
Biogeosciences, 19, 241–269, 2022
https://doi.org/10.5194/bg-19-241-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

An empirical MLR for estimating surface layer DIC and a
comparative assessment to other gap-filling techniques for
ocean carbon time series
Jesse M. Vance1, Kim Currie2, John Zeldis3, Peter W. Dillingham4, and Cliff S. Law1,5

1Department of Marine Science, University of Otago, Dunedin, 9016, New Zealand
2National Institute of Water and Atmospheric Research – University of Otago Research Centre for Oceanography,
Dunedin, 9016, New Zealand
3National Institute of Water and Atmospheric Research, Christchurch, 8011, New Zealand
4Coastal People: Southern Skies Centre of Research Excellence, Department of Mathematics and Statistics,
University of Otago, Dunedin, 9016, New Zealand
5National Institute of Water and Atmospheric Research, Wellington, 6021, New Zealand

Correspondence: Jesse M. Vance (jesse.vance@icloud.com)

Received: 27 March 2021 – Discussion started: 1 April 2021
Revised: 26 October 2021 – Accepted: 1 November 2021 – Published: 17 January 2022

Abstract. Regularized time series of ocean carbon data are
necessary for assessing seasonal dynamics, annual budgets,
and interannual and climatic variability. There are, how-
ever, no standardized methods for filling data gaps and lim-
ited evaluation of the impacts on uncertainty in the recon-
structed time series when using various imputation methods.
Here we present an empirical multivariate linear regression
(MLR) model to estimate the concentration of dissolved in-
organic carbon (DIC) in the surface ocean, that can utilize
remotely sensed and modeled data to fill data gaps. This
MLR was evaluated against seven other imputation models
using data from seven long-term monitoring sites in a com-
parative assessment of gap-filling performance and result-
ing impacts on variability in the reconstructed time series.
Methods evaluated included three empirical models – MLR,
mean imputation, and multiple imputation by chained equa-
tion (MICE) – and five statistical models – linear, spline, and
Stineman interpolation; exponential weighted moving aver-
age; and Kalman filtering with a state space model. Cross
validation was used to determine model error and bias, while
a bootstrapping approach was employed to determine sensi-
tivity to varying data gap lengths. A series of synthetic gap
filters, including 3-month seasonal gaps (spring, summer, au-
tumn winter), 6-month gaps (centered on summer and win-
ter), and bimonthly (every 2 months) and seasonal (four sam-
ples per year) sampling regimes, were applied to each time

series to evaluate the impacts of timing and duration of data
gaps on seasonal structure, annual means, interannual vari-
ability, and long-term trends. All models were fit to time se-
ries of monthly mean DIC, with MLR and MICE models also
applied to both measured and modeled temperature and salin-
ity with remotely sensed chlorophyll. Our MLR estimated
DIC with a mean error of 8.8 µmol kg−1 among five oceanic
sites and 20.0 µmol kg−1 for two coastal sites. The MLR per-
formance indicated reanalysis data, such as GLORYS, can
be utilized in the absence of field measurements without in-
creasing error in DIC estimates. Of the methods evaluated in
this study, empirical models did better than statistical mod-
els in retaining observed seasonal structure but led to greater
bias in annual means, interannual variability, and trends com-
pared to statistical models. Our MLR proved to be a robust
option for imputing data gaps over varied durations and may
be trained with either in situ or modeled data depending on
application. This study indicates that the number and distri-
bution of data gaps are important factors in selecting a model
that optimizes uncertainty while minimizing bias and subse-
quently enables robust strategies for observational sampling.
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1 Introduction

Despite continued policy development aimed at combating
climate change and declines in carbon dioxide (CO2) emis-
sions by many countries over the last 10–15 years, global
fossil fuel consumption continues to rise (Friedlingstein et
al., 2020). We are now in unchartered territory, with anthro-
pogenic carbon emissions over the last two and half centuries
eclipsing that in the geological record of the past 66 million
years, leaving the future of our marine and terrestrial ecosys-
tems uncertain (Zeebe et al., 2016). Our ability to predict fu-
ture conditions, affect policy, and effectively manage climate
change relies on understanding the feedbacks between cli-
mate, ecosystems, and biogeochemical cycles. To that end,
the value of sustained time-series observations has been well
recognized for decades, as they are essential to characterizing
processes, quantifying natural variability, identifying regime
shifts, and detecting long-term changes in our environment
(Ducklow et al., 2009). Monitoring ocean carbon over the
last three decades has revealed the decline in ocean pH con-
current with the uptake of 25 % of anthropogenic CO2 by
the global ocean (Friedlingstein et al., 2020). Quantification
of the ocean carbon sink and the impacts of ocean acidifi-
cation remain actively researched given the significance of
the ocean’s role in controlling climate feedbacks as well as
the ecological and economical importance of our marine sys-
tems (Kroeker et al., 2013; Devries et al., 2019; Krissansen-
Totton et al., 2018; Bernardello et al., 2014). Ocean car-
bon programs have led to a growth in surface pCO2 data
from 250 000 global measurements in 1997 to 13.5 million
in 2019; however, continuity and coverage of this inorganic
carbon data in space and time remains a challenge for under-
standing seasonal and interannual variability (Takahashi and
Sutherland, 2019; Takahashi et al., 1997).

1.1 Filling the gaps

Consistent sampling intervals for physical and biogeochem-
ical parameters over several decades are critical for under-
standing ocean processes, establishing variability, and de-
tecting long-term changes (Henson et al., 2016). In addition
to constraints arising from limitations in technology, logis-
tics, and funding, ocean science takes place in a particularly
harsh environment where data loss is a common occurrence.
Whether from equipment failure, canceled field campaigns,
budget cuts, or a global pandemic, gaps in time series are
ubiquitous and must be appropriately filled in order to carry
out various statistical analyses and modeling applications
which require serially complete data sets.

Machine learning techniques such as neural network meth-
ods, regression trees, and random forests have been widely
used to fill gaps in meteorological and some oceanographic
data, including surface ocean pCO2 (Laruelle et al., 2017;
Sasse et al., 2013; Coutinho et al., 2018). While these meth-
ods are successful in the context of geospatial data, there

remains little standardization in methods for imputing data
gaps in oceanographic time series, particularly carbonate
chemistry, at monitoring sites where there are not sufficiently
close neighboring values (in time or space) that can be lever-
aged. Linear interpolation and mean imputation are among
the most common methods for handling missing data over
short to moderate timescales (Reimer et al., 2017; Kapsen-
berg and Hofmann, 2016; Currie et al., 2011), but compara-
tive assessment and validation of approaches overall is lack-
ing. Gap-filling studies and standardization have been pur-
sued in other terrestrial and atmospheric disciplines, such as
eddy covariance carbon flux, solar radiation, air temperature,
surface hydrology, and soil respiration (Moffat et al., 2007;
Demirhan and Renwick, 2018; Zhao et al., 2020; Henn et al.,
2013; Pappas et al., 2014), many of which focused on high-
temporal-resolution data and imputing missing values over
timescales from seconds to days. However it is important that
the imputation method not only focuses on minimizing error
but also minimizing bias, as the preservation of variance and
trends is imperative for accurate analyses and understanding
of climate (Serrano-Notivoli et al., 2019).

Here we present an empirical multiple linear regression
(MLR) model for estimating site-specific DIC concentration
in the surface ocean using remotely sensed data products to
fill gaps in field measurement records. We compare this MLR
approach to other commonly used and computationally inex-
pensive methods, including two empirical and five statistical
methods. Using established carbonate time series from var-
ied ecosystem types, we evaluate the sensitivity, error, and
bias of these select methods and investigate the impacts of
gap filling on seasonal and interannual variability and long-
term trends. Although the focus here is on DIC time series,
the principles of this study should extend to other carbonate
parameters.

2 Materials and methods

2.1 Field data

We used data from the Bermuda Atlantic Time-series Study
(BATS) (adapted from Bates et al., 2012), Carbon Retention
In A Colored Ocean (CARIACO) (Astor et al., 2005, 2013),
Firth of Thames (FOT) (adapted from Law et al., 2020),
Hawaiian Ocean Time-series (HOT) (adapted from Dore et
al., 2009), Kuroshio Extension Observatory (KEO) (Sutton,
2012a; Fassbender et al., 2017), Munida Time Series (Mu-
nida) (adapted from Currie et al., 2011), and Ocean Site Papa
(Papa) (Sutton, 2012b; Fassbender et al., 2016). These time
series present data describing significant ecological and envi-
ronmental variability from different ocean basins and coastal
regions (Fig. 1), which have been characterized in other stud-
ies (Bates et al., 2014; Fassbender et al., 2016, 2017; Zeldis
and Swaney, 2018). Additionally, these time series have suffi-
cient sampling frequencies and length of record to assess the
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Table 1. Information about each sampling site with ocean carbonate time series used in our analyses, including Bermuda Atlantic Time-
series Study (BATS), Carbon Retention In A Colored Ocean (CARIACO), Firth of Thames (FOT), Hawaiian Ocean Time-series (HOT),
Kuroshio Extension Observatory (KEO), Munida Time Series (Munida), and Ocean Site Papa (Papa). DIC: dissolved inorganic carbon. TA:
total alkalinity. pCO2: partial pressure of carbon dioxide. pH=−log[H+]. Gap rate based on expected sampling frequency.

