Africa, trop-
ical Asia, and Oceania, as well as the southern Amazon, bo-
real Eurasia, and northern and southeastern regions of North
America. However, the magnitudes of the emissions differ
among the estimates. The standard deviation among the four
BB emissions estimates increases as BB emissions increase,
particularly in northern and southern tropical Africa.

Global monthly BB CO emissions exhibit seasonal vari-
ability with peaks during the boreal summer for all esti-
mates (Fig. 3a). In addition, the GlcGlob and McdGlob
estimates show second peaks during the austral summer,
whereas the GlcGeoc and McdGeoc estimates show no well-
defined peaks. This suggests that the seasonal variability
among the BB estimates will change depending on the AGB
map and that the emission totals vary with both the AGB
and LCC maps. The annual emission totals vary signif-
icantly depending on which BB estimates are used. The
mean annual BB emissions with their standard deviation are

526± 53, 219± 35, 624± 57, and 293± 44 Tg CO yr−1 for
GlcGlob, GlcGeoc, McdGlob, and McdGeoc, respectively.
The EsmAve displays moderate seasonal variability in global
monthly BB CO emissions and the mean annual emissions
of 415± 47 Tg CO yr−1. Using data from over 370 publica-
tions, Andreae (2019) obtained CO emissions in the range
390–1210 Tg CO yr−1 from open vegetation fires and 181–
196 Tg CO yr−1 from indoor biofuel use. Our study does not
take separate account of emissions from biofuel use, which
could result in a slight underestimation of total emissions
from BB. The annual CO emissions from BB reported in An-
dreae (2019) span a wide range, and our emissions estimates
based on GlcGlob, McdGlob, and EsmAve fall within this
range. However, our estimates based on GlcGeoc and Mcd-
Geoc fall substantially below this range. On the other hand,
GFED4.1s and GFASv1.2 show the mean annual BB emis-
sions are less than 350 Tg CO yr−1 (Table 4) for 2009–2015,
and the percentage differences from them are larger for Mcd-
Glob (+88%) than GlcGeoc (−37%).

To evaluate the sensitivity of BB emissions estimates to
land surface information at the regional scale, we next com-
pared seasonal variability in BB CO emissions from the four
estimates and their ensemble average over southern tropical
Africa (see black rectangle in Fig. 2f) (Fig. 3b). This region
is situated in a complicated transition zone containing forest,
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Figure 3. Monthly CO emissions (Tg CO month−1) for EsmAve (purple line), GlcGlob (green line), GlcGeoc (blue line), McdGlob (orange
line), and McdGeoc (red line) over (a) the globe and (b) the southern Africa region within the black rectangle shown in Fig. 2f.

Table 3. Mean AGB (g m−2) from the four BB emissions estimates for forest and shrub/savanna/grass over southern tropical Africa (Fig. 2b).
Numbers in parentheses are the annual AGB decrement (%) caused by fires.

Type GlcGlob GlcGeoc McdGlob McdGeoc

Forest 3567 (1.0) 2749 (0.9) 1896 (0.7) 1925 (0.7)
Shrub/savanna/grass 738 (2.2) 28 (1.3) 2704 (3.1) 893 (3.2)

savanna, and bare ground and with few local studies, and this
has led to poor-quality land surface information and a high
degree of variability among the datasets (Bouvet et al., 2018).
All estimates reveal fire emissions from May to October. The
annual emissions estimates based on the four AGB/LCC sce-
narios range over a factor of 4 from 36 to 146 Tg CO yr−1

among the estimates. In southern tropical Africa, McdGlob
has the highest AGB of 2704 g m−2 for shrub/savanna/grass
with higher BE (Table 3), and this rich supply of flammable
fuel leads to the highest CO emissions. For the McdGlob esti-
mate, the AGB of 3.1 % for shrub/savanna/grass is burned an-
nually and is converted into emissions. By contrast, GlcGeoc
has the lowest AGB for shrub/savanna/grass (28 g m−2), and
this results in the lowest CO emissions. This large differ-
ence in AGB for shrub/savanna/grass between McdGlob and
GlcGeoc, which is between Globbiomass and GEOCAR-
BON, over southern tropical Africa is not surprising. Glob-
biomass is an AGB product based partly on the retrieval

