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Abstract. Crop models are tools used for predicting year-to-
year crop development on field to regional scales. However,
robust predictions are hampered by uncertainty in crop model
parameters and in the data used for calibration. Bayesian
calibration allows for the estimation of model parameters
and quantification of uncertainties, with the consideration
of prior information. In this study, we used a Bayesian se-
quential updating (BSU) approach to progressively incorpo-
rate additional data at a yearly time-step in order to cali-
brate a phenology model (SPASS) while analysing changes
in parameter uncertainty and prediction quality. We used field
measurements of silage maize grown between 2010 and 2016
in the regions of Kraichgau and the Swabian Alb in south-
western Germany. Parameter uncertainty and model predic-
tion errors were expected to progressively be reduced to a
final, irreducible value. Parameter uncertainty was reduced
as expected with the sequential updates. For two sequences
using synthetic data, one in which the model was able to ac-
curately simulate the observations, and the other in which a
single cultivar was grown under the same environmental con-
ditions, prediction error was mostly reduced. However, in the
true sequences that followed the actual chronological order
of cultivation by the farmers in the two regions, prediction
error increased when the calibration data were not represen-
tative of the validation data. This could be explained by dif-
ferences in ripening group and temperature conditions during
vegetative growth. With implications for manual and auto-
matic data streams and model updating, our study highlights
that the success of Bayesian methods for predictions depends
on a comprehensive understanding of the inherent structure
in the observation data and of the model limitations.

1 Introduction

The effects of climate change are already being felt, with in-
creasing global temperature and frequency of extreme events
(Porter et al., 2015), which will have an impact on food avail-
ability. In order to mitigate risks to food security, suitable
adaptation strategies need to be devised which depend on ro-
bust model predictions of the productivity of cropping sys-
tems (Asseng et al., 2009). Soil–crop models, which are able
to predict changes in crop growth and yield as a consequence
of changes in model inputs such as weather, soil properties,
and cultivar-specific traits, are considered suitable tools to
plan for a secure future. However, achieving robust model
predictions is challenging. This is because there is uncer-
tainty in the model inputs, parameters, and process represen-
tation, as well as in the observations used to calibrate these
models (Wallach and Thorburn, 2017). It is therefore essen-
tial to quantify these uncertainties.

Different interpretations of the underlying soil–crop pro-
cesses have led to different representations in models of vary-
ing complexity (Wallach et al., 2016). Process model equa-
tions have parameters that represent physiological processes,
but are often based on empirical relationships. These rela-
tionships describe system processes which cannot be further
resolved with reasonable effort. While some parameters that
represent physiological aspects of plant growth and develop-
ment can be determined in dedicated experiments (Craufurd
et al., 2013), many others still need to be estimated through
model calibration. However, the measured parameters and
state variables used for model calibration are uncertain due
to errors in the measuring device or technique and due to the
natural variability of the system owing to processes occur-
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ring at different spatial or temporal scales. Given the differ-
ent sources of uncertainty, it is important to set up adequate
workflows to enable uncertainty quantification and protocols
for reporting them, especially when they influence decision-
making (Rötter et al., 2011).

For this, the Bayesian approach is an elegant framework to
propagate uncertainty from measurements, parameters, and
models to prediction. One advantage of Bayesian inference is
the use of prior information (Sexton et al., 2016). The poste-
rior probability distribution obtained by conditioning on one
dataset can then be used as a prior distribution for the next
dataset in a sequential manner (Hue et al., 2008). This ap-
proach, called “Bayesian sequential updating” (BSU), would
be more computationally efficient than having to re-calibrate
the model to all previous datasets every time new data are
available. It has been applied to big data studies in which
large datasets were split to reduce computational demand and
the information was sequentially incorporated (Oravecz et
al., 2017). Cao et al. (2016) used BSU to analyse the evo-
lution of the posterior parameter distribution for soil prop-
erties by incorporating data from different types of experi-
ments. Thompson et al. (2019) applied this approach to es-
timate species extinction probabilities where species-siting
data were sequential in time. While there are numerous ex-
amples of Bayesian methods being applied in crop modelling
for uncertainty quantification and data assimilation (Alder-
man and Stanfill, 2017; Ceglar et al., 2011; Huang et al.,
2017; Iizumi et al., 2009; Makowski, 2017; Makowski et al.,
2004; Wallach et al., 2012; Wöhling et al., 2013, 2015), to
the best of our knowledge, the BSU method has not been
evaluated in the field of crop modelling to date. In this study
we assessed whether crop model predictions progressively
improve as new information is incorporated using the BSU
approach. This ascertains whether the model and parameters
are both temporally and spatially transferable for a particular
crop species, an important aspect for large-scale and long-
term predictions. Our study focused on modelling crop phe-
nological development.

Plant phenology is concerned with the timing of plant de-
velopmental stages such as emergence, growth, flowering,
fructification, and senescence. It is controlled by environ-
mental factors such as solar radiation, temperature, and wa-
ter availability, and depends on intrinsic characteristics of
the plants (Zhao et al., 2013). Phenological development is
a crucial state variable in soil–crop models, since it controls
many other simulated state variables such as yield, biomass,
and leaf area index by influencing the timing of organ ap-
pearance and assimilate-partitioning. Phenology is not only
species-specific but can also differ between cultivars of the
same species (Ingwersen et al., 2018). Model parameters that
influence phenology could vary depending on the cultivars
(Gao et al., 2020) and possibly also on environmental condi-
tions (Ceglar et al., 2011). Since parameter uncertainty is a
major source of prediction uncertainty (Alderman and Stan-
fill, 2017; Gao et al., 2020), it impacts prediction quality.

To this end, we assessed the impact of sequentially in-
corporating new observations with the BSU approach on the
prediction quality of phenological development. For this, we
modelled phenological development of silage maize grown
between 2010 and 2016 in Kraichgau and the Swabian Alb,
two regions in southwestern Germany with different soil
types and climatic conditions. We monitored the changes
in parameter uncertainty and evaluated prediction quality
by performing model validation in which simulated phe-
nological development was compared with observations for
datasets that were not used for calibration. We hypothesized
that:

1. Parameter uncertainty decreases and quality of predic-
tion improves with the sequential updates in which in-
creasing amounts of data are used for model calibration.

2. For the first few sequential updates, the quality of pre-
diction is variable, until the calibration samples become
representative of the population.

3. The prediction error then progressively drops to an ir-
reducible value that represents the error in inputs, mea-
surements, model structure, and variability due to spa-
tial heterogeneity that is below model resolution.

We tested these hypotheses by applying BSU in two mod-
elling cases that represent ideal and real-world conditions. In
the first case, we applied BSU to two synthetic sequences:
an ideal sequence of observations wherein the model is able
to simulate the observations accurately, and a controlled
cultivar–environment sequence of observations which repre-
sent different growing seasons of a single cultivar grown un-
der the same environmental conditions. In the second case,
we applied the BSU to two true sequences that follow the ac-
tual chronological order in which different cultivars of silage
maize were grown in the two regions under different envi-
ronmental conditions.

With this study, we explicitly deal with a well-known
problem in regional modelling, which carries particular
weight in the case of maize. On a regional scale, maize cul-
tivars may differ considerably in their phenological develop-
ment, but cultivar information will rarely be available. Even
if data on cultivars grown were available, phenological data
on all relevant cultivars in a particular region will rarely be
at hand. Consequently, model parameters are typically esti-
mated for the crop species and not for the individual culti-
vars. Also, the maize cultivars of our study represent only a
small subset of cultivars grown in Kraichgau and the Swabian
Alb. We therefore grouped the maize cultivars into ripening
groups for analysis of prediction quality.
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2 Materials and methods

2.1 Study sites and measured data

The data used for the study consist of a set of measurements
taken at three field sites (site 1, site 2, site 3) in Kraichgau and
two field sites (site 5 and site 6) on the Swabian Alb, in south-
western Germany, between 2010 and 2016 (Fig. 1i) (Weber
et al., 2022a). The main crops in rotation were winter wheat,
silage maize, winter rapeseed, and cover crops such as mus-
tard and phacelia. Additionally, spelt and spring and winter
barley were also grown on the Swabian Alb. Amongst oth-
ers, continuous measurements of meteorological conditions,
soil temperature, and moisture were taken. Soil profiles were
sampled at the sites for characterization of soil properties.

Kraichgau and the Swabian Alb represent climatologically
contrasting regions in Germany. Kraichgau is situated 100–
400 m above sea level (a.s.l.) and characterized by a mild cli-
mate with a mean temperature above 9◦ and mean annual pre-
cipitation of 720–830 mm. It is one of the warmest regions in
Germany. The Swabian Alb is located at 700–1000 m a.s.l.
with a mean temperature of 6–7◦ and mean annual precipita-
tion of 800–1000 mm. Kraichgau soils have often developed
from several metres of Holocene loess, underlain by lime-
stones. They are predominantly Regosols and Luvisols. The
Swabian Alb has a karst landscape with clayey loam soils,
often classified as Leptosols. Soils may be less than 0.3 m
thick in some areas. While the soils at the sites in Kraich-
gau are similar, they vary across the sites on the Swabian Alb
(Wizemann et al., 2015).

