

Supplement of

Changing sub-Arctic tundra vegetation upon permafrost degradation: impact on foliar mineral element cycling

Elisabeth Mauclet et al.

Correspondence to: Elisabeth Mauclet (elisabeth.mauclet@uclouvain.be)

The copyright of individual parts of the supplement might differ from the article licence.

Text S1. Method to correct pXRF measurements using linear regressions between pXRF and ICP OES total element measurements.

For trueness of the total element concentrations measured by pXRF on the total set of foliar samples (n=506), we calibrated

- 5 the pXRF measurements with another accurate analytical method. For 90 foliar and litter samples, we compared the total elemental concentrations (Al, Ca, Fe, K, Mn, P, S, Si, and Zn) measured by pXRF with the concentrations of the same elements measured by ICP-OES (iCAP 6500 ThermoFisher Scientific, Waltham, USA) after sample dissolution by alkaline fusion. For the fusion, a portion of the ground sample was mixed with lithium metaborate and lithium tetraborate and heated up to 1000°C. The fusion bead was dissolved in HNO₃ 2.2 N at 80°C and stirred until complete dissolution (Chao and Sanzolone, 1992). The
- 10 loss on ignition was assessed at 500°C and total element content was expressed in reference to the dry weight at 60°C. Trueness of the analytical measurement by ICP-OES was validated by repeated measurements on the lichen reference material IAEA-336 Lichen (Heller-Zeisler et al., 1999). For the selected mineral elements (Al, Ca, Fe, K, Mn, P, S, Si, and Zn), the linear regressions based on the two analytical methods (pXRF and ICP-OES) presented coefficients of correlation (R²) between the two methods higher than 0.7, except for Fe at 0.6 and S at 0.5 (Figure S1).

15 Figure S1. Linear regressions between pXRF and ICP-OES measurements of mineral element concentration (Al, Ca, Fe, K, Mn, P, S, Si, Zn) from organic matrices (foliar tissues and soil litter).

Figure S2. Evolution over time of cumulative foliar stocks (mg m⁻²) of mineral elements (K, Al, P, S, Fe, and Zn) into five vascular plant species between the four warming treatments at the experimental site (CiPEHR). Vegetation species are sorted by plant functional types; deciduous shrubs and forbs (green), evergreen shrubs (blue), and sedges (yellow). Elemental content of mosses and lichens was not measured. The four treatments (Control, Summer warming, Winter warming and Annual warming) refer to no artificial treatment, air warming, soil warming and both (air and soil) warming, respectively. Letters correspond to a mixed-effects model analysis and compare the total foliar elemental stocks between warming treatments and years. Error bars represent standard deviations.

30

Figure S3. Evolution over time of the cumulative annual foliar fluxes (mg m⁻² a⁻¹) of mineral elements (K, Al, P, S, Fe, and Zn) for the considered species between the four warming treatments at the experimental site (CiPEHR). Vegetation is sorted by plant functional types: deciduous shrubs and forbs (green), and sedges (yellow). The four treatments (Control, Summer warming, Winter warming, and Annual warming) refer to no artificial treatment, air warming, soil warming and both (air and soil) warming, respectively. Letters correspond to a mixed-effects model analysis and compare total foliar elemental fluxes between warming treatments and years. Error bars represent standard deviations.

Figure S4. Cumulative foliar stocks (mg m⁻²) of mineral elements (K, Al, P, S, Fe, and Zn) into typical moist acidic tundra species. The natural thermokarst gradient (Gradient site) displays three stages of permafrost degradation, classified as Minimal, Moderate and Extensive, based on permafrost thaw and subsidence rate. Vegetation species are sorted by plant functional types: deciduous shrubs and forbs (green), evergreen shrubs (blue), sedges (yellow), lichens and mosses (red). Letters correspond to a one-way ANOVA test and compare the total foliar elemental stocks between the three stages of permafrost degradation at Gradient. Error bars represent standard deviations.