Site type Time series Sampling region Location Time series Sampling Gap Carbonate
site duration frequency rate measurements

Sampling site BATS Sargasso Sea 31.88◦ N,
64.26◦W

1983–present monthly 1 4 % DIC/TA

HOT North Pacific 22.67◦ N,
158◦W

1988–present monthly 2 15 % TA/pH

CARIACO Cariaco Basin 10.5◦ N,
64.67◦W

1995–present monthly 16 % TA/pH

Munida South Pacific 45.8◦ S,
171.5◦ E

1998–present bimonthly 3 5 % pCO2/TA

Mooring FOT New Zealand Coast 36.88◦ S,
175.32◦ E

2015–present 15 min 4 59 % pH

KEO North Pacific 32.25◦ N,
144.56◦ E

2004–present 3 h 26 % pH/pCO2

Papa North Pacific 50.13◦ N,
144.83◦W

2007–present 3 h 18 % pH/pCO2

Web addresses for site information and data access: BATS, http://www.bios.edu/research/projects/bats/ (last access: 10 October 2021); HOT,
https://hahana.soest.hawaii.edu/hot/ (last access: 10 October 2021); CARIACO, http://www.imars.usf.edu/cariaco (last access: 10 October 2021); Munida,
https://marinedata.niwa.co.nz/nzoa-on/ (last access: 10 October 2021); Papa, https://www.pmel.noaa.gov/ocs/Papa (last access: 10 October 2021); KEO,
https://www.pmel.noaa.gov/ocs/KEO (last access: 10 October 2021); FOT, https://marinedata.niwa.co.nz/nzoa-on/ (last access: 10 October 2021). 1 BATS sampling
target is at least monthly. 2 HOT sampling target is approximately monthly. 3 Munida sampling is typically bimonthly, varying with conditions and additional
coordinated voyages. 4 Sampling began in 1998; mooring installed in 2015.

monthly mean climatological conditions and seasonal cycle,
so to allow inclusion of empirical imputation methods in this
comparative assessment. Table 1 lists the site details includ-
ing the carbonate parameters measured, the duration of the
time series, and the gap rate based on the expected sampling
frequency for each of the seven sites.

All mixed layer temperature, salinity, and dissolved inor-
ganic carbon (DIC) data were averaged to monthly means
for each time-series site. For non-moored sampling sites with
bottle sampling (BATS, CARIACO, HOT, Munida), monthly
values were treated as the monthly mean condition. For each
site the mixed layer depth was determined according to the
temperature profile and a threshold of 1T > 0.2 ◦C relative
to 10 m depth (De Boyer Montégut, 2004). For sites that
did not measure DIC directly (Papa, KEO, FOT), the mea-
sured carbonate parameters were used with in situ tempera-
ture and salinity to calculate the DIC concentration and the
uncertainty of calculation using the functions carb and er-
rors, respectively, within the R package seacarb (Gattuso et
al., 2012; Orr et al., 2018), with K1 and K2 from Lueker
(2000), Kf from Dickson (1979), and Ks from Dickson et
al. (1990), on the appropriate pH scale, where used, in R ver-
sion 3.5.2 (R Core Team, 2020). DIC at Papa and KEO was
calculated from measured pCO2 and estimated total alkalin-
ity (TA) based on the salinity–alkalinity relationships deter-

mined by Fassbender et al. (2016, 2017) respectively. DIC at
FOT was calculated from measured pH (SeaFET) and esti-
mated TA based on the salinity–alkalinity relationship at that
site (see Supplement for more detail).

2.2 Remotely sensed and modeled data products

Monthly composites of satellite-derived surface ocean
chlorophyll (O’Reilly et al., 1998) from MODIS data (Si-
mons, 2020a) were paired with field data from each site ex-
cept FOT. The mean surface chlorophyll was taken from a
∼ 20 km2 cell surrounding each of these sampling locations.
For FOT, surface chlorophyll was estimated from monthly
composite of VIIRS data (Simons, 2020b), with the mean
from a ∼ 4 km2 cell surrounding the mooring used in this
case given the greater spatial heterogeneity in this semi-
closed coastal system. VIIRS also showed greater daily cov-
erage of the FOT mooring location compared to MODIS, in-
dicating a better representation of the monthly mean condi-
tion (see Supplement).

Modeled monthly mean temperature and salinity profiles
for each site were extracted from the GLORYS12V1 Global
Ocean Physical Reanalysis Product (Global Monitoring and
Forecasting Center, 2018; Fernandez and Lellouche, 2021;
Drévillon, 2021). Temperature and salinity were averaged
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Figure 1. Location map of seven ocean carbon time-series sites
utilized for estimating DIC using an empirical multiple linear re-
gression model and other empirical and statistical approaches for
imputing carbonate time series, including Bermuda Atlantic Time-
series Study (BATS), Carbon Retention In A Colored Ocean (CARI-
ACO), Firth of Thames (FOT), Hawaiian Ocean Time-series (HOT),
Kuroshio Extension Observatory (KEO), Munida Time Series (Mu-
nida), and Ocean Site Papa (Papa). See Table 1 for additional infor-
mation about each sampling site.

for the mixed layer depth in a ∼ 20 km2 cell surrounding
each sampling location. GLORYS temperature and salinity
were used only with empirical models where observations
were either not available or synthetically removed for testing
purposes. GLORYS temperature and salinity values were re-
gressed against synchronized observations to quantify errors
for each site (see Supplement).

2.3 Estimation of DIC with MLR

DIC, pCO2, and other carbonate parameters have been suc-
cessfully estimated in a variety of marine systems using mul-
tiple linear regression (MLR) approaches (Bostock et al.,
2013; Velo et al., 2013; Hales et al., 2012; Lohrenz et al.,
2018). In addition, empirical estimates of pCO2 using re-
motely sensed chlorophyll and sea surface temperature (SST)
have proven useful for investigating seasonal and interannual
dynamics across spatial gradients, particularly in coastal sys-
tems where sustained observations may be limited (Hales et
al., 2012; Lohrenz et al., 2018). We investigated using an
MLR model to estimate DIC from remotely sensed chloro-
phyll, SST, and salinity in order to fill gaps in the seven
monthly time-series data sets. Parametric correlation matri-
ces of DIC with remote chlorophyll, in situ SST, and salinity
showed significant linear correlation (Table 2), across most
sites, with temperature having the strongest and most consis-
tent correlation with DIC.

Table 2. Pearson correlation coefficients between DIC and chloro-
phyll, temperature, and salinity in the surface layer across test sites.

Site Pearson correlation coefficient

Chlorophyll Temperature Salinity

KEO 0.49 −0.91 0.87
BATS 0.48 −0.73 0.65
Papa −0.34 −0.97 0.73
FOT −0.22∗ 0.24∗ 0.74
HOT 0.1∗ −0.51 0.74
CARIACO 0.53 −0.77 0.58
Munida −0.37 −0.87 0.32

Asterisks (∗) indicate weak correlations (threshold= 0.3).

DIC at time t can be estimated using MLR relationships
described in the form of Eq. (1).

E(DICt )= α+β1Chlt +β2Tt +β3St , (1)

where DIC has units of micromoles per kilogram
(µmol kg−1), Chl has units of milligrams per cubic meter
(mg m−3), T has units of degrees Celsius (◦C), S has practi-
cal salinity units (psu), and the coefficients α and β1 through
β3 are the regression coefficients fit using a generalized lin-
ear model with a Gaussian error distribution and link func-
tion. The sensitivity to each predictor variable was assessed
by selectively omitting chlorophyll, temperature, and salinity
from the model fit.

The MLR model was also fit using GLORYS temperature
and salinity data for each site to investigate its use for imput-
ing gaps in observations, assuming no in situ measurements
are available.

2.4 Imputation of DIC time series

Six general methods were compared for imputing DIC time
series: classical, interpolation, Kalman filtering, weighted
moving average (WMA), and regression and multiple impu-
tation by chained equations (MICE). To apply the six meth-
ods, it must be assumed that the gaps in the time series are
data “missing at random”, i.e., not missing systematically
(Little, 2002). Given this assumption, these methods can be
used to handle data gaps with limited biasing. This is suit-
able in our study where synthetic gaps are created using ran-
dom number generators. However, this may not always be
appropriate such as when data gaps are the result of system-
atic field site issues such as seasonal sea ice cover, season-
specific sampling regimes, or seasonal biofouling.

The primary goal was imputing time series at monthly res-
olution to investigate variability and trends over seasonal, in-
terannual, and decadal timescales. Therefore, random sam-
pling and persistence methods were not considered as these
methods can lead to distortion of seasonal structure in the
time series. Within the six methods chosen, eight mod-
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els were evaluated. These imputation models vary in com-
plexity and flexibility and represent a range that has been
widely applied to time-series data, with six of the eight mod-
els utilizing formalized packages (Demirhan and Renwick,
2018; Moritz, 2017). These methods limit overfitting and can
be implemented with relative ease and low computational
cost. Artificial data gaps were created as described below
(Sect. 2.5) for the time series from each site in order to as-
sess the performance of each method. In addition to the MLR
model described by Eq. (1), alternate models are described
next.