At every study site, which had an area of approx. 15 ha,
replicate observations were made by assessing phenologi-
cal development stages from maize plants in five subplots
of 2 m× 2 m each. Ten maize plants were chosen from each
subplot. We used the BBCH growth stage code (Meier, 1997)
to define the development stages. The BBCH value of 10
marks the emergence and the start of leaf development, 30
stands for stem elongation, 50 for inflorescence, emergence
or heading, 60 for flowering or anthesis, 70 for development
of fruit, 80 for ripening, and 90 for senescence (Fig. 1ii). In
the following sections, the individual growing seasons for
silage maize are denoted by the site and year of growth,
i.e. the site-year (Table 1). For example, silage maize grown
at site 2 in Kraichgau in the year 2012 is referred to as
“2_2012”. The different cultivars used in the study can be
grouped into three ripening or maturity groups, based on their
timing of ripening. Mid-early (ME) and late (L) ripening cul-
tivars were grown in Kraichgau, and early (E) and mid-early
(ME) ripening cultivars were grown on the Swabian Alb.

2.2 Soil–crop model

To simulate the soil–crop system, we used the SPASS crop
growth model (Wang, 1997). SPASS is implemented in the
Expert-N 5.0 (XN5) software package (Heinlein et al., 2017;

Klein et al., 2017; Priesack, 2006). In XN5, the SPASS
crop model is coupled with the Richards equation for soil–
water movement as implemented in the Hydrus-1D model
(Šimůnek et al., 1998). The routine uses van Genuchten–
Mualem hydraulic functions (van Genuchten, 1980; Mualem,
1976) and the heat transfer scheme from the Daisy model
(Hansen et al., 1990). In the SPASS model, germination to
emergence (up to BBCH 10), the vegetative phase (between
BBCH 10 and 60), and the generative or reproductive phase
(BBCH 61 onwards) of the crop are modelled. Temperature
and photoperiod are the two main factors affecting the phe-
nological development rate (for details, refer to Appendix A:
SPASS phenology model).

Daily weather data consisting of maximum and minimum
temperatures were used in XN5 to calculate the air temper-
atures within the crop canopy. Soil properties (texture class,
grain size, rock fraction, bulk density, porosity), as well as
van Genuchten parameters and hydraulic properties (soil wa-
ter content at wilting point, field capacity, residual and sat-
urated water content, and saturated hydraulic conductivity),
were based on soil samples taken at the sites in 2008 to char-
acterize the soil profile. The soil horizons in the model were
based on these soil profile descriptions. Initial values of soil
volumetric water content were based on measurements. The
simulations for each site-year were started on the harvest date
of the preceding crop in the crop rotation at that site. This en-
sured adequate spin-up time prior to the simulation of silage
maize, which was sown in April and May.

2.3 Selection of model parameters

Parameters were pre-selected (Hue et al., 2008; Makowski
et al., 2006) based on expert knowledge. The prior default
values and uncertainty ranges are given in Table 2. A global
sensitivity analysis using the Morris method (Morris, 1991)
was then carried out to identify the sensitive parameters to
be estimated through Bayesian calibration (Supplement S1).
The sensitive parameters identified for calibration were: ef-
fective sowing depth (SOWDEPTH), which influences the
emergence rate, and parameters affecting development in
the vegetative phase (PDD1, TMINDEV1, DELTOPT1, and
DELTMAX1). Parameter DELTOPT2, from the temperature
response function during the reproductive phase, was esti-
mated during calibration even though it was less sensitive.
The choice of using this parameter during calibration was
based on knowledge of model behaviour, so as to reduce the
calibration error in the reproductive phase (Lamboni et al.,
2009). Thus, out of 11 pre-selected parameters (Table 2), six
were estimated in BSU, while the remaining parameters were
fixed at their default values.

2.4 Bayesian sequential updating

In the BSU approach, Bayesian calibration is applied in a se-
quential manner. New data are used to re-calibrate the model,
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Figure 1. (i) Location of the sites in Kraichgau (site 1, site 2, and site 3) and the Swabian Alb (site 5 and site 6) in the state of Baden-
Wuerttemberg, Germany (© Google Earth 2018 modified from Eshonkulov et al., 2019). (ii) Observations of phenological development
(expressed in BBCH growth stages) of silage maize at site 6 are plotted against the day of the year in 2010. The red labels indicate important
phenological development stages. The red points are means of the observations while the box and whiskers represent the range of replicate
observations. The length of the box represents the inter-quartile range (IQR), whiskers extend from the box up to 1.5× IQR and values
beyond this range are plotted as points. Each of the boxes and whiskers are based on 50 points corresponding to observations made on the
same day, i.e. 10 maize plants at five subplots within site 6 for 1 d in 2010. In site-year 6_2010, observations were made on 6 d during the
growing season.

Table 1. Early (E), mid-early (ME), and late (L) ripening cultivars of silage maize, with their sowing and harvest dates, grown at the study
sites in Kraichgau (sites 1, 2, and 3) and the Swabian Alb (sites 5 and 6) between 2010 and 2016.

Region Year Site Site-year Cultivar Maturity/ Sowing Harvest
ripening date date
group (dd/mm/yyyy) (dd/mm/yyyy)

Kraichgau 2011 3 3_2011 Canavaro L 18/04/2011 03/10/2011
Kraichgau 2012 2 2_2012 Canavaro L 02/05/2012 19/09/2012
Kraichgau 2014 1 1_2014 Grosso ME 12/04/2014 09/10/2014
Kraichgau 2014 2 2_2014 Grosso ME 11/04/2014 08/10/2014
Swabian 2010 6 6_2010 Fernandez PR 39 A 98 ME 23/04/2010 06/10/2010
Swabian 2011 5 5_2011 Agro-Yoko ME 25/04/2011 04/10/2011
Swabian 2012 5 5_2012 Amanatidis E 28/04/2012 07/10/2012
Swabian 2013 6 6_2013 SY Kairo & Agro Yoko ME 26/04/2013 04/10/2013
Swabian 2015 5 5_2015 LG 30.217 E 22/04/2015 14/09/2015
Swabian 2016 5 5_2016 LG 30.217 E 07/05/2016 27/09/2016
Swabian 2016 6 6_2016 Toninio ME 03/05/2016 23/09/2016

conditional on the prior information from previously gath-
ered data. We describe the details of this approach here.

Bayes theorem states that the posterior probability of pa-
rameters θ given the data Y , P (θ |Y ), is proportional to the
product of the joint prior probability of the parameters P (θ)
and the probability of generating the observed data with the
model, given the parameters P(Y |θ). The term P(Y |θ) is
referred to as the likelihood function and is defined as the
likelihood that observation Y , that is observed phenological
development in this study, is generated by the model using
the parameter vector θ . The posterior probability distribution
is obtained by normalizing this product by the prior predic-
tive distribution (Gelman et al., 2013) or Bayesian model ev-

idence (Schöniger et al., 2015) P (Y ), which is obtained by
integrating the product over the entire parameter space.

Hence, we write:

P (θ |Y )=
P (θ)P (Y |θ)

P (Y )
, (1)

where

P (Y )=

∫
θ

P (θ)P (Y |θ)dθ . (2)

Equation (2) can become intractable, especially with a
large number of parameters as this involves integrating
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Table 2. SPASS model parameters for phenological development. The default values and two standard deviations (± 2 SD) were based on
expert knowledge. “Status in calibration” indicates the parameters which were estimated or fixed to the default value during Bayesian cali-
bration. Minimum (min) and maximum (max) values were set for estimated parameters to constrain the prior parameter ranges to reasonable
values during calibration.

Parameter Description Unit Default −2 SD +2 SD min max Status in
name value calibration

PDD1 Physiological development days from
emergence to anthesis

d 45 32 60 Estimated

PDD2 Physiological development days from anthesis
to maturity

d 36 25 60 Fixed

PDL Photoperiod sensitivity factor – 0 0 0.1 Fixed

DLOPT Optimal photoperiod length h 12 10 15 Fixed

TMINDEV1 Minimum temperature of vegetative
development

◦C 6 5 8 0 10 Estimated

DELTOPT1 Difference between optimum and minimum
temperatures of vegetative development

◦C 28 22 31 1 35 Estimated

DELTMAX1 Difference between maximum and optimum
temperatures of vegetative development

◦C 10 4 14 1 16 Estimated

TMINDEV2 Minimum temperature of reproductive
development

◦C 8 6 10 Fixed

DELTOPT2 Difference between optimum and minimum
temperatures of reproductive development

◦C 26 17 32 1 35 Estimated

DELTMAX2 Difference between maximum and optimum
temperatures of reproductive development

◦C 10 4 14 Fixed

SOWDEPTH Effective sowing depth of the seeds in the soil cm 8 5 15 1 20 Estimated

over high-dimensional space (Schöniger et al., 2015). In-
stead, sampling methods such as Markov chain Monte Carlo
(MCMC) are used to estimate the posterior distribution.