Figure S5. Cumulative annual foliar fluxes (mg m⁻² a⁻¹) of mineral elements (K, Al, P, S, Fe, and Zn) from typical moist acidic tundra species. The natural thermokarst gradient (Gradient site) displays three stages of permafrost degradation, classified as Minimal, Moderate and Extensive, based on permafrost thaw and subsidence rate. Vegetation species are sorted by plant functional types: deciduous shrubs and forbs (green), and sedges (yellow). Letters correspond to one-way ANOVA test and compare total foliar elemental fluxes from the three stages of permafrost degradation at Gradient. Error bars represent standard deviations.

55 Table S1. Number of leaf samples used for the pXRF measurements of total element concentrations, at the Carbon in Permafrost Experimental Heating Research (CiPEHR) site in 2009 and 2017, and at the natural thermokarst gradient (Gradient) site in 2019.

			Number of leaf samples								
Site	Year	Species	Control	Summer warming	Winter warming	Annual warming	Total				
CiPEHR	2009	E.vaginatum	12	12	12	12	48				
CiPEHR	2009	B. nana	12	10	11	8	41				
CiPEHR	2009	V. uliginosum	12	12	12	12	48				
CiPEHR	2009	R. chamaemorus	12	12	12	12	48				
CiPEHR	2009	V. vitis-idaea	12	12	12	12	48				
CiPEHR	2017	E.vaginatum	12	12	9	7	40				
CiPEHR	2017	B. nana	8	9	7	8	32				
CiPEHR	2017	V. uliginosum	12	12	11	11	46				
CiPEHR	2017	R. chamaemorus	10	11	12	10	43				
CiPEHR	2017	V. vitis-idaea	12	11	9	11	43				

C:to	Vaar	Spanias	Number of leaf samples							
Sile	rear	species	Minimal	Moderate	Extensive	Total				
Gradient	2019	E.vaginatum	3	3	3	9				
Gradient	2019	C. bigelowii	3	3	3	9				
Gradient	2019	B. nana	3	3	3	9				
Gradient	2019	V. uliginosum	3	3	3	9				
Gradient	2019	R. chamaemorus	3	3	3	9				
Gradient	2019	R. tomentosum	3	3	3	9				
Gradient	2019	V. vitis-idaea	3	3	3	9				
Gradient	2019	Moss	undefined*	undefined*	undefined*	3				
Gradient	2019	Lichen	undefined*	undefined*	undefined*	3				

*Mosses and lichens were randomly sampled at Gradient and do not refer to a specific site. The total number of mosses and

60 lichens corresponds to the three species sampled (for mosses: Sphagnum sp., Dicranum sp., and Brachytecium sp; for lichens: Nephroma sp., Cladonia sp., and Flavocetraria cucullata).

Table S2. Ratios between foliar biomass and aboveground biomass for seven typical vascular plant species from moist acidic tundra (Salmon et al., 2016; Schuur et al., 2007).

Species	Plant functional type	Leave: aboveground ratio in biomass tissue allocation
E. vaginatum	Sedge	0.63
C. bigelowii	Sedge	0.79
B. nana	Dec. shrub	0.34
V. uliginosum	Dec. shrub	0.28
R. chamaemorus	Forb	0.91
R. tomentosum	Evergr. shrub	0.39
V. vitis-idaea	Evergr. shrub	0.66

65 Table S3. Vascular and non-vascular foliar biomasses (means (μ), standard deviations (σ), and relative standard deviation (RDS)) from typical moist acidic tundra species, at Carbon in Permafrost Experimental Heating Research (CiPEHR) site in 2009 and in 2017 (Taylor et al., 2018), and natural thermokarst gradient (Gradient) site in 2017 (Jasinski et al., 2018). Ratios between foliar and aboveground biomasses come from Salmon et al. (2016) and Schuur et al. (2007).

