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Abstract. Grasslands are an important part of pre-Alpine and
Alpine landscapes. Despite the economic value and the sig-
nificant role of grasslands in carbon and nitrogen (N) cycling,
spatially explicit information on grassland biomass and qual-
ity is rarely available. Remotely sensed data from unmanned
aircraft systems (UASs) and satellites might be an option to
overcome this gap. Our study aims to investigate the potential
of low-cost UAS-based multispectral sensors for estimating
above-ground biomass (dry matter, DM) and plant N con-
centration. In our analysis, we compared two different sen-
sors (Parrot Sequoia, SEQ; MicaSense RedEdge-M, REM),
three statistical models (linear model; random forests, RFs;
gradient-boosting machines, GBMs), and six predictor sets
(i.e. different combinations of raw reflectance, vegetation in-
dices, and canopy height). Canopy height information can
be derived from UAS sensors but was not available in our
study. Therefore, we tested the added value of this struc-
tural information with in situ measured bulk canopy height
data. A combined field sampling and flight campaign was
conducted in April 2018 at different grassland sites in south-
ern Germany to obtain in situ and the corresponding spec-
tral data. The hyper-parameters of the two machine learning
(ML) approaches (RF, GBM) were optimized, and all model
setups were run with a 6-fold cross-validation. Linear mod-
els were characterized by very low statistical performance
measures, thus were not suitable to estimate DM and plant

N concentration using UAS data. The non-linear ML algo-
rithms showed an acceptable regression performance for all
sensor–predictor set combinations with average (avg; cross-
validated, cv) R2

cv of 0.48, RMSEcv,avg of 53.0 g m2, and
rRMSEcv,avg (relative) of 15.9 % for DM and with R2

cv,avg of
0.40, RMSEcv,avg of 0.48 wt %, and rRMSEcv, avg of 15.2 %
for plant N concentration estimation. The optimal combina-
tion of sensors, ML algorithms, and predictor sets notably
improved the model performance. The best model perfor-
mance for the estimation of DM (R2

cv = 0.67, RMSEcv =

41.9 g m2, rRMSEcv = 12.6 %) was achieved with an RF
model that utilizes all possible predictors and REM sen-
sor data. The best model for plant N concentration was a
combination of an RF model with all predictors and SEQ
sensor data (R2

cv = 0.47, RMSEcv = 0.45 wt %, rRMSEcv =

14.2 %). DM models with the spectral input of REM per-
formed significantly better than those with SEQ data, while
for N concentration models, it was the other way round. The
choice of predictors was most influential on model perfor-
mance, while the effect of the chosen ML algorithm was
generally lower. The addition of canopy height to the spec-
tral data in the predictor set significantly improved the DM
models. In our study, calibrating the ML algorithm improved
the model performance substantially, which shows the im-
portance of this step.
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1 Introduction

Grasslands are import ecosystems covering about 40 % of
the global land area (excluding Antarctica and Greenland)
(White et al., 2000). In pre-Alpine (i.e. the hilly Alpine fore-
land) and Alpine landscapes (i.e. the core Alps), grasslands
are a dominant element. (Pre-)Alpine grassland ecosystems
provide a variety of goods and services (Egarter Vigl et al.,
2016) such as food and forage for livestock production, lead-
ing to a high economic value (Egarter Vigl et al., 2018; Gib-
son, 2009; White et al., 2000). At the same time, grassland
plants and soils play a significant role in carbon (C) and nitro-
gen (N) cycling (Gibson, 2009; Wiesmeier et al., 2013) and
are improving water purification and soil stability (Lamarque
et al., 2011). Furthermore, mountain grasslands are among
the most species-rich ecosystems in Europe and high in en-
demism (Ewald et al., 2018; Väre et al., 2003; Veen et al.,
2009; White et al., 2000). With the agricultural intensifica-
tion in the lowlands, mountain grasslands act increasingly as
a sanctuary for species that were common throughout Eu-
rope (European Environmental Agency, 2010). Therefore,
grasslands in mountain areas have important environmental
and biological as well as aesthetic functions (Fontana et al.,
2014).

Besides changing climatic conditions, human intervention
proved to be an equally important driver of changing ecosys-
tem functioning in managed (pre-)Alpine grasslands (Rossi
et al., 2020; Schirpke et al., 2017; Spiegelberger et al., 2006;
Walter et al., 2012). The knowledge about grassland yields
(biomass) and fodder quality is critical for the management
of grasslands and livestock, e.g. with regard to harvest time
and frequency, stocking rates, or timing and amount of fer-
tilizer application (Capolupo et al., 2015; Primi et al., 2016).
Grassland quality with respect to the nutritive value of for-
age is assessed by key chemical parameters including crude
protein or N, fibre, organic matter digestibility (OMD), and
metabolizable energy (ME) (Pullanagari et al., 2016, 2013).

On the field scale, information needs of farmers are closely
related to different national implementations of the European
Nitrates Directive (Council Directive 91/676/EEC of 12 De-
cember 1991), influencing management practices and eco-
nomic revenues. On the regional scale, ecosystem character-
istics such as the N balance and associated losses of green-
house gases and N leaching needs to be assessed by authori-
ties.

N uptake by plants is the highest N flux in pre-Alpine
grasslands (Schlingmann et al., 2020; Zistl-Schlingmann et
al., 2020). Thus, N uptake in relation to fertilization rates rep-
resents an important measure for optimizing grassland man-
agement on a farm and regional scale, as decision-making is
getting more and more complex due to legislation and cli-
mate change (e.g. drought effects). Hence, a thorough map-
ping, monitoring, and assessment of grassland traits such as
above-ground biomass (dry matter, DM) and chemical com-
position parameters (e.g. plant N concentration) are required

to ensure the preservation of grassland ecosystems and their
sustainable use. However, spatially explicit and accurate in-
formation on grassland biomass and quality on a field and
regional scale is lacking. Robust and reliable methods and
applications for grassland monitoring are needed, which ide-
ally scale well and are cost-effective.

Considering the diversity and the large area covered by
grasslands, traditional techniques based on field sampling
or proximal sensing (e.g. field spectrometers) reach their
limits when aiming for a regional assessment of grassland
traits (Wachendorf et al., 2017). Here, remotely sensed data
from satellites are increasingly established as promising data
sources for a continuous and comprehensive mapping of veg-
etation parameters. Green vegetation can be monitored con-
tinuously using its spectral-reflectance properties acquired
by optical sensors (Atzberger, 2013; Baret and Buis, 2008).
The utilization of satellite information is of high value in par-
ticular when large and/or remote areas need to be studied.
Also the fast data collection and processing, the relatively
low costs of many remote sensing data products (Wachen-
dorf et al., 2017), and time series of well-calibrated satellite
sensors are advantageous.

However, while emerging services such as the Coperni-
cus Land Monitoring Service provide land cover informa-
tion at an unprecedented spatial and temporal resolution,
these products still do not provide the necessary spatially de-
tailed information in specific areas such as mountain regions.
Mountains are often characterized by small and heteroge-
neous grassland patches, a high overall cloud occurrence,
and frequent cloud formation at specific locations. Further-
more, steep terrain leads to shadows, often permanently af-
fecting the same areas given the constant acquisition time
of most satellites. Even outside permanently shadowed ar-
eas, bidirectional reflectance distribution function (BRDF)
effects result from the highly variable sun–sensor–terrain ge-
ometries (Richter, 1998). Together, these factors limit the re-
liability of spaceborne observations in mountainous areas.
Airborne remote sensing data have occasionally been used
in the past to match the required spatial scale and to explore
the increased radiometric resolution of hyperspectral sensors
(Atzberger et al., 2015; Burai et al., 2015; Darvishzadeh et
al., 2011). But airborne data are still affected by the above-
mentioned weather- and topography-related challenges. Fur-
thermore, they are associated with higher costs for the users
if there are no data available for the study region from other
flight campaigns.

Remotely sensed data from unmanned aircraft systems
(UASs) are a promising possibility to overcoming satellite-
and airborne-specific issues due to their high flexibility in
flight planning, the very high spatial resolution (lower cen-
timetre range, depending on flight height), and the availabil-
ity of some low-cost multispectral systems. Vegetation traits
can be mapped under challenging conditions on the field
scale applying UASs (Maes and Steppe, 2019). BRDF in-
formation can be derived from UAS sensors – similar to tra-
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ditional airborne campaigns – as data are usually flown with
high overlap, providing additional information (Koukal and
Atzberger, 2012). However, besides their advantages, data
acquisition with UASs also has some limitations. Most UASs
cannot be operated under moist and windy conditions, and
legal restrictions of the country and study regions need to
be considered. Changing illumination (e.g. through clouds
and variations in solar angle) affects the quality of imagery,
making a sound radiometric calibration an essential process-
ing step. Accordingly, the standardization and comparability
of sensors and workflows are an issue, especially when ac-
counting for the quality of low-cost sensors (Aasen et al.,
2018; Assmann et al., 2018; Olsson et al., 2021; Poncet et
al., 2019; Salamí et al., 2014).

Previous studies using UAS data have looked into the map-
ping of biophysical parameters such as leaf area index (LAI)
(Verger et al., 2014; Yao et al., 2017), chlorophyll (Jay et
al., 2017), biomass (Näsi et al., 2018; Viljanen et al., 2018),
plant density (Jin et al., 2017), and canopy height (Song and
Wang, 2019; Ziliani et al., 2018) as well as combinations
of these parameters (Jay et al., 2019). However, most UAS
studies investigate the mapping of plant traits in monocul-
tural crop stands, while multispecies systems such as natu-
ral or cultivated permanent grassland ecosystems like in pre-
Alpine regions have been studied less often. Notable excep-
tions are Bareth and Schellberg (2018), Grüner et al. (2019),
Lussem et al. (2019), Wang et al. (2017), and Zhang et
al. (2018). Even fewer studies investigate the potential of
UAS-borne sensor data for the estimation of grassland qual-
ity. Capolupo et al. (2015) estimated various biochemical
plant traits (crude protein, crude ash, crude fibre, sodium
and potassium concentration, metabolic energy) from UAS-
acquired hyperspectral images (400–950 nm) of experimen-
tal grassland plots in Germany. The authors compared the
use of linear regression with narrowband vegetation indices
(VIs) and partial least squares regressions (PLSRs), conclud-
ing that PLSRs yielded better results for biochemical param-
eters (R2 ranging from 0.21 for sodium to 0.80 for metabolic
energy). Wijesingha et al. (2020) investigated crude protein
and acid detergent fibre of eight grassland sites in Hesse
(Germany) using a hyperspectral sensor (450–998 nm). Five
predictive regression algorithms were tested, of which the
support vector regression achieved the best result for crude
protein estimation (normalized RMSE= 10.6 %) and a cu-
bist regression model proved best for acid detergent fibre es-
timation (normalized RMSE= 13.4 %). Although these stud-
ies achieved promising results for forage quality estimation,
they rely on hyperspectral data.

