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S1.  Sensitivity analysis 

The Morris or elementary effects screening method (Morris, 1991) was used to conduct a 

qualitative global sensitivity analysis on phenological development of maize. Sensitivity 

analysis was only performed for site-year 6_2010 under the assumption that ranks of the most 

sensitive parameters would not change significantly due do the different weather and initial 

conditions in Kraichgau and the Swabian Alb. The sensitivity package in R (Bertrand Iooss et 

al., 2020) was used. The one-at-a-time (OAT) design in the morris function was used to 

define the parameter vectors. A total of 11 parameters that influence phenological 

development in the SPASS model were pre-selected based on expert knowledge. Uniform 

parameter distributions with a range equal to three standard deviations from the expected 

value were used. It is noted that different distributions have been used for Bayesian 

calibration (platykurtic prior distribution) and sensitivity analysis (uniform distribution). 

However, this is assumed to have a limited influence in identifying the most sensitive 

parameters. Settings to the morris function were provided: 1000 samples, 10 levels and a grid 

jump-size of 2 units. Phenology was simulated using the SPASS model in XN5 software for 

all the proposed parameter vectors. The morris function was then used to estimate elementary 

effects (Cuntz et al., 2015; Morris, 1991) of phenological development at an interval of every 

5 days within the growing season. The sensitivity measures, namely, the mean (𝜇∗) of the 

absolute value of the elementary effects of a parameter and the standard deviation (𝜎) were 

calculated on these days to evaluate parameter sensitivity over the growing season.  
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where 𝜇𝜃𝑖

∗ and 𝜎𝜃𝑖
 are the 𝜇∗ and 𝜎 sensitivity measures for the 𝑖th

 parameter in the parameter 

vector 𝜃, 𝑒𝑒𝑛 is the elementary effects for the 𝑛th
 parameter vector, 𝑁 are the total parameter 

vectors and 𝜇𝜃𝑖
is given by: 
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Based on 𝜇∗, the effective sowing depth (SOWDEPTH) was the most and only sensitive 

parameter during emergence, which is intuitive as the other parameters influence development 

after emergence (Figure S1). Then the relative importance of parameters that define the 

cardinal temperatures (DELTMAX1, DELTOPT1 and TMINDEV1) and the physiological 

development days (PDD1) of the vegetative phase increased. These parameters continued to 

be the most influential parameters even through the generative phase of development. Even 

though DELTOPT2 and PDD2 are important parameters for the generative phase of 

development, their influence was small and over-shadowed by the influence of the vegetative 

phase parameters.  
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Figure S1 Plots of (i) 𝛍∗ and (ii) sigma of elementary effects calculated for simulated 

phenological development at an interval of 5 days over the growing season of silage maize 

(between sowing day 112 and harvest day 278 of the year) at site 6 in the year 2010. The 

parameters that influence phenological development in the SPASS model are listed in the 

legend. Plots (iii) and (iv) are the normalized  𝛍∗ and sigma values per day, respectively, 

expressed as a percentages. 
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S2.  Estimation of information entropy 

Information entropy (𝐻) for a continuous distribution is given by: 

 
𝐻 = − ∫ 𝑓(𝜃)ln(f(𝜃))d𝜃 

S4.  

where 𝑓(𝜃) is the probability density function of 𝜃. 

Information entropy estimates of the posterior parameter distributions were obtained using the 

redistribution estimate equation (Beirlant et al., 1997): 
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S5.  

where 𝐻𝑛 is the estimate of information entropy, 𝑓𝑛 is the Kernel Density Estimate (KDE) 

and 𝜃1,…𝜃𝑛 are independent and identically distributed (i.i.d.) parameter vector samples from 

the posterior distribution. The KDE was obtained by using the kde function from the ks 

package in R (Duong, 2020). Least Squares Cross-Validation (LSCV) was used for bandwidth 

selection.  
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S3.  Residual analysis 

Residuals were analysed for the synthetic and true sequences for simulated phenology at the 

maximum a posteriori probability (MAP) estimate of the model parameters. The residual plots 

provided in the following sections have been separated into the synthetic sequences (section 

S3.1), Swabian Alb true sequence (section S3.2), and Kraichgau true sequence (section S3.3).  

