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Abstract. The eddy-covariance technique measures carbon,
water, and energy fluxes between the land surface and
the atmosphere at hundreds of sites globally. Collections
of standardised and homogenised flux estimates such as
the LaThuile, Fluxnet2015, National Ecological Observa-
tory Network (NEON), Integrated Carbon Observation Sys-
tem (ICOS), AsiaFlux, AmeriFlux, and Terrestrial Ecosys-
tem Research Network (TERN)/OzFlux data sets are invalu-
able to study land surface processes and vegetation function-
ing at the ecosystem scale. Space-borne measurements give
complementary information on the state of the land surface
in the surroundings of the towers. They aid the interpreta-
tion of the fluxes and support the benchmarking of terrestrial
biosphere models. However, insufficient quality and frequent
and/or long gaps are recurrent problems in applying the re-
motely sensed data and may considerably affect the scien-
tific conclusions. Here, we describe a standardised proce-
dure to extract, quality filter, and gap-fill Earth observation
data from the MODIS instruments and the Landsat satel-

lites. The methods consistently process surface reflectance
in individual spectral bands, derived vegetation indices, and
land surface temperature. A geometrical correction estimates
the magnitude of land surface temperature as if seen from
nadir or 40◦ off-nadir. Finally, we offer the community living
data sets of pre-processed Earth observation data, where ver-
sion 1.0 features the MCD43A4/A2 and MxD11A1 MODIS
products and Landsat Collection 1 Tier 1 and Tier 2 products
in a radius of 2 km around 338 flux sites. The data sets we
provide can widely facilitate the integration of activities in
the eddy-covariance, remote sensing, and modelling fields.

1 Introduction

The installation and maintenance of instrumental infrastruc-
ture at eddy-covariance (EC) sites worldwide require consid-
erable financial and logistical efforts and labour force. The
precious data sets of land–atmosphere fluxes, biometeorolog-
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ical data, and environmental conditions allow fundamental
insights into ecosystem functioning (Baldocchi, 2008; Bal-
docchi et al., 2018; Baldocchi, 2020; Besnard et al., 2018;
Migliavacca et al., 2021; Nelson et al., 2020). A signifi-
cant achievement is the central processing, quality control,
and open standardised distribution of a large number of the
available observational records in data collections such as
LaThuile, Fluxnet2015, and ABCflux (amongst others, Pa-
pale et al., 2006; Baldocchi, 2008; Pastorello et al., 2020;
Virkkala et al., 2022; Papale, 2020) to which many site teams
contribute.

Complementary information from satellites or digital cam-
eras (phenocams, Wingate et al., 2015) aids and refines
studies of local land–atmosphere interactions as they relate
to ecosystem structure, phenology, and functioning and the
state of the land surface (e.g. Migliavacca et al., 2015; Bao
et al., 2022). Earth observation (EO) data for varying regional
sizes around the sites can represent the actual area that con-
tributes to the flux measurements – partly even more accu-
rately than similar ground-based measurements can (Gamon,
2015) – provided sufficiently high spatial resolution and tem-
poral overlap with the site-level records. Next to local stud-
ies, the combination of flux and satellite observations is also
a basic ingredient for upscaling exercises of the in situ fluxes
to larger areas or even the globe (Ueyama et al., 2013; Tra-
montana et al., 2016; Jung et al., 2019, 2020; Joiner et al.,
2018; Reitz et al., 2021; Virkkala et al., 2021; Zeng et al.,
2020).

Independent of the nature of the scientific application, the
quality control and gap structure of both the EC and the EO
data are the groundwork of each analysis. Different criteria
help to identify problematic data points with differing levels
of strictness depending on the given application. Moffat et al.
(2007) and Falge et al. (2001) describe techniques to fill gaps
due to missing data points in the EC data. The literature also
offers a diverse set of methods to gap-fill EO data that in-
clude spatial, temporal, cross-sensor, and cross-variable ap-
proaches (to name a few, Wang et al., 2012; van Buttlar et al.,
2014; Weiss et al., 2014; Verger et al., 2011, 2013; Kan-
dasamy et al., 2013; Moreno et al., 2014; Moreno-Martínez
et al., 2020; Yan and Roy, 2018; Ghafarian Malamiri et al.,
2018; Li et al., 2018; Dumitrescu et al., 2020; Bessenbacher
et al., 2021). The pre-processing steps are laborious, and they
are key to the results and interpretation of the analyses.