There are far fewer studies available utilizing cheaper
UAS-borne multispectral data to estimate grassland quality
parameters. Caturegli et al. (2016) utilized the normalized
difference vegetation index (NDVI) calculated from multi-
spectral sensor (Tetracam ADC Micro) data in a linear re-
gression to estimate the N status of three turfgrass species.
Depending on the species, R2 varied between 0.66 and 0.86.

Hence, the potential of low-cost multispectral UAS-borne
data for field-scale mapping and assessment of multispecies
grasslands is not yet fully tested and exploited.

Thus, the objective of this study is to evaluate the potential
of low-cost UAS data for estimating DM and plant commu-
nity N concentration of managed pre-Alpine grasslands. The
multispectral Parrot Sequoia sensor (SEQ) has been applied
in several vegetation mapping/monitoring studies in the agri-
cultural context (e.g. Grüner et al., 2020; Guan et al., 2019;
Handique et al., 2017; Matsumura, 2020; Moncayo-Cevallos
et al., 2018; Stroppiana et al., 2018). However, some associ-
ated quality issues have been reported (Olsson et al., 2021;
Poncet et al., 2019). Therefore, we want to compare the per-
formance of the SEQ sensor with another low-cost multi-
spectral sensor, namely the MicaSense RedEdge-M (REM).
We used statistical learning algorithms to build regression
models and estimated DM and N over the whole of the UAS
scenes. We utilized the multispectral data of the two UAS
sensors together with in situ data of DM, N concentration,
and bulk canopy height (CH) from a test campaign in April
2018 on sites in southern Germany. Additionally to the mul-
tispectral data, we evaluated the importance of canopy height
as a predictor, primarily to see if it could improve the predic-
tive performance of the models for our study region. In our
study, we addressed the following research questions:

– Is the spectral information of the UAS sensors sufficient
to estimate and map the spatial pattern of DM and N
concentration on managed pre-Alpine grasslands?

– How important is the calibration of hyper-parameters of
the tested machine learning algorithms for the model
performance?

– What are the effects of different sensors, statistical mod-
elling approaches, and predictor sets on the predictive
capabilities of the models?

2 Material and methods

2.1 Study area, sampling design, and measurements of
grassland traits

The study area is located in southern Germany (Fig. 1),
within the German Terrestrial Environmental Observato-
ries (TERENO) Pre-Alpine Observatory (Kiese et al., 2018;
Zacharias et al., 2011). The region is characterized by a warm
temperate climate, i.e. Cfb climate zone according to the
Köppen–Geiger climate classification (Rubel et al., 2017).
For the period 1981–2010 the mean annual air temperature
at the study sites was between 8.0 and 8.6 ◦C (DWD Cli-
mate Data Center, 2019b), and mean annual precipitation
was between 1008 and 1419 mm (DWD Climate Data Cen-
ter, 2019a). Field data were acquired at 10 plots on managed
grasslands (Table 1). The plots are situated on the three sites
“Fendt” (FE, 600 m a.s.l.), “Rottenbuch” (RB, 700 m a.s.l.),
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and “Eschenlohe” (EL, 630 m a.s.l.). Care was taken to in-
clude different grassland types and management practices
in order to render robust and transferable models also for
our single campaign. The plots represent a variety of man-
agement intensities ranging from very extensively managed
grasslands with no fertilizer application and just one cut per
year to very intensively managed grasslands with five cuts
and five slurry applications per year. A species inventory in
June 2020 characterized 9 out of 10 plots as Arrhenathere-
tum elatioris, while 1 was classified as Caricion davallianae
grasslands (Table 1). Figure 2 provides an overview of the
workflow of this study. Details on the different working steps
are presented in the following paragraphs and sections.

The field campaign with UAS flights and vegetation sam-
pling took place from 24–25 April 2018. The phenologi-
cal stage of the plots ranged from principal growth stage 1
(leaf development) to 4 (development of harvestable vege-
tative plant parts) (Table 1). After the UAS flights, at each
site (FE, RB, EL) up to four 30 m× 30 m plots (FE1, FE2,
F3, FE4, RB1, RB2, RB3, EL1, EL2, EL3) were sampled
at 9 to 12 georeferenced subplots of 0.25 m× 0.25 m. Bulk
canopy height (CH, in cm) was measured with a rising plate
meter. The vegetation within the subplot was clipped down
to stubble height (3 cm). In the lab, the vegetation samples
were sorted into the plant functional types of non-green veg-
etation, legumes, non-leguminous forbs, and graminoids. Af-
ter the samples were dried in an oven at 65 ◦C until constant
weight was achieved, the dry weight was determined, and
the dry biomass per area was calculated (dry matter, DM, in
g m−2). For the determination of mean plant community ni-
trogen concentration (plant N concentration, mass-based, in
wt %), the dried vegetation samples were milled and anal-
ysed with an elemental analyser (vario Max cube, Elementar
Analysensysteme GmbH, Germany). The reader is referred
to the corresponding data paper (Schucknecht et al., 2020a)
for more detailed information on the sampling, sample pro-
cessing, and analysis.

From the collected in situ data we used the informa-
tion from the single subplots to develop the models (see
Sect. 2.3). Canopy height (CH) was used as a predictor vari-
able, and DM and plant N concentration were response vari-
ables (Fig. 2).

2.2 Acquisition and (pre-)processing of UAS-borne
data

2.2.1 UAS flights

Two different multispectral sensors were tested for this ex-
periment: the four-band Parrot Sequoia (SEQ; Parrot Drones
SAS, Paris, France) and the five-band MicaSense RedEdge-
M (REM; MicaSense Inc., Seattle, USA) (Table 2). For mea-
suring the incoming solar radiation, both sensors were ac-
companied by irradiance sensors (“sunshine sensors”) that
were attached at the top of the drones. This information was

used for image calibration during data processing. Before
each flight, data from sensor-specific calibration targets were
taken for radiometric calibration of the multispectral images
during the processing.

The UAS flights over the FE and RB sites took place on
24 April 2018 between 09:50 and 16:30, and the ones over
the EL site (EL-North and EL-South) were on 25 April 2018
between 09:00 and 10:50. The SEQ was operated on a
fixed-wing UAS (eBee, senseFly, Cheseaux-sur-Lausanne,
Switzerland) with automated flight control. The flight height
was set to 80 m, leading to a ground sample distance of
8.7–12.9 cm (depending on the terrain relief). The eBee was
flown with a regular grid flight pattern with an image overlap
of 75 %.

The REM was operated on a multicopter UAS (DJI Ma-
trice 200, SZ DJI Technology Co., Ltd., Shenzhen, China) by
an external company (Globe Flight GmbH, Germany). Due
to logistical reasons only the FE and RB sites could be cov-
ered. The multicopter was flown manually at a flight height
of about 70 m following a regular grid with an overlap of the
single images of > 80 %. The ground sample distance of the
different REM flights was between 7.7–8.8 cm.

For all flights with the different sensors, up to 10 ground
control points (GCPs) were distributed in the overflight area
of the UAS for georeferencing. The exact coordinates of
the GCPs’ centres were obtained with a global navigation
satellite system (GNSS) receiver (Viva GNSS GS 10, Leica
Geosystems AG, Switzerland) run in static mode for 10 min
which resulted in an accuracy of 0.3 cm in the horizontal
direction and 0.5 cm in the vertical direction in the post-
processing mode (Datasheet of Leica Viva GNSS GS10 re-
ceiver, 2020).

2.2.2 Processing of UAS images

The processing of the UAS images was done with the
PIX4Dmapper Pro software (Pix4D S.A., Prilly, Switzer-
land) and consisted of three steps. The photogrammetric pro-
cessing was based on a structure from motion (SfM) ap-
proach. First, keypoints of the images were extracted and
matched, and the internal (e.g. focal length) and external
(e.g. orientation) parameters of the camera were calibrated.
Georeferencing was done with the integration of the mea-
sured GCPs and their identification on several input pictures.
The root mean square error (RMSE) of the georeferencing
varied between 1.9 and 4.7 cm according to the Pix4D pro-
cessing reports. As a result of the first step, georeferenced au-
tomated tie points were created. In the second step, the point
cloud densification was done corresponding to the Pix4D
standard template for agricultural applications. The final step
included the mosaicking of the adjusted and calibrated sin-
gle images to the orthomosaics of each single band. The fi-
nal spatial resolution of the multispectral images was 9.6 cm
for FE, 10.2 cm for RB-North, 10.0 cm for RB-South, 8.7 cm
for EL-North, and 12.9 cm for EL-South for the SEQ data
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Figure 1. Location of the three study sites (white stars) in the study area in the south of Germany. EL: Eschenlohe, FE: Fendt, RB: Rottenbuch.
Major towns are indicated for reference (pink diamonds). Background: true-colour composite of Sentinel-2B images from 27 April 2018
(contains modified Copernicus Sentinel data from 2018, processed by ESA). Coordinate reference system used is EPSG:25832.

and 7.7 cm for FE, 8.8 cm for RB-North, and 8.2 cm for RB-
South for REM data. The radiometric correction of the input
images was done using the data of the irradiance sensor and
the reflectance panels.

Additional flights of the fixed-wing UAS equipped with
an RGB (red–green–blue) camera (Sony Cyber-shot WX
220, Sony Corp., Minato, Japan) were performed on all sites
to retrieve higher-resolution orthophotos (spatial resolution:
0.030 to 0.043 m) for the different sites of the study area.
The georeferenced high-resolution orthophotos were used
to manually extract the coordinates of the centre points of
the subplots (Schucknecht et al., 2020a). Afterwards, the re-
flectance values of the georeferenced multispectral images
from SEQ and REM were extracted and averaged for each
subplot using a 3 pixel× 3 pixel window around the cen-
tre point (Fig. 2, grey box). The 3 pixel× 3 pixel window
approximately corresponds to the size of the subplot. Due
to the high horizontal accuracy of the GNSS measurements
(0.3 cm) and the low RMSE of georeferencing (max 4.7 cm),
we expect just minor location errors.

Note that we could just use spectral information from
the obtained UAS images as predictors in the model devel-
opment. Theoretically, it is also possible to derive canopy
height information from high-resolution UAS-derived RGB
data by creating a digital surface model and subtracting
the digital terrain model (DTM) from it as e.g. shown by
Grüner et al. (2019) and Wijesingha et al. (2019). Poley
and McDermid (2020) emphasized the importance of a high-
quality DTM for deriving reliable vegetation structure esti-
mates from UAS imagery. Unfortunately, we did not have
such a high-quality DTM for our study sites and hence could
not derive UAS-based canopy height information. Therefore,
we used the in situ bulk CH as a substitute to build models
with CH as a predictor variable.