Homoscedasticity was checked by plotting the residuals against days-after-sowing and 

simulated phenology (Figure S2, Figure S3, Figure S8 – Figure S13, Figure S18 – Figure 

S20). In general, heteroscedasticity was not observed. Normal assumption of the error model 

was verified by plotting histograms of the residuals and quantile-quantile plots (Figure S4, 

Figure S5, Figure S14 – Figure S16, Figure S21). For the first few sequential updates, the 

number of observations were limited making a thorough analysis difficult. For the latter few 

sequential updates, the residuals were found to be nearly normal.  

In the synthetic sequences, the residual error distribution was nearly normal (Figure S4, 

Figure S5). The slight skewness is attributed to model limitations (controlled cultivar-

environment sequence) and specific site-years that had a different phenological development 

as compared to the remaining site-years in the calibration sequence (both synthetic 

sequences). 

The slight skewness observed in the true sequence is attributed to model limitations where the 

model is unable to capture the slow development during the vegetative phase that was 

observed at a few site-years like 6_2013 (Figure S14, Figure S15, Figure S16) and 5_2016 

(Figure S16). Autocorrelation was estimated after padding the dataset as the observations are 

not at regular time-intervals. Therefore, there is no ACF estimated at some lags. Figure S17 

contains the autocorrelation (ACF) plot of the residuals after the model is calibrated to data 

from site-years 6_2010, 5_2011, 5_2012, 6_2013, 5_2015, and 5_2016. Based on the limited 
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data with unequal lags, no autocorrelation was detected. However, it is suspected that with 

state variables like phenology, which are based on cumulative sums, autocorrelation of errors 

could theoretically exist. However, due to data limitations, error modelling would be limited 

in its scope for improving the results.  

S3.1 Synthetic sequences 

In the ideal sequence where there is no model structural error, the skewness in the residual 

distribution (Figure S4) is caused by site-year 2. This site-year exhibits a different 

development-behaviour as compared to other site-years in the calibration sequence (Figure 

S6). In the controlled cultivar-environment sequence the slight skewness (Figure S5) in the 

distribution of the residuals are caused due to two reasons. The site-year 9 exhibits a different 

phenological development-behaviour as compared to other site-years in the calibration 

sequence (Figure S7). Additionally, the model is unable to capture the rapid growth seen in 

site-years 3, 4, 5, 8 and 9 between 82 and 110 days after sowing.  

 

Figure S2 Residuals vs simulated phenology and days after sowing after calibration to 10 

site-years in the ideal synthetic sequence 
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Figure S3 Residuals vs simulated phenology and days after sowing after calibration to 10 

site-years in the controlled cultivar-environment synthetic sequence 

 

 

Figure S4 Histogram and quantile-quantile plots of the residuals after calibration to 10 

site-years of the ideal synthetic sequence 
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Figure S5 Histogram and quantile-quantile plots of the residuals after calibration to 10 

site-years of the controlled cultivar-environment synthetic sequence 
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Figure S6 The boxplots show the phenological development (BBCH) of all the site-years 

used in calibration in the ideal synthetic sequence. The blue point corresponds to the 

phenological development (BBCH) for site-year 2. 
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Figure S7 The boxplots show the phenological development (BBCH) of all the site-years 

used in calibration in the controlled cultivar-environment synthetic sequence. The blue point 

corresponds to the phenological development (BBCH) for site-year 9. 

 

 

  



12 
 

S3.2  True sequence in Swabian Alb 

The residual plots for the sequential updates with greater than 3 calibration site-years show 

high residuals in the vegetative phase (simulated phenology<61BBCH) (Figure S11, Figure 

S12, Figure S13). Residuals from site-years 6_2013 and 5_2016 cause this skewness in the 

distribution of the residuals (Figure S14, Figure S15, Figure S16). This behaviour is attributed 

to the model’s inability to capture the slow development seen in these site-years as evident 

from the single-site-year calibration results in Figure S22. 