For one site-year sy1 and corresponding observation vec-
tor Y sy1 , the posterior parameter probability distribution is

P
(
θ |Y sy1

)
=

P (θ)P
(
Y sy1 |θ

)∫
θP (θ) P

(
Y sy1 |θ

)
dθ
, (3)

where P (θ) represents the initial prior probability distribu-
tion that could be based on expert knowledge. The poste-
rior parameter distribution P

(
θ |Y sy1

)
can now be used as a

prior distribution for the next site-year sy2. Thus, for site-
year syn with an observation vector Y syn , the posterior pa-
rameter probability distribution is

P
(
θ |Y syn

)
=

P
(
θ |Y sy(n−1)

)
P
(
Y syn |θ

)
∫
θP
(
θ |Y sy(n−1)

)
P
(
Y syn |θ

)
dθ
. (4)

This equation defines the BSU approach in which the
model is calibrated in a sequential manner. New data from
a site-year (Y syn ) are used to re-calibrate the model, condi-
tional on the prior information from previous site-years. The

posterior distribution obtained from the previous Bayesian
calibration P(θ |Y sy(n−1) ) is used as prior probability for cali-
bration to the next site-year.

With the aim of making the computations tractable, we
deviate slightly from this pure BSU approach as we do not
strictly use the posterior distribution from the previous site-
year as the prior distribution for the next one, but sequen-
tially calibrate the model to data from an increasing number
of site-years instead. The reason for this deviation is that in
applying BSU, where the posterior parameter distribution is
estimated by sampling methods, a probability density func-
tion needs to be approximated from the sample, so that it can
be used as a prior probability for the subsequent site-year.
This approximation introduces additional errors. Since joint
inference is known to be better than sequential inference us-
ing posterior approximations (Thijssen and Wessels, 2020),
Eq. (4) can be re-written, under the assumption that the phe-
nology observations from all site-years are independent and
identically distributed (Gelman et al., 2013), as follows:

P
(
θ |Y syn

)
=

P (θ)
∏syn
x=sy1

P (Y x |θ)∫
θP (θ)

∏syn
x=sy1

P (Y x |θ)dθ
. (5)
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Thus, we use Eq. (5) to sequentially update the probability
distribution of parameters by increasing the dataset size at
each step through the addition of one site-year worth of new
data Y x to the previous dataset Y x−1.

After each inferential step, the probability of observing a
certain phenology at the next site-year syn+1 is predicted by

P
(
Y syn+1 |Y syn

)
=

∫
P
(
Y syn+1 |θ

)
P
(
θ |Y syn

)
dθ , (6)

where P
(
Y syn+1 |Y syn

)
is the posterior predictive distribution

(Gelman et al., 2013). We refer to the current methodology
as BSU, although it is not strictly so, for reasons of simplic-
ity and the formal similarity of our approach. All calculations
and the BSU were carried out using the R programming lan-
guage (R Core Team, 2020).

In the following sections, we describe the components of
Bayes formula in detail.

2.4.1 Likelihood function

Let θ = (ϕ1ϕ2ϕ3, . . .ϕj ) represent a vector of the model pa-
rameters to be estimated in this study (Table 2). Suppose
Y = (y1, y2,y3, . . .yd ) is a vector of the means of observed
phenological development on different days during the grow-
ing season for a particular site-year. The mean observation yd
on day d for the site-year is given by

yd =
1
P

1
R

P∑
p=1

R∑
r=1

yr,p,d , (7)

where yr,p,d represents the rth replicate of observed pheno-
logical development, measured at subplot p on day d for a
particular site-year, R is the total number of replicates at sub-
plot p, and P is the total number of subplots per field.

If we assume that all replicates R in all subplots P are
independent, the standard deviation of the replicate observa-

tions on day d is σr,p,d =

√
P∑
p=1

R∑
r=1

(
yr,p,d − yd

)2
/(P ×R)

. This is one source of observation error that represents the
spatial variability at the study site which is below the spa-
tial resolution of the model. We also assume an additional
source of error in identification of the correct phenological
stage and its exact timing of occurrence. We assume that this
error is within a standard deviation of 2 BBCH (σident,d = 2
for each observation day d). This assumption was made be-
cause 2 is the most common difference between develop-
ment stages in the phenological development of maize on
the BBCH scale. Assuming that the error from replicate ob-
servations (σr,p,d ) and the error in the identification of phe-
nological stages are additive, the total observation error is
σ 2
d =

(
σr,p,d + σident,d

)2.
The model residual yd − f (θ)d is the difference between

the observed yd and the model simulated f (θ)d phenological

stage and is represented by the likelihood function. Assum-
ing normally distributed residuals, it is given by

P
(
yd |θ

)
=

1

σd
√

2π
e
−0.5

(
yd−f (θ)d

σd

)2

. (8)

The likelihood values for all the observations are com-
bined by taking the product of the likelihoods per day of
observation, under the assumption of independent and iden-
tically distributed model residuals. Thus, the joint likelihood
function is given by

P (Y x |θ)=

D∏
d=1

P
(
yd |θ

)
, (9)

where Y x is the observation vector for site-year x.

2.4.2 Prior probability distribution

As prior information, we used a weakly informative probabil-
ity distribution function (pdf) to ensure that the posterior pa-
rameter distributions are mainly determined by the data that
are sequentially incorporated. For this, we used a platykurtic
prior probability distribution that is a convolution of a uni-
form and a normal distribution (Fig. D1) of the form:

P
(
ϕj
)
=


1
c

1
σ
√

2π
e
−
(ϕj−µ)

2

2σ2 for a ≤ ϕj < µ− 2σ
1
c

1
σ
√

2π
e−2 for µ− 2σ ≤ ϕj ≤ µ+ 2σ

1
c

1
σ
√

2π
e
−
(ϕj−µ)

2

2σ2 for µ+ 2σ < ϕj ≤ b

 . (10)

where ϕj is a model parameter in the parameter vector θ , a
and b are the minimum and maximum limit for the parameter,
respectively, µ is the mean (default value in Table 2), and
σ is the standard deviation. The normalization constant c is
used to ensure that the area under the curve equals unity as
required for probability density functions.

c =−erf
(√

2
)
+

4
√

2π
e−2
−

1
2

erf
(
a−µ

σ
√

2

)
+

1
2

erf
(
b−µ

σ
√

2

)
. (11)

The joint prior pdf was calculated by P (θ)=
∏J
j=1P(ϕj )

and the model parameters were assumed to be uncorrelated.
The parameters a, b, σ , µ, of P(ϕj ) were based on expert
knowledge (Table 2).

2.4.3 Posterior probability distribution

The posterior parameter distribution was sampled using the
Markov chain Monte Carlo method – Metropolis algorithm
(Metropolis et al., 1953) (for details, refer to Appendix B:
Posterior sampling using MCMC Metropolis algorithm).
Three chains were run in parallel. A normal distribution was
chosen as the transition kernel. The jump size was adapted
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so that the acceptance rate would be between 25 % and 35 %
(Gelman et al., 1996; Tautenhahn et al., 2012). For each se-
quential update calibration case, when a new site-year was
added to the calibration sequence, the three chains were re-
initialized and the transition kernel was re-tuned. A prelimi-
nary calibration test case, in which the model was calibrated
to site-year 6_2010, was used to generate the starting points
of the chains for each of the calibration cases. The starting
points were randomly sampled from the posterior parameter
range of the calibrated test case. This was done to reduce the
time to convergence. For the test case calibration, the start-
ing points of the chains were randomly sampled from the
prior range. The number of iterations for adapting the tran-
sition kernel varied between the different calibration cases.
This number was low for some of the calibration cases be-
cause we set the initial pre-adaptation value for the stan-
dard deviation of the transition kernel, so that the acceptance
rate would be between 25 % and 35 %. This initial value was
based on knowledge gained from preliminary calibration test
simulations. Convergence of the chains after jump adaptation
was checked using the Gelman–Rubin convergence diagnos-
tic (Brooks and Gelman, 1998; Gelman and Rubin, 1992).
The total number of samples of the posterior distribution in
each calibration case was dependent on the Gelman–Rubin
diagnostic being≤ 1.1, while ensuring a minimum of 500 ac-
cepted samples per chain, that is a minimum of 1500 samples
across the three chains. In effect, the total number of sam-
ples per calibration case was greater than 1500. The burn-in
was variable and depended on the jump adaptation. Only the
iterations from the jump adaptation step were discarded as
burn-in. Parameter mixing was evaluated using trace plots.