2.2.3 Vegetation indices

A set of different vegetation indices (VIs) was calculated
from the spectral bands (Supplement Table S1). The vari-
ous ratio (number of indices used n= 6), orthogonal (n= 1),
hybrid (n= 5), red-edge (n= 4), and modified chlorophyll

https://doi.org/10.5194/bg-19-2699-2022 Biogeosciences, 19, 2699–2727, 2022



2704 A. Schucknecht et al.: Biomass and nitrogen estimation with UAS data

Table 1. Site and plot characteristics partly taken from Schucknecht et al. (2020a). Mean annual climate parameters (MAP: mean annual pre-
cipitation height, MAT: mean annual temperature) were derived from the DWD Climate Data Center (DWD Climate Data Center, 2019a, b)
and correspond to the period 1981–2010. Grassland type and species richness (SR; i.e. number of vascular plant species) were obtained by
a species inventory in 2020 (Schuchardt and Jentsch, 2020). The phenological stage was determined by inspecting the photos of the plots
with respect to the dominant species (species abbreviated as LM for Lolium multiflorum, TR for Trifolium repens, LP for Lolium perenne, PP
for Poa pratensis, KP for Koeleria pyramidata, and FP for Festuca pratensis). Provided is the number of the principle growth stage (1: leaf
development (main shoot), 2: formation of side shoots/tillering, 3: stem elongation or rosette growth/shoot development (main shoot), 4: de-
velopment of harvestable vegetative plant parts or vegetatively propagated organs/booting (main shoot)) according to the BBCH (Biologische
Bundesanstalt für Land- und Forstwirtschaft, Bundessortenamt und Chemische Industrie) classification (Meier, 2018).

Site/plot
Elevation MAP MAT

Management Grassland type SR
Phenological

(m a.s.l.) (mm) (◦C) stage

Fendt (FE) 600 1008 8.6
FE1 5 cuts, no pasture, 4× slurry Arrhenatheretum elatioris 20 LM: 3
FE2 4 cuts, no pasture, 3× slurry Arrhenatheretum elatioris 15 LM: 3
FE3 5 cuts, no pasture, 4× slurry Arrhenatheretum elatioris 17 LM: 3
FE4 5 cuts, no pasture, 4× slurry Arrhenatheretum elatioris 19 TR: 2
Rottenbuch (RB) 750 1159 8.0
RB1 3–4 cuts, pasture, 4–5× slurry Arrhenatheretum elatioris 30 LP: 3
RB2 5 cuts, no pasture, 5× slurry Arrhenatheretum elatioris 25 PP: 3
RB3 1 cut, no pasture, no slurry Caricion davallianae 44 KP: 1
Eschenlohe (EL) 630 1419 8.0
EL1 1 cut, pasture, 2× slurry Arrhenatheretum elatioris 17 LP: 3
EL2 4 cuts, no pasture, 4× slurry Arrhenatheretum elatioris 23 LP: 3
EL3 3 cuts, no pasture, 2× slurry Arrhenatheretum elatioris 27 FP: 3–4

Table 2. Details about the two multispectral sensors used in this study. n/a: not applicable.

Parameter
Parrot Sequoia MicaSense RedEdge-M

(SEQ) (REM)

Spectral resolution (nm) central wavelength | band width

Blue n/a 475|20
Green 550|40 560|20
Red 660|40 668|10
Red edge 735|10 717|10
Near infrared (NIR) 790|40 840|40

Detector

Detector size, x, y (mm) 4.8× 3.6 4.8× 3.6
Number of recorded pixel, x, y 1280× 960 1280× 960

Lens

Focal length of lens (mm) 4 5.5
Aperture (f number) 2.2 2.8

(n= 4) indices were selected from the overview presented
in Asam (2014). In addition, hyperspectral indices dedicated
to chlorophyll (n= 6) were selected from the summary of
Ollinger (2011) and adapted to the multispectral data. In to-
tal, 26 VIs were calculated for REM data, and 18 were for
SEQ data (due to the missing blue band).

2.3 Model specifications for DM and plant N
concentration estimation

2.3.1 Model selection

Regression models were built to estimate DM and plant N
concentration based on multispectral UAS data and in situ
bulk canopy height information (Fig. 2, brown box corre-
sponding to model building, validation, and application).
Combinations of several regression algorithms and predic-
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Figure 2. Workflow of data acquisition in the field (blue-green); spectral data processing (grey); and model building, validation, and appli-
cation (brown). Response variables of the model are shown in pink, and predictor variables are in violet. Explanation of abbreviations: sam-
pling sites (FE: Fendt, RB: Rottenbuch, EL: Eschenlohe), predictor variables (B: blue band, G: green band, R: red band, RE: red-edge band,
NIR: near-infrared band, VIs: vegetation indices, CH: canopy height), dependent variables (DM: dry matter, N: nitrogen concentration), and
regression algorithms (GBM: gradient-boosting machine, RF: random forest, LM: linear model).

tor sets (PSs) were compared to see how different modelling
schemes affect the model performance. Two machine learn-
ing (ML) algorithms, namely gradient-boosting machines
(GBMs; Friedman, 2002, 2001) and random forests (RFs;
Breiman, 2001), were used in this study. They have been con-
firmed to be comparable to the other state-of-the-art (classic)
machine learning methods for remote sensing applications
(Caruana and Niculescu-Mizil, 2006; Fernández-Delgado et
al., 2019, 2014; Orzechowski et al., 2018). The two selected

algorithms are ensemble-based and have a relatively small
number of hyper-parameters (Bernard et al., 2009; Friedman,
2001; Probst et al., 2019). These ensemble-based ML algo-
rithms are known to be able to deal with a large number of
highly correlated features (e.g. spectral data and derived veg-
etation indices) and non-linear relationships without exces-
sive data pre-processing (Hengl et al., 2018). In addition to
them, a linear regression model (LM) was built to serve as a
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baseline statistical learning model in the model performance
comparison.

GBM (Friedman, 2002, 2001) is an ensemble of mod-
els based on the idea that weak learners can form a strong
learner. The algorithm is adding weak models using a gra-
dient descent process. Gradient boosting can take various
forms, i.e. different loss functions and optimization schemes.
In this study, we took the standard implementation from
Friedman (2001, 2002) following Greenwell et al. (2020).
GBM has a few tunable parameters, with the major param-
eters including number of trees (Ntree), learning rate, and
interaction depth (see Table 3), which are supposed to be
calibrated using domain data to avoid under- and overfitting
(Greenwell et al., 2020).

RF is a decision-tree-based ensemble algorithm that uses
bootstrap aggregation (i.e. bagging) and the random sub-
space method (Breiman, 2001). For each decision tree a new
bootstrap sample of the training data is created, and the tree is
fitted to the data. RF has three hyper-parameters, namely the
number of trees (Ntree), the number of randomly selected pre-
dictors in each split of the decision tree (mtry), and the min-
imum number of samples in terminal nodes (node size). It is
suggested that for a good model performance the number of
trees need to be large enough but should not yield to overfit-
ting (Strobl et al., 2009). The parameter mtry should be care-
fully calibrated, in particular when predictors are strongly
correlated (e.g. Bernard et al., 2009; Kuhn and Johnson,
2013; Probst et al., 2019; Strobl et al., 2009). The node size
determines how many samples a tree needs to grow without
being pruned.

2.3.2 Hyper-parameter calibration

We parameterized the machine learning algorithms using the
nested cross-validation scheme (Arlot and Celisse, 2010; Va-
balas et al., 2019; Varma and Simon, 2006) (Table 3). In the
nested design, the optimizer in the calibration routine does
not see the information included in the hold-out fold. The
calibration is done for each of the 10 iterations for randomly
split 6 cross-validation folds. For each training fold, parame-
ter searching was done in an internal 5-fold cross-validation
using the root mean square error (RMSE) as a penalty func-
tion.

To minimize the computing time, we used an effi-
cient parameter space searching algorithm named (sequen-
tial) model-based optimization (MBO) (Bischl et al., 2014;
Martinez-Cantin et al., 2007; Shahriari et al., 2016). In this
algorithm, an optimizer traverses the parameter space guided
by a naive Bayesian parameter proposal function, which
identifies a candidate region that is likely to include the op-
timal parameter combinations. In its iterative process, a new
parameter proposal is made based on an acquisition function,
or “infill”, which is supposed to offer the best improvement
in the next step. We used the “confidence bound” as infill
for GBM and RF. This infill proposes a parameter combi-

nation to minimize uncertainty around the good parameter
estimates (Bischl et al., 2014). It tries to evaluate the param-
eter region with large uncertainty with low errors (i.e. good
performance), thus expects to reach a large improvement if
searched in the next iteration. In this study, parameter values
are proposed and evaluated in 500 iterations sequentially, and
the final values are selected by the lowest error. The impact of
calibration is quantified by the difference between the initial
error (i.e. based on the random combination of the parame-
ters sampled from the prescribed ranges) and the best error,
which is defined by the lowest error achieved (Malkomes et
al., 2016; Swersky et al., 2013). Note that the calibration was
done for the 10 iterations individually; in each iteration the
nested six-folds share the calibrated parameters. Calibrated
values and their summaries are presented in Table S2 and
Figs. S2 and S3.

2.3.3 Predictor set definition

Six different sets of predictor combinations were used in the
models. The number of predictors differs for models using
SEQ and REM data and is provided in brackets below:

– PS1 – raw reflectance bands, using only raw reflectance
data from SEQ (n= 4) and REM (n= 5), baseline sce-
nario

– PS2 – vegetation indices (VIs), using just VI but not raw
reflectance bands (nSEQ = 18, nREM = 26)

– PS3 – raw reflectance bands and vegetation indices
(VIs) (nSEQ = 22, nREM = 31)

– PS4 – bulk canopy height (CH, from field measure-
ments), testing the sole use of CH as a reference for
structural information (n= 1)

– PS5 – raw reflectance bands and bulk canopy height
(CH, from field measurements), using spectral and
structural information (CH) (nSEQ = 5, nREM = 6)

– PS6 – raw reflectance bands, CH, and VI, all available
spectral and structural input data (nSEQ = 23, nREM =

32).

Bulk CH was selected as a predictor because we wanted
to test the effect of adding structural information; i.e. can the
addition of UAS-derived structural information to the spec-
tral information improve the estimation of DM and N con-
centration in pre-Alpine grasslands? Due to the missing dig-
ital CH model for our sites, we used the in situ bulk CH as
a substitute. With the in situ bulk CH data we can test the
effect of CH on the model results but cannot provide spatial
predictions in the form of maps. Hence, models using CH
(PS4–PS6) were excluded from spatial predictions.

Biogeosciences, 19, 2699–2727, 2022 https://doi.org/10.5194/bg-19-2699-2022



A. Schucknecht et al.: Biomass and nitrogen estimation with UAS data 2707

Table 3. Range of the hyper-parameters used in the calibration for gradient-boosting machines (GBMs) and random forests (RFs). The
calibration routine searches for the optimal parameter values within the prescribed ranges. Typical default values for the GBM from Greenwell
et al. (2020) and RF from Probst et al. (2019). The final calibrated hyper-parameters are presented in Table S2.