 

Figure S8 Residuals vs simulated phenology and days after sowing after calibration to 

site-year 6_2010 
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Figure S9 Residuals vs simulated phenology and days after sowing after calibration to 

site-years 6_2010 and 5_2011 

 

Figure S10 Residuals vs simulated phenology and days after sowing after calibration to 

site-years 6_2010, 5_2011, and 5_2012 
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Figure S11 Residuals vs simulated phenology and days after sowing after calibration to 

site-years 6_2010, 5_2011, 5_2012, and 6_2013 

 

Figure S12 Residuals vs simulated phenology and days after sowing after calibration to 

site-years 6_2010, 5_2011, 5_2012, 6_2013, and 5_2015 
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Figure S13 Residuals vs simulated phenology and days after sowing after calibration to 

site-years 6_2010, 5_2011, 5_2012, 6_2013, 5_2015, and 5_2016 

 

Figure S14 Histogram and quantile-quantile plots of the residuals after calibration to site-

years 6_2010, 5_2011, 5_2012, and 6_2013 
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Figure S15 Histogram and quantile-quantile plots of the residuals after calibration to site-

years 6_2010, 5_2011, 5_2012, 6_2013, and 5_2015 

 

Figure S16 Histogram and quantile-quantile plots of the residuals after calibration to site-

years 6_2010, 5_2011, 5_2012, 6_2013, 5_2015, and 5_2016 
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Figure S17 ACF (auto-correlation function) plots of the residuals after calibration to site-

years 6_2010, 5_2011, 5_2012, 6_2013, 5_2015, and 5_2016 

S3.3  True sequence in Kraichgau  

The residual plots for Kraichgau with limited observations show no evidence of 

heteroscedasticity (Figure S18, Figure S19, Figure S20) and a nearly normal distribution 

(Figure S21). 
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Figure S18 Residuals vs simulated phenology and days after sowing after calibration to 

site-years 3_2011 

 

Figure S19 Residuals vs simulated phenology and days after sowing after calibration to 

site-years 3_2011 and 2_2012 
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Figure S20 Residuals vs simulated phenology and days after sowing after calibration to 

site-years 3_2011, 2_2012, and 1_2014 

 

Figure S21 Histogram and quantile-quantile plots of the residuals after calibration to site-

years 3_2011, 2_2012, and 1_2014 

S4.  Single-site-year calibration results 

Observed and simulated phenology, after the SPASS model was calibrated individually to the 

site-years in the study, are plotted in Figure S22. 
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Figure S22 Observed and simulated phenological development after calibration, plotted 

against the day of the year. The red points are the mean observations, while the black error 

bars indicate +/- 3 standard deviations. The mean simulation is indicated by the continuous 
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black line. The green bands represent the different percentiles of simulated phenology. It is 

noted that for some site-years, the calibrated model is unable to capture the slow development 

rate during the vegetative phase. 
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S5.  Marginal posterior parameter pdf: true sequences 

Marginal posterior probability density functions (pdf) of the 6 estimated parameters for the 

true sequences in Kraichgau (Figure S23) and the Swabian Alb (Figure S24) are provided. 

Refer to the main text (Discussion: Parameter Uncertainty) for details.  

 

Figure S23 Marginal posterior probability density functions of the 6 estimated parameters 

after BSU in the true Kraichgau sequence. The y-axis read from bottom to top represent the 

site-year that was added in the sequential update, corresponding to each density plot. The 

parameter values are on the x-axis.  
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Figure S24 Marginal posterior probability density functions of the 6 estimated parameters 

after BSU in the true Swabian Alb sequence. The y-axis read from bottom to top represent the 

site-year that was added in the sequential update, corresponding to each density plot. The 

parameter values are on the x-axis.  
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S6.  Parameter distributions and entropy: synthetic sequences 

Marginal prior and posterior distributions for the 6 estimated parameters of the SPASS 

phenology model and the entropy estimates are plotted for the ideal (Figure S25) and 

controlled cultivar-environment (Figure S26) synthetic sequences. 