		Species	Plant functional	Foliar biomass (g m ⁻²)											
Site	Year				Control		Summer warming			Winter warming			Annual warming		
	1 cui	species	type	Mean (µ)	SD (o)	RSD (σ/μ)	Mean (µ)	SD (o)	RSD (σ/μ)	Mean (µ)	SD (o)	RSD (σ/μ)	Mean (µ)	SD (o)	RSD (σ/μ)
CiPEHR	2009	E. vaginatum	Sedge	61.83	38.09	62%	75.7 9	76.07	100%	57.04	44.11	77%	47.28	45.38	96%
CiPEHR	2009	C. bigelowii	Sedge	5.54	4.39	79%	8.43	6.48	77%	9.30	6.56	71%	9.93	5.81	59%
CiPEHR	2009	Betula nana	Dec. shrub	4.51	4.86	108%	3.85	5.52	143%	6.21	7.77	125%	5.98	8.91	149%
CiPEHR	2009	V. uliginosum	Dec. shrub	15.31	4.14	27%	18.32	8.87	48%	14.28	5.78	41%	11.66	4.88	42%
CiPEHR	2009	R. chamaemorus	Forb	14.36	5.96	42%	12.54	4.87	39%	13.55	2.66	20%	10.13	6.60	65%
CiPEHR	2009	R. tomentosum	Evergr. shrub	26.06	13.96	54%	26.65	13.07	49%	31.78	14.02	44%	27.59	9.82	36%
CiPEHR	2009	V. vitis-idaea	Evergr. shrub	16.62	13.11	79%	18.96	11.35	60%	13.17	5.58	42%	21.36	15.70	74%
CiPEHR	2009	Mosses	Moss	44.55	16.63	37%	45.86	19.93	43%	41.03	13.37	33%	47.24	20.73	44%
CiPEHR	2009	Lichens	Lichen	39.81	30.93	78%	33.08	24.97	75%	42.06	23.80	57%	34.84	38.00	109%
CiPEHR	2009	Tot	al	228.61			243.48			228.42			216.02		

		Species	Plant functional type	Foliar biomass (g m ⁻²)											
Site	Voor				Control		Sun	nmer warn	ning	Winter warming			Annual warming		
Sile	rou			Mean	SD (a)	RSD	Mean	SD (g)	RSD	Mean	SD (σ)	RSD	Mean	SD (a)	RSD
			-11-	(μ)	02 (0)	(σ/μ)	(μ)	010 (0)	(σ/μ)	(μ)	010 (0)	(σ/μ)	(μ)	0.0 (0)	(σ/μ)
CiPEHR	2017	E. vaginatum	Sedge	149.14	84.64	57%	130.52	110.26	84%	161.35	98.55	61%	161.48	123.87	77%
CiPEHR	2017	C. bigelowii	Sedge	2.40	1.64	68%	2.84	3.15	111%	8.87	11.52	130%	4.06	1.69	42%
CiPEHR	2017	Betula nana	Dec. shrub	3.46	4.29	124%	4.02	6.26	156%	4.80	5.61	117%	6.03	8.78	146%
CiPEHR	2017	V. uliginosum	Dec. shrub	13.39	4.31	32%	14.61	4.70	32%	14.11	6.83	48%	13.88	9.97	72%
CiPEHR	2017	R. chamaemorus	Forb	15.16	9.93	65%	16.44	6.99	43%	14.65	8.25	56%	19.11	8.63	45%
CiPEHR	2017	R. tomentosum	Evergr. shrub	33.68	17.12	51%	31.97	14.84	46%	35.94	17.21	48%	33.53	17.91	53%
CiPEHR	2017	V. vitis-idaea	Evergr. shrub	11.26	3.87	34%	12.79	9.45	74%	3.97	5.26	132%	8.13	3.72	46%
CiPEHR	2017	Mosses	Moss	29.52	20.61	70%	23.29	25.60	110%	15.98	16.67	104%	32.41	50.78	157%
CiPEHR	2017	Lichens	Lichen	36.56	40.40	111%	21.32	30.27	142%	7.60	10.74	141%	12.20	28.60	235%
CiPEHR	2017	Tota	Total				257.81			267.28			290.81		