For model validation, the posterior predictive distribution
was used to simulate phenological development and compare
it with observations at site-years that were not included in the
calibration sequence.

2.5 Performance metrics

Bias and normalized root mean square error (NRMSE), as
defined in Eqs. (12) and (13), for site-year sy were calculated
to assess the calibration and prediction performance.

Biassy =
1
D

D∑
d=1

(
yd − f (θ i)d

)
(12)

NRMSEsy =

√√√√ 1
D

D∑
d=1

(
yd − f (θ i)d

)2
σ 2
d

(13)

Here, θ i is the ith parameter vector, D is the total num-
ber of observation days for the particular site-year, f (θ i)d
is the simulated phenological development, yd is the mean
observed phenological development, and σd is the standard
deviation of the observations (as defined in Sect. 2.4.1 Like-
lihood function) on day d . Under the assumption of normally
distributed error, the natural logarithm of the likelihood prob-

ability is inversely proportional to the normalized mean
square error: ln

(
P
(
Y sy |θ i

))
∝ −NRMSEsy

2. The normal-
ized bias NBiassy =

1
D

∑D
d=1

yd−f (θ i )d
σd

is also reported in
some plots.

The prediction quality is good when NRMSE is low and
bias is zero. Prediction performance is classified as good,
moderate, or poor depending on the median NRMSE of the
predictions for a site-year. We use the following categories:
good performance for median NRMSE≤ 1, moderate for
1<median NRMSE≤ 2, poor for 2<median NRMSE≤ 3
and very poor for median NRMSE> 3.

We estimated the information entropy of the posterior pa-
rameter distributions after each sequential update using the
redistribution estimate equation (Beirlant et al., 1997) (Sup-
plement S2). A change in entropy with sequential updates
indicates a change in uncertainty of the parameters, where
higher information entropy indicates greater uncertainty in
the posterior parameters. In line with our hypotheses, we ex-
pect the entropy to decrease with sequential updates.

2.6 Modelling cases

The BSU approach described in the previous sections and
the subsequent analysis using the performance metrics were
applied to two synthetic sequences and two true sequences
of site-years. The synthetic sequences were used to demon-
strate the application of the BSU approach in ideal condi-
tions, while the true sequences were used to extend the ap-
plication to real-world conditions. Figure 2 shows the four
sequences and the site-years used for calibration and valida-
tion.

2.7 Synthetic sequences

We set up two synthetic sequences, namely ideal and con-
trolled cultivar–environment. In each synthetic sequence, we
used 10 sequential updates wherein 1 through 10 site-years
were used in calibration. After each sequential update, the
calibrated model was validated against a different set of 10
synthetic site-years (Fig. 2). Note here that the 10 site-years
used for validation were the same across the sequential up-
dates. Data from the 10 site-years used for calibration and
the 10 site-years used for validation for the two synthetic se-
quences are shown in Fig. 3. Site-year 6_2010 was used to
generate data for the synthetic sequences, as described here.

The ideal sequence represents a case in which the model
is able to accurately simulate the observations. The only
sources of difference between site-years are from the spa-
tial variability at the field site which is below model reso-
lution and from the incorrect identification of phenological
stages during field observations. To generate the ideal se-
quence of site-years, we first calibrated the model to phenol-
ogy at 6_2010. The parameter set θMAP corresponding to the
maximum a posteriori probability (MAP) estimate was used
to simulate phenology and generate the synthetic dataset. To
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Figure 2. The site-years used for calibration and validation in each sequential update for the two synthetic sequences, namely ideal and
controlled cultivar–environment, and the two true sequences for Kraichgau and the Swabian Alb are shown. In the synthetic sequences, a
total of 10 updates were performed by sequentially adding 1 through 10 site-years to the calibration dataset. After each update, prediction
quality was analysed for a set of 10 validation site-years. A total of three sequential updates in Kraichgau and six sequential updates in
the Swabian Alb true sequences were analysed. In the sequential updates for the true sequences, a site-year was included for calibration,
following the actual chronological order of growth. The remaining site-years grown in the region were then used for validation.

Figure 3. Synthetic site-year observations used for calibration and
prediction in (i) the ideal and (ii) controlled cultivar–environment
synthetic sequences. The pink boxes and whiskers represent the
range of values for the 10 synthetic site-years used for calibration
while the blue boxes and whiskers represent the range of values for
the 10 site-years used for validation. The length of the box repre-
sents the inter-quartile range (IQR), whiskers extend from the box
up to 1.5× IQR and values beyond this range are plotted as points.

introduce inter-site-year differences, noise was added to sim-
ulated phenology f (θMAP)d on observation day d , where the
noise was equal to the total observation uncertainty σd on
that day for site-year 6_2010. Thus, for each synthetic site-
year on observation day d , the phenological development

was sampled from the range of total observation uncertainty
σd at 6_2010, around simulated phenology f (θMAP)d . The
synthetic observations were generated for the same observa-
tion days as the actual observations at 6_2010. We ensured
that phenological development stages did not decrease with
time, that is ẏd ≥ ẏd−1, where ẏd−1 is the sampled phenolog-
ical development on the previous observation day d − 1. Of
the 20 site-years generated in this manner, 10 site-years were
used for calibration while the remaining 10 were used for
validation. The synthetic site-years were ordered randomly
during BSU calibration.

The controlled cultivar–environment sequence represents
a sequence of site-years where the same cultivar is grown
under the same environmental conditions. In this case, how-
ever, the model may not accurately simulate the observa-
tions, implying the presence of model structural error (e.g.
the model’s inability to capture slow emergence as explained
in Appendix A: SPASS phenology model). For the controlled
cultivar–environment sequence, we generated the synthetic
site-year data from observations of the cultivar grown at
6_2010. For each synthetic site-year, the phenological devel-
opment ẏd on observation day d was sampled from the range
of total observation uncertainty σd around the observed mean
yd . As in the ideal sequence, we ensured that phenological
development stages did not decrease with time. Again, 10
site-years were randomly assigned for calibration.
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2.7.1 True sequences

A total of three sequential updates in Kraichgau and six se-
quential updates in the Swabian Alb were analysed (Fig. 2).
In each sequential update, an additional site-year was in-
cluded in the calibration dataset, following the actual chrono-
logical order in which maize was grown in the regions.
For the Kraichgau sequence, four site-years were available
for calibration and validation (3_2011, 2_2012 1_2014, and
2_2014). The model was sequentially calibrated to pheno-
logical development of maize for site-years 3_2011, 2_2012,
and 1_2014. After each update, phenological development
was predicted for the subsequent site-years. For example,
in the first sequential update at Kraichgau, the model was
calibrated to 3_2011. The site-years 2_2012, 1_2014 ,and
2_2014 were used for validation to assess the prediction
quality of the calibrated model. In the second sequential up-
date, the model was calibrated to 3_2011 and 2_2012, while
1_2014 and 2_2014 were used for validation. Note here that
the number of site-years used for validation decreases with
each sequential update. In the Swabian Alb sequence, seven
site-years were available for sequential calibration and vali-
dation (6_2010, 5_2011, 5_2012, 6_2013, 5_2015, 5_2016,
and 6_2016). The sequential updates were performed in a
similar manner as in Kraichgau.

3 Results

In this section, we first describe the results for one example
of Bayesian calibration using the data from site-year 6_2010
(Sect. 3.1 Bayesian calibration results). Here, we examine
the resulting simulated phenology after calibration as well
as the posterior parameter distributions. We then look at the
results from the synthetic and true sequences. We first evalu-
ate the evolution of the posterior parameter distributions with
sequential updates. As an example, we analyse the marginal
distributions of the individual parameters and entropy of the
joint parameter distributions for the true sequences (Sect. 3.2
Parameter uncertainty). Lastly, we report the prediction qual-
ity results for the synthetic and true sequences (Sect. 3.3 Pre-
diction quality).

3.1 Bayesian calibration results

By way of example, Fig. 4 shows the Bayesian phenological
model calibration results for silage maize for the first site-
year 6_2010. Cross-plots of the posterior parameters (Fig. 4i)
show a weak negative correlation between PDD1 and TMIN-
DEV1 and between PDD1 and DELTOPT1, while a weak
positive correlation is observed between PDD1 and DELT-
MAX1. The observed mean phenological development falls
within the range of simulations after calibration (Fig. 4ii).
The marginal posterior parameter distributions are narrower
than the initial prior distributions (Fig. 4iii). A shift in pa-

rameter distribution to the margins of the prior ranges is also
noteworthy.