Algorithm Parameter Description Range Typical default values

GBM Shrinkage Learning rate (high values may introduce
sub-optimal performance, low values
slow learning)

[0, 1] 0.01 to 0.1

Interaction depth Maximum level of variable interactions [1, . . .,6] 3

Ntree Number of trees [2E3,. . ., 5E4] 1000

RF mtry Number of randomly selected variables
on each split

[1, . . .,Npredictors/2] Npredictors/3

Node size Minimum number of samples in terminal
nodes

[1, . . .,5] 5

Ntree Number of trees [5E2,. . ., 1E4] 1000

2.3.4 Input data for model development

We used data from FE and RB plots to train and test (inter-
nally validate) the regression models (n= 82 for DM; n= 81
for N). As REM data were not acquired at the EL site, field
data from the EL plots (n= 32) were excluded from the
model training. However, the field data from the EL plots
were used as an additional external validation of the models
utilizing data from the SEQ sensor (brown part of Fig. 2; see
Sect. 2.3.5).

2.3.5 Model evaluation procedure

To derive robust statistics, the regression models were built
using a 6-fold cross-validation and repeated 10 times with
random data splits. Each repetition is connoted as an “it-
eration” throughout the paper. For each iteration, the data
are again randomly split into six folds: five folds to train a
model and the hold-out fold to test the model. The corre-
sponding cross-validated evaluation metrics are denoted with
the subscript “cv”. The model evaluation metrics used in the
study are the averages from the test folds of the 10 iterations.
Ground observations from the EL site were used to validate
the models based on SEQ data without further site-specific
training – for this site REM data were unavailable (Fig. 2;
corresponding evaluation metrics indexed with the subscript
“val”). Evaluation metrics used are the coefficient of de-
termination of the validation (R2), root mean square error
(RMSE), relative RMSE (rRMSE), and bias (Bias) (Eqs. 1–
4). All metrics were averaged over the 10 iterations.

R2
= 1−

∑(
yi − ŷi

)2∑
(yi − y )2 , (1)

RMSE=

√∑(
ŷi − yi

)2
n

, (2)

rRMSE=
RMSE

ymax− ymin
, (3)

Bias=

∑(
ŷi − yi

)
n

, (4)

where y is an observed value, ŷ is a prediction, and n is the
number of samples. Relative RMSE is normalized by the ob-
served data range and used to compare regression models
with unequal data input following Richter et al. (2012).

2.3.6 Model implementation

We used GNU R 3.6 (R Core Team, 2021) for model im-
plementation. GBM was built using the R package “gbm3”
(Greenwell et al., 2020), and RF was built via the R package
“randomForest” (Breiman, 2001). Linear regression models
were built using all available predictors (LMfull) and the best
subset of predictors (LMbest) using variable selection. The
variable selection was done by an exhaustive search, i.e. eval-
uate the Akaike information criterion (AIC) (Akaike, 1973)
of all possible combinations via the “regsubsets” function in
the R package “leaps” (Lumley, 2020). Interactions among
the predictors were considered in the ML models but not ex-
plicitly in the linear models using interaction terms. We did
not include interaction terms in the LMs, as the linear models
with (first- and second-order) interaction yielded very large
prediction errors in the cross-validation scheme (results from
the preliminary analysis, not shown here).

2.3.7 Variable importance

In ML, measuring variable importance (Strobl, 2008) is a
standard way to evaluate an overall impact of a specific pre-
dictor, often among a large number of highly correlated pre-
dictors. In this study, we evaluated variable importance to see
how the different predictors overall contribute to the model
performance. It is our interest to identify if there is a small
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number of dominant predictors or rather a combination of
many predictors that contain the crucial information. We in-
vestigated the variable importance (VarImp) of the predictors
used in the ML regression models in each data and model
combination.

For each model, we collected variable-importance mea-
sures from each 6-fold cross-validation and averaged them;
this was repeated for the 10 iterations. As each iteration
yielded unequal model performance, the importance met-
rics of each iteration was normalized by R2 of each itera-
tion before averaging, which resulted in the mean VarImp
and its uncertainty range. Note that variable-importance mea-
sures are based on reduction in mean squared error (MSE)
but calculated differently for each ML algorithm. For GBM,
we used the relative influence measure suggested in Fried-
man (2001) and, for RF, permutation-based out-of-bag im-
portance of Breiman (2001). Various R packages were used
to calculate variable importance, depending on the algorithm
(Greenwell et al., 2020; Lumley, 2020; Meinshausen, 2017,
2006; R Core Team, 2021).

2.3.8 Mappings: spatial predictions of DM and N
concentration

Spatial predictions were calculated for models that do not
need CH data (i.e. PS1–PS3). We used the models to predict
DM and N values for the whole of the UAS scenes of the
three sites. The models are with 10 iterations, thus predicted
10 times, and averages and the coefficient of variations are
reported. Note that spatial plant trait estimates may be only
valid for pixels of unshaded and vegetated grassland.

2.3.9 Statistical tests for the marginal model
performance

Model performance metrics were averaged over sensors,
model algorithms, and predictor sets to derive marginal per-
formance with respect to each component. We used non-
parametric statistical methods to test the differences in R2

and RMSE. For sensors and algorithms (ntreat = 2), we used
the non-parametric Wilcoxon signed rank test (Wilcoxon,
1945). For predictor sets (ntreat = 4), we used the non-
parametric Kruskal–Wallis rank sum test (Kruskal and Wal-
lis, 1952) to test overall effect and Dunn’s rank sum test
(Dunn, 1964) to carry out post hoc tests between treatments.
We used R packages “stats” and “dunn.test” (Dinno, 2017; R
Core Team, 2021).

3 Results

3.1 Variable interdependencies

Correlations between variables measured in the field can af-
fect the modelling of DM and N concentration or can even
be exploited to improve the modelling. We created scatter-

plots of selected variables (Fig. 3) and calculated the Spear-
man correlation coefficient of canopy height and DM or
N concentration, respectively (Fig. 3a, b). Canopy height
values varied between 3 and 21 cm (median= 10 cm, n=

116) and were significantly correlated with DM (r = 0.69,
p value < 0.01) but not with N concentration (r = 0.02,
p value > 0.1). We also found no statistically significant
correlation between DM and N concentration (r = 0.12,
p value > 0.1; Fig. 3c). Based on these results, we would ex-
pect that canopy height could improve the modelling of DM
but not of N concentration and that any successful modelling
of N concentration does not simply reflect a correlation of
the spectral data with DM.

3.2 Biophysical and spectral characteristics of field
samples

The spectral discrimination of grassland samples with dif-
ferent levels of DM or N concentration is a prerequisite for
the estimation of DM and N concentration with multispectral
data. In our study, the DM values of the measured subplots
varied between 7 and 340 g m−2 (median= 113 g m−2, n=

114), and for plant N concentration it was between 1.2 wt %
and 4.4 wt % (median= 2.9 wt %, n= 113). Despite the fact
that we targeted homogenous grassland plots, there was a
distinct spatial within-plot variability (Schucknecht et al.,
2020a), which however can be reflected by the spatial res-
olution of the UAS-based multispectral data. In general, the
spectral profiles of selected subplots (Fig. 4) follow the ex-
pected shape of vegetated surfaces with low reflectance val-
ues in the visible range of the spectrum and higher reflectance
values in the NIR region. Subplots with different DM and N
concentration values show slightly different spectral profiles,
with the highest standard deviations of the reflectance values
in the red-edge and NIR band. However, the spectral profiles
of subplots with different DM or N concentration values do
not follow a clear pattern, e.g. with monotonically increasing
reflectance of the NIR band with increasing DM. There is a
positive linear relationship between NIR reflectance and DM,
but this is not very strong (Fig. 5). Additionally, these spec-
tral profiles have altered patterns for the two sensors (Fig. 4),
with the SEQ sensor generally showing higher reflectance
values (Fig. S1).

3.3 Hyper-parameter calibration

During the calibration process, the model performance in-
creased, as improved parameter sets are used in the course of
the iteration procedure (Fig. S2). Compared to initial model
performance, which is based on 12 randomly sampled pa-
rameter sets from the given ranges (i.e. first 12 time steps in
calibration; Bischl et al., 2014), the magnitude of improve-
ment on average was 11 %. The difference between the low-
est error achieved and the initial error is 19.4 % (GBM) and
5.5 % (RF) in DM estimation and 16.1 % (GBM) and 2.9 %
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Figure 3. Scatterplots of field measurements with linear regression line. (a) Canopy height vs. DM. (b) Canopy height vs. plant N concen-
tration. (c) DM vs. plant N concentration. Spearman correlation coefficients and corresponding p values are indicated in the figures. The
shaded area corresponds to the standard error bounds of the fitted linear regression line.

Figure 4. Spectral profiles of subplots with different levels of DM (a) and N concentration values (b). Shown are the profiles of the subplot
samples with min and max values as well as the ones that have DM or N concentration values that approximately correspond to the 25th,
50th, and 75th percentile.

(RF) in N concentration estimation, averaged for the REM
and SEQ sensor. Thereby the best error (i.e. the smallest error
achieved by the ith iteration) did not substantially decrease as
the optimizer approaches the global optimum after 400 itera-
tions in most of the cases (Fig. S2). However, in some cases
better parameter values were still discovered at the very end
of the iteration procedure (e.g. PS1 in Fig. S1a). RF param-
eters changed less than GBM parameters along the iterations
(Fig. S1b and d). Furthermore, parameter proposals are less
fluctuating for RF than for GBM as shown in the distance
between consecutive parameter proposals (Fig. S3).

3.4 Model results

Our results indicate that the ML algorithms performed sub-
stantially better than the linear models in estimating DM and
plant N concentration (Tables 4, 5, S3). ML algorithms yield
an average regression performance of 0.44 for R2

cv. Through-
out the sensor–predictor set combinations, average (avg) R2

cv
was 0.48 for DM (rRMSEcv,avg = 15.9 %; Table 4) and 0.40
for plant N concentration (rRMSEcv,avg= 15.2 %; Table 5).
In contrast, the “baseline” linear models are very low in R2

cv,
seemingly unsuitable to estimate DM and plant N concentra-
tion (all models R2

cv ≤ 0.1; Table S3). Therefore, we focus

in the following on the detailed results from the ML models
(Figs. 5, 6; Tables 4, 5) and further investigate their charac-
teristics.

The optimal combination of sensors, predictor sets, and
ML algorithms leads to a notable increase in model per-
formance compared to the average performance of all ML
models – for both DM and plant N concentration (Ta-
bles 4, 5; Fig. 5). The best model for the estimation of DM
(R2

cv = 0.67, rRMSEcv = 12.6 %) is an RF model that uti-
lizes all possible predictors (PS6) with REM sensor data
(Fig. 6a). The best model for plant N concentration (R2

cv =

0.47, rRMSEcv = 14.2 %) is achieved by the combination of
RF, the PS6 predictor set, and SEQ input data (Fig. 6d).

The bias of our tested ML models varies between −2.5
and 2.2 g m−2 for DM (Biascv,avg = 0.1 g m−2) and between
−0.04 wt % and 0.01 wt % for N concentration (Biascv,avg =

0.00 wt %). Although overall biases are low (Biascv,avg =<

1 % of the mean DM and mean N observation), the models
tend to underestimate high DM and high N plant concentra-
tion (Figs. 6, S7, and S8).
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Figure 5. Scatterplots of NIR reflectance vs. DM with linear model fit (Spearman correlation coefficient and p value indicated in the plot)
(a) for REM sensor and (b) for SEQ sensor. Note: there are fewer data points for REM, as there were no flights with this sensor at the
Eschenlohe site.