of biomass from airborne L-band SAR data, which inter-
act with the Earth’s surface; the data are sensitive to forest
vegetation’s primary and secondary branches and stems (Lu-
cas et al., 2010; Carreiras et al., 2012). Although the L-band
SAR data are influenced by moisture on vegetation and soil
and exhibit saturation in dense forest, successful biomass es-
timation is promising over shrub and savanna lands where
surface moisture is relatively low. GEOCARBON is, on the
other hand, primarily a global forest AGB map, which is de-
rived from two pan-tropical AGB maps with calibration us-
ing reference field measurement datasets. The uneven distri-
bution of AGB reference datasets toward forest vegetation
types leads to lower AGB estimates than other previous stud-
ies of Central America and mostly dry vegetation areas in
Africa (Avitabile et al., 2016). The high discrepancy of CO
emissions for this area hence resulted from the difference in
AGBs for forest and shrub/savanna/grass among the four sce-
narios.
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Table 4. Mean annual BB CO emissions (Tg yr−1) from the GFED4.1s, GFASv1.2, and this study’s estimates over the 14 global regions (see
Fig. A1) between 2009 and 2015.

Region GFED4.1s GFASv1.2 EsmAve GlcGlob GlcGeoc McdGlob McdGeoc

BONA 21.5 34.5 16.9 17.0 12.7 21.6 16.4
TENA 3.3 7.0 16.3 17.5 9.0 24.3 14.3
CEAM 4.4 5.2 11.0 15.5 4.8 16.5 7.1
NHSA 3.6 3.7 7.4 12.0 2.6 11.5 3.6
SHSA 39.3 33.2 68.5 78.1 48.5 84.0 63.3
EURO 1.1 1.3 2.7 3.5 1.2 4.3 2.0
MIDE 0.3 1.5 0.5 0.6 0.2 1.0 0.3
NHAF 52.4 42.9 67.0 104.5 16.6 127.1 20.0
SHAF 90.6 61.1 94.6 119.9 38.9 164.5 55.0
BOAS 29.2 67.2 43.5 48.3 29.4 58.5 37.5
CEAS 10.4 12.8 13.5 20.4 4.8 21.8 7.2
SEAS 19.1 20.4 26.4 40.8 14.6 33.4 16.9
EQAS 40.4 39.5 25.6 33.1 17.2 31.8 20.3
AUST 14.8 19.6 21.2 14.5 18.2 23.1 29.1

Total 331 350 415 526 219 624 293

In order to investigate the BB emissions estimates further,
mean annual BB CO emissions over 7 years in the 14 global
regions (Fig. A1) are listed in Table 4, along with those
of GFED4.1s and GFASv1.2. There was not much differ-
ence in mean annual BB CO emissions between GFED4.1s
and GFASv1.2 for almost all the regions and for the global
total, although Southern Hemisphere Africa (SHAF) and
Boreal Asia (BOAS) showed some differences. Mean an-
nual emissions of the four BB estimates and EsmAve over
the BOAS region (29.4–58.8 Tg CO yr−1) fall between those
of GFED4.1s and GFASv1.2 (29.2 and 67.2 Tg CO yr−1),
whereas the variations among the four BB estimates over
the SHAF region (38.9–164.5 Tg) are substantially larger
than the range between GFED4.1s and GFASv1.2 (90.6
and 61.1 Tg CO yr−1). Large variations among the four BB
emissions estimates are also found in Northern Hemisphere
Africa (NHAF) (range between 16.6 and 127.1 Tg CO yr−1).
The large variations can be attributed to the low confidence of
land surface information over the NHAF and SHAF regions,
as mentioned in Fig. 3b. The mean annual BB CO emissions
of the four BB estimates were consistently lower than those
of GFED4.1s and GFASv1.2 in Equatorial Asia (EQAS) and
in Boreal North America (BONA), and higher in Temper-
ate North America (TENA) and in Southern Hemisphere
South America (SHSA). It is not straightforward to consis-
tently interpret these different patterns in BB emissions over
the regions relative to GFED4.1s and GFASv1.2, at least for
GFED4.1s, because this study estimated BB CO emissions
using a similar burned area method and MODIS fire product
to GFED4.1s. A potential reason for the differences might be
differences in the AGB datasets used in the estimates. This
study uses the AGB datasets from Globbiomass and GEO-
CARBON, while GFED4.1s uses the CASA model for sim-

ulation. Although the AGB used in GFED4.1s is adjusted to
match GEOCARBON at the biome level, carbon allocation
and variation in the vegetation carbon pool (including the im-
pact of fire-induced mortality and turnover) are also repre-
sented in the CASA model, partly using the satellite-derived
instantaneous tree mortality information (van der Werf et al.,
2017). These detailed processes using the vegetation carbon
pool are not used in our estimates. These different represen-
tations of AGB could result in the differing regional BB CO
emissions. The different spatiotemporal resolutions of the
estimates are another potential cause. This study estimated
monthly BB emissions at 500 m spatial resolution, whereas
GFED4.1s and GFASv1.2 estimated 3-hourly emissions at
0.25 grid resolution and daily ones at 0.1 grid resolution,
respectively. A coarse spatiotemporal resolution reduces the
variability of land cover types and flammable fuel consump-
tion, leading to differing amounts of BB emissions (van Wees
and van der Werf, 2019).