We propose a set of systematic pre-processing steps for
key land surface indicators from EO data: sub-setting global
EO data for an area around an EC site; systematic control
for good-quality retrievals as well as cloud, snow, and wa-
ter effects; and estimating missing data points in a flexible
and ecologically meaningful way. For both the quality con-
trol and the gap filling, the approaches aim to be generalis-
able across all sites without accounting for specific local con-
ditions, yet flexible enough to accurately reproduce pheno-
logical behaviour and characteristic features such as distur-
bances or fast transitions in managed ecosystems. The pro-

cedure shall be as simple as possible, computationally effi-
cient, and not resort to additional data sources to facilitate a
potential application to EO data at the global scale.

We apply the proposed processing steps to official data
products from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) instruments and the sensors on board the
Landsat satellites. Both MODIS and Landsat have extensive
observational coverage with a high temporal overlap with
most freely available EC records. Landsat measurements are
of particular interest because they resolve small spatial de-
tails in pixels of 30 m size, but at the cost of missing out
on short temporal features. The opposite is true for MODIS
data products, which partly average over heterogeneous areas
in spatially comparatively coarse pixels of several hundred
metres. However, MODIS offers daily, partly even sub-daily,
temporal resolution. We process EO data sets of surface re-
flectance, vegetation indices, and land surface temperature
(LST) for a limited area around a given flux site.

As missing data points in EO data are a ubiquitous prob-
lem, a number of related initiatives also provide access to
EO data that underwent certain pre-processing. For example,
Robinson et al. (2017) offer 30 m Landsat NDVI for all pix-
els in the CONUS every 16 d between 1984–2019. They re-
moved cloud effects and filled gaps with climatological aver-
ages. Moreno-Martínez et al. (2020) controlled Landsat and
MODIS surface reflectance for cloud, snow, and water effects
and fused them to a gap-free and smoothed product. It covers
surface reflectance and its uncertainty in six Landsat spectral
bands at monthly, 30 m resolution for the CONUS and the
years 2009–2020. An example product for gap-free MODIS
surface reflectance (as well as albedo and BRDF parameters)
at approximately 1 km resolution is the MCD43GF product
(Sun et al., 2017). In this case, the time series of the param-
eters of the bidirectional reflectance distribution function are
temporally and spatially gap-filled for days and pixels with
bad inversion quality or cloud and snow influence, and from
those gap-free model parameters a global gap-free product
of surface reflectance is provided for the MODIS land bands
and three broad spectral bands. Finally, a sub-setting tool
(ORNL DAAC, 2018) facilitates access to a range of global
EO data sets at a large selection of eddy-covariance sites.

FluxnetEO is unique in proposing the completion of all
pre-processing steps necessary for scientific analysis at site
level, hence resulting in an analysis-ready data set. The prod-
ucts in version 1.0 of the data cover the period 1984–2017
and 2000–2020 for Landsat and MODIS, respectively, and
are freely available by the services of the ICOS Carbon Por-
tal (see data availability statement; Walther et al., 2021a, b).
Each data set has a complementary data layer with additional
flags to inform the user whether data points correspond to
actual good-quality observations according to the proposed
criteria and, if not, how they have been estimated in differ-
ent gap-filling steps. FluxnetEO provides a ready-to-use data
set, which, however, means limited flexibility for the users
to make their own decisions on the pre-processing steps.
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For example, they depend on the site selection made by the
authors (see Table E1 for the site selection in version 1.0)
and their decision to cover an area within a radius of 2 km
around a site. Conversely, the ORNL DAAC (2018) offers
larger cutout radii of 4 km around a considerably larger col-
lection of sites than FluxnetEO and from a complementary
selection of global EO products. But users will need to invest
considerable work in quality control and gap filling. Regard-
ing available quality-controlled and gap-free large-scale or
even global gridded EO data (Moreno-Martínez et al., 2020;
Robinson et al., 2017; Sun et al., 2017), the user needs to find
ways to access these data sets at site level (while Moreno-
Martínez et al., 2020, is available on Google Earth Engine
(GEE), Sun et al., 2017, is not, and Robinson et al., 2017,
needs shape files) and needs to understand whether the ap-
plied quality filters match the needs of their application.