Figure 6. Overview of modelling results for all tested combinations of parameters (DM, plant N concentration), sensors (REM, SEQ), ML
algorithms (GBM, RF), and predictor sets (PS1: raw reflectance data, PS2: VI, PS3: raw reflectance data+VI, PS4: canopy height, PS5: raw
reflectance data+ canopy height, PS6: raw reflectance data+VI+ canopy height). The bars show the mean of the cross-validated coefficient
of determination (R2), and the error bars represent± standard deviation of the 10 iterations per model.

3.4.1 Effect of different sensors

The effect of the multispectral sensor on the model per-
formance varied by the different grassland parameters. For
DM, the models that built on REM input data perform better
(R2cv,avg= 0.52, RMSEcv = 50.6 g m−2) than models that
built on SEQ data (R2

cv,avg = 0.39, RMSEcv = 57.5 g m−2)

averaged over algorithms and predictor sets (Table 4). This
difference is statistically significant for R2

cv and RMSEcv
(p value < 0.01; Fig. S4a, c). Additionally, we tested the
models built on REM data without the blue band to see
if the performance gap is due to the additional blue band
of REM. The results show generally better performance
of the REM-without-blue-band-based models (R2cv,avg=
0.54) than SEQ-based models (Table S3), suggesting that the
better performance of models using REM data is not (en-
tirely) related to the additional blue band.

Considering the estimation of plant N concentration (Ta-
ble 5), models utilizing SEQ input data perform gener-
ally better (R2cv,avg= 0.43, RMSEcv = 0.50 wt %) than
those using REM input data (R2cv,avg= 0.32, RMSEcv =

0.52 wt %), and these differences are statistically signifi-

cant for R2
cv but not for RMSEcv (p value < 0.01 for R2

cv,
p value= 0.092 for RMSEcv; Fig. S4b, d).

3.4.2 Effect of predictor sets and variable importance

The selection of the subsets of predictors clearly influences
the performance of DM models (Figs. 5, S6, S7; Tables 4,
A1). For REM-based models, all predictor sets that only
use spectral data (i.e. PS1: raw reflectance; PS2: VI; PS3:
raw reflectance+VI) show a similar and slightly higher per-
formance than the predictor set using only canopy height
(PS4). For SEQ-based models, the use of VI (PS2, PS3) or
canopy height only (PS4) improves the model performance
compared to the baseline scenario just using raw reflectance
data (PS1). The best model results for REM- and SEQ-based
models are obtained by combining spectral data with canopy
height information (PS5, PS6). These predictor sets show
significantly higher R2

cv and lower RMSEcv than predictor
sets with spectral data (PS1, PS2, PS3) or canopy height in-
formation only (PS4).

For plant N concentration (Figs. 6, S6, S8; Table A1), the
models using spectral predictors (PS1, PS2, PS3) show a sim-

Biogeosciences, 19, 2699–2727, 2022 https://doi.org/10.5194/bg-19-2699-2022



A. Schucknecht et al.: Biomass and nitrogen estimation with UAS data 2711

Table 4. Overview of the DM models and cross-validation evaluation metrics for all combinations of sensors (REM, SEQ), predictor sets
(PS1: raw reflectance data, PS2: VI, PS3: raw reflectance data+VI, PS4: canopy height, PS5: raw reflectance data+ canopy height, PS6: raw
reflectance data+VI+ canopy height), and ML algorithms (GBM, RF). The unit of RMSEcv and absolute Biascv is grams per square metre.
All metric values of single-sensor–predictor set–algorithm combinations are averages of the 10 iterations. Best results per sensor in bold. The
first 11 rows per parameter show aggregated median results (e.g. median of all DM models). Nobs = 82.

Parameter Sensor Predictors Model R2
cv RMSEcv rRMSEcv Biascv

DM All All All 0.48 53.0 15.9 0.10
REM All All 0.52 50.6 15.2 0.34
SEQ All All 0.39 57.5 17.3 0.00
All All GBM 0.47 53.3 16.0 0.13
All All RF 0.52 50.6 15.2 0.09
All PS1 All 0.38 57.6 17.3 0.25
All PS2 All 0.43 55.0 16.5 −0.37
All PS3 All 0.43 55.5 16.7 −0.28
All PS4 All 0.39 55.0 16.5 −0.06
All PS5 All 0.58 48.0 14.4 0.92
All PS6 All 0.59 46.5 14.0 0.14

REM PS1 GBM 0.47 53.9 16.2 0.34

RF 0.50 51.8 15.6 1.89

PS2 GBM 0.47 53.4 16.0 −0.85

RF 0.54 49.5 14.9 0.94

PS3 GBM 0.49 52.6 15.8 −0.96

RF 0.55 49.2 14.8 0.34

PS4 GBM 0.40 53.3 16.0 −0.07

RF 0.38 55.1 16.6 −0.09

PS5 GBM 0.59 47.8 14.4 2.07

RF 0.61 46.0 13.8 1.45

PS6 GBM 0.63 44.6 13.4 0.10

RF 0.67 41.9 12.6 2.19

SEQ PS1 GBM 0.30 61.3 18.4 0.16

RF 0.30 61.8 18.6 −0.97

PS2 GBM 0.38 59.0 17.7 −2.48

RF 0.40 56.7 17.0 0.10

PS3 GBM 0.36 58.3 17.5 −0.48

RF 0.37 58.4 17.6 −0.09

PS4 GBM 0.44 54.8 16.5 0.19

RF 0.35 60.7 18.2 −0.06

PS5 GBM 0.54 49.5 14.9 0.40

RF 0.56 48.2 14.5 −0.09

PS6 GBM 0.55 50.4 15.1 0.19

RF 0.56 48.4 14.5 0.07
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Table 5. Overview of the plant N concentration models and cross-validation evaluation metrics for all combinations of sensors (REM, SEQ),
predictor sets (PS1: raw reflectance data, PS2: VI, PS3: raw reflectance data+VI, PS4: canopy height, PS5: raw reflectance data+ canopy
height, PS6: raw reflectance data+VI+ canopy height), and ML algorithms (GBM, RF). The unit of RMSEcv and absolute Biascv is weight
percent. All metric values of single-sensor–predictor set–algorithm combinations are averages of the 10 iterations. Best results per sensor in
bold. The first 11 rows per parameter show aggregated median results (e.g. median of all DM models). Nobs = 81.

Parameter Sensor Predictors Model R2
cv RMSEcv rRMSEcv Biascv

N All All All 0.40 0.48 15.2 0.00
REM All All 0.36 0.51 16.3 0.00
SEQ All All 0.43 0.48 15.1 0.00
All All GBM 0.36 0.51 16.3 0.00
All All RF 0.42 0.47 14.9 0.00
All PS1 All 0.39 0.48 15.3 0.01
All PS2 All 0.39 0.49 15.6 0.00
All PS3 All 0.42 0.48 15.1 0.00
All PS4 All 0.04 0.66 21.1 0.00
All PS5 All 0.43 0.46 14.7 0.00
All PS6 All 0.43 0.47 15.0 −0.01

REM PS1 GBM 0.31 0.51 16.3 0.00

RF 0.38 0.49 15.4 0.01

PS2 GBM 0.31 0.54 17.3 −0.02

RF 0.40 0.48 15.2 −0.01

PS3 GBM 0.34 0.51 16.3 −0.03

RF 0.41 0.47 15.0 0.00

PS4 GBM 0.05 0.57 18.2 0.00

RF 0.03 0.71 22.5 0.00

PS5 GBM 0.36 0.52 16.6 −0.01

RF 0.43 0.47 14.8 0.00

PS6 GBM 0.36 0.52 16.4 −0.04

RF 0.43 0.46 14.7 −0.01

SEQ PS1 GBM 0.39 0.48 15.2 0.01

RF 0.40 0.47 15.0 0.01

PS2 GBM 0.38 0.50 15.9 0.00

RF 0.43 0.46 14.8 0.00

PS3 GBM 0.42 0.48 15.2 0.00

RF 0.44 0.46 14.7 0.00

PS4 GBM 0.05 0.62 19.7 0.00

RF 0.02 0.72 22.9 0.00

PS5 GBM 0.44 0.46 14.6 0.01

RF 0.43 0.46 14.7 0.00

PS6 GBM 0.43 0.48 15.2 −0.01

RF 0.47 0.45 14.2 0.00
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Figure 7. Observed vs. estimated parameter values for the best performing predictor set PS6 (raw reflectance data+VI+ canopy height)
comparing GBM and RF models (a) for DM with REM data, (b) for DM with SEQ data, (c) for N concentration with REM data, and (d) for
N concentration with SEQ data. The error bars reflect 90 % prediction intervals, defined by 5th and 95th percentiles of the 10 iterations.

ilar model performance (R2cv,avg= 0.39–0.42) that is in-
significantly lower than for models using all available pre-
dictors (PS6; R2cv,avg= 0.43). Models using just canopy
height as the predictor are not capable of predicting N
concentration (R2cv,avg= 0.04) and perform notably worse
than all other predictor sets (p value < 0.05 for RMSEcv;
p value < 0.05 for R2

cv except for the comparison of PS1 and
PS4).

Variable importance

The analysis of variable importance shows some general ob-
servations (see Table S4 for detailed results). The added
value of the inclusion of structural information in the pre-
dictor set for the estimation of DM is further substantiated
by canopy height having the highest relative variable impor-
tance in all predictor sets where it is included (PS5, PS6),

independent of the used sensor data and ML algorithm. For
example, canopy height accounts on average for 39 % of er-
ror reduction, measured by relative importance for all mod-
els using PS5, and 28 % for the all models using PS6. Be-
sides, the NIR band shows the highest variable importance
for DM estimation (Table S4) over all sensor–algorithm com-
binations in the baseline scenario (PS1). For predictor set
PS5 (raw reflectance+CH), the NIR band has the second
highest variable importance after canopy height, again over
all sensor–algorithm combinations. If VI and raw reflectance
were included in the predictor set (PS3, PS6), one (PS3 with
the SEQ–GBM combination) or a few VIs (all other sensor–
algorithm combinations) are ranked higher than the raw re-
flectance band with the highest variable importance. Vegeta-
tion indices that have a variable importance of at least 5 % in
all sensor–algorithm combinations of predictor sets includ-

https://doi.org/10.5194/bg-19-2699-2022 Biogeosciences, 19, 2699–2727, 2022



2714 A. Schucknecht et al.: Biomass and nitrogen estimation with UAS data

ing VI (PS2, PS3, PS4) are the Datt’s index (Datt, 1999),
NDVIre, and RR1, which all include the NIR band in their
formula (Table S1).

In contrast to DM, there is in general no clear order
or dominance of a certain predictor recognizable over all
sensor–algorithm combinations for the estimation of N con-
centration. Canopy height shows a much lower variable im-
portance compared to the DM models, with average relative
importance of 15 % for PS5 and 8 % for PS6.