3.2 Comparisons of modeled atmospheric CO fields

As an alternative approach, we compared modeled CO fields
using each BB emission estimate. Variability in atmospheric
CO concentrations was simulated using NICAM-TM with
surface flux information including the four BB emissions es-
timates. Observed and simulated daily time series at the three
ground-based observation sites, BKT, ETL, and MNM, are
shown in Fig. 4. The observations at the BKT site in Indone-
sia and the ETL site in Canada may be subject to recurrent
fire events. In particular, daily average CO concentrations ex-
ceeding 1000 ppb were frequently observed at the BKT site
for 2014 and 2015, leading to a mean and standard deviation
of 660.2±707.5 ppb for fire months and 153.3±53.2 ppb for
no-fire months (Table 5). The mean concentrations for no-fire
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Figure 4. Daily atmospheric CO concentration variations (ppb) at the three ground-based observation stations, (a) Bukit Kototabang (BKT),
(b) East Trout Lake (ETL), and (c) Minamitorishima (MNM), for 2009–2015. The gray shading for the BKT and ETL sites indicates the fire
months identified using the standardized anomaly (Eq. 8).

and fire months (130.6 and 163.7 ppb, respectively) were not
significantly different at the ETL site. The variability in ob-
served daily atmospheric CO concentrations for both no-fire
and fire months was moderately captured by simulations at
both sites, regardless of which BB emissions estimate was
used. Indeed, there is no clear difference in correlation co-
efficient and MIA among the simulations using the four BB
emissions estimates for no-fire months. However, the simu-
lated variability during fire events for fire months is generally
weakened relative to the observations, and the impact of dif-
ferent BB emissions estimates on CO concentrations appears
in the amplitude of the simulated variability. The variability
simulated using McdGlob shows highest concentrations, and
that for GlcGeoc shows the lowest ones. For fire months, de-

viation of the simulated variability from the observations is
apparent for simulations based on BB estimates that used the
GEOCARBON AGB map, lower correlation coefficients at
the BKT site, and lower MIA at the ETL site.

These temporal characteristics of daily variability in sim-
ulated atmospheric CO concentrations can, however, be
largely dominated by atmospheric transport processes sim-
ulated using NICAM-TM and not by the BB emissions esti-
mates, because the BB emissions estimates have a monthly
resolution. To reduce this inconsistency in the temporal res-
olutions of the observations and the BB emissions estimates,
the observed and simulated daily time series were averaged
to monthly ones (Fig. 5). For no-fire months, although sim-
ulated atmospheric concentrations for the four BB emissions
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Table 5. Statistics comparing observed and simulated time series of daily atmospheric CO concentrations at the BKT, ETL, and MNM sites
between 2009 and 2015.

Statistics No-fire months Fire months

BKT ETL MNM BKT ETL

No. of observations 2236 2053 2511 237 226

Mean (ppb)

Observations 153.3 130.6 101.3 660.2 163.7
EsmAve 148.4 140.0 104.5 287.3 198.0
GlcGlob 152.6 142.8 108.0 317.1 187.4
GlcGeoc 137.9 129.2 98.9 218.8 176.2
McdGlob 156.2 151.2 110.1 342.7 222.0
McdGeoc 146.9 136.8 101.1 269.9 206.3

Standard deviation (ppb)

Observations 53.2 19.7 32.1 707.5 196.4
EsmAve 44.2 27.9 18.2 104.5 126.6
GlcGlob 47.1 26.4 19.8 113.2 109.5
GlcGeoc 37.8 26.0 16.4 61.2 108.3
McdGlob 49.1 30.7 20.2 142.7 146.8
McdGeoc 45.1 30.1 16.9 112.1 142.4

Mean absolute error (ppb)

EsmAve 35.5 19.8 15.0 407.2 96.8
GlcGlob 35.3 19.3 15.5 388.3 89.5
GlcGeoc 36.5 19.1 15.3 456.2 86.3
McdGlob 36.1 25.0 16.2 376.1 112.0
McdGeoc 36.8 21.4 15.2 423.0 103.8

Correlation coefficient

EsmAve 0.51 0.38 0.88 0.56 0.31
GlcGlob 0.54 0.43 0.87 0.61 0.31
GlcGeoc 0.49 0.41 0.87 0.46 0.31
McdGlob 0.51 0.35 0.88 0.60 0.31
McdGeoc 0.46 0.34 0.87 0.45 0.31