To allow potential users to make an informed decision on
the product which suits their application best, we describe de-
tails about data inputs in FluxnetEO in Sect. 2.2, explain the
quality control and gap-filling approaches in Sect. 3, illus-
trate examples, and benchmark the products against a selec-
tion of independent products and approaches in Sect. 4. Ta-
ble 2 and the data availability section provide detailed infor-
mation on the resulting products, while Table A1 summarises
and compares the main characteristics of the selected studies
and services mentioned above (Robinson et al., 2017; Sun
et al., 2017; Moreno-Martínez et al., 2020; ORNL DAAC,
2018) and the one in this contribution. We expect FluxnetEO
to be a living data set with regular updates regarding the site
selection, the temporal coverage, the release of new Land-
sat/MODIS collections and processing improvements based
on user feedback. Potential users are therefore advised to re-
fer to the ICOS Carbon Portal for the latest product version
and site availability information (Walther et al., 2021a, b).

2 Data

2.1 Eddy-covariance sites

For the current version 1.0 of the product we select the
338 sites from the LaThuile, Fluxnet2015 (Pastorello et al.,
2020), and ICOS Drought 2018 Initiative (Drought 2018
Team and ICOS Ecosystem Thematic Centre, 2020) flux data
releases. Site coordinates given in different sources (Ameri-
Flux, AsiaFlux, Europe-Fluxdata, Fluxdata.org, and a previ-
ously compiled in-house Fluxnet site location list) may dif-
fer. In that case, the coordinates with the highest precision
were selected. In case the coordinates differed by more than
0.001◦ for a given site, a manual check in Google Earth iden-
tified the correct or most probable location of the site. The
final set of 338 sites for which we process the MODIS and
Landsat EO data in product version 1.0 is listed in Table E1.
Forests and grasslands are best represented among the 338
sites. The collection includes fewer sites from savannas and

shrublands and only one site from a deciduous needleleaf for-
est (Table 1).

2.2 MODIS and Landsat

The MCD43A4 product combines Aqua and Terra obser-
vations and provides estimates of surface reflectance in the
MODIS bands 1–7 (Schaaf and Wang, 2015b). Time series
represent observations modelled at nadir view at a resolution
of 16 d and 500 m spatial pixels. For the quality control of
MCD43A4, a complementary product, MCD43A2, contains
band-specific information on the quality of the inversion of
the bidirectional reflectance distribution function as well as
snow cover, platform information, and land–water coverage
in the scene (Schaaf and Wang, 2015a).

The MODIS MOD11A1 (Terra, starting in 2000) and
MYD11A1 (Aqua, starting in 2002) products (hereafter
jointly referred to as MxD11A1, Wan et al., 2015a, b) pro-
vide daily LST and emissivity estimates aligned with quality
and view angle information at 1 km spatial pixel sizes. The
LST values represent instantaneous values and are selected
based on viewing zenith angle and LST values (MOD11A1
user guide, https://lpdaac.usgs.gov/documents/118/MOD11_
User_Guide_V6.pdf, last access: 3 May 2022). Four LST
data streams are available: TERRAday with observations
around 10:30 local time, AQUAday with observations around
13:30 local time, TERRAnight around 22:30 local time and
AQUAnight around 01:30 local time. For each of them, obser-
vation times vary between overpasses by about ± 1.5 h.