 

Figure S25 (i) Marginal prior and posterior parameter distributions of the 6 estimated 

parameters after BSU in the ideal synthetic sequence. Marginal posterior parameter values (y-

axis) is plotted against the number of site-years used for calibration (x-axis), starting with the 

initial prior (0 on x-axis). (ii) Information entropy of the posterior parameter distributions 

after BSU was applied to the synthetic sequence. Length of the box represents the inter-

quartile range (IQR), whiskers extend from the boxes up to 1.5 × IQR and values beyond this 

range are plotted as points. The ranges for parameters SOWDEPTH and DELTOPT2 

narrowed through the sequential updates while the remaining parameters do not show a 

noticeable narrowing in range.  
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Figure S26 (i) Marginal prior and posterior parameter distributions of the 6 estimated 

parameters after BSU in the controlled cultivar-environment synthetic sequence. Marginal 

posterior parameter values (y-axis) is plotted against the number of site-years used for 

calibration (x-axis), starting with the initial prior (0 on x-axis). (ii) Information entropy of the 

posterior parameter distributions after BSU was applied to the synthetic sequence. Length of 

the box represents the inter-quartile range (IQR), whiskers extend from the boxes up to 1.5 × 

IQR and values beyond this range are plotted as points. The ranges for parameters 

SOWDEPTH and DELTOPT2 narrowed through the sequential updates while the remaining 

parameters do not show a noticeable narrowing in range.  
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S7. MCMC diagnostics 

The sequential update calibration cases for the true sequences in the Swabian Alb and in 

Kraichgau are listed in Table S7-1. The number of iterations required to adapt the jump-size 

(A) were variable (20-580) and dependent on the calibration case. In some cases this number 

was low because we set the initial pre-adaptation value for the standard deviation of the 

transition kernel so that the acceptance rate would be between 25% and 35%. This initial 

value was based on knowledge gained from preliminary calibration test runs. The jump 

adjustment factor (f) in Table S7-1 influences the standard deviation of the transition kernel 

(V) such that V =
sd

f
  where sd is the standard deviation of the prior parameter distributions 

taken from Table 2 in the main text. With N being the total number of iterations per chain, the 

total number of iterations across the three chains after burn-in is given by T = (N − A) × 3. 

On adding a new site-year, the chains were re-initialized and the transition kernel was re-

tuned. New data was added to the dataset and the chains were allowed to adapt. The burn-in 

was variable and dependent of the jump-size adaptation. We ensured that a minimum of 500 

accepted samples were generated per chain, that is, a minimum of 1500 total samples across 

chains were drawn. However, the actual number of samples drawn (T) was higher and 

dependent of when the Gelman-Rubin convergence diagnostic was <=1.1. 

To assess parameter mixing, trace-plots were analysed (examples provided in Figure S27 and 

Figure S28). Additionally, auto-correlation plots (Figure S29, Figure S30) are provided (coda 

package in R (Plummer et al., 2006)) and effective sample size (ESS in Table S7-1) were 

calculated (mcmcse package in R (Flegal et al., 2021), (Vats et al., 2019)). Parameter 

DELTOPT2 generally showed good mixing and low auto-correlation. The effective sample 

size between 145 and 332, together with the Gelman-Rubin convergence diagnostic (<=1.1), 

provide sufficiently reliable posterior statistics for this study. 
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Table S7-1: MCMC sampling details for True sequence calibration cases in Kraichgau and the 

Swabian Alb 

Sequence Calibration case 

Number of 

accepted 

runs per 

chain 

during 

jump 

adaptation 

(A) 

Jump 

adjustment 

factor (f) 

Total 

accepted 

samples 

per 

chain 

(N) 