Modified index of agreement

EsmAve 0.54 0.45 0.64 0.54 0.35
GlcGlob 0.55 0.47 0.65 0.54 0.41
GlcGeoc 0.51 0.46 0.62 0.52 0.29
McdGlob 0.54 0.40 0.64 0.54 0.44
McdGeoc 0.52 0.42 0.63 0.53 0.31

estimates show large variations at both the BKT and ETL
sites, they display monotonic trends along identity lines to
the observations. For fire months, simulated variability dis-
plays opposing trends at the two sites: underestimations of
atmospheric concentrations at the BKT site and overestima-
tions at the ETL site for all BB emissions estimates. These
comparisons reveal a difficulty faced by the simulations in re-
producing the ground-based observations of higher CO con-
centrations generated by sudden BB emissions from inter-
mittent fire events.

At the MNM site in Japan, with no local fire events, there
was no clear difference among the BB emissions estimates
in terms of the correlation coefficient, mean absolute er-
ror, and MIA (Fig. 4 and Table 5). Differences in the mean
CO concentration among the simulations at the MNM site
(11.2 ppb) were smaller than those at BKT (18.3 ppb) and
ETL (22.0 ppb) for the no-fire months. However, the differ-
ence at the MNM site implies that differences in BB emis-
sions estimates can even contribute to variability in the back-
ground atmospheric CO concentration, even though CO has
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Figure 5. Comparisons of observed and simulated monthly atmospheric CO concentration (ppb) over the period 2009–2015. The conditional
quantile plots for no-fire months at (a) BKT and (c) ETL. The scatter plots for fire months at BKT (b) and (d) ETL.

a relatively short lifespan in the atmosphere of weeks to
months.

To extend the comparison over the regional scale, the
global distributions of XCO (ppb) were averaged for 2013–
2015 for the MOPITT observations and the simulations using
the four BB emissions estimates and their ensemble average
(Fig. 6). All of the results in Fig. 6 show strong spatial varia-
tions in XCO. Higher concentrations of XCO are found over
tropical regions, southeastern North America, boreal Eurasia,
and southeast Asia in the MOPITT observations. These re-
gions are consistent with the areas with large BB emissions,
as shown in Fig. 2. Lower XCO concentrations are found
over the oceans in the Southern Hemisphere in the MOPITT
observations. These global distributions of XCO are repre-
sented in the simulations from all of the BB emissions esti-
mates, but the mean XCO concentrations at the regional scale
differ in the simulations among the BB emissions estimates.

Figure 7 shows monthly mean XCO and the root mean
square error (RMSE, ppb) between the observed and simu-
lated XCO fields over six selected areas: West Coast of the
United States of America (WCA), Eastern Siberia (ESB), the
Amazon (AMZ), South Asia (SAS), Central Africa (CAF),
and the Sumatra and Borneo Islands (SBI), which are shown
in the red rectangle in Fig. 6a. Over the WCA and ESB ar-
eas, the monthly mean observed XCO shows little season-
ality, with standard deviations of 11.5 and 10.4 ppb (Fig. 7a

and b; Table 6). During the approximately 3 months of the
year with higher XCO concentrations, the mean observed
XCO concentrations over both areas increases by approxi-
mately 11 %–17 % relative to the other months. The XCO
values simulated using GlcGlob or EsmAve largely repro-
duce the observed seasonality, but those from GlcGeoc show
less seasonality, resulting in a higher RMSE and lower MIA.
Underestimations of peak concentrations and seasonal vari-
ability in simulations with GlcGeoc are also apparent over
the AMZ areas, with moderate seasonality and standard de-
viations of 23.5 ppb, as well as over the CAF and SBI ar-
eas, with large seasonality and standard deviations of 28.7
and 29.5 ppb, respectively. The XCO values simulated us-
ing McdGlob, on the other hand, show overestimates of
BB emissions during the fire seasons, in particular, over the
ESB and CAF areas, whereas the abrupt increase in XCO
(195.4 ppb) in October 2015 over the SBI area is well rep-
resented by the monthly mean value of 185.9 ppb. The val-
ues simulated using GlcGlob, McdGeoc, and EsmAve are
between those from McdGlob and GlcGeoc, and they mod-
erately recreate the observed variability, except over the SAS
area. The simulated XCO values over the SAS area, where
contributions from fossil fuels to CO emissions prevail over
BB emissions (Yarragunta et al., 2021), were approximately
20 ppb higher than the observations over the whole period,
regardless of which BB emissions estimate was used. This
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Figure 6. Spatial distributions of mean XCO (ppb) between 2013 and 2015 for (a) MOPITT level 3 product and the simulations using
(b) EsmAve, (c) GlcGlob, (d) GlcGeoc, (e) McdGlob, and (f) McdGeoc.