The classical (and simplest) method applied was mean im-
putation, where missing values were replaced by the monthly
climatological average. The climatological mean was taken
as the monthly averaged means across the duration of the
time series, which was over 1–2 decades in most cases. Lin-
ear interpolation was used to estimate missing values by
drawing a straight line between existing values in the time
series and using the slope of each of these segments to de-
termine the value of DIC at a time point(s) between known
values. Spline interpolation utilized piecewise cubic polyno-
mials to fit a curve with knots at ξK,K = 1,2. . .k, to the data,
providing more flexibility with the ability to interpolate be-
tween each point of the training data. Stineman interpolation
was developed to provide the flexibility of polynomials while
reducing unrealistic estimations during abrupt changes in
slope within the time series (Stineman, 1980) (see Demirhan
and Renwick, 2018, for algorithm details). Kalman filtering
was implemented using a structural model. In this case a
linear Gaussian state space model was fit to the univariate
time series by maximum likelihood based on decomposition
(Demirhan and Renwick, 2018). A single weighted moving
average model was evaluated. Missing values were replaced
by the weighted average of observations in the averaging
window with size k =±2, and weighting was exponential
such that the exponent increases linearly to the ends of the
window, here 1

4 ,
1
2 . . .

1
2 ,

1
4 .

Multiple imputation by chained equations (MICE), also
known as fully conditional specification (FCS) and sequen-
tial regression multivariate imputation, was applied to time-
series data with artificial gaps and fit using the mice li-
brary (Van Buuren, 2011) in R version 3.5.2 (R Core Team,
2020), with function call mice(data= timeseries$data, m
= 5, method=“pmm”, maxit= 20), where m is the number
of multiple imputations, method is predictive mean match-
ing, and maxit is the maximum number of iterations. This
method progresses through the following steps: (1) missing
values are filled by random sampling from the observations
for a given variable; (2) the first variable with missing values
is regressed against all other variables, while using only those
with observed values; (3) moving iteratively, the remaining
variables are regressed against the others but now including
imputed values fitted by the regression models (White et al.,
2011). This process is repeated according to the set iterations,
in this case 20, to allow stabilization and convergence of the

results. Regression models used in MICE allow for both lin-
ear and nonlinear relationships across variables, making this
method very flexible.

2.5 Model performance and comparison

Each imputation model was evaluated using two schemes
that assessed model performance and sampling sensitivity.

2.5.1 Cross validation

Leave-one-out cross validation (LOOCV) was chosen to as-
sess the predictive error of the MLR model as well as the
standard error for each imputation method. In this approach
a single observation (DICt=1) is held out for validation while
the remaining observations (DICt=2. . .DICt=n) are used for
training the model. This process is repeated n− 1 times, al-
lowing each data point in the time series to be treated as both
training data and testing data, thus maximizing the efficiency
when the data sets are of modest sampling size. Predicted
DIC values and model parameters determined in each itera-
tion were collated for the time series, and performance statis-
tics were evaluated on the total output.

2.5.2 Bootstrap sampling sensitivity

A bootstrapping approach was used to evaluate the sensitivity
of the imputation models to the amount of data gaps in each
time series. For each year of input data in the time series, arti-
ficial gaps were created by random removal of 1 : 8 monthly
samples resulting in data gaps of 8.33 %, 16.67 %, 25.00 %,
33.33 %, 41.67 %, 50.00 %, and 66.67 %. Random sampling
was replicated 1000 times for each gap amount to ensure that
an even distribution of sampling combinations was evaluated
to assess the impacts of degree of data gaps on imputation
error. Only years with 12 monthly samples were used to eval-
uate the sampling sensitivity in order to ensure consistency.
It should be noted that most data sets used in this study do
not have monthly mean data available for all years. Table 3
shows which years of data were used from each site and the
distribution of years across sites.

2.5.3 Statistical performance metrics

The performance of each model was evaluated by comparing
the predicted DIC values to the observed DIC measurements.
The performance metrics included the coefficient of (multi-
ple) determination (R2) for indicating correlation; the root
mean square error (RMSE), the relative root mean square er-
ror (RRMSE), and the mean absolute error (MAE) for estab-
lishing the distribution of individual errors; and the bias error
(BIAS) for indicating bias induced on annual sums. Percent
error (PE) and mean absolute percent error (MAPE) were
used to evaluate particular metrics for assessing impacts of
imputation on seasonal structure and long-term trends. Per-
formance metrics were calculated according to Eqs. (2)–(8),
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Table 3. Years with 12 monthly samples per site.

Time-series site Years with 12 monthly samples N years

BATS 1998, 1999, 2000, 2001, 2004, 2005, 2007, 2008, 2012, 2013 10
HOT 1998, 2004, 2006 3
CARIACO 2008 1
Munida NA∗ 0
Papa 2015, 2016, 2017 3
KEO 2009, 2010, 2014, 2015, 2016 5
FOT 2016 1

∗ Actual sampling interval greater than monthly. NA: not available.

where oi and pi denote the individual observed and predicted
values respectively.

R2
=

{∑
(pi− p)(oi− o)

}2∑
(pi− p)2

∑
(oi− o)2

(2)

RMSE=

√
1
N

∑
(pi− oi)

2 (3)

RRMSE=

√∑
(pi− oi)

2∑
(oi)2

(4)

MAE=
1
N

∑
|pi− oi| (5)

BIAS=
1
N

∑
(pi− oi) (6)

PE=
∣∣∣∣pi− oi

oi

∣∣∣∣ · 100% (7)

MAPE=
100
N

∑∣∣∣∣pi− oi

oi

∣∣∣∣ (8)

2.6 Imputation effects on seasonal structure,
interannual variability, and long-term trends

To evaluate the impacts of imputation errors on seasonal
structure, interannual variability, and long-term trends, we
compared the observed and imputed time series using eight
synthetic gap schemes. Firstly, spring, summer, autumn, and
winter seasonal gaps were evaluated by selectively removing
3-month windows from the DIC time series. Two longer 6-
month sequential gaps scenarios were also used, one centered
on winter and the other on summer. Lastly, two economical
sampling schemes were evaluated, bimonthly (odd months
only) and seasonal, in which only January, April, July, and
October were retained.

To evaluate the impacts on seasonal cycles and long-term
trends, DIC was first normalized to the mean salinity (S0) at
each site per Eq. (9).

nDICt =
S0

St
·DICt (9)

The eight imputation methods were applied to each of these
eight synthetic gap schemes for the full time series of nDIC

at BATS, CARIACO, HOT, KEO, Munida, and Papa. Trends
in the observed and imputed data were determined by least
squares linear regression of the seasonally detrended time se-
ries, where the seasonal signal in each time series was re-
moved according to Eq. (10), following the methods in Taka-
hashi et al. (2009).

nDICt, deseasoned = nDICt −
{
nDICt − nDIC

}
, (10)

where nDICt is the climatological monthly mean and nDIC
is the climatological mean. FOT was not included in the eval-
uation because the time series of measured pH at this site is
limited to 2015. To test the realistic application of the MLR
and MICE models, it was assumed that measurement gaps
resulted in missing observations of temperature and salinity
along with DIC. While this may not always be the case, this
allowed us to test using these empirical models to estimate
DIC using a combination of remotely sensed chlorophyll data
and modeled temperature and salinity in cases where all mea-
surements are unavailable due to operational or logistical is-
sues.

The PE of the time-regressed trends in nDIC was evalu-
ated for each imputed time series compared to the observed
trend in the data sets from each site. The mean seasonal cy-
cle was evaluated as the monthly averages of the observed
and imputed time series. Seasonal maximum and minimum
concentrations of nDIC and their associated timing (which
month) were compared. The seasonal amplitude, which was
taken as the difference between maxima and minima of the
climatological monthly means, and the interannual variabil-
ity, which was taken as the standard deviation of the monthly
means, were also compared. Seasonal errors were combined
according to Eq. (11) for the purpose of comparing the over-
all impacts of each imputation method on seasonal structure.

PE(seasonal)

=

√
PE2

amplitude+PE2
max+PE2

min+PE2
max timing+PE2

min timing (11)
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2.7 Uncertainty budget

The sources of uncertainty accounted for here include mea-
surement uncertainty, natural variability, and the effect of
monthly averaging, the effect of salinity normalization, and
the uncertainty associated with gap filling. While individ-
ual measurement uncertainties may vary, measurement un-
certainties across all sites in this study were treated as the fol-
lowing: salinity, 0.005 psu; temperature, 0.002 ◦C; pH, 0.05
units; pCO2, 3 µatm; TA, 3 µmol kg−1; DIC, 3 µmol kg−1.
These values were based upon reported uncertainties for
in situ temperature, salinity and pH (Sea-Bird Electronics,
2020, 2021), and pCO2 (Jiang et al., 2008; Willcox et al.,
2009; Johengen et al., 2009), as well as lab-based measure-
ments of DIC and TA (Riebesell, 2011). Additional sources
of uncertainty include (1) estimation of monthly means,
(2) estimation of TA from salinity (sALK), (3) calculation
of DIC from sALK/pCO2, (4) calculation of DIC from
sALK/pH, and (5) salinity normalization of DIC (nDIC). Un-
certainty associated with the calculation of DIC from other
carbonate measurements combinations (e.g., sALK/pCO2)

was determined using the R package seacarb as described
above. Uncertainty in TA estimated by salinity was taken as
the 1.96×RMSE of the S–TA regression and propagated into
DIC where needed.