3.2 Parameter uncertainty

We analysed the change in posterior parameter distribution
with the sequential updates. Figure 5i shows the marginal
initial prior and posterior parameter distributions for the
Swabian Alb and Kraichgau true sequences. The x-axis from
left to right indicates the initial prior parameter distribution
followed by the sequential calibration of the model to an in-
creasing number of site-years. The distributions for the six
estimated parameters are compared after each sequential up-
date. The width of each box with whiskers represents the un-
certainty in the parameter values. There is a clear narrow-
ing of parameter distributions after the first sequential update
from the initial prior. However, with the exception of DEL-
TOPT2, the remaining parameters do not show a noticeable
and consistent narrowing in range with sequential updates.
Information entropy of the joint posterior parameter distribu-
tions in Fig. 5ii decreases with sequential updates and there is
a large reduction in entropy with the first sequential update.
In the Swabian Alb sequence (Fig. 5iia), entropy continues to
decrease until the model is calibrated to 6_2010, 5_2011, and
5_2012, after which there is no significant reduction. In the
Kraichgau sequence (Fig. 5iib), the inclusion of 1_2014 dur-
ing calibration results in further uncertainty reduction. Simi-
lar observations were made for the synthetic sequences (Sup-
plement S6).

3.3 Prediction quality

3.3.1 Synthetic sequences

In the synthetic sequences, we assessed the prediction quality
after applying BSU to 10 synthetic site-years, while exclud-
ing model structural error and inter-site-year differences in
cultivar and environmental conditions in the ideal sequence
and controlled cultivar–environment sequence, respectively.
In both sequences we account for identification uncertainty
and spatial variability within the modelled site. Figure 6
shows the trend in median NRMSE and bias with the sequen-
tial updates from 1 to 10, for the two synthetic sequences.
While the bias and NRMSE were calculated for all parame-
ter vectors in the posterior sample derived from the MCMC
sampling method, only the median values are plotted and
analysed for simplicity.

In the ideal sequence (Fig. 6i), the overall median NRMSE
(Fig. 6ia) and bias (Fig. 6ib) are low, with many site-years
exhibiting a drop in the median NRMSE below a value of 1.
However, after a few sequential updates, no further reduction
is observed. In the controlled cultivar–environment sequence
(Fig. 6ii), although most individual site-years showed a re-
duction in median NRMSE with the sequential updates, there
were some that exhibited an increase in median NRMSE
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Figure 4. Results of Bayesian calibration of the model to phenological development (BBCH stages) for site-year 6_2010. (i) Cross-plot of
the posterior samples of the six estimated parameters. Red represents high density and blue low density (IDPmisc package in R, Locher,
2020). (ii) Observed and simulated phenological development after calibration, plotted against the day of the year. The red points are the
mean observations, while the black error bars indicate ± 3 SDs. The mean simulation is indicated by the continuous black line. The blue
bands represent the different percentiles of simulated phenology. Note that the simulated phenology bands only represent the uncertainty in
model parameters and do not include the noise term. (iii) Prior (white) and posterior (salmon) marginal parameter distributions for the six
estimated parameters.

(ss2_12 and ss2_15 in Fig. 6iia). These site-years were also
characterized by low initial median prediction bias, followed
by an increase in the absolute bias with sequential updates
(Fig. 6iib).

3.3.2 True sequences

Because fewer site-years were used for validation in the true
sequence as compared to the synthetic sequence, we anal-
ysed the prediction quality for each validation site-year in-
dividually, with the sequential updates. Figure 7 shows the
prediction quality (i.e. NRMSE and bias for all the poste-
rior predictive samples) of the model after BSU was applied
to the true sequence of site-years in Kraichgau (Fig. 7i–iii)
and on the Swabian Alb (Fig. 7iv–ix). For each site-year, we
plot the quality of prediction, after calibration to all preced-
ing site-years. For example, Fig. 7vi shows the performance

metric for site-year 6_2013 after the model was calibrated
first to 6_2010, then to 6_2010 and 5_2011, and finally to
6_2010, 5_ 2011, and 5_2012, respectively (blue box-plots
from left to right). As a reference, the performance metric
derived from calibrating the model to the target site-year,
namely 6_2013 in Fig. 7vi, is shown as the leftmost result
(grey box-plot) of each sequence. It is clear that this calibra-
tion always yields the best performance metrics for the given
data. While the NBias was calculated for all parameter vec-
tors in the posterior MCMC sample, only the median values
of the absolute NBias are also plotted to compare the trends
between NRMSE and NBias with the sequential updates.

The NRMSE is expected to decrease with the inclusion of
more site-years for calibration. This holds true in the case of
Kraichgau, where mid-early cultivars were grown (Fig. 7ii,
iii), but in hardly any case on the Swabian Alb (Fig. 7iv–
ix). We also expected the prediction quality to improve when
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Figure 5. (i) Marginal initial prior and posterior parameter distributions of the six estimated parameters plotted against the calibration site-
years, after BSU was applied to a true sequence (a) on the Swabian Alb and (b) in Kraichgau. The SPASS model was calibrated to observed
phenological development (BBCH). (ii) Information entropy of the joint posterior parameter distributions plotted against the calibration
site-years, after BSU was applied to the true sequences. The x-axis labels from left to right indicate the initial prior parameter distribution
followed by the sequential calibration of the model to an increasing number of site-years. The “+” symbol before the site-year label on the
x-axis indicates the new site-year that was included in the sequential calibration. The length of the box in (i) represents the inter-quartile
range (IQR), whiskers extend from the boxes up to 1.5× IQR and values beyond this range are plotted as points.

a calibration sequence is made up of the same cultivar or
ripening group. Note, however, the poor prediction quality
in Fig. 7iv and the increase in NRMSE with the inclusion
of 5_2011 in the calibration sequence in Fig. 7ix. Addition-
ally, the prediction quality for the early cultivar at 5_2016
(Fig. 7viii) deteriorates upon the inclusion of the same culti-
var grown at 5_2015 in the calibration sequence. In all pre-
dictions, the absolute NBias follows a similar trend as the

NRMSE. Note that there is a difference in the performance
metrics between the different site-years when the model is
directly calibrated to the target site-year (grey box-plots in
Fig. 7). The three site-years in Kraichgau and site-years
5_2011, 5_2012, 5_2015, and 6_2016 in the Swabian Alb
exhibit good-to-moderate calibration quality, while 6_2013
and 5_2016 have moderate-to-poor calibration quality.
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Figure 6. (a) Median NRMSE and (b) median bias of prediction for the 10 validation site-years, after BSU was applied to the ideal (i) and
controlled cultivar–environment (ii) synthetic sequences. The number of site-years used for calibration is shown on the x-axis and represents
the sequential updates from 1 to 10. The SPASS model was calibrated to phenological development (BBCH). The lines and points correspond
to the 10 synthetic validation site-years: ss1_11-ss1_20 from the ideal sequence and ss2_11-ss2_20 from the controlled cultivar–environment
sequence.

4 Discussion

In this study, we aimed to analyse whether progressively in-
corporating more data through BSU reduces model parame-
ter uncertainty and produces robust parameter estimates for
predicting phenology of silage maize.

4.1 Parameter uncertainty

Bayesian calibration resulted in reduced posterior parame-
ter uncertainty in comparison to the initial prior ranges that
were guided by expert knowledge (Fig. 4iii). The uncertainty
in parameter DELTOPT2 decreased, as seen from the nar-
rowing of the marginal posterior distributions (Fig. 5). The
remaining parameters did not show a consistent progressive
reduction in uncertainty with the sequential updates. They
also had a relatively higher correlation with the other pa-
rameters (Fig. 4i). The lack of uncertainty reduction may be
due to equifinality, meaning that multiple parameter combi-
nations produce the same output (Adnan et al., 2020; He et
al., 2017b; Lamsal et al., 2018). The reduction in informa-
tion entropy of the posterior parameter distributions after the

sequential updates (Fig. 5ii) confirms the reduction in overall
parameter uncertainty.