Figure 7. Monthly mean XCO variations (ppb; solid) and RMSE (ppb; dashed) between observed and simulated fields over the six areas:
(a) WCA, (b) ESB, (c) AMZ, (d) SAS, (e) CAF, and (f) SBI for 2013–2015.
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Table 6. As Table 5 but for observed and simulated XCO (ppb) fields over the six selected areas: SEN, ESB, AMZ, SAS, CAF, and SBI
between 2013 and 2015.

Statistics WCA ESB AMZ SAS CAF SBI

Mean (ppb)

MOPITT 93.4 103.6 98.2 110.6 114.8 90.5
EsmAve 95.2 103.7 101.1 120.4 115.1 99.4
GlcGlob 97.4 105.9 104.9 124.7 123.0 102.8
GlcGeoc 91.0 98.2 93.5 114.7 98.1 93.0
McdGlob 99.1 109.1 107.6 125.5 130.9 104.7
McdGeoc 92.9 101.2 97.3 116.6 102.7 96.4

Standard deviation (ppb)

MOPITT 11.5 10.4 23.5 23.4 28.7 29.5
EsmAve 6.9 8.7 22.2 22.4 28.8 20.5
GlcGlob 7.9 9.5 22.8 23.8 32.8 24.2
GlcGeoc 5.9 7.5 20.0 20.9 19.0 14.7
McdGlob 7.8 10.2 23.6 23.7 37.5 25.0
McdGeoc 6.2 8.2 22.5 21.3 21.7 17.1

Mean absolute error (ppb)

EsmAve 5.8 4.6 8.9 12.8 12.2 13.7
GlcGlob 5.9 5.1 10.0 15.0 13.7 15.0
GlcGeoc 6.5 6.6 9.9 11.1 18.6 12.7
McdGlob 7.1 6.7 11.7 16.3 18.4 16.2
McdGeoc 6.3 5.3 8.9 11.6 15.5 13.3

Correlation coefficient

EsmAve 0.83 0.80 0.85 0.86 0.85 0.91
GlcGlob 0.86 0.80 0.85 0.88 0.85 0.93
GlcGeoc 0.76 0.75 0.79 0.81 0.79 0.82
McdGlob 0.85 0.80 0.86 0.87 0.86 0.94
McdGeoc 0.76 0.76 0.83 0.82 0.83 0.87

Modified index of agreement

EsmAve 0.62 0.70 0.74 0.65 0.73 0.59
GlcGlob 0.64 0.68 0.71 0.62 0.71 0.58
GlcGeoc 0.54 0.58 0.72 0.68 0.59 0.58
McdGlob 0.58 0.60 0.68 0.59 0.65 0.56
McdGeoc 0.55 0.64 0.75 0.67 0.65 0.58

suggests that representation of CO emissions remains insuf-
ficient over the SAS area, not only for BB emissions but also
other emission sources. Values of MIA show that the mean
value over the five areas (excluding SAS) was better in the
simulations based on GlcGlob, with a value of 0.66 (0.58
to 0.71), whereas those derived using GlcGeoc, McdGlob,
and McdGeoc, were 0.60 (0.54 to 0.72), 0.61 (0.56 to 0.68),
and 0.63 (0.55 to 0.75), respectively. Additionally, EsmAve
exhibited the highest value of 0.68 (0.59 to 0.74), although
differences in the mean values of MIA from the simulations
using other BB emissions estimates were not large.

4 Discussion

BB emissions are an important contributor to atmospheric
greenhouse gases and aerosols, yet uncertainty with respect
to regional and interannual variability remains due to our lim-
ited understanding of the underlying mechanisms and lack of
data related to this variability. Accurate and detailed informa-
tion regarding AGB and LCC is essential to estimates of BB
emissions from wildfires using the bottom-up approach. Im-
provements in satellite sensors, ground surface observations,
digital image processing techniques, and retrieval algorithms
have contributed towards reducing the uncertainties associ-
ated with AGB and LCC mapping (e.g., Goetz et al., 2009;
Clerici et al., 2017). Nevertheless, datasets prepared using
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different data sources, classification schemes, and method-
ologies generate discrepancies in the AGB and LCC distri-
butions among the products (Fig. 1; Table 2) as has been dis-
cussed previously (e.g., Giri et al., 2005).