Total samples 

after burn-in in 

all chains (T)  

= (𝑵 − 𝑨) ×  𝟑 

ESS 

T
ru

e 
se

q
u
en

ce
 S

w
ab

ia
n
 A

lb
 

6_2010 20 3 1480 4380 236 

6_2010, 5_2011 580 3.97 1100 1560 332 

6_2010, 5_2011, 

5_2012 
20 5 800 2340 145 

6_2010, 5_2011, 

5_2012, 6_2013 
40 4.95 820 2340 167 

6_2010, 5_2011, 

5_2012, 6_2013, 

5_2015 

20 5 620 1800 196 

6_2010, 5_2011, 

5_2012, 6_2013, 

5_2015, 5_2016 

240 6.7 1400 3480 159 

T
ru

e 
S

eq
u

en
ce

 K
ra

ic
h
g
au

 

3_2011 60 5.005 3280 9660 153 

3_2011, 2_2012 20 5 4480 13380 163 

3_2011, 2_2012, 

1_2014 
20 7.7 5100 15240 168 



28 
 

 

 

Figure S27 Trace-plots of 6 estimated parameters for the true sequence calibration of 

SPASS to phenology grown in the Swabian Alb at 6_2010, 5_2011, 5_2012, 6_2013, 5_2015, 

and 5_2016. The x-axis is the number of iterations and y-axis is the parameter. The colours 

indicate the three chains. The black solid vertical line indicates the burn-in phase during 

which the transition kernel was adapted. 
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Figure S28 Trace-plots of 6 estimated parameters for the true sequence calibration of 

SPASS to phenology grown in Kraichgau at 3_2011 and 2_2012. The x-axis is the number of 

iterations and y-axis is the parameter. The colours indicate the three chains. The black solid 

vertical line indicates the burn-in phase during which the transition kernel was adapted. 
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Figure S29 Auto-correlation plots of 6 estimated parameters for the true sequence 

calibration of SPASS to phenology grown in the Swabian Alb at 6_2010, 5_2011, 5_2012, 

6_2013, 5_2015, and 5_2016. The x-axis is the lag distance and y-axis is the auto-correlation. 

The colours indicate the three chains.  
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Figure S30 Auto-correlation plots of 6 estimated parameters for the true sequence 

calibration of SPASS to phenology grown in Kraichgau at 3_2011 and 2_2012. The x-axis is 

the lag distance and y-axis is the auto-correlation. The colours indicate the three chains.  
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S8. BSU implementation 

Figure S31 explains the concept of Bayesian Sequential Updating and the methodology used 

to implement it in this study. For the first site-year, a prior based on expert knowledge (initial 

prior) is used. In the next sequential update with site-year 2 data, the parameter posterior 

probability distribution after model calibration to site-year 1 can be used as a prior 

distribution. This can be repeated for n site-years. In this study, however, instead of using the 

previous site-year as prior for the next update, we use the initial prior and only update the 

likelihood function with new data. 

 

Figure S31 A schematic sketch to explain the concept of Bayesian Sequential Updating 

(BSU) and its implementation in this study 
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S9.  Prediction residuals within season 

The prediction residuals are plotted against simulated phenology for the Swabian Alb true 

sequence at the maximum a posteriori probability (MAP) estimate of the model parameters 

(Figure S32). Here we analyse the prediction residuals within the growing season. The plots 

from left to right show the inclusion of the subsequent site-year for calibration. The model 

predicts poorly in the vegetative phase of development, in spite of including more site-years 

to the calibration sequence. The prediction residuals of the individual site-years are in 

agreement with the pattern observed in Figure 7 of the main text. 

 

 

Figure S32 The plots from left to right show the inclusion of the subsequent site-year for 

calibration in the Swabian Alb sequence. Prediction residuals at the maximum a posteriori 

probability (MAP) estimate of the model parameters are plotted against simulated phenology. 

The points correspond to the prediction site-years. The zero residual reference is indicated by 

the red line.  
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