The optimum temperatures for vegetative (TOPT-
DEV1=TMINDEV1+DELTOPT1) and reproductive
(TOPTDEV2=TMINDEV2+DELTOPT2) development
are lower than our prior belief. The effective sowing depth
(SOWDEPTH) is higher than the actual sowing depth of
3–5 cm, as the model cannot capture slow emergence (as
discussed in the Appendix A: SPASS phenology model).
In Kraichgau, the posterior distributions for SOWDEPTH
and minimum temperature for vegetative development
(TMINDEV1) did not change significantly as compared to
the prior, indicating that the model did not learn much from
the data. These parameters, however, show a change from
the prior in the Swabian Alb. Kraichgau is warmer than
the Swabian Alb. On most days, temperatures in Kraich-
gau are above the minimum temperature for vegetative
development (TMINDEV1), resulting in limited learning.
A similar reasoning applies to SOWDEPTH, which is a
proxy parameter that impacts emergence rate. Emergence
occurs only above a certain threshold temperature which is
hard-coded in the model. Temperatures in Kraichgau are
mostly above this threshold temperature for emergence,
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Figure 7. Performance metrics for site-years in Kraichgau (i–iii) and on the Swabian Alb (iv–ix), after applying BSU to the two true
sequences. The SPASS model was calibrated to observed phenological development (BBCH). NRMSE and bias are plotted against the site-
years used in calibration. In each sub-plot, the grey box-plot represents the calibration performance metric, i.e. when the model is calibrated
to the site-year of interest. The blue box-plots represent the prediction performance metrics when the model is calibrated (from left to
right) to an increasing number of preceding site-years. L, ME, and E indicate the maturity group of the cultivars: late, mid-early, and early,
respectively. The “+” symbol before the site-year label on the x-axis and before the maturity group label indicates the new site-year that was
included in the sequential calibration. The length of the box represents the inter-quartile range (IQR), whiskers extend from the box up to
1.5× IQR and values beyond this range are plotted as points. The zero bias is indicated by a red dashed line in the bias plots. The median
values of the absolute NBias are represented by red asterisks (∗) in the NRMSE plots.
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resulting in limited learning and insignificant change from
the prior distribution. In the Kraichgau sequence (Fig. 5ib),
PDD1 and DELTMAX1 decrease when site-year 1_2014 is
added to the calibration sequence. Both parameters cause
a faster development rate during the vegetative phase. This
faster vegetative development results in earlier initiation of
the reproductive phase, as seen in the mid-early ripening
cultivar 1_2014 as compared to the late cultivars 3_2011 and
2_2012. In the Swabian Alb sequence (Fig. 5ia), inclusion
of early cultivars at 5_2012 and 5_2016 results in shallower
SOWDEPTH and, consequently, faster emergence. How-
ever, whether this early emergence is truly a feature of early
cultivars or a consequence of the timing of first observations
in the growing season cannot be satisfactorily distinguished
with the available data. The physiological development
days at optimum vegetative phase temperature (PDD1)
were also lower than our initial prior belief. We, however,
interpret these results with caution since parameters may
compensate for model structural errors and some parameters
are correlated (Alderman and Stanfill, 2017).

4.2 Prediction quality

We analysed synthetic sequences to assess whether a consis-
tent reduction in prediction error is achieved when more site-
years are available for calibration, in the absence of model
structural errors (ideal sequence), and in the absence of inter-
site-year differences due to cultivars and environmental con-
ditions (controlled cultivar–environment sequence). For the
ideal sequence we used simulated phenology and added a
random noise term that represents spatial variability and
identification error. For the controlled cultivar–environment
sequence we used the observations instead of simulated phe-
nology to generate the dataset. Hence, in the latter sequence,
there is not only random noise but also a model structural
error component. As the noise and model error components
cannot be resolved, the estimated model parameters compen-
sate for both, leading to larger prediction errors (Fig. 6ii).

In the ideal sequence, the model was able to accurately
simulate the observations, the only source of between-site-
year variability being within-site spatial variability and iden-
tification uncertainty. The overall initial prediction quality
was moderate to good, indicating that when there was no
model structural error, the calibrated model was able to pre-
dict moderately well in spite of some observational variabil-
ity (Fig. 6i). The progressive drop in median NRMSE to a
value of 1 indicated that the calibrated model was able to
explain all other variability apart from that arising from the
total observation uncertainty. Thus, with this sequence, we
demonstrated the successful application of the BSU approach
in ideal conditions.

In the controlled cultivar–environment sequence, the same
cultivar was grown in the same environmental conditions
across the site-years. With this sequence, we tested the suc-
cess of the BSU approach when model structural errors could

exist in addition to between-site-year variability as in the
ideal sequence. The overall change in prediction error de-
creased with the sequential updates, as it possibly approaches
an irreducible value. This is seen from the convergence of
the different lines corresponding to the prediction site-years
in Fig. 6iia. However, this irreducible value is higher than an
NRMSE of 1 due to model structural error. Prediction error
for most individual site-years decreased with the sequential
updates. However, there were two site-years where the error
increased (ss2_12 and ss2_15). These two site-years initially
exhibited a low positive prediction bias that progressively be-
came negative with the sequential updates (Fig. 6iib). This
can be attributed to representativeness of the calibration data
(Wallach et al., 2021). The two prediction site-years were
more similar to the initial few site-years than the later site-
years in the calibration sequence.

We applied the BSU approach to real-world conditions
represented by the true sequences of silage maize grown in
Kraichgau and on the Swabian Alb (Fig. 7). In Kraichgau,
the prediction quality improved with sequential updates as
expected. However, it deteriorated for many site-years on the
Swabian Alb. This is again attributed to the representative-
ness of the calibration data as seen in the controlled cultivar–
environment sequence. To understand this behaviour we car-
ried out single site-year calibration and predictions, i.e. cali-
brating the model to individual site-years and predicting the
remaining site-years (for details, refer to Appendix C: Sin-
gle site-year calibration). As parameter estimates may vary
by ripening group or cultivar, we analysed the prediction re-
sults within these classes. Calibrating the model to a site-year
from the same ripening group or even the same cultivar as the
prediction target site-year did not always result in the best
prediction quality. Within the mid-early and early ripening
groups, prediction quality showed a correlation with the dif-
ference in average temperature during the vegetative phase,
between the calibration and prediction target site-year. This
correlation indicated that the best predictions of phenology
for a particular site-year would be achieved when the model
is calibrated to a cultivar from the same ripening group and
grown under the same temperature conditions during the veg-
etative phase. The calibration quality for the individual site-
years represented by grey box-plots in Fig. 7 shows that the
model is able to simulate some site-years better than others.
Residual analysis (Supplement S3) revealed that the model
was unable to capture the slow development during the vege-
tative phase for these site-years with poorer calibration qual-
ity. This could be due to model limitations (i.e. model equa-
tions or hard-coded parameters) and could explain the corre-
lation between temperature similarity and prediction quality.

The single site-year predictions showed that site-years
1_2014 and 2_2014, where the same mid-early cultivar was
grown, were the best predictors of each other and their pre-
diction by the late cultivar at 3_2011 was poorer. Therefore,
in the case of the Kraichgau sequence (Fig. 7ii–iii), we ob-
served a decrease in prediction error as we progressively cal-

Biogeosciences, 19, 2187–2209, 2022 https://doi.org/10.5194/bg-19-2187-2022



M. Viswanathan et al.: A Bayesian sequential updating approach 2201

ibrated the model to 3_2011, to 3_2011 and 2_2012, and
to 3_2011, 2_2012 and 1_2014. In the Swabian Alb se-
quence (Fig. 7iv–ix) where mid-early and early cultivars are
grown, the effect of different ripening groups and tempera-
tures caused an increase in prediction error.

In real-world conditions represented by the true sequences,
the prediction quality thus depends on the interplay between
model limitations and inherent data structures presented in
the differences between maturity group and cultivars. Since
the model calibration and prediction quality varies with en-
vironmental factors, it highlights the need to better account
for the influence of these environmental drivers in the model.
This would increase model transferability to other sites. This
could be best achieved by improving the process repre-
sentation in the model and by including the uncertainty in
forcings during calibration. An alternative approach would
be to define separate cultivar- and environment-specific pa-
rameter distributions. It is common practice to determine
cultivar-specific parameters in crop modelling (Gao et al.,
2020). He et al. (2017a) found that data from different
weather and site conditions are required to obtain a good cal-
ibrated parameter set for a particular cultivar. Improved crop
model performance has been reported upon the inclusion of
environment-specific parameters in calibration (Coelho et al.,
2020). Cultivar- or genotype- and environment-specific pa-
rameters already exist in some models (Jones et al., 2003;
Wang et al., 2019). However, these genotype parameters have
also been found to vary with the environment, indicating that
they may represent genotype× environment interactions and
not fundamental genetic traits (Lamsal et al., 2018). Fur-
ther analysis of calibrated model parameters and model per-
formance metrics with respect to environmental variables
would provide insights into areas for model improvement.
Nonetheless, the cultivar and environmental dependency of
parameters is a major drawback for large-scale model ap-
plications and long-term predictions, as information on crop
cultivars is usually not available on regional scales and spe-
cific characteristics of future cultivated varieties are cur-
rently unknown. It is essential to collect cultivar and matu-
rity group information in official surveys. Furthermore, other
Bayesian approaches such as hierarchical Bayes, which al-
low for the incorporation of this information during calibra-
tion, should be explored. Model calibration in a Bayesian hi-
erarchical framework would enable inherent data structures,
represented by the cultivars within ripening groups of a par-
ticular species, to be accounted for. Additionally, differences
in environmental conditions can also be represented. On re-
gional scales, where information about maturity groups and
cultivars is unavailable, accounting for environmental effects
alone may still prove to be beneficial. A Bayesian hierarchi-
cal approach could even be applied to predict the growth of
current as well as future cultivars.