This study tested combinations of two sources of AGB
data, Globbiomass and GEOCARBON, and two sources of
LCC data, GLC2000 and MCD12Q1, and used the same
burned area satellite data to estimate BB CO emissions. Al-
though the EF and BE parameters remained the same in our
estimates, our analysis showed large discrepancies in annual
mean CO emissions, with a factor of approximately 3 (219–
624 Tg CO yr−1) separating the four BB emissions estimates.
Using AGB data from Globbiomass and GEOCARBON,
we showed that the magnitude of AGB from Globbiomass
tends to be approximately 35 % larger than that from GEO-
CARBON, leading to the resulting BB emissions estimates
based on Globbiomass being more than twice those made
using GEOCARBON over the globe. Furthermore, our com-
parison of the LCC data showed that the global area totals
for the forest class in GLC2000 were approximately twice
those for MCD12Q1, while those for shrub/savanna/grass in
GLC2000 were approximately half those in MCD12Q1. As
burning efficiencies for shrub/savanna/grass are greater than
those for forests (Tables A1 and A2), the BB emissions based
on MCD12Q1, with its larger area totals for shrub/savanna/-
grass, tend to be higher than those based on GLC2000. These
results indicate that the estimates of BB emissions are highly
sensitive to the AGB and LCC data, and thus the AGB and
LCC data used could be the primary drivers of uncertainty
in the estimates of BB emissions. In addition, because ade-
quately accurate distributions of AGB and LCC are still un-
available, an independent approach is needed to evaluate the
estimate of BB emissions.

Variability in atmospheric CO concentrations simulated
using an atmospheric tracer transport model and the BB
emissions and other emission inventories were compared
with ground-based and satellite observations to act as the
independent evaluation of the BB emissions estimates. We
did not take account of errors introduced by the observa-
tional processes or errors in the transport model and the
other emission inventories, but we consider that our analy-
sis is a useful way to study the relative differences among
the BB emissions estimates and approximate changes in the
simulated atmospheric concentrations. Extending this analy-
sis to ground-based observations of the impact of intermit-
tent fire events at the local scale was more challenging due
to the coarse resolution of the available BB emissions es-
timates and the atmospheric tracer transport model, which
weakens temporal and spatial variability in the simulated at-
mospheric CO concentrations. Abrupt variability in atmo-
spheric CO concentrations recorded in the ground-based ob-
servations for fire months was indeed represented with the
variations that are attenuated in the higher CO concentrations
(Fig. 4). Relatively small differences among the BB emis-
sions estimates from the ground-based observation sites (Ta-

ble 5) may be attributed to the loss of information related to
the high-frequency variability in the simulated atmospheric
CO concentration. We need to recognize that a global trans-
port model with a horizontal resolution of about 220 km is
insufficient to quantify local BB emissions accurately. The
attenuation in the simulation can be moderately improved by
including daily variability in the BB emissions, especially
for surface observations with high levels of biomass burning,
using atmospheric transport simulations with a high spatial
resolution (e.g., Mu et al., 2011).

At the global scale, comparison with satellite observations
suggests that the XCO variability simulated using the AGB
data from Globbiomass and the LCC data from GLC2000, as
well as that from the ensemble average of the four emissions
estimates, provides a better representation of the temporal
and spatial variability in observed XCO during fire seasons
than that achievable using other combinations of the AGB
and LCC data (Figs. 6 and 7; Table 6). The GlcGlob and
EsmAve estimates yield global BB emissions of 526± 53
and 415± 47 Tg CO yr−1. The total CO emissions of Glc-
Glob are slightly higher than those reported by Hooghiem-
stra et al. (2011), who found total emissions of 400± 88
and 482±68 Tg CO yr−1 for 2003 and 2004, respectively, us-
ing a data assimilation to surface observations, whereas the
EsmAve exhibits total CO emissions close to the estimates
by Hooghiemstra et al. (2011) for 2003. The corresponding
mean emissions for 2009 and 2015 obtained from GFED4.1s
and GFASv1.2 were 331 and 350 Tg CO yr−1, respectively,
which are approximately 37 % and 34 % lower than GlcGlob
and approximately 20 % and 16 % lower than EsmAve.