Since the moored data here are averaged to monthly means
for comparison with other observational time series, the un-
certainty associated with this averaging must be accounted
for. Additionally, the observational time series used in this
study were treated as monthly means, and the uncertainty
associated with the natural variability at these sites must be
estimated. The uncertainty associated with the averaging of
monthly means was calculated by Eq. (12).

ux =
σx tx
√
nx
, (12)

where σx is the standard deviation of the measurements
within a month; tx is the t statistic, the ratio of the difference
between the estimated and hypothesized value to the standard
error; and n is the number of measurements within a month
(James, 2013). Uncertainty associated with monthly averag-
ing was assessed directly for moored sites KEO and Papa.
Because HOT represents a monthly sampled site, moored
sensor data from 2016–2017 at WHOTS (Terlouw et al.,
2019) were used to evaluate the daily variability at this site
and estimate the uncertainty associated with treating HOT
samples as monthly averages. Uncertainty associated with
monthly averaging for KEO, Papa, and WHOTS ranged be-
tween 3–4 µmol kg−1 for DIC and 0.03–0.05 psu for salinity,
and the upper limits of 4.00 µmol kg−1 and 0.05 psu were ap-
plied as ux in the combined uncertainty for DIC to all sites.

The uncertainty imposed from salinity normalization of
DIC is calculated by taking the partial derivative of DIC with
respect to salinity in Eq. (8) and accounting for the uncer-
tainty in salinity measurements and monthly averaging as

given in Eq. (13).

unDICi =

√√√√(−S0

S2
i

)2

+ u2
S0
+ u2

Si
(13)

Uncertainty in long-term trends was evaluated on the slope
of the linear regression of the time-series data according to
Eq. (14).

um =m

√
1/R2

− 1
n− 2

, (14)

where m is the slope and R is the coefficient of correlation.
Combined uncertainty for imputed DIC values was evaluated
by adding the sources of uncertainty in quadrature shown in
Eq. (15).

uc(DIC) =

√
u2

DICi
+ u2

DIC
+ u2

nDICi
+RMSE2

method (15)

3 Results

3.1 Seasonal cycles, interannual variability, and
long-term trends across sites

Box-and-whisker plots (Fig. 2) show the seasonal climatol-
ogy and interannual variability for DIC and nDIC across the
sites tested. The bar plots in Fig. 2 show the seasonal ampli-
tude, which was taken as the difference between maxima and
minima of the climatological monthly means, and the inter-
annual variability, which was taken as the standard deviation
of the monthly means. The amplitude of the seasonal cycle
of DIC spanned 11.5–90.1 µmol kg−1 across sites, while in-
terannual variability ranged from 8.3–22.6 µmol kg−1. When
the DIC is normalized to salinity, the ranges of the seasonal
cycles and interannual variability for nDIC become 12.7–
65.8 and 7.6–20.9 µmol kg−1 respectively. The seasonal cy-
cles, including amplitude, timing, and interannual variabil-
ity, illustrate diversity among the test sites, thus enabling
robust assessment of the empirical MLR model for surface
layer DIC and other imputation methods. Figure 3 shows the
long-term trends in DIC and nDIC time series from each site
except FOT. Interestingly, with seasonal detrending, Papa
uniquely exhibits a decline in DIC over the 10-year record
used herein. Note here that BATS, CARIACO, and HOT time
series were truncated to start at September 1997 when re-
motely sensed chlorophyll can be utilized in the empirical
models (MLR and MICE) and compared to the other statisti-
cal approaches.
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Figure 2. Box-and-whisker plots of monthly mean concentrations of DIC (gray) and salinity normalized nDIC (white) in the mixed layer
at each site, and bar plots showing the seasonal amplitude and interannual variability of DIC (gray) and nDIC (white). Box-and-whisker
plots are composed of the median (solid line), lower and upper quartiles (box), the minimum and maximum values beyond the 25th and 75th
quantile but < 1.5 interquartile range (whiskers), and values > 1.5 interquartile range (dots). Values above each box-and-whisker marker
indicate the number of observations per month within the time series.

3.2 DIC estimation by MLR

Figure 4 shows the performance of the MLR model to esti-
mate DIC using the available time-series data from each site
(N = 897). The cross-validated MLR exhibited anR2 of 0.93
with an RMSE of 11.75 µmol kg−1, RRMSE of 0.57 %, MAE
of 8.57 µmol kg−1, and bias of 0.030 µmol kg−1. The highR2

and low error and bias indicate that the MLR model worked
well for prediction of DIC from remotely sensed chlorophyll,
in situ temperature, and salinity across different ecosystems.
The predictions and errors for the data from each site are
provided in Table 4, which includes the means of the model
coefficients and their standard deviations for the N iterations
of LOOCV per site.

The MLR performed best at Papa with an RMSE of
4.85 µmol kg−1. This appears to be driven in part by low
interannual variably and seasonal thermal stratification as
discussed for reasons discussed below. The greatest er-
ror was associated with the CARIACO and FOT coastal
sites; however, most of the predicted values still fell within

1 % of observed DIC. When the sites were separated into
oceanic (BATS, HOT, KEO, Papa, and Munida) and coastal
(CARIACO, FOT) categories, the RMSE was 8.75 and
19.97 µmol kg−1 respectively. When comparing the predic-
tive accuracy of the MLR to the DIC variability at each
site (Fig. 5), the interannual variability is strongly correlated
((R)= 0.8532, p < 0.02) to the RMSE, while the seasonal
amplitude has no apparent impact ((R)= 0.0771, p > 0.8),
meaning the error in the predictions is most strongly related
to interannual variability at each site.

To assess the sensitivity of the MLR to the predictor
variables, the model was adjusted by selectively removing
predictor variables and refitting the model. The changes in
RMSE per site due to the omission of a given variable are
shown as an anomaly in the tile plot of Fig. 6. BATS exhib-
ited the greatest sensitivity to chlorophyll relative to other
sites; FOT, HOT, and KEO were relatively more sensitive
to the effect of salinity; and temperature omission had the
greatest impact for CARIACO, KEO, Munida, and Papa.
The mean effects of variable omissions are given in Table 5,
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Figure 3. Time series of DIC (black) and salinity normalized nDIC (gray) for each of the long-term data sets used to assess the impacts of
gap filling on the seasonal and interannual variability and long-term trends. Trends in seasonally detrended DIC with uncertainty are given
for each site, followed by the trend in nDIC below each value, and are shown as the corresponding dashed lines for each time series. Note
that time series BATS, CARIACO, and HOT were truncated to September 1997, coincident with remotely sensed chlorophyll records, and
the data shown in red were excluded from analyses in this study.
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Table 4. Results of cross-validated MLR model for estimating DIC at each individual site and at grouped oceanic (BATS, HOT, KEO,
Munida, Papa) and coastal (FOT, CARIACO) sites, including the mean and standard deviation of each coefficient for N LOOCV iterations.

Site RMSE RRMSE R2 MAE BIAS N α β1 β2 β3

BATS 10.67 0.52 0.6611 8.93 0.017 208 401.65± 13.75 −13.48± 1.56 −3.53± 0.03 47.53± 0.36
CARIACO 20.14 0.96 0.5861 14.94 0.015 153 1446.46± 40.07 2.50± 0.10 −10.16± 0.12 24.37± 1.02
FOT 19.02 0.92 0.3958 15.13 0.099 28 718.32± 47.59 8.30± 2.53 0.47± 0.35 37.93± 1.26
HOT 8.45 0.42 0.6178 7.40 0.029 204 276.44± 9.51 −82.88± 2.25 −3.47± 0.04 51.44± 0.26
KEO 8.12 0.41 0.9330 6.12 0.061 90 −208.45± 16.79 −27.85± 1.01 −4.61± 0.03 66.36± 0.48
Munida 8.15 0.39 0.7564 6.48 0.029 109 1069.11± 65.27 4.77± 1.05 −7.69± 0.08 32.00± 1.89
Papa 4.85 0.24 0.9631 3.74 0.035 94 799.13± 17.96 −16.47± 0.52 −6.55± 0.02 39.82± 0.55
Oceanic 8.75 0.43 0.9567 7.09 0.030 671 412.04± 356.85 −34.86± 32.81 −4.54± 1.53 48.5± 9.35
Coastal 19.97 0.95 0.6078 14.97 0.028 181 1333.82± 267.23 3.40± 2.32 −8.52± 3.86 26.47± 5.03

Figure 4. Composite of predicted and measured DIC using a
multiple linear regression model based on measured temperature,
salinity, and remotely sensed chlorophyll pooled from test sites:
Bermuda Atlantic Time-series Study (BATS); Carbon Retention In
A Colored Ocean (CARIACO); Firth of Thames (FOT); Hawai-
ian Ocean Time-series (HOT); Kuroshio Extension Observatory
(KEO); Munida Time Series (Munida); Ocean Site Papa (Papa).
Box-and-whisker plots for predictor variable coefficients α, β1, β2,
and β3 are composed of the median (solid line), lower and upper
quartiles (box), the minimum and maximum values beyond the 25th
and 75th quantile but < 1.5 interquartile range (whiskers), and val-
ues > 1.5 interquartile range (dots).

which indicates that collectively temperature had the greatest
impact among the predictor variables on the predictive error.
This was consistent with the expectations resulting from the
correlation matrix provided in Table 2. The selective omis-
sion of predictor variables indicates that salinity contributes

Table 5. Mean model results for selective omission of input vari-
ables.