3.4.3 Effect of modelling algorithm

Overall, the two tested ML algorithms show a smaller differ-
ence in model performance than the two sensors and the pre-
dictor sets (Tables 4, 5; Fig. S5) for DM and plant N concen-
tration. RF usually performs better (DM: R2cv,avg= 0.52;
N: R2cv,avg= 0.42) than GBM (DM: R2cv,avg= 0.47; N:
R2cv,avg= 0.36), but neither the difference in R2

cv and
RMSEcv between GBM and RF for DM nor the difference in
RMSEcv for N concentration is significant (p value > 0.1).
Models using REM data generally show a higher difference
in model performance between GBM and RF, both when
considering DM and N.

Noticeable is the distribution of relative importance of the
predictors between the two ML algorithms (Table S4). GBM
is often characterized by one dominating variable (especially
for DM), which has substantially higher relative importance
than other variables. In contrast, RF models show a more
gradual decrease in variable importance for the subsequent
ranked predictors.

3.4.4 External model validation with data from
Eschenlohe (EL)

The models based on SEQ sensor data were additionally
validated against the ground observations from the EL site
that were not used for model training. Considering DM
models (Table 6), the validation results for the EL plots
show lower R2 and higher RMSE values compared with the
cross-validated model results of the RB and FE sites (Ta-
ble 4). Furthermore, the model predictions for EL are more
biased (Biasval,avg =−15.4 g m−2). As seen in the cross-
validated results, particularly high DM values are generally
not well captured with a clear downward bias (Figs. 7, S9).
The best model for the estimation of DM in EL (R2

val =

0.51, RMSEval = 41.0 g m−2, rRMSEval = 18.4 %) uses RF
with predictor set PS6 (raw reflectance data+VI+ canopy
height). Prediction of DM for EL is significantly improved
by the use/inclusion of canopy height as predictor (PS4, PS5)
and to a lesser extent by VI (PS2, PS3) (Table 6, Fig. S9).

All N concentration models show very low R2 values
(R2

val ≤ 0.03) for the external validation site (Table 6). The
models for the external validation site predict levels of N
concentration > 2.2 wt % but do not sufficiently capture the
variations between 2.2 wt % and 4.1 wt % (Figs. 8b, S10).

The GBM model using PS4 (canopy height) predicts a sin-
gle value for all N observations (Fig. 8b), implying that the
model is not sensitive in this range. The levels of rRMSE
(rRMSEval,avg = 28.0 %) are also higher than those of the
cross-validated results (rRMSEcv,avg= 16.3 %).

3.5 Spatial predictions

The spatial DM prediction with the best performing spatial
model (RF model with REM data and predictor set PS3 – raw
reflectance data+VI) for the RB-North site shows within-
field variability (Fig. 9a). Furthermore, the extensively man-
aged field around plot RB3 is characterized by very low DM
values, which corresponds to field observations. The individ-
ual iterations of this model combination show very similar
DM predictions that just differ slightly in areas with low DM
as indicated by the coefficient of variation (CV) of the 10
iterations (Fig. 9b). Compared to this, the difference in spa-
tial DM prediction between different DM model combina-
tions (Fig. 9c) is much higher with the highest differences
(CV > 30 %) occurring at places with very low DM. The
main spatial pattern between different model combinations
is similar, but less pronounced spatial patterns may differ de-
pending on the used combination of sensor, ML algorithm,
and predictor set.

The spatial prediction of plant N concentration for the RB-
North site (Fig. 9e) also shows a certain within-field variabil-
ity, and the extensively managed field around plot RB3 stands
out with very low N concentrations. Most of the grassland
pixels outside the extensive field are characterized by N con-
centrations between 2.5 wt % and 3.5 wt %. The differences
between the 10 iterations of one model combination (Fig. 9e)
and between different model combinations (Fig. 9g) are gen-
erally lower than for the DM models.

The spatial prediction maps for the other sites (Figs. S11 to
S14) also indicate within-field and between-field variability
in DM and plant N concentration as well as the highest dif-
ferences between models at grassland areas with low values
of DM and N concentration.

4 Discussion

In this study, we analysed the potential to estimate DM and
plant N concentration with low-cost UAS-based data in pre-
Alpine managed grasslands. We tested two multispectral sen-
sors, three statistical models, and six different predictor sets
and evaluated marginal effects of them. The models were
trained and validated with in situ data. An emphasis was put
on the calibration of the two ML algorithms GBM and RF.

4.1 Suitability of multispectral data to estimate DM
and plant N concentration

The spectral differences between samples of different DM
and plant N concentration levels (Fig. 4) indicate that an
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Table 6. External model validation with the EL site using SEQ sensor data. The unit of RMSEval and Biasval of DM is grams per square
metre, and it is percent weight for plant N concentration. Shown are all combinations of predictor sets (PS1: raw reflectance data, PS2: VI,
PS3: raw reflectance data+VI, PS4: canopy height, PS5: raw reflectance data+ canopy height, PS6: raw reflectance data+VI+ canopy
height), and ML algorithms (GBM, RF). All metric values of single-sensor–predictor set–algorithm combinations are averages of the 10
iterations. Best results in bold. The first nine rows per parameter show aggregated median results (e.g. median of all DM models). Nobs = 32.

Parameter Predictors Model R2
val RMSEval rRMSEval Biasval

DM All All 0.27 51.8 23.3 −15.4
All GBM 0.24 52.7 23.7 −15.4
All RF 0.27 51.0 22.9 −15.0
PS1 All 0.03 57.3 25.8 −16.2
PS2 All 0.21 54.7 24.6 −16.6
PS3 All 0.22 51.9 23.3 −16.0
PS4 All 0.29 52.8 23.8 −15.3
PS5 All 0.42 45.3 20.3 −14.6
PS6 All 0.48 42.4 19.1 −12.1

PS1 GBM 0.01 57.9 26.0 −15.8

RF 0.06 56.7 25.5 −16.7

PS2 GBM 0.20 58.3 26.2 −18.9

RF 0.23 51.1 23.0 −14.2

PS3 GBM 0.19 52.9 23.8 −15.9

RF 0.25 50.9 22.9 −16.0

PS4 GBM 0.29 52.5 23.6 −14.8

RF 0.30 53.2 23.9 −15.8

PS5 GBM 0.41 45.3 20.3 −15.1

RF 0.42 45.3 20.3 −14.1

PS6 GBM 0.45 43.8 19.7 −13.3

RF 0.51 41.0 18.4 −10.9

N All All 0.02 0.51 27.4 0.23
All GBM 0.01 0.52 28.1 0.26
All RF 0.02 0.51 27.4 0.23
PS1 All 0.01 0.48 26.2 0.19
PS2 All 0.02 0.57 31.1 0.34
PS3 All 0.02 0.54 29.2 0.29
PS4 All 0.03 0.48 26.2 −0.07
PS5 All 0.02 0.47 25.3 0.17
PS6 All 0.00 0.56 30.3 0.30

PS1 GBM 0.01 0.47 25.5 0.16

RF 0.02 0.50 26.9 0.22

PS2 GBM 0.02 0.62 33.5 0.41

RF 0.01 0.53 28.6 0.27

PS3 GBM 0.00 0.57 30.6 0.35

RF 0.03 0.51 27.8 0.24

PS4 GBM 0.03 0.43 23.4 −0.10

RF 0.02 0.53 28.9 −0.05

PS5 GBM 0.03 0.46 25.0 0.15

RF 0.00 0.47 25.6 0.19

PS6 GBM 0.01 0.62 33.4 0.36

RF 0.00 0.50 27.1 0.24
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Figure 8. Observed vs. estimated DM (left) and N concentration (right) in the external site EL using SEQ data with the best performing
predictor set: (a) DM models based on PS6 (raw reflectance data+VI+ canopy height) and (b) N concentration models based on PS4
(canopy height).

estimation of these two grasslands parameters could be ob-
tained by multispectral UAS data. However, the link between
spectral pattern and the level of DM or plant N concentra-
tion, respectively, does not seem to be straightforward as
e.g. demonstrated by the weak linear correlation between
DM and NIR reflectance and the unsuitability of linear mod-
els to estimate DM and plant N concentration. Potential rea-
sons for the rather weak bivariate relationship could be the
different species compositions of the subplots, differences
during the acquisition (time during the day, clouds), and
the radiometric correction of the multispectral sensors (see
Sect. 4.7 for a more detailed discussion of UAS acquisi-
tion issues), which can be challenging and a source of un-
certainty (Olsson et al., 2021). Accordingly, our model re-
sults confirmed that the estimation of DM and plant N con-
centration is feasible when applying machine learning al-
gorithms but with a noticeable error range. The best mod-
els using all available multispectral data (i.e. raw reflectance
and VI) plus bulk canopy height information achieved an
R2

cv of 0.67 (rRMSEcv = 12.6 %) for DM and an R2
cv of

0.47 (rRMSEcv = 14.2 %) for N concentration. These find-
ings are in line with other studies which also confirmed
the suitability of ML algorithms for grassland parameter es-
timation based on UAS data. The multitemporal study of
Grüner et al. (2020) of an experimental farm with legume–
grass mixtures also applied an RF model to the spectral-
reflectance data and VI of an SEQ sensor and achieved an
R2

cv of 0.62 and rRMSEcv of 17 % for DM estimation. The
authors showed that the modelling performance was clearly
improved by adding texture parameters to the predictor set
(R2

cv = 0.87 and rRMSEcv of 11 %). The analyses of Wi-
jesingha et al. (2020) addressed the prediction of forage qual-
ity in grasslands with multitemporal hyperspectral UAS data
in the wavelength range between 450–998 mm. They com-
pared different regression algorithms and found that support
vector regression worked best for the prediction of crude

protein (R2
cv = 0.81, cross-validated normalized RMSEcv =

9.6 %), but RF yielded similarly good results.
In our study, plant N concentrations models did not per-

form as well as the DM models, generally achieving much
lower accuracies. The same decrease in accuracy was also
found for the external validation site, where the N models
marked much lower R2 and higher RMSE values compared
to the DM models. Furthermore, the N concentration mod-
els benefitted to a much lesser extent from the addition of
the canopy height information to the spectral predictors. One
reason for the less good performance of N concentration
models in our study is certainly the result of the lower value
range of plant N concentration (coefficient of variation in all
samples, CVN,all = 19.8 %) compared with DM (CVDM,all =

57.3 %). Most of the N concentration in leaves is related to
pigments like chlorophyll and proteins involved in photo-
synthesis with the most important being Rubisco (Ollinger,
2011, and references therein). While pigments are the dom-
inant absorbers in the visible range of the electromagnetic
spectrum, non-pigment compounds mainly have absorption
features at longer wavelengths (Ollinger, 2011, and refer-
ences therein). In his review, Ollinger (2011) summarizes
several hyperspectral vegetation indices that are used for
chlorophyll detection. However, the author emphasized that
the effects of plant N concentration on leaf spectra are still
unclear, e.g. if spectral reflectance is mainly driven by direct
effects of N-containing compounds or indirect effects of re-
lated traits. In a recent publication, Berger et al. (2020) ques-
tion the use of the commonly used chlorophyll–nitrogen re-
lationship, as it is not maintained after the vegetative growth
stage, and propose to quantify instead leaf protein concentra-
tion. The authors recommend the use of hyperspectral sen-
sors for N quantification, as the spectral signatures related
to proteins are subtle and mainly located in the short-wave
infrared (SWIR) region. This should be further explored to-
gether with ML models trained on radiative transfer models
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Figure 9. Spatial estimation at the RB-North site. (a) Orthophoto for comparison. (b) DM with an REM–PS3–RF combination (best spatial
prediction). (c) N concentration with an SEQ–PS3–RF combination (best spatial prediction). (d) CV of DM with an REM–PS3–RF combi-
nation. (e) CV of N concentration with an SEQ–PS3–RF combination. (f) Overall CV of DM for all PS1 and PS3 models. (g) Overall CV of
N concentration for all PS1 and PS3 models. Predictor set PS3: raw reflectance data+VI. Estimation of DM and N concentration represents
the mean of the 10 iterations for the selected model. Note that spatial estimates are only valid for pixels of unshaded and vegetated grassland.
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(Berger et al., 2020) or other modelling approaches like crop,
plant growth, or biogeochemical models assimilating remote
sensing data.