4.3 Limitations

We would like to draw attention to the three assumptions
in the current study which might cause an underestimation
of uncertainties. First, the standard deviation of the likeli-
hood model was not estimated, but assumed to be known and
equal to the sum of observed spatial variability and identifi-
cation error. It represents the minimum error and is equal to
the total error only if there are no differences in environmen-
tal conditions and cultivars across the site-years. Second, the
likelihood model was assumed to be centred at 0, which only
holds true when there are no structural errors. In most cases,
however, model structural errors and other systematic errors
will exist, which may result in much larger errors than what
was assumed. Third, the errors are assumed to be indepen-
dent and identically distributed. A violation of this assump-
tion can lead to underestimation of uncertainty in the parame-
ters and the output state variable (Wallach et al., 2017). In the
residual analysis of the sequential updates with three or more
site-years, a slight deviation from a Gaussian distribution was
observed (Supplement S3). This skewness was caused due
to model limitations, that is its inability to capture the slow
development observed during the vegetative phase in some
site-years. Autocorrelation of errors can exist for state vari-
ables such as phenology that are based on cumulative sums.
However, based on the limited dataset, an autocorrelation in
the errors could not be substantiated and an in-depth analysis
is far beyond the scope of this study.

We observed that the posterior parameter distributions
were at the margins of the initial prior distribution ranges, for
which this study now provides a basis to update this prior be-
lief. This considerable update of the parameter prior indicates
that either the prior ranges are not suitable for the cultivars in
this study or that the parameters are compensating for struc-
tural limitations of the model. Further in-depth investigation
of their potential contributions could only be achieved with
datasets that are much larger than the one employed here.

5 Conclusions

Through a Bayesian sequential updating (BSU) approach,
we extended a classical application of Bayesian inference
through time to analyse its effectiveness in the calibration
and prediction of a crop phenology model. We assessed
whether BSU of the SPASS model parameters, based on new
observations made in different years, progressively improves
prediction of the phenological development of silage maize.

We applied BSU to synthetic sequences and true se-
quences. As expected, the parameter uncertainty decreased in
all sequences. The prediction errors decreased in most cases
in the synthetic sequences, where we had an ideal model that
was able to accurately simulate observations, and where the
model could contain structural errors but the dataset con-
tained only a single maize cultivar grown under the same en-

https://doi.org/10.5194/bg-19-2187-2022 Biogeosciences, 19, 2187–2209, 2022



2202 M. Viswanathan et al.: A Bayesian sequential updating approach

vironmental conditions. In the ideal synthetic sequence, the
prediction quality was variable for the first few sequential up-
dates. The prediction error then decreased in both synthetic
sequences until it approached an irreducible value. In the true
sequences, however, which included cultivars from different
ripening groups and environmental conditions, the prediction
quality deteriorated in most cases. Differences in ripening
group and temperature during the vegetative phase of growth
between the calibration and prediction site-years influenced
prediction quality.

With an increasing amount of data being gathered and with
improvements in data-gathering techniques, there is a drive
to use all available data for model calibration. However, our
study shows that a simplistic approach of updating the model
parameter estimates without accounting for model limita-
tions and inherent differences between datasets can lead to
unsatisfactory predictions. To obtain robust parameter esti-
mates for crop models applied on a large scale, the Bayesian
approach needs to account for differences not only in matu-
rity groups and cultivars but also in environment. This could
be achieved by applying Bayesian inference in a hierarchical
framework, which will be the subject of future work.

Appendix A: SPASS phenology model

In the following paragraphs we describe the equations in the
SPASS phenology model (Wang, 1997). The model param-
eters are indicated by words with all capitalized letters (e.g.
SOWDEPTH, PDD1 etc.).

The crop passes through four main stages: sowing (stage
−1.0), germination (stage −0.5), anthesis (stage 1.0, end of
the vegetative phase and beginning of reproductive phase),
and maturity (stage 2.0). Temperature and photoperiod are
the two main factors affecting phenological development
rate. The impact of water availability on germination is also
reflected in the SPASS model.

For germination, soil moisture is the limiting factor. Ger-
mination occurs when

θact(is) > θpwp(is) (A1)

or

0.02≤ 0.65
[
θact(is)− θpwp(is)

]
+ 0.35

[
θact(is+1)− θpwp(is+1)

]
,

where θact(is) is the actual volumetric water content of the
seed soil layer is and θpwp(is) is the volumetric water con-
tent in the seed soil layer at permanent wilting point. If these
conditions are not met within 40 d of sowing, crop failure is
assumed.

The development rate from germination to emergence
(Rdev,emerg) (d−1) is controlled by air temperature:

Rdev,emerg =
(
Tavg− Tbase

)
× 0.5/6T, (A2)

where, Tavg (◦C) is the daily average air temperature and
Tbase (◦C) is the base temperature set to 10 ◦C for maize. The
term 6T (◦C) is the temperature sum needed for emergence:

6T = 15.0+ 6.0 × SOWDEPTH, (A3)

where SOWDEPTH (cm) is the sowing depth of the seed.
After emergence, the development rate in the vegetative

phase Rdev,v (d−1) depends on temperature and photoperiod:

Rdev,v = Rmaxdev,vfT ,v(T )f
(
hphp

)
(A4)

where Rmaxdev,v = 1/PDD1 is the maximum development
rate in the vegetative phase (d−1), PDD1 is the number of
physiological development days from emergence to anthe-
sis (d), f (hphp) is the photoperiod factor, and fT ,v(T ) is
the temperature response function (TRF) for the vegetative
phase. The photoperiod factor is expressed as

f
(
hphp

)
= 1− e

−4(hphp−dlmin)
DLOPT−dlmin (A5)

where

dlmin= DLOPT+ 4/PDL

hphp (h) is the photoperiod length, that is the amount of time
between the beginning of the civil twilight before sunrise and
the end of the civil twilight after sunset (the time when the
true position of the centre of the sun is 4◦ below the horizon),
PDL (−) is the photoperiod sensitivity, and DLOPT (h) is the
optimum daylength for a particular cultivar.

The development rate in the generative or reproductive
phase (Rdev,r) (d−1) only depends on temperature such that:

Rdev,r = Rmaxdev,rfT ,r(T ) (A6)

where Rmaxdev,r = 1/PDD2 is the maximum development
rate in the reproductive phase (d−1), PDD2 is the number
of physiological development days from anthesis to maturity
(d), and fT ,r(T ) is the temperature response function (TRF)
for the reproductive phase.

The temperature response function fT has cardinal tem-
peratures: minimum temperature, Tmin (◦C), optimum tem-
perature, Topt (◦C), and maximum temperature, Tmax (◦C):

fT
(
T ,Tmin,Topt,Tmax

)
=

{
2(T−Tmin)

α
·(Topt−Tmin)

α
−(T−Tmin)

2α

(Topt−Tmin)
2α if Tmin ≤ T ≤ Tmax

0 otherwise
(A7)

where

α =
ln2

ln
(
Tmax−Tmin
Topt−Tmin

)
As the TRF is phase-specific, the cardinal tempera-

tures are also phase-specific. For fT ,v, the cardinal temper-
atures are Tmin = TMINDEV1,Topt = TOPTDEV1,Tmax =
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TMAXDEV1, while for fT ,r, the cardinal tempera-
tures are Tmin = TMINDEV2,Topt = TOPTDEV2,Tmax =

TMAXDEV2.
The development stages after germination (Sdev) are cal-

culated in daily time steps as

Sdev =

n∑
d=dgerm

Rdev− 0.5, (A8)

where dgerm is the day on which seed germination occurs and
n is the number of days after germination:

Rdev =

 Rdev,emerg if − 0.5≤ Sdev < 0.0
Rdev,v if 0.0 ≤ Sdev < 1.0
Rdev,r if 1.0 ≤ Sdev < 2.0.

(A9)

Finally, the SPASS development stages (−0.5≤ Sdev ≤ 2)
are converted to BBCH development stages (0≤ BBCH≤
95). Here, Sdev = 0 corresponds to BBCH= 10 (emergence
and start of the vegetative phase), Sdev = 0.4 to BBCH= 31,
and Sdev = 1 to BBCH= 61 (start of the generative or repro-
ductive phase).

Preliminary simulations showed that the model was unable
to capture the slow rate of emergence after sowing, as seen
in the observations, when the true sowing depth for maize
was used. This could be due to uncertainty in the hard-coded
parameters in the emergence rate Eq. (A2) which were not
estimated in this study. This is an example of structural er-
ror in the model. In order to simulate this slow emergence,
an effective sowing depth (SOWDEPTH) was set, which is
deeper than the actual sowing depth range for maize (3–
5 cm). Another example of model structural error would be
missing factors, which play a role in phenological devel-
opment. SPASS assumes that phenological development de-
pends only on temperature and daylength. Other factors such
as water stress, nitrogen deficiencies, and high ozone concen-
trations could also play a role but are ignored. Moreover, the
shape of the temperature response function could be inade-
quate in capturing the plant’s true response to temperature.