Variable omitted RMSE RRMSE R2 MAE BIAS

None 12.044 0.591 0.9352 8.764 0.030
Chlorophyll 12.106 0.594 0.9345 8.849 0.005
Temperature 15.526 0.762 0.8923 11.871 0.013
Salinity 13.998 0.687 0.9124 10.285 0.022

the most to the bias error although the bias error was low
(< 0.1) across all sites.

Comparing the GLORYS physical reanalysis data to the
observations, the pooled RMSE was 0.68 ◦C for temperature
and 0.18 psu for salinity withR2 values of 0.9899 and 0.9841
respectively. The MLR performed similarly when GLORYS
temperature and salinity values were used (R2 of 0.9453,
RMSE of 11.24 µmol kg−1, RRMSE of 0.55 %, MAE of
8.18 µmol kg−1, and bias of 0.00000 µmol kg−1; see the Sup-
plement for more details).

3.3 Performance of imputation methods

Table 6 shows the pooled performance metrics for each
cross-validated model. These pooled results of the LOOCV
indicate that each of the imputation models performed rea-
sonably well with only 11 % of all residuals exceeding 1 %
error and only 1 of 7424 estimated DIC values exceeding 5 %
error.

Overall, the MICE and MLR models exhibited the high-
est R2 and lowest error (MAE, RMSE, and RRMSE), fol-
lowed by Kalman filtering, linear interpolation, exponential
weighted moving average, mean imputation, Stineman in-
terpolation, and spline interpolation in order of increasing
RMSE. Mean exhibited the least amount of bias, while spline
imputation exhibited the greatest amount of bias. Figure 7
shows the kernel density curves of the residuals from the
LOOCV of each imputation model with individual results
from each site. Kernel density plots provide the probability
distribution of the residuals, where skewness and modalities
(peaks) away from zero indicate biasing. Figure 7 illustrates
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Figure 5. Correlations between RMSE and (a) seasonal amplitude and (b) interannual variability across sites.

Figure 6. Tile plot showing the change in RMSE per site due to
the selective omission of input variables and refitting of the MLR.
Tiles are colored to normalized error anomalies for visualization of
relative differences, while RMSE anomalies are given in each tile
for the effect of omitting the predictor variable at each site.

the error distribution varied greatly across sites when apply-
ing a selected model.

This considerable variability among the performance of
each method across sites is further evidenced in Fig. 8. The
tile colors in Fig. 8 indicate the RMSE and R2 normalized to
their pooled mean values for comparing the relative error and
correlation across sites and methods. The individual cross-
validated errors and R2 values for each imputation method

Table 6. Performance metrics for cross-validated imputation mod-
els across all sites.

Model RMSE RRMSE R2 MAE BIAS

Kalman 13.22 0.65 0.9230 8.74 −0.03
Linear 13.34 0.65 0.9218 9.00 −0.02
Mean 13.91 0.68 0.9149 10.51 0.00
MICE 10.78 0.53 0.9489 7.17 0.07
MLR 11.75 0.58 0.9392 8.57 0.03
Spline 19.89 0.97 0.8672 13.29 −0.43
Stineman 16.91 0.83 0.9013 11.53 −0.28
WMA 13.79 0.68 0.9163 9.69 −0.09

per site are given as the numerical value in each tile of the fig-
ure. Generally, Fig. 8 provides further evidence that CARI-
ACO and FOT exhibit the greatest error overall, while KEO
and Papa exhibit the lowest error. TheR2 panel in Fig. 8 indi-
cates that while some imputation errors may be low (< 1 %),
they may still show poor correlation with observations. This
is the case for statistical models at Munida as well as mean
imputation and spline interpolation models at HOT. The error
and correlation across sites are consistent with the interan-
nual variability shown in Fig. 2 and with the MLR behavior
shown in Fig. 5.

3.4 Sampling sensitivity

Sampling sensitivity was assessed by the RMSE for ran-
domized artificial gaps totaling 8.33 %, 16.67 %, 25.00 %,
33.33 %, 41.67 %, 50.00 %, and 66.67 %. The randomized
approach resulted in a mixture of sequential and non-
sequential gaps, while bootstrapping achieved equivalent
representation of all months for each assessment. Figure 9a
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Figure 7. Kernel density curves of the DIC residuals between gap-filled and observed time series for each imputation model using leave-
one-out cross validation, for all observations after August 1997 coinciding with availability of remotely sensed chlorophyll data. Density
curves are scaled so the area under the curve equals one. Plots show the probability distribution of the residuals for each model. Skewness
and modalities away from 0 indicate biasing.

shows boxplots of the RMSE for each imputation method as
a function of percent of data missing at each site. Spline inter-
polation resulted in much greater magnitude and frequency
of outliers and necessitated separate scaling. There was sig-
nificant variability in both the performance of different im-
putation methods within sites and within imputation methods
across different sites. In general, mean imputation and MLR
converge on a maximum error once data gaps reached 20 %–
40 %, whereas the error for other imputation models is posi-
tively correlated with the percent of data missing. While the
performance of the cross-validated Kalman filtering model
did not differ greatly from the other interpolation methods,
Fig. 9a indicates it leads to a greater number of outliers over-
all, in particular at BATS, KEO, and Papa. Spline interpola-
tion also resulted in a high number of outliers, with the most
extreme error over other methods. Figure 9b shows the me-
dian error as a function of the percent of data missing with
a loess fit. The general lack of a strong correlation shown
by mean imputation and MLR exhibits the least amount of
sensitivity to the number of data gaps in the time series. The

MICE model shows the highest level of sensitivity to the per-
cent of data missing despite performing very well under the
LOOCV and low numbers of data gaps.

3.5 Time-series gaps and trend assessment

The imputed secondary time series synthesized with the eight
artificial gap scenarios, including sequential 3-month sea-
sonal durations, 6-month durations centered on summer and
winter, and bimonthly and seasonal sampling simulations
shown in Figs. 10–11. Note that time series from each of
the sites tested contained data gaps in the observations, and
synthetic gap scenarios were applied to the observed time
series as is. Extended gaps were observed at CARIACO
(April 2001–February 2002), KEO (January–October 2011),
and Papa (August 2008–May 2009). Thirteen 3-month data
gaps, three 4-month data gaps, and one 5-month data gap
were present in the Munida Time Series. Table 7 shows the
number of observations for the total number of months in the
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Figure 8. Tile plots showing (a) the RMSE (black text in tiles) for
each cross-validated imputation methods at each site. Tiles are col-
ored according to RMSE normalized to the mean value across all
methods and sites and (b) the same format but for the squared cor-
relation coefficient. Note errors at or below average performance do
not equate to correlation that is average or better, e.g., Munida and
HOT.

time series at each site and the percent of data missing for
each gap scenario tested.

Figures 10–11 indicate a significant variability in the per-
formance of each imputation method for the tested gap du-
rations and timing within the data sets from each site. Note
some outliers produced by spline interpolation were cropped
in order to maintain appropriate scaling of the y axes. Over-
all, spline interpolation shows the highest propensity for cre-
ating outliers, as was also seen the in the assessment of sam-
pling sensitivity. WMA shows a tendency for exaggerating
seasonal minima and maxima, except in the cases of ex-
tended gaps, such as those seen at KEO and Papa. How-
ever, WMA remained within the observed range of annual
seasonal cycles at Munida. Kalman filtering performed sim-
ilarly to WMA. The empirical models (mean, MLR, and
MICE) better represent consistent seasonal cycles compared
to other methods, as expected. However, these do not perform
as well when data deviate significantly from mean seasonal

cycle, such as at HOT and CARIACO where the ratios of
interannual variability to seasonal amplitude are high (84 %
and 46 % respectively for nDIC). This is most clear in the
high DIC concentrations observed at HOT during 2012–2013
and low DIC concentrations observed at CARIACO in 2003.
KEO and Papa have the lowest ratio of interannual variability
to seasonal amplitude (13 % and 14 % respectively), and em-
pirical models perform well here. This was consistent with
the correlation between error and interannual variability ev-
idenced by the LOOCV. Figure 12 shows the kernel den-
sity curves of the residuals between the infilled and observed
nDIC values. The pooled residuals shown on the right-hand
side of Fig. 12 indicate the time and duration of gaps have a
significant impact on the error distribution.