4.2 Importance of machine learning algorithms and
their calibration

Linear models generally failed to capture variability both
in DM and plant N concentration estimation as expressed
in the cross-validated predictive performance. In all cases,
the predictive performance was substantially better for ML
algorithms. Linear models do not cope well with a large
number of highly correlated predictors as well as with non-
linearity (Marchese Robinson et al., 2017). Explorative mod-
elling techniques such as manual feature engineering in lin-
ear models, including advanced models such as generalized
linear models, may help to achieve better model performance
to the level of ML algorithms, as those methods can cover
some weaknesses of LM.

As shown in the results, hyper-parameter calibration of
ML algorithm was confirmed to be crucial, leading to 11 %
improvement in model performance. The lowest error was
not revealed in the early iterations, and the parameter search-
ing was discovering lower error values almost until the end
of the iterations, suggesting that there is a risk of drawing
inference based on the sub-optimal result when “default” pa-
rameter values are used. Note that the impact of calibration
was more pronounced for GBM; in contrast the calibration
of RF was seemingly more efficient (i.e. discovered opti-
mal parameter values in a smaller number of iterations) in
line with previous studies (Bernard et al., 2009; Probst et al.,
2019). The MBO algorithm used in the calibration is more ef-
ficient in exploring a high-dimensional parameter space than
naive searching algorithms such as grid searching, random
sampling, or Latin hypercube sampling (Bischl et al., 2014).
MBO does not need binning or discretization and can also
stop earlier than scheduled, unlike grid searching, when it
reaches the prescribed goal or yields no improvement. Those
features enable MBO to explore parameter domains more
comprehensively and effectively. A caveat of the adaptive al-
gorithm is that it needs prescribed stopping rules (e.g. num-
ber of iterations or percent of improvement), though such
stopping rules do not assure the optimal performance. Ob-
jective stopping rules should be further investigated in future
applications such as metrics based on convergence, e.g. the
Gelman–Rubin diagnostic commonly used in Markov chain
Monte Carlo modelling (Brooks and Gelman, 1998; Gelman
and Rubin, 1992).

In this study, a nested cross-validation scheme is applied
ensuring that the calibration routine does not see the hold-
out data. Otherwise, the calibration could rather lead to loss
of predictive power (Vabalas et al., 2019). We should note
that the DM and plant N concentration values of the valida-
tion site (EL) are within the range of observations made in the
training sites (Schucknecht et al., 2020a). Training data span-

ning a wide range of observed DM and N concentration val-
ues and maybe originating from different types of grassland
at different times in the growing season would be desired to
build a generally applicable model. Overall, the two tested
ML algorithms yielded comparable model performance af-
ter calibration; RF performed slightly better (higher R2

cv and
lower RMSEcv) but without statistical significance.

4.3 Impact of different sensors

The two tested multispectral sensors affected the model
performance in different ways depending on the consid-
ered grassland parameter. While REM-based models outper-
formed SEQ-based models in the estimation of DM, SEQ-
based models yielded significantly better results for plant N
concentration estimation in terms of R2

cv and RMSEcv. The
two sensors have a different spectral setup with slightly dif-
ferent central wavelengths. While SEQ has a wider green
and red band, REM has an additional blue band. Further-
more, the red-edge bands of the two sensors are not overlap-
ping as well as the NIR bands. Considering some reflectance
spectra of grass (e.g. USGS spectral characteristics viewer,
https://landsat.usgs.gov/spectral-characteristics-viewer (last
access: 12 May 2022); Rossi et al., 2020; Rossini et al.,
2012), we would assume that the difference in the red-edge
band position could lead to significant reflectance differences
between SEQ and REM for one sample (due to the steep in-
crease in reflectance in the red-edge region). The effect of
the different central wavelength in the NIR band might be
less pronounced (as the NIR plateau is reached), and the dif-
ferent band width of the green and red bands are expected to
have a negligible effect on the difference in reflectance value
between the two sensors. These and other constructional dif-
ferences in the sensors might partly explain differences in the
spectral profiles of certain subplots (Fig. 4) and thus differ-
ences in model performance.

A possible reason for the SEQ sensor showing generally
higher reflectance values than the REM sensor with some-
times even implausibly high reflectance values in the NIR
band (> 0.7; Figs. 5, S1) might be calibration issues of the
sensor. The radiometric correction of the multispectral sen-
sors, which is needed to convert digital numbers to surface
reflectance, can be challenging and a source of uncertainty
(Olsson et al., 2021), which might be even more impor-
tant than the spectral specification of the sensors. Poncet et
al. (2019) compared different radiometric correction meth-
ods for the Parrot Sequoia sensor including the manufacturer
method using a one-point calibration plus a sunshine sensor
like in our study. The authors found no method allowing for
maximizing data accuracy for all bands and different flight
conditions. The manufacturer-recommended method that in-
cludes the sunshine sensor yielded comparable data accu-
racy as the best empirical method but could be improved by
the combination with an empirical calibration (Poncet et al.,
2019). In their study, Olsson et al. (2021) evaluated the accu-
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racy of the Parrot Sequoia camera and sunshine sensor, high-
lighting the influence of the camera temperature on the sen-
sitivity of the camera, the influence of the atmosphere on the
images, and the influence of the orientation of the sunshine
sensor on raw irradiance data. We were not aware that the
Sequoia sensor needs to be sufficiently warm before reach-
ing a stable sensitivity (Olsson et al., 2021). Since we took
images of the sensor-specific calibration targets before each
flight, this might have negatively influenced our radiometric
calibration and introduced uncertainty in the reflectance data.
The above-mentioned difference between the reflectance lev-
els measured by the two sensors is not likely to have a con-
siderable effect on the results of the estimation of canopy
traits, as only data from one of the sensors are used in model
fitting. However, this means that the results from the model
fit will only be valid for the reflectance data from the sensor
used, and parameters from different model fits based on data
from the two sensors are thus not directly comparable. Proper
calibration of the two sensors would therefore be advised in
future studies to make the results more generally applicable
and comparable.

Besides constructional and radiometric correction aspects,
changing illumination conditions may have contributed to
differences in the reflectance values of a certain subplot in
the comparison of the two sensors. Data acquisition at the
Fendt site was partly affected by passing clouds, which is
also visible in the data of the irradiance sensor of the SEQ
(not shown). In general, it would be beneficial to have in situ
reflectance data of the subplots (e.g. from a field spectrora-
diometer) to validate the reflectance values of the two UAS
sensors, but these are not available.

In summary, we could not conclusively clarify the exact
reasons that led to the differences in spectral signatures of the
two sensors and their model performance. This would require
additional laboratory and field tests that are out of the scope
of this study. However, our study indicates that the REM sen-
sor might be preferred for applications targeting biomass es-
timation in pre-Alpine grasslands.

4.4 Impact of different predictor sets

The models solely dependent on UAS data (PS1, PS2, PS3)
were moderately good, both for DM and plant N concen-
tration estimation. Adapting vegetation indices is straight-
forward and feasible under any condition. Therefore, it
is important to evaluate its added value. With regard to
the cross-validation, models using PS2 (VI) and PS3 (raw
reflectance+VI) showed generally higher R2

cv and lower
RMSEcv values than that of PS1 (raw reflectance), but the
difference was not significant neither for DM nor for N con-
centration. The addition of VI seemed to be more impor-
tant for the external validation, as it significantly increased
the predictive performance of DM for the validation site EL
compared to the baseline scenario PS1 (Fig. S7). The addi-

tion of VI in N models for the validation on the EL did not
improve the model performance.

This finding is in line with other studies, which also
pointed out that VI and other arithmetic band combinations
may help to improve the prediction accuracy for vegetation-
related quantitative and thematic variables (Maschler et al.,
2018; Seo et al., 2016). The benefits are observed despite the
fact that VIs do not really add “new” information, which is
not yet contained in the spectral signatures (Baret and Guyot,
1991; Atzberger et al., 2011). The empirically observed ben-
efits are most probably linked to the reduction in shadow-
related brightness effects.

Our results highlight the importance of combining spectral
information with canopy height for the estimation of DM.
Models using spectral and CH information (PS5, PS6) had
significantly higher R2

cv and lower RMSEcv values than those
using just spectral information (PS1, PS2, PS3) or just CH
information (PS4). The effect of combining canopy height
with spectral data in the predictor set is larger than the ef-
fect of the used ML algorithm or sensor. It may suggest that
canopy height is playing a crucial role, as it reflects seasonal
growth and canopy structure independent from the spectral
information.

Canopy height as a sole predictor was not suitable to esti-
mate plant N concentration. The effect of adding CH to spec-
tral data in the predictor set was slightly positive but not sig-
nificant. This low relevance of CH in the estimation of plant
N concentration could be expected from the missing correla-
tion between N concentration and canopy height (Fig. 4).

High-resolution UAS-based RGB data can be used to de-
rive canopy height models that can then be integrated in
the spatial DM estimation. Some studies already utilized
canopy height information in the estimation of grassland
yield (Grüner et al., 2019; Lussem et al., 2020, 2019; Vil-
janen et al., 2018). However, it needs to be kept in mind that
a precise and high-resolution DTM is required to derive reli-
able vegetation structure estimates from UAS imagery (Poley
and McDermid, 2020). The generation of such high-quality
DTMs can be challenging in areas with a dense vegetation
canopy as is the case for our pre-Alpine grasslands. In their
review, Poley and McDermid (2020) reported different meth-
ods for DTM generation that have been applied when ground
points were not well visible: active sensors like lidar and ter-
restrial or aerial laser scanning as well as terrain interpolation
based on high-accuracy GPS data collected on the ground
(see references in Poley and McDermid, 2020). A low-cost
alternative to the active sensors might be a UAS-based dig-
ital surface model of the freshly cut grassland as used for
example in Lussem et al. (2019).