Note that our analysis is not a guarantee of the validity of
the AGB and LCC data used, and we do not intend to argue
which of the AGB and LCC datasets are better than others.
As CO EFs remain uncertain, due mainly to the difficulty in
treatment of emissions from residual smoldering combustion
(Andreae, 2019), the estimated BB emissions can vary ac-
cording to the EF used and depend on the selection of the
fire class confidence in the fire mask data. Further, this study
used the EF classified based on LCC and the location of the
objective grid in a region (Tables A1 and A2), but the magni-
tudes of EF can vary with the plant species even for the same
LCC type. For example, the CO EFs for crop straws vary be-
tween 27.2 and 46.9 g kg−1 dry matter among rice, wheat,
and barley under dry conditions owing to different lengths
of combustion time with smoldering, and these EFs change
easily with moisture levels in crop residues (Hayashi et al.,
2014). Such detailed variability of EF can only be accounted
for by estimating BB emissions at a finer resolution and by
using a finer vegetation classification map. Additionally, one
limitation of the current study of BB estimates is that it does
not include a scheme to inherit the amount of AGB that re-
mained unburned in the previous year. Although continuous
variations in AGB over multiyear periods and the impact of
these variations on BB emissions can be simulated by cou-
pling the system to a terrestrial biosphere model, this work
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remains incomplete. Finally, to improve our currently lim-
ited ability to estimate BB emissions, we are calling for ad-
ditional independent approaches and data evaluation to help
increase our understanding of their characteristics.

5 Conclusions

This study used the burned area method in bottom-up ap-
proaches to estimate spatiotemporal variations in global BB
CO emissions based on AGB and LCC land surface infor-
mation and burned area data. Regarding the land surface in-
formation, we tested two AGB datasets (Globbiomass and
GEOCARBON) to evaluate the sensitivity of BB emissions
estimates to these different datasets. Preliminary compar-
isons of the AGB and LCC datasets showed substantial dif-
ferences among them. The spatial distribution of AGB was
highly correlated between Globbiomass and GEOCARBON,
but the former contained AGB values that were larger than
the latter by a factor of 1.35. The global area total for for-
est in GLC2000 was 199 % more than that in MCD12Q1 but
was 43 % less than for shrub/savanna/grass. By combining
these AGB and LCC data with the burned area data, four BB
emissions estimates (i.e., GlcGlob, GlcGeoc, McdGlob, and
McdGeoc) were derived using the burned area method.

We began by comparing the seasonal variability of the
BB emissions estimates over the regional and global scales.
This comparison showed that BB emissions increase as the
amount of AGB for shrub/savanna/grass increases over the
corresponding burned area. Our estimates of the mean an-
nual BB emissions resulted in a large divergence among
the estimates, i.e., 526± 53, 219± 35, 624± 57, and 293±
44 Tg CO yr−1 for GlcGlob, GlcGeoc, McdGlob, and Mcd-
Geoc, respectively, and their ensemble average EsmAve was
415± 47 Tg CO yr−1. Using the BB emissions estimates,
variability in atmospheric CO concentrations was simulated
using NICAM-TM with other emissions sources (i.e., fossil
fuel and biogenic emissions) as inputs. We evaluated our re-
sults against independent ground-based (WDCGG network)
and satellite (MOPITT) CO observations. Comparison with
data from the ground-based sites indicated that all BB emis-
sions estimates represent local fire events, but underestima-
tion of BB emissions was particularly apparent for intense
fires at the BKT site in Indonesia. Explicit differences in the
simulated CO concentrations among the BB emissions esti-
mates were found in comparison with the satellite observa-
tions at the regional scale. In our simulations, the XCO vari-
ability simulated using the GlcGlob estimates or the EsmAve
was the most consistent with the satellite observations at the
regional and global scales.

This study has confirmed that BB emissions estimates are
sensitive to the land surface information on which they are
based. Furthermore, although it is clear that there are signifi-
cant differences among the various land surface information
products currently available, the quantitative evaluation of
these differences remains difficult because of the limited cov-
erage of surface observations. One approach to addressing
this limitation would be the commissioning of future satel-
lite missions carrying higher-resolution onboard sensors.
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Appendix A

Figure A1. Map of the 14 global regions derived from Giglio et al.
(2006) and van der Werf et al. (2017).

Table A1. BE and EF of CO (g CO kg−1) for the LCC types used in GLC2000. See Fig. A1 for abbreviations of the 14 global regions.
Letters in brackets show corresponding biome types from van der Werf et al. (2017); A: boreal forest; B: temperate forest; C: tropical forest;
D: savanna; E: peat; and F: agriculture.