Figure 13 shows the kernel density curves of the residuals
between the observed and reconstructed trends in nDIC over
time for each site, method, and gap scenario. Trends from
imputed time series that were significantly different than the
observed trend (taken here as a difference in trend that is be-
yond the uncertainty in the slope) are identified with a black
asterisk in Fig. 13. Synthetic gap filters were applied by pre-
scribed months across all sites rather than site-specific sea-
sonal cycles, and thus the impacts from each filter vary across
sites. Generally, the mean imputation and MLR models led
to reduced apparent trends across all sites by pushing the im-
puted values toward the climatological means. The exception
to this was at Papa, where the bias was positive, in contrast
to the apparent trend in the observations at that site. While
this is inherent in mean imputation, it is implicit in this MLR
because it utilizes climatological relationships between the
predictor variables rather than year-to-year variations. Lin-
ear and Stineman interpolation had the least impact on time-
series trends because values produced by these models are
constrained to the range of the observations bracketing the
gap, and they tend more to preserve the trend as the observed
values change through time. Except for KEO and Munida,
Kalman and WMA models generally resulted in a reduced
trends but with less error than the empirical models. The state
space approach in the Kalman model attempts to describe the
dynamics through decomposition of the time series resulting
in imputation values that are determined from prior observa-
tions, generally resulting in predictions that are within the
observed seasonal range. The tendency of the exponential
weighting in the WMA is to overestimate when predicting
values near maxima and minima (see Supplement for addi-
tional figures). This is less apparent at Munida where the
lower frequency of observations leads to weighting toward
the annual means. This balance in the WMA behavior ex-
plains its tendency for lower impact on the apparent trend.
KEO exhibits both the strongest trend in nDIC and largest
seasonal amplitude, and the Kalman and WMA models exag-
gerated the apparent trend here in all gap scenarios. Spline-
interpolated values of the extended gap at CARIACO were
well below the seasonal minima from previous years in the
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Table 7. Percent of missing data associated with synthetic gap filters applied to each time series, the number observations, total months, and
percent of missing observations based on a monthly frequency for the time-series duration tested.

Site Spring Summer Autumn Winter 6-month 6-month Bimonthly Seasonal n obs. Months % of miss-
summer gap winter gap ing obs.

BATS 32 % 33 % 33 % 29 % 56 % 53 % 53 % 71 % 212 233 9 %
CARIACO 42 % 42 % 41 % 41 % 62 % 60 % 61 % 75 % 160 206 22 %
HOT 41 % 39 % 39 % 39 % 61 % 59 % 59 % 74 % 206 256 20 %
KEO 33 % 32 % 35 % 35 % 53 % 59 % 57 % 71 % 105 119 12 %
Munida 67 % 67 % 69 % 67 % 78 % 79 % 63 % 85 % 109 252 57 %
Papa 30 % 37 % 34 % 34 % 55 % 57 % 55 % 70 % 118 134 12 %

time series and were extreme enough to inflate the trend in
most of the gap scenarios.

The impacts on trends were greater for the 6-month gaps,
bimonthly, and seasonal scenarios than for the seasonal filters
across all models (see Supplement for additional figures).
This result is consistent with greater error being associated
with higher percentages of missing data; however, there was
no direct correlation between imputation errors and the mag-
nitude and direction of changes in trends. The greatest im-
pacts were observed when using mean imputation and MLR
with the seasonal sampling regime. This appears to be driven
by the high percentage of data being replaced with climato-
logical values. Interestingly, MICE did not result in the same
level of discrepancies with observed trends as the other em-
pirical models. This is likely due to the increased flexibility
in the MICE model due to the inclusion of time fields (e.g.,
month as a predictor variable) and the fact that the chained
equation approach will allow for refitting throughout the time
series allowing for year-to-year variability in the relation-
ships between predictor variables.

3.6 Seasonal cycles, annual means, and interannual
variability

The monthly means of the imputed time series and their asso-
ciated uncertainties are shown in Figs. 14–15. These monthly
series more clearly illustrate the typical behavior of each im-
putation model described for each time series above. While
deviations from climatological monthly means are apparent
across all sites, few of these fell outside of the uncertainty
associated with the observed monthly means, which is repre-
sented here by the combined sources of uncertainty in mea-
surements and calculation of the monthly mean nDIC and
does not include the interannual variability of the monthly
means.

The effects of imputation on the seasonal maxima and
minima, their respective timing, and amplitude are shown
in Fig. 16, which also includes residuals for interannual
variability, annual means, and the combined seasonal error
pooled across sites. Two-way ANOVA of each of these sea-
sonal residuals indicated that the distribution of errors among
the different models was significantly different for seasonal
amplitude, maxima, and minima, while the difference be-

tween gap scenarios was significant for the timing of sea-
sonal minima. The combined seasonal error was significantly
different among both imputation models and gap scenarios.
The residuals of annual means were also significantly differ-
ent among both imputation models and gap scenarios, while
only model selection resulted in significantly different inter-
annual variability.

The weakening of seasonal amplitude from linear imputa-
tion methods is evident in the residuals for all gap scenarios,
as is the tendency for the Kalman and WMA models to in-
crease seasonal amplitude. The autumn gap filter resulted in
the greatest amount error in seasonal amplitude. This was
driven by the larger residuals in the seasonal minima since
most of the test sites experience seasonal minima during au-
tumn months. This also affected the timing of seasonal min-
ima with residuals of up to 3 months. The distribution of the
seasonal residuals among the imputation models for the 6-
month winter gap was similar to that for the autumn gap, al-
though the residuals for seasonal minima, maxima, and am-
plitude were largest with the 6-month winter gap filter.

The combined seasonal errors indicate that next to mean
imputation, MLR does the best out of the other methods
tested to retain the climatological seasonal structure ob-
served at each site. The combined seasonal MAPE was 7.2 %
MLR, followed by 14.2 % for spline interpolation, 15.1 %
for MICE, 19.2 % for Stineman, 19.8 % for Kalman, 19.9 %
for linear interpolation, and 21.1 % for WMA. The autumn
gap filter resulted in a combined seasonal MAPE of 20.9 %.
This was just over double that of all other seasonal gap fil-
ters which resulted in error that ranged from 8.8 % to 9.9 %.
The seasonal error was largest for the 6-month winter gap
with a median error of 26.4 %. Interestingly, the bimonthly
sampling regime resulted in a seasonal MAPE of 16.8 %,
which was greater than the 6-month summer gap (15.1 %)
and the spring, summer, and winter seasonal gaps, despite
greater dispersed data coverage across seasons compared to
these other scenarios. The seasonal MAPE for the seasonal
sampling regime was 12.7 % and lower than that exhibited
by the more frequently bimonthly sampling.

The pooled residuals for annual means were mostly nor-
mally distributed about a median of 0 µmol kg−1 with some
biasing. When looking at the MAPE the seasonal gap fil-
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Figure 9. (a) Boxplots of RMSE for each gap assessment corresponding to 8.33 %, 16.67 %, 25 %, 33.33 %, 41.67 %, 50 %, 58.33 %, and
66.67 % data missing rates. Box-and-whisker plots are composed of the median (solid line), lower and upper quartiles (box), the minimum
and maximum values beyond the 25th and 75th quantile but < 1.5 interquartile range (whiskers), and values > 1.5 interquartile range (dots).
Points above box and whiskers indicate the distribution of outliers for each model. (b) Loess fit (red line) of the median error for each gap
assessment, indicating the sensitivity of the model to increasing data loss. Scales adjusted per site.

ters and bimonthly sampling regime led to small errors in
annual means of 0.1 %, while the 6-month gaps and sea-
sonal sampling regime were 0.15 %–0.16 %. When the er-
rors are broken down by model selection, the empirical mod-
els showed the greatest deviation from the annual means,
with mean imputation having a median error of 0.16 %, MLR
of 0.16 %, and MICE performing slightly better at 0.13 %.
These were followed by Kalman at 0.12 %, spline interpola-

tion and WMA at 0.11 %, and Stineman and linear interpola-
tion at 0.08 % in decreasing order.

The pooled residuals for interannual variability exhibited
significantly more biasing and errors. The MAPE of inter-
annual variability for each gap scenario correlated with the
percent of missing data for each gap filter. The seasonal fil-
ters had errors of 7.9 %–9.3 %, followed by bimonthly errors
of 12.9 % and 16.3 % for the 6-month winter and summer
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Figure 10. Residuals between imputed and observed nDIC from BATS, CARIACO, and HOT. Observations were selectively removed using
eight gap filters: 3-month sequential seasonal filters for spring, summer, autumn, and winter; 6-month sequential gaps centered on summer
and winter; and bimonthly (odd months) and seasonal (one maximum, one minimum, and two transition samples) sampling regimes and gaps
were filled using Kalman filter with a state space model, linear interpolation, mean imputation, empirical multiple linear regression (MLR),
multiple imputation by chained equations (MICE), spline interpolation, Stineman interpolation, and exponential weighted moving average
(WMA).
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Figure 11. Residuals between imputed and observed nDIC from KEO, Munida, and Papa. Observations were selectively removed using eight
gap filters: 3-month sequential seasonal filters for spring, summer, autumn, and winter; 6-month sequential gaps centered on summer and
winter; and bimonthly (odd months) and seasonal (one maximum, one minimum, and two transition samples) sampling regimes and gaps
were filled using Kalman filter with a state space model, linear interpolation, mean imputation, empirical multiple linear regression (MLR),
multiple imputation by chained equations (MICE), spline interpolation, Stineman interpolation, and exponential weighted moving average
(WMA).
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Figure 12. Kernel density curves of the nDIC residuals between gap-filled and observed values for each site and synthetic gap filter tested
(see also Figs. 10–11). Residuals pooled across sites are shown as the mean column on the right-hand side. Density curves are scaled so
the area under the curve equals one. Plots show the probability distribution of the residuals. Skewness and modalities away from 0 indicate
biasing

gaps and the seasonal filter at 19.1 %. The errors in inter-
annual variability imposed by the models were highest for
mean imputation at 22.5 %, followed by spline interpolation
at 19.3 %, WMA at 13.7 %, Kalman at 12.0 %, Stineman
at 9.6 %, linear interpolation at 9.3 %, MLR at 10.7 %, and
MICE at 7.9 %.