Cito -		Year Species	Plant functional type	Foliar biomass (g m ⁻²)										
Site	Year				Minimal			Moderate		Extensive				
				$Mean\left(\mu \right)$	$SD\left(\sigma\right)$	RSD (σ/μ)	$Mean\left(\mu \right)$	$SD\left(\sigma\right)$	RSD (σ/μ)	$Mean\left(\mu \right)$	SD (o)	RSD (σ/μ)		
Gradient	2017	E. vaginatum	Sedge	61.69	30.16	49%	89.23	33.32	37%	33.74	52.34	155%		
Gradient	2017	C. bigelowii	Sedge	8.24	3.09	37%	5.16	2.67	52%	5.95	3.12	52%		
Gradient	2017	Betula nana	Dec. shrub	14.77	15.01	102%	5.04	5.89	117%	4.25	5.06	119%		
Gradient	2017	V. uliginosum	Dec. shrub	14.13	3.34	24%	11.07	4.69	42%	24.47	20.80	85%		
Gradient	2017	R. chamaemorus	Forb	14.25	4.60	32%	19.51	3.26	17%	24.60	14.64	60%		
Gradient	2017	R. tomentosum	Evergr. shrub	28.24	12.56	44%	35.42	14.22	40%	43.34	15.45	36%		
Gradient	2017	V. vitis-idaea	Evergr. shrub	6.18	5.53	89%	8.51	5.14	60%	13.98	10.91	78%		
Gradient	2017	Mosses	Moss	108.77	125.10	115%	20.89	19.54	94%	61.30	48.71	79%		
Gradient	2017	Lichens	Lichen	20.96	16.91	81%	18.65	21.08	113%	32.67	38.63	118%		
Gradient	2017	Total		277.23			213.49			244.29				

 Table S4. Foliar net primary productivity (NPP) adapted from Schuur et al. (2007), at Carbon in Permafrost Experimental Heating Research (CiPEHR) in 2009 and in 2017, and at the natural thermokarst gradient (Gradient site) in 2017. Figure 1: The logo of Copernicus Publications.

Site		Plant functional type	2	009 Foliar N	PP (g m ⁻² a ⁻	¹)	2017 Foliar NPP (g m ⁻² a ⁻¹)				
	Species		Control	Summer	Winter	Annual	Control	Summer	Winter	Annual	
			Control	warming	warming	warming	Control	warming	warming	warming	
CiPEHR	E. vaginatum	Sedge	57.74	70.77	53.27	44.15	139.26	121.88	150.67	150.79	
CiPEHR	C. bigelowii	Sedge	6.63	10.08	11.12	11.87	2.87	3.40	10.61	4.85	
CiPEHR	Betula nana	Dec. shrub	2.87	2.45	3.95	3.81	2.20	2.56	3.05	3.83	
CiPEHR	V. uliginosum	Dec. shrub	15.98	19.11	14.90	12.17	13.97	15.25	14.72	14.48	
CiPEHR	R. chamaemorus	Forb	12.08	10.54	11.40	8.52	12.75	13.82	12.32	16.07	

		Plant	2017 Foliar NPP (g m ⁻² a ⁻¹)						
Site	Species	functional	Minimal Thaw	Moderate	Extensive				
		type		Thaw	Thaw				
Gradient	E. vaginatum	Sedge	57.61	83.32	31.50				
Gradient	C. bigelowii	Sedge	9.86	6.17	7.12				
Gradient	Betula nana	Dec. shrub	9.39	3.20	2.70				
Gradient	V. uliginosum	Dec. shrub	14.74	11.55	25.53				
Gradient	R. chamaemorus	Forb	11.99	16.41	20.69				

75 Table S5. Results of mixed-effects model (*lme4* package in R 4.0.2; R Core Team, 2020) on foliar mineral element stocks and maximum potential litterfall fluxes at CiPEHR. The models considered: (i) plot-level foliar stocks and fluxes as the dependent variable; (ii) treatments (summer, winter, and annual warming) and time as covariates; and (iii) interactions between treatments and time to evaluate whether mineral element foliar stocks and fluxes differed in each experimental treatment.