In the case of the cardinal temperatures for the vege-
tative and reproductive phases, the parameters DELTOPT
and DELTMAX were introduced instead of TOPTDEV and
TMAXDEV during sensitivity analysis and MCMC sam-
pling, to ensure that during parameter sampling TMIN-
DEV<TOPTDEV<TMAXDEV. Thus, TMINDEV, DEL-
TOPT, and DELTMAX were used to parameterize the
temperature response function during calibration, where
TOPTDEV= TMINDEV+DELTOPT and TMAXDEV=
TOPTDEV+DELTMAX.

Appendix B: Posterior sampling using MCMC
Metropolis algorithm

The posterior parameter distribution was sampled using a
Markov chain Monte Carlo (MCMC) method based on the

Metropolis algorithm (Iizumi et al., 2009; Metropolis et al.,
1953). Three Markov chains were run in parallel using the
foreach (Microsoft and Weston, 2020) and doParallel (Mi-
crosoft and Westen, 2019) packages in R (R Core Team,
2020). First, initial parameter vectors were selected as a start-
ing point for each chain. Then, the size of the transition ker-
nel used to propose new candidate parameter vectors in the
chain was adapted, based on the acceptance rate, to improve
the efficiency of the MCMC algorithm (Gelman et al., 1996).
After the adaptation, the Markov chains were run until the
Gelman–Rubin convergence diagnostic for the posterior pa-
rameter distribution was ≤ 1.1 (Brooks and Gelman, 1998;
Gelman and Rubin, 1992). The detailed steps are given here.

First sample

Step 1: Let θ1 be an arbitrary initial parameter vector in a
chain, selected from within the parameter ranges provided
by the expert. This method of selection was used for the
Bayesian calibration of site-year 6_2010. For the other cali-
bration cases, the initial parameter vectors were obtained by
sampling from the range of the posterior parameter distri-
bution after calibration to 6_2010. This was done to reduce
the time to convergence as it is expected that the posterior
parameter distributions for the other calibration cases would
be in the vicinity of the posterior distribution obtained after
calibration to 6_2010. Bayes theorem is estimated as

P (θ1 |Y )∝ P (θ1)P (Y |θ1) , (B1)

whereP(Y |θ1) and P (θ1) are calculated using Eqs. (9) and
(10), respectively. The error function in Eq. (11) required for
P (θ1) was calculated using the pracma package (Borchers,
2020).

Jump adaptation

A symmetrical transition kernel or jump distribution is used
to select the next candidate parameter vector. The transition
kernel is a normal distribution that is centred at the current
parameter vector, and has a variance vector V 2. The off-
diagonal elements of the variance–covariance matrix are 0.

Step 2: The transition kernel centred at θ t−1 is used to pro-
pose a new candidate parameter vector θ∗t .

Step 3: The model is simulated using parameter vector θ∗t
and the numerator of Bayes theorem is calculated using the
prior and likelihood as per Eq. (B1).

Step 4: The acceptance ratio (r) for a proposed candidate
parameter vector is

r =
P
(
θ∗t
)
P
(
Y |θ∗t

)
P (θ t−1)P (Y |θ t−1)

. (B2)

Step 5: The candidate parameter vector θ∗t is either ac-
cepted or rejected as the new parameter vector θ t based on
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the condition

θ t =

{
θ∗t r > u

θ t−1 r ≤ u

)
, (B3)

where u∼ U(0,1) is a random sample from a uniform distri-
bution between 0 and 1. Proposals of parameters which were
outside the bounds of the prior and likelihood result in a zero
in the numerator of Eq. B2. These parameters are rejected
and discarded. The next proposal is generated with the jump
distribution centred at the last accepted parameter vector, un-
til the next proposal is accepted.

Step 6: After 20 accepted parameter vectors per chain, the
acceptance rate ar= acc/tot is calculated across the chains,
where acc represents the number of accepted vectors (i.e. 20
accepted runs per chain ×3 chains in this case) and tot rep-
resents the total vectors proposed. Based on the acceptance
rate (ar), the standard deviation V of the transition kernel,
which controls the jump size, is adapted as per the condition
in Eq. B4, so that the acceptance rate is between 25 % and
35 % (Gelman et al., 1996; Tautenhahn et al., 2012):

V =

 V × 1.01 ar≥ 0.35
V × 0.99 ar≤ 0.25
V 0.25< ar< 0.35.

(B4)

If the acceptance rate ar is between 25 % and 35 %, we pro-
ceed to the main set of runs to obtain the posterior parameter
distributions.

Main runs

In the main runs, steps 2–5 are repeated with the final jump
distribution achieved at the end of the jump adaptation steps.

Step 7: The convergence of the chains after jump adapta-
tion is checked using the Gelman–Rubin convergence crite-
ria (GR). The gelman.diag function from the coda package
in R (Plummer et al., 2006) was used to evaluate the GR di-
agnostic after every 20 accepted parameter vectors in each
chain. As per the GR diagnostic criteria, the Markov chains
have converged to represent a stable posterior distribution
if within-chain variance is approximately equal to between-
chain variance. The MCMC chains are stopped if there are
a minimum of 500 accepted runs per chain and if GR≤ 1.1
(Brooks and Gelman, 1998) for each parameter.

Step 8: In the final step, all the runs from the jump adap-
tation phase are discarded as burn-in. Parameters from the
remaining accepted runs define the posterior distribution.

Appendix C: Single site-year calibration

In order to better understand the results of the true sequences,
single site-year calibration and predictions were made within
and across the two regions. Since calibration yields the best
performance metrics, we analysed the median NRMSE ra-
tio for each prediction-target site-year, i.e. the ratio between

the median NRMSE of prediction and the median NRMSE
of calibration to the prediction target (Fig. C1). We expect
that the model predicts best, i.e. with a low median NRMSE
ratio, when it is calibrated to the same cultivar or ripening
group. However, we found that this was not always the case.
This is a result of careful analyses of calibration–prediction
performance, detailed here.

The mid-early cultivar at 5_2011 was poorly predicted by
all mid-early cultivars, but was better predicted by early cul-
tivars. Site-years 1_2014 and 2_2014 in Kraichgau, where
the mid-early cultivar Grosso was grown, were the best pre-
dictors of each other. However, even though the early culti-
var LG 30.217 was grown at 5_2015 and 5_2016, these two
site-years were not the best predictors of each other. Simi-
larly, site-years 2_2012 and 3_2011, where the late cultivar
Canavaro was grown, were also not the best predictors of
each other. In predictions for mid-early cultivars, a spread in
median NRMSE ratio was seen when the model was cali-
brated to other mid-early cultivars. The mid-early cultivar at
1_2014 and 2_2014 in Kraichgau had a comparable predic-
tion quality when the model was calibrated to the late culti-
var grown in Kraichgau or to the mid-early cultivars grown
on the Swabian Alb.

To explain the spread in prediction NRMSE within ripen-
ing groups, we examined the relationship between NRMSE
and the difference in average temperature between the site-
year used for calibration and the predicted or target site-
year. The temperature was averaged over an interval of 40–
100 d after sowing (i.e. approximate vegetative phase of de-
velopment). For the mid-early ripening cultivars (Fig. C2i),
the median NRMSE shows a clear correlation. Albeit tested
with a limited number of site-years, early-ripening cultivars
(Fig. C2ii) show a similar trend.
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Figure C1. Median NRMSE ratio for prediction-target site-years after single site-year calibration of the SPASS model to observed pheno-
logical development (BBCH). The median NRMSE ratio on the y-axis is the ratio between the median NRMSE of prediction and the median
NRMSE of calibration to the prediction-target site-year. Each point represents the median NRMSE ratio of prediction of the site-year on
the x-axis when the model was calibrated to phenology from every other site-year separately (single site-year calibration). The points are
grouped and coloured by ripening group of the calibration site-year while the ripening group of the prediction target site-years are indicated
on the top of the plot. The box and whiskers show the spread in median NRMSE ratio of predicting a particular site-year after the model
was separately calibrated to site-years from a particular ripening group. Calibration site-year points from the same cultivar as the prediction
site-year are labelled.

Figure C2. A cross-plot between the performance metric median NRMSE and the absolute difference in temperature between the site-year
used for calibration and the prediction-target site-year, averaged over 40–100 d after sowing, for (i) mid-early and (ii) early ripening cultivars.
Colours of the best-fit lines and points indicate the prediction-target site-year. Median NRMSE points at 0 ◦C on the x-axis are calibration
performance metrics for the target site-year while the remaining are prediction performance metrics. Point labels indicate the site-years to
which the model was calibrated. The SPASS model was calibrated to observed phenological development (BBCH).
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Appendix D: Platykurtic prior

An example of a platykurtic probability density function
which is used as a weakly informative prior for the model
parameters is shown in Fig. D1. It is a convolution of a uni-
form and normal distribution. The default, minimum, maxi-
mum, and standard deviation values from Table 2 were used
in Eq. (10) to obtain the prior probability distribution for the
estimated parameters.

Figure D1. An example of the platykurtic probability density function that was used as a prior for the model parameters. The default,
minimum, maximum, and standard deviation values for the parameter are used to define this function.
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