4 Discussion

4.1 MLR estimation of DIC

The development of remote sensing and MLR-based ap-
proaches for carbonate chemistry has been used extensively
for extrapolating over broad spatial and temporal scales to in-
vestigate regional- to basin-scale phenomena (Bostock et al.,
2013; Hales et al., 2012; Evans et al., 2013; Lohrenz et al.,
2018; Juranek et al., 2011; Alin et al., 2012). Remote sensing
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Figure 13. Kernel density curves of the nDIC residuals between the trends calculated from observed and gap-filled time series for each site
and synthetic gap filter tested (see also Figs. 10–11). Residuals pooled across sites are shown as the mean column on the right-hand side.
Residuals that exceeded the uncertainty bounds for the observed trend are denoted with a black asterisk. Peaks to either side of 0 indicate
positive or negative biasing in the imputation method, resulting in changes in the apparent trend for the reconstructed time series.

applications have focused primarily on predicting pCO2 and
estimating air–sea flux in coastal waters to better understand
the seasonal and spatial heterogeneity of carbon sources and
sinks and their implications for regional and global carbon
budgets (Hales et al., 2012; Lohrenz et al., 2018). Many
MLR models that predict carbonate parameters have been
developed using large observational data sets that include ei-
ther dissolved oxygen (O2) (Juranek et al., 2009; Kim et al.,
2010; Alin et al., 2012; Bostock et al., 2013) or nitrate (NO3)

(Evans et al., 2013) as a predictor variable along with tem-

perature and salinity. MLR models that incorporate O2 and
NO3 can perform particularly well in coastal environments
where ecosystem metabolism has a dominant effect on car-
bonate chemistry (Alin et al., 2012; Juranek, 2009, no. 1264).
However, there are currently no remotely sensed O2 and NO3
data products, and the chances of glider or float data being
available at a given time-series site to coincide with a gap in
carbonate measurements are limited. The MLR model pre-
sented herein serves as a method for imputing missing DIC
values in time series. This MLR may be trained and imple-
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mented using remotely sensed chlorophyll with in situ tem-
perature and salinity. However, for cases when in situ temper-
ature and salinity are concurrently unavailable during gaps in
DIC observations, model-based estimates of temperature and
salinity may be used as we have shown here with the Mer-
cator Ocean Global Reanalysis (GLORYS). Additional data
product options could include the Hybrid Coordinate Ocean
Model (HYCOM), the Climate Forecast System Reanalysis
(CFSR), and the Bluelink Reanalysis (BRAN), with assess-
ment for a given location and included in the uncertainty
budget (de Souza et al., 2020). Satellite-based estimates of
sea surface temperature and salinity may also be considered
although remotely sensed salinity typically has a larger er-
ror than the GLORYS data presented here when compared to
observations (Wang et al., 2019).

The variability in the MLR model coefficients indicated
that the relationships between DIC, chlorophyll, tempera-
ture, and salinity were location-specific and cannot be spa-
tially extrapolated to different water masses and ecosystems.
This was indicated by the variability seen among the corre-
lations of predictor variables to DIC across sites and clearly
evidenced by the differences in model performance between
the coastal sites (FOT and CARIACO) and the oceanic sites.
However, when the MLR was trained with sufficient obser-
vations to capture the seasonal cycle, it could predict DIC
with error that was far less than the natural variability over
seasonal and interannual timescales and was typically on the
order of, or better than, the variability on monthly timescales.
The RMSE of 4.85–10.67 µmol kg−1 at the oceanic sites
is consistent with other MLR studies which have ranged
from ∼ 4–11 µmol kg−1 (Evans et al., 2013; Juranek et al.,
2011; Bostock et al., 2013), while the RMSE at coastal
sites (FOT and CARIACO) of approximately 20 µmol kg−1

is larger than exhibited in a California Current study (Alin
et al., 2012). The Alin study, like others (Juranek et al.,
2009, 2011), estimated DIC based on O2 and density, in-
corporating a multiplicative relationship. While O2 may im-
prove the performance of MLR approaches, particularly in
biologically active coastal environments, the MLR model
here only utilized remotely sensed chlorophyll and temper-
ature and therefore only applied to the surface layer. O2
and CO2 may become decoupled in the surface layer due to
varying timescales for air–sea gas exchange, making O2 a
less reliable predictor variable for surface concentrations of
DIC (Juranek et al., 2011). Despite somewhat higher RMSE
in coastal environments relative to the results of Alin et
al. (2012), the MLR model here exhibited predictive error
that is still less than 1 % at such sites. With the mean perfor-
mance among oceanic sites being 8.75 µmol kg−1 and within
the “weather” requirements adopted by the Global Ocean
Acidification Observing Network, we contend that this is
an acceptable approach for temporal interpolation (Newton,
2015).

4.2 DIC time-series imputation

Despite the pervasiveness of gaps in climatological data
aimed at understanding the ocean carbon cycle, there is lim-
ited evaluation of errors and bias in reconstructed time se-
ries due to gap-filling methods outside of the spatiotempo-
ral interpolation in surface ocean pCO2 data sets (Gregor
et al., 2019). The MLR presented herein was developed as
an empirical method toward constructing gap-filled regular-
ized DIC time series, specifically for investigating seasonal
and interannual variability in the carbon cycle within the sur-
face layer. A thorough characterization of implementing this
model beckoned the comparison to other commonly used
techniques and provided the opportunity to investigate the
temporal and seasonal impacts of gap filling.

Cross validation of the imputation models evaluated in this
study indicated that each of these models have reasonably
low (typically < 1 %) error when imputing a single value at
monthly timescales. This was similar to other comparative
gap-filling studies in the fields of soil respiration, net ecosys-
tem exchange, and solar radiation, which focused on higher-
temporal-resolution data and imputing missing values over
timescales from seconds to days (Moffat et al., 2007; Zhao et
al., 2020; Demirhan and Renwick, 2018). For the assessment
of annual budgets in the studies of Zhao et al. (2020) and
Moffat et al. (2007), the error associated with the imputation
methods was similar to the uncertainty in the fluxes across
sites (Lavoie et al., 2015). As a result, the choice of imputa-
tion model yielded limited improvement on the accuracy of
budget estimates. Similarly we found that the MAPE of the
annual means calculated from imputed time series was under
0.2 %, which was less than the typical relative uncertainty of
0.5 %–1 %. However, Fig. 16 shows this can be biased posi-
tively or negatively depending on imputation method. While
imputation resulted in limited error in annual means, there
were significant impacts on the interannual variability, which
ranged from 8 %–19 %. Such errors would have a direct im-
pact on the time of emergence in detecting trends (Sutton
et al., 2019; Turk et al., 2019). Furthermore, our evaluation
of reconstructed DIC time series with synthetic gaps showed
that selection of imputation method can have significant ef-
fects on the calculated timing, magnitude, and structure of
seasonal variability as well as longer temporal trends. The
timing and duration of data gaps are important considera-
tions, as are the research objectives for a given study and
whether seasonal or climatic variability are more heavily
weighted.

The empirical models evaluated in this study performed
better than others selected here to maintain all aspects of
the seasonal structure. Mean imputation, by definition, main-
tains the climatological seasonal structure perfectly. How-
ever, year to year this may lead to bias in the seasonal am-
plitude up or down relative to the temporal position in the
time series and any long-term trend. This is apparent in in-
terannual variability of reconstructed time series showing a
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Figure 14. Residuals between climatological monthly means calculated from observed time series and reconstructed time series of nDIC
from BATS, CARIACO, and HOT. Monthly means were calculated from the time-series (individual residuals shown in Fig. 10) values infilled
by the eight imputation models. Black sticks represent the combined uncertainty for the observations at each site.

positive bimodal distribution of the residuals for mean impu-
tation (see Fig. 16), indicating larger error associated with a
higher percent of missing data.