			Foliar stock	s at CiPEHR					Foliar fluxe	s at CiPEHR		
Mineral element	А	l§	C	a	Fe	e [§]	А	l [§]	C	a	Fe	\$ §
	Estimate	p-value	Estimate	p-value	Estimate	p-value	Estimate	p-value	Estimate	p-value	Estimate	p-value
Intercept (Control)	4.95	***	395.23	***	2.35	***	4.12	***	276.00	***	2.08	***
Winter	0.03		-50.75		-0.12		0.07		-21.16		-0.03	
Summer	0.13		-10.49		-0.05		0.05		10.53		0.16	*
Year2017	1.50	***	61.55		0.75	***	2.33	***	104.25	***	0.99	***
Annual	-0.19		-64.52		-0.13		-0.19		-65.17	**	-0.29	**
Winter:Year2017	0.54		0.95		0.39		0.09		20.28		0.25	*
Summer*Year2017	-0.44		-14.48		-0.26		-0.17		5.52		-0.22	*
Annual*Year2017	0.24		264.21	*	0.45		0.09		83.74	*	0.23	
Mineral element		к	м	n ^s	Р	9		к	N	In	Р	9
	Estimate	p-value	Estimate	p-value	Estimate	p-value	Estimate	p-value	Estimate	p-value	Estimate	p-value
Intercept (Control)	852.17	***	4.86	***	5.10	***	678.20	***	70.07	***	4.96	***
Winter	-40.36		-0.15		-0.06		25.45		0.23		0.06	
Summer	-28.33		0.07		-0.27		88.87	*	14.43	**	0.12	
Year2017	743.76	**	0.11		0.96	***	623.55	***	38.54	***	1.12	***
Annual	-114.18		-0.23		0.09		-205.60	***	-24.04	**	-0.18	
Winter:Year2017	582.14		0.19		0.49		299.80	*	14.12		0.14	
Summer*Year2017	-329.54		-0.04		-0.19		-284.88	**	-9.90		-0.26	
Annual*Year2017	548.39		0.43		0.12		480.90	**	17.60		0.16	
A dia analala mant		<u> </u>	-	- §	7			_ 8		. §	7	
wineral element	Ectimato		5 Ectimato	n valuo	Ectimato		Ectimato	n valuo	S Ectimato	n valuo	Ectimato	
Intercent (Control)	68.92	***	6.22	***	6 17	***	4.01	***	5 72	***	/ 78	***
Winter	-1.34		0.22		-0.69		4.01		0.13		-0.15	
Summer	2 12		0.00		-0.05		0.02	**	0.15		-0.15	
Vogr2017	5.12	***	1.25	***	2 17	**	0.17	***	1.77	***	2 91	***
Appual	15 20		0.02		0.56		0.77	***	0.11		2.81	*
Mintor:Voor2017	-15.50		-0.05		-0.50		-0.55		-0.11		-1.39	-
Summar*Vaar2017	16 11		0.45		-0.52		0.12	*	0.05		0.79	
Appual*Voar2017	-10.11		-0.59		-0.55		-0.20	*	-0.22		0.22	
Annual" Year2017	67.23		0.27		4.65		0.40		0.13		1.40	

80 Notes: The p-value asterisks indicate level of significance: p < 0.05 (*), p < 0.01(**), p < 0.001 (***), and not significant (blank). Some mineral element foliar stocks were log-transformed (§) to achieve homogeneity of variance.