In addition to CH, texture and the spatial variation in
the image elements were shown to correlate with vegeta-
tion structure and heterogeneity (Gallardo-Cruz et al., 2012)
and can vary with the phenological stage of the vegetation
(Culbert et al., 2009). Grüner et al. (2020) demonstrated that
the modelling performance of DM in legume–grass mixtures
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was improved by the addition of texture parameters in the
predictor set.

4.5 Spatial predictions

Spatial pattern in DM and N concentration can differ de-
pending on the used combination of sensor, ML algorithm,
and predictor set of the model, especially with respect to less
strong patterns. The magnitude of these differences in terms
of the coefficient of variation in all used models is larger for
DM than for N concentration with the highest CV in areas of
low DM or N concentration values. However, without addi-
tional spatial information (on soil properties, soil moisture,
species composition, etc.) it is hard to interpret these differ-
ences in spatial pattern and assess the quality in spatial pre-
diction of the single models. We plan to adapt the developed
ML models to multiple campaign applications and already
collected field data of several plots at different dates during
the growing season 2019 and 2020. In this context, it would
be an interesting research question if the spatial pattern of
single models are persistent in time.

4.6 Transferability of model results

A limitation of this study is that the model is trained using
data of a single flight campaign at each site, which may raise
the question about the transferability of the developed mod-
els; i.e. do the relationships apply also for data from other
sites and dates (across different growth stages)? The train-
ing data were collected from several sampling sites differing
in management, species composition, current canopy height,
and phenological stage to increase the general validity of the
results of a single campaign. The spatial transferability of
the developed models was (partly) tested with the external
validation with data from the Eschenlohe site that were not
used in model building. The results indicate that DM mod-
els work moderately well at other sites that are within the
value range of the training sites (Fig. 8a). With respect to the
estimation of N concentration, the models failed to predict
the variability in N at the validation site (Fig. 8b). However,
the model is fairly good at capturing the mean N concentra-
tion values (e.g. small bias in Fig. 8b), implying it needs to
learn more about the low and high N domains. Therefore,
we expect that both DM and N models would benefit from
an increased training database that captures a wider range of
values and originates from different grasslands.

The applicability of the developed models across differ-
ent phenological stages is partly accounted for by the use of
training data originating from different phenological phases
(Table 1). However, the full range of phenological phases
is not covered. Including training data from multiple sam-
pling campaigns over the growing season would be desired
for further studies, as Rossini et al. (2012) showed a change
in the reflectance spectra of grasslands for different times in
the year.

Another aspect of transferability is whether the trained
model is reusable in other problem domains. The models we
used (GBM and RF) are not directly reusable in other prob-
lem domains, meaning the trained weights are not usable if
there is any change in model setup (e.g. addition or removal
of predictors, changing response variables). This is due to
the fact that the two algorithms belong to the family of “shal-
low” learning algorithms, in contrast to “deep” algorithms.
They learn features in a small number of layers (i.e. shallow),
compared to deep algorithms often comprised of several lay-
ers. However, the shallow algorithms are still useful to other
studies in the sense that model diagnosis metrics (i.e. variable
importance) and optimal model structure (i.e. calibrated pa-
rameter values) are informative to similar research questions.
These metrics are useful to understand the processes and help
design field campaigns and build new models in another do-
main, space, and time. In contrast to deep algorithms, they
are relatively straightforward to build and train while being
moderately good and robust at capturing variations.

4.7 Challenges of UAS studies with low-cost sensors

4.7.1 Acquisition of UAS data

The acquisition of UAS data has some advantages over satel-
lite imagery like the flexibility in flight conduction (no fixed
overflight day and time) and the possibility of acquiring data
during cloud cover. Having the full control of flight schedul-
ing also allows for deciding whether the acquisition condi-
tions are sufficient for the specific application and the corre-
sponding data quality requirements or whether the campaign
needs to be postponed. On the other hand, the UAS flight
campaigns depend on good weather conditions (no precipi-
tation, little wind), and it is sometimes not easy to find a suit-
able date when the weather is suitable and all people from
the field campaign team have time. In general, stable illu-
mination conditions during the flights are desirable to avoid
negative effects on the data quality (e.g. Assmann et al.,
2018). In practice, one often has to face the trade-off between
data availability and data quality. From our experience, it can
sometimes be difficult to find an optimal date for conducting
a UAS campaign in the desired phase of the grassland de-
velopment stage. Therefore, we also have to accept changing
illumination conditions (e.g. due to passing clouds, different
sun angle) in order to have at least an acquisition even if the
data quality might not be optimal. The present study repre-
sents such a real-world case where we were searching for
a window of good weather and where we had to coordinate
quite a lot of people from different institutions. Finally, we
had sub-optimal illumination conditions at one of our sam-
pling sites due to passing clouds.

In addition, the duration of UAS data acquisition on the
first sampling day was quite long, as we flew at two sites
and the field team was not yet practised. Here, we identi-
fied a clear potential for optimization. Measuring the position
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of the GCPs and the centres of the subplots with the GNSS
in “topo point mode” (a measurement just takes a few sec-
onds, but it requires mobile-phone coverage) instead of static
mode would save a lot of time. Furthermore, the workflows
in the field could be improved to require less time. With these
optimizations the duration of the flights could be shortened
and conducted around solar noon. However, the trade-off be-
tween the number of flights (i.e. number of different sites
covered) and data quality aspects due to the varying sun an-
gle partly remains.

4.7.2 Data quality

Issues with the quality of low-cost UAS sensors and ra-
diometric calibration have been reported in the literature
(e.g. Aasen et al., 2018; Assmann et al., 2018; Olsson et al.,
2021; Poncet et al., 2019). In our study, the difference in the
spectral profiles of subplots between the two used multispec-
tral sensors raises questions related to the quality of the ob-
tained data but could not finally be addressed. The placement
of spectral-reflectance targets in the overflight area (Aasen et
al., 2018; Assmann et al., 2018) and the simultaneous col-
lection of field spectrometer measurement would allow for
a better assessment of the quality of the obtained UAS data.
The practical feasibility of the latter option might be a con-
straint, especially in view of the required field personal and
duration of fieldwork. The lack of a standard quality control
information layer provided by the data processing workflow
of Pix4D as compared to certain satellite data products is a
drawback for the user.

In summary, we think that there are quite a few measures
to improve the quality of UAS data, but not all can be con-
sidered at all times in practical applications. At the end the
user of UAS data needs to accept that the quality cannot be
as good as for satellite imagery and should consider this as-
pect in the interpretation of the derived products. However,
extending campaign periods and increasing the replication
and the sampling frequency could actually lead to a reduc-
tion in uncertainty especially under a limited budget (Kim et
al., 2022). Thus we may well advocate the use of low-cost
sensors in a range of applications which require high-spatial
resolution and flexible application options.

To date, using low-cost UAS data is the only afford-
able way to acquire individual-level spatial information for
a specific location and time. In precision farming, such fine-
grained spatial information supports the optimization of fer-
tilizer application, weed and disease management, harvest,
and irrigation (e.g. Tsouros et al., 2019). For such applica-
tions, the value of low-cost sensors is rather high even if
their spectral quality is not at the level of satellite or high-
precision sensors. Spatial patterns acquired from a low-cost
sensor product can be directly used to derive spatial gradients
and as a complement to satellite products.

5 Conclusions

Spatially explicit information on grassland biomass and
quality could improve local farm management and support
regional-scale assessments, e.g. on nitrogen cycling. This
study aimed to develop, assess, and apply models to estimate
DM and plant N concentration of pre-Alpine grasslands on
the field scale with UAS-based multispectral data and canopy
height information. We tested two different sensors, three sta-
tistical modelling approaches, and six input data sets with
respect to their effect on model performance using in situ
data from 10 permanent grasslands. Our results indicate that
ML algorithms are able to estimate DM and plant N concen-
tration, whereby DM models showed better performance in
terms of R2 and RMSE. The combined use of spectral and
canopy height information in the predictor set significantly
improved the prediction for DM but not plant N concentra-
tion. Including VI was also beneficial for DM prediction but
to a lesser extent. Data from the REM sensor yielded signif-
icantly better model performance results for DM estimation,
while SEQ data were significantly better for plant N con-
centration estimation. Overall, machine learning algorithms
utilizing UAS-based multispectral data and canopy height in-
formation proved to be a promising tool for the estimation of
DM and plant N concentration in pre-Alpine grasslands. Fur-
ther research should address the transferability of approaches
(e.g. by extending the calibration and validation database),
the improvement of the models (e.g. by the incorporation of
texture parameters), and the spatial upscaling through the uti-
lization of satellite data.
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Appendix A

Table A1. Results of the non-parametric statistical tests between parameter pairs on R2
cv and RMSEcv. Three different tests were carried

out: Wilcoxon test for sensors and algorithms (Ntreat = 2), Kruskal–Wallis test for predictor sets overall, and Dunn’s test between predictor
sets (see details in Sect. 2.3.5). Note that all the tests were done for paired samples.

Tested parameter pairs p value (R2
cv) Significance p value (RMSEcv) Significance

DM Sensors 0.001 ∗∗ 0.000 ∗∗

Algorithms 0.151 – 0.266 –

Predictor sets Overall 0.007 ∗∗ 0.011 ∗

PS1–PS2 0.258 – 0.309 –
PS1–PS3 0.345 – 0.274 –
PS1–PS4 0.480 – 0.421 –
PS1–PS5 0.006 ∗∗ 0.005 ∗∗

PS1–PS6 0.003 ∗∗ 0.004 ∗∗

PS2–PS3 0.401 – 0.460 –
PS2–PS4 0.242 – 0.382 –
PS2–PS5 0.032 ∗ 0.018 ∗

PS2–PS6 0.016 ∗ 0.014 ∗

PS3–PS4 0.326 – 0.345 –
PS3–PS5 0.018 ∗ 0.023 ∗

PS3–PS6 0.008 ∗∗ 0.018 ∗

PS4–PS5 0.005 ∗∗ 0.008 ∗∗

PS4–PS6 0.002 ∗∗ 0.006 ∗∗

PS5–PS6 0.382 – 0.460 –

N Sensors 0.003 ∗∗ 0.092 –

Algorithms 0.016 ∗ 0.233 –

Predictor sets Overall 0.029 ∗ 0.042 ∗

PS1–PS2 0.309 – 0.480 –
PS1–PS3 0.159 – 0.212 –
PS1–PS4 0.061 – 0.029 ∗

PS1–PS5 0.097 – 0.159 –
PS1–PS6 0.074 – 0.227 –
PS2–PS3 0.309 – 0.198 –
PS2–PS4 0.020 ∗ 0.032 ∗

PS2–PS5 0.212 – 0.147 –
PS2–PS6 0.171 – 0.212 –
PS3–PS4 0.005 ∗∗ 0.004 ∗∗

PS3–PS5 0.382 – 0.421 –
PS3–PS6 0.326 – 0.480 –
PS4–PS5 0.002 ∗∗ 0.002 ∗∗

PS4–PS6 0.001 ∗∗ 0.004 ∗∗

PS5–PS6 0.440 – 0.401 –

Symbols for significance level: ∗∗ p ≤ 0.01, ∗ p ≤ 0.05, – p > 0.05.
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