When looking at the combined seasonal error of each
model pooled for all gap scenarios, MLR performs better
than twice as well as all remaining methods and was the only
model (other than mean imputation) with a median error un-
der 10 %. Looking at the individual imputed time series, the

MLR generally tracks closely with mean imputation but with
added interannual variability. This leads to less error com-
pared to mean imputation as also seen in the distribution of
residuals (see Fig. 12). The MICE model showed consider-
ably more variability in its prediction of DIC values, leading
to higher error with a wider distribution. This was likely due
to the MICE method refitting regression models along the
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Figure 15. Residuals between climatological monthly means calculated from observed time series and reconstructed time series of nDIC
from KEO, Munida, and Papa. Monthly means were calculated from the time-series (individual residuals shown in Fig. 11) values infilled by
the eight imputation models. Black sticks represent the combined uncertainty for the observations at each site.

time series, whereas the MLR, as presented here, is fit once
using the entire time series.

While mean imputation and MLR provide the best options
of the models evaluated here for maintaining the seasonal
structure in the time series, it is at the expense of maintain-
ing the observed trend. These two models led to the great-
est discrepancies between observed and reconstructed trends.
Both models act to weaken the trend, pushing toward the cli-

matological mean; and this becomes more apparent with in-
creasing data loss. Linear and Stineman interpolation mod-
els generally do well to maintain the observed trend in the
time series due to them constraining infilled values between
existing observations along the trending time series. This is
at the expense of maintaining seasonal structure as is clearly
evidenced in Figs. 13 and 14. Even under the bimonthly sam-
pling regime, these interpolation methods lead to a lower sea-
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Figure 16. Boxplots of the residuals between gap-filled and observed time series for seasonal amplitude (difference between seasonal
maximum and minimum); the seasonal maxima and minima, as well as their respective timing (the months when maxima and minima are
observed); interannual variability (the standard deviation of monthly means); and the annual means. Combined Seasonal error represents
the combined absolute percent errors of the seasonal amplitude, maximum, minimum, and timing (see Eq. 10). Box-and-whisker plots are
composed of the median (solid line), lower and upper quartiles (box), the minimum and maximum values beyond the 25th and 75th quantile
but < 1.5 interquartile range (whiskers), and values > 1.5 interquartile range (dots). The right-hand column shows the kernel density curves
for each seasonal metric, pooled across all synthetic gap filters. Peaks in the density plots represents modes where mean errors for each model
are associated with each gap filter.

sonal amplitude, and this impact is worsened by longer du-
ration gaps. Spline interpolation, WMA, Kalman filter, and
MICE models exhibit inconsistent impacts on trends across
sites and varied gaps. WMA and Kalman performed best at
Munida with limited bias, while MICE performed well dur-
ing some gap scenarios at BATS (spring, summer, and 6-
month summer gap) and KEO (spring, winter, and seasonal);
likewise for spline interpolation at BATS (spring and sea-
sonal) and HOT (spring, summer, autumn, 6-month summer
gap, and seasonal).

The impact on trend assessment does not appear corre-
lated with the mean imputation error, bias, or mean seasonal

errors; rather, visual inspection of the imputed time series
in Figs. 10–11 appears to indicate that the timing of data
gaps relative to how a selected model typically responds to
such a gap dictates the bias error for that gap. This bias er-
ror may then be exaggerated for longer durations and accu-
mulate in the reconstructed time series and ultimately im-
part bias on the trend, even if the mean errors remain small.
While using static month-based gap filters in our assessment,
it also appears that in some cases interannual variability in
the seasonal cycle changed the gap filter window. For exam-
ple, linear and Stineman interpolation applied to the 6-month
winter gaps at KEO 2008–2009 and 2015–2016 lead to a
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higher mean DIC concentration over these windows, lead-
ing to lower trend in these reconstructed time series than
was observed. Additionally, spline interpolation was biased
at HOT using the winter gap filter due to the splines exag-
gerating some of the seasonal transitions 2004–2009. The
seasonal cycles 2006–2009 were further exaggerated using
the 6-month winter gap filter, leading to bias in the other di-
rection. The correlation between trend error and imputation
performance presents an area for further investigation.

One-way ANOVA indicated that the distribution of RMSE
resulting from each of the gap scenarios was significantly
different for each of the imputation models tested, further
indicating the importance of the timing and duration of data
gaps. Of the four seasonal filters, spring data gaps had the
least impact (lowest error), while autumn data gaps had the
most. Given that these correspond to the seasonal maxima
and minima respectively, it is interesting that selected im-
putation models are generally better at predicting the sea-
sonal highs rather than lows. Errors associated with seasonal
minima were further exacerbated by the long 6-month win-
ter gap tested, whereas the 6-month gap centered in summer
had errors that were on the order of other seasonal 3-month
gaps. Collectively these results can help guide strategy for
both sampling and the handling data gaps.

Bimonthly and seasonal sampling regimes provide eco-
nomical options for data collection. The median RMSE as-
sociated with the bimonthly and seasonal sampling regimes
were 10.4 and 10.7 µmol kg−1 respectively. These were less
than the errors associated with summer (11.3 µmol kg−1) and
autumn (12.1 µmol kg−1) gap filters and similar to the spring
(10.7 µmol kg−1) and winter RMSE (10.4 µmol kg−1). This
result is encouraging despite the bimonthly and seasonal
sampling regimes equating to twice as much data loss com-
pared to the seasonal filters. These sampling regimes also
impart similar results with respect to maintaining seasonal
structure; although, bimonthly sampling leads to greater vari-
ance. Bimonthly sampling resulted in a median RMSE for
annual means of 4.0 µmol kg−1, equal to a typical measure-
ment uncertainty. This was only slightly higher for seasonal
sampling at 5.0 µmol kg−1. The RMSEs for interannual vari-
ability for these sampling regimes are less than 3 µmol kg−1.
These results are promising to indicate that these economic
sampling regimes can capture the seasonal cycle with reason-
able uncertainty. However, it must be noted that these pooled
errors include the performance and low errors of mean impu-
tation and MLR, and these empirical models require multiple
years of data to adequately train. Uncertainty of annual and
seasonal data based on these regimes would be higher.

The results presented here indicate that care should be
taken when considering what method to use to fill data gaps
in ocean carbon time series, with criteria for selection includ-
ing the percent of missing data, gap lengths, and site charac-
teristics. Of the methods we tested, the empirical models per-
formed better than statistical models evaluated in this study
with respect to imputation error and retaining seasonal struc-

ture. Mean imputation provides a stable and straightforward
approach to filling longer gaps but leads to greater biases in
annual budgets, interannual variability, and long-term trends
compared to the other methods evaluated in this study.

MICE appeared to be well suited to environmental time-
series data that have covariate parameters such as the corre-
lation between DIC, chlorophyll, temperature, and salinity.
This could be extended to other nutrients such as phosphate
and nitrate as well as dissolved oxygen in order to train the
models used in MICE. MICE also offers the opportunity to
impute data gaps over multiple variables in larger time-series
data sets. MICE does well to limit biases and did best to re-
produce interannual variability across the sties tested. MICE
performed very well during cross validation but exhibited
higher RMSE compared to MLR when reconstructing the
time series, perhaps due to its greater sampling sensitivity
shown in Fig. 9.

Our MLR model provides a stable option that performs
well over all rates of data missingness once it is sufficiently
trained with field data. This MLR performed equally well us-
ing GLORYS reanalysis temperature and salinity data. This
approach provides the benefit of utilizing remotely sensed
and modeled data products in the absence of covariate field
data. The low error and uncertainty associated with this MLR
approach show promise. Allowing the model to update the fit
and coefficients for the predictor variables over the time se-
ries may help reduce biasing of temporal trends while main-
taining the ability to retain seasonal structure. This MLR has
potential to be trained with field data over broader spatial ex-
tents to assess regional carbon cycles.

5 Conclusions

This study provides the first comparative assessment of sev-
eral common gap-filling methods which are easy to imple-
ment and computationally inexpensive that may be applied to
ocean carbon time series. Regularized carbonate time-series
data are necessary for understanding seasonal dynamics, an-
nual budgets, interannual variability, and long-term trends in
the ocean carbon cycle and changes to the ocean carbon sink,
which are of particular importance in the face of global cli-
mate change. Our assessment indicates that the amount and
distribution of gaps in the data should be a determining fac-
tor in choosing an imputation method that optimizes uncer-
tainty while minimizing bias. Imputed values, however, can-
not be treated as measurements, and the uncertainty of im-
putation methods must be included in the overall uncertainty
budget of broader ocean carbon analyses. The results pre-
sented above indicate the performance and behavior of select
empirical and statistical approaches, and the methods used
provide a simple approach for estimating uncertainty of DIC
predicted by a given imputation method.

This study provides evidence that DIC can be estimated
with an empirical MLR approach that utilizes remotely
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sensed chlorophyll and may be trained with either in situ
or modeled temperature and salinity depending on the in-
tended application. This method performs consistently well
across seven disparate ecosystems in oceanic and coastal en-
vironments, but the model coefficients are unique to the wa-
ter mass and ecosystem, and further study is needed to as-
sess the spatial extent over which regional extrapolation is
still valid. However, when using this method to impute data
gaps in carbonate time series, it performs better than sev-
eral options, particularly for larger gaps. We conclude that
when trained with sufficient field data (e.g., captures the sea-
sonal cycle and some interannual variability), this empirical
MLR method predicts DIC with acceptable accuracy from re-
motely sensed data and provides the most robust option from
those we compared for imputing gaps over a variety of data
gap scenarios.
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