LCC BE EF in the 14 regions

BONE TENA CEAM NHSA SHSA EURO MIDE NHAF SHAF BOAS CEAS SEAS EQAS AUST

Tree cover, broadleaved, evergreen 0.25 127 (A) 88 (B) 93 (C) 93 (C) 93 (C) 88 (B) 93 (C) 93 (C) 93 (C) 127 (A) 88 (B) 93 (C) 210 (E) 88 (B)
Tree cover, broadleaved, deciduous, closed 0.25 127 (A) 88 (B) 93 (C) 93 (C) 93 (C) 88 (B) 93 (C) 93 (C) 93 (C) 127 (A) 88 (B) 93 (C) 210 (E) 88 (B)
Tree cover, broadleaved, deciduous, open 0.4 127 (A) 88 (B) 93 (C) 93 (C) 93 (C) 88 (B) 93 (C) 93 (C) 93 (C) 127 (A) 88 (B) 93 (C) 210 (E) 88 (B)
Tree cover, needle-leaved, evergreen 0.25 127 (A) 88 (B) 93 (C) 93 (C) 93 (C) 88 (B) 93 (C) 93 (C) 93 (C) 127 (A) 88 (B) 93 (C) 210 (E) 88 (B)
Tree cover, needle-leaved, deciduous 0.25 127 (A) 88 (B) 93 (C) 93 (C) 93 (C) 88 (B) 93 (C) 93 (C) 93 (C) 127 (A) 88 (B) 93 (C) 210 (E) 88 (B)
Tree cover, mixed leaf type 0.25 127 (A) 88 (B) 93 (C) 93 (C) 93 (C) 88 (B) 93 (C) 93 (C) 93 (C) 127 (A) 88 (B) 93 (C) 210 (E) 88 (B)
Tree cover, regularly flooded, fresh water 0 127 (A) 88 (B) 93 (C) 93 (C) 93 (C) 88 (B) 93 (C) 93 (C) 93 (C) 127 (A) 88 (B) 93 (C) 210 (E) 88 (B)
Tree cover, regularly flooded, saline water 0 127 (A) 88 (B) 93 (C) 93 (C) 93 (C) 88 (B) 93 (C) 93 (C) 93 (C) 127 (A) 88 (B) 93 (C) 210 (E) 88 (B)
Mosaic: tree cover, other natural vegetation 0.35 127 (A) 88 (B) 93 (C) 93 (C) 93 (C) 88 (B) 93 (C) 93 (C) 93 (C) 127 (A) 88 (B) 93 (C) 210 (E) 88 (B)
Tree cover, burned 0 127 (A) 88 (B) 93 (C) 93 (C) 93 (C) 88 (B) 93 (C) 93 (C) 93 (C) 127 (A) 88 (B) 93 (C) 210 (E) 88 (B)
Shrub cover, closed–open, evergreen 0.9 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D)
Shrub cover, closed–open, deciduous 0.4 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D)
Herbaceous cover, closed–open 0.9 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D)
Sparse herbaceous or sparse shrub cover 0.6 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D)
Regularly flooded shrub and/or herbaceous 0 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D)
Cover
Cultivated and managed areas 0.6 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F)
Mosaic: cropland, tree cover, other natural 0.8 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F)
Vegetation
Mosaic: cropland, shrub, and/or grass cover 0.75 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F)
Bare areas 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Water bodies 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Snow and ice 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Artificial surfaces and associated areas 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
No data 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table A2. As Table A1 but for the LCC types used in MCD12Q1.

LCC BE EF in 14 regions

BONE TENA CEAM NHSA SHSA EURO MIDE NHAF SHAF BOAS CEAS SEAS EQAS AUST

Evergreen needleleaf forests 0.25 127 (A) 88 (B) 93 (C) 93 (C) 93 (C) 88 (B) 93 (C) 93 (C) 93 (C) 127 (A) 88 (B) 93 (C) 210 (E) 88 (B)
Evergreen broadleaf forests 0.25 127 (A) 88 (B) 93 (C) 93 (C) 93 (C) 88 (B) 93 (C) 93 (C) 93 (C) 127 (A) 88 (B) 93 (C) 210 (E) 88 (B)
Deciduous needleleaf forests 0.25 127 (A) 88 (B) 93 (C) 93 (C) 93 (C) 88 (B) 93 (C) 93 (C) 93 (C) 127 (A) 88 (B) 93 (C) 210 (E) 88 (B)
Deciduous broadleaf forests 0.25 127 (A) 88 (B) 93 (C) 93 (C) 93 (C) 88 (B) 93 (C) 93 (C) 93 (C) 127 (A) 88 (B) 93 (C) 210 (E) 88 (B)
Mixed forests 0.25 127 (A) 88 (B) 93 (C) 93 (C) 93 (C) 88 (B) 93 (C) 93 (C) 93 (C) 127 (A) 88 (B) 93 (C) 210 (E) 88 (B)
Closed shrublands 0.9 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D)
Open shrublands 0.9 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D)
Woody savannas 0.8 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D)
Savannas 0.8 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D)
Grasslands 0.75 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D)
Permanent wetlands 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Croplands 0.8 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F)
Urban and built-up land 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cropland/natural vegetation 0.8 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F) 102 (F)
Mosaics
Permanent snow and ice 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Barren 0.75 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D) 63 (D)
Water bodies 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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