Observation geometries need special attention as the
MODIS instruments measure in a wide swath to obtain high
temporal coverage. They scan across their track from right
to left with view zenith angles up to 65◦ from nadir. The
wide range of viewing geometries leads to different frac-
tions of surface types seen from one overpass to the next for
a given site. In addition, vegetation structure and topogra-
phy, together with the position of the sun relative to the sen-
sors, cause variable shadowing effects. The reflectance prod-
uct (MODIS MCD43A4, Schaaf and Wang, 2015b) partly
accounts for these anisotropy effects and simulates a nadir
view. In order to partly account for variability in the ob-
served LST that is related to changing observation geome-
try (Rasmussen et al., 2011; Guillevic et al., 2013; Ermida
et al., 2014), a correction approach developed by Ermida
et al. (2018) estimates an LST offset as if the instrument were
measuring from directly above a site. For some applications,
an oblique view might be favourable over a nadir constella-
tion, for example to enhance the contribution of vegetation
canopy to the LST estimate and minimise fractions of soil
or understorey. In addition, we provide LST corrected to a
viewing zenith angle of 40◦.

Reflectance-based Landsat time series comprise the en-
tire multi-temporal collection 1 of the Landsat 4, 5, 7,
and 8 archives (https://landsat.gsfc.nasa.gov/data, last ac-
cess: 3 May 2022) covering the period 1984–2017 at
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Table 1. Representation of different plant functional types and Köppen climate classes across the 338 sites in the FluxnetEO v1.0 collection.

Plant functional type Number of sites Köppen main climate Number of sites

Evergreen needleleaf forest (ENF) 86 Arid 26
Evergreen broadleaf forest (EBF) 25 Equatorial 23
Deciduous needleleaf forest (DNF) 1 Warm temperate 171
Deciduous broadleaf forest (DBF) 40 Snow 103
Mixed forest (MF) 13 Polar 12
Woody savanna (WSA) 10 Undefined 3
Savanna (SAV) 11
Closed shrubland (CSH) 6
Open shrubland (OSH) 19
Grassland (GRA) 58
Crops (CRO) 36
Wetlands (WET) 32
Snow (SNO) 1

30 m spatial pixel size. The seven spectral bands of the
Landsat product were collected: blue, green, red, near
infrared (NIR), shortwave infrared 1 and 2 (SWIR1,
SWIR2), and thermal infrared (TIR) (https://landsat.usgs.
gov/what-are-band-designations-landsat-satellites, last ac-
cess: 3 May 2022). Landsat data have been pre-processed
using the Landsat Ecosystem Disturbance Adaptive Pro-
cessing System (LEDAPS, Schmidt et al., 2013) and the
Landsat Surface Reflectance Code (LaSRC, https://landsat.
usgs.gov/landsat-surface-reflectance-data-products, last ac-
cess: 3 May 2022) for atmospheric correction. The pixelQA
layer contains information related to clouds, cloud shadows,
snow, and water and is useful for the quality control of the
Landsat data (Zhu and Woodcock, 2012; Zhu et al., 2015).
In contrast to MODIS, the Landsat sensors acquire images
at much smaller view angles around 7.5◦ from nadir. Ground
control points and a digital elevation model help to correct for
small directional effects related to terrain structure and view-
ing angles (Wulder et al., 2019). Corrections for the small but
significant differences between the spectral characteristics of
Landsat ETM+ and OLI (Roy et al., 2016) are not applied.

The services by GEE provided cutouts of the above-
mentioned products at the EC sites. Independently of the
product and its spatial resolution, the cutout area was limited
to a maximum distance of 2 km between a given tower and
the centre of a given satellite pixel. No single cutout size will
fit the flux footprint extents of all sites (Chu et al., 2021). The
decision for a radius of 2 km in product version 1.0 compro-
mises reasonable data set sizes and the inclusion of the high-
temporal-resolution flux footprints for the majority of sites.
Downloading the EO data in tiff format avoided nontranspar-
ent re-projection of the data from sinusoidal to regular grid
by GEE, which would have been problematic for the quality
flags in the MCD43A2 and MxD11A1 products. The Landsat
data were already provided in regular grid by GEE.

3 Methods

We describe here the overall concept and rationale of the
quality filter and the gap filling, but we report all technical
details in Appendix A.

3.1 Processing steps of reflectance-based indicators

The processing steps for reflectance-based land surface vari-
ables can be summarised by the following steps:

1. quality control for effects of snow, water, bad inver-
sion per spectral band, and individual pixel in a cutout
(henceforth subpixel) using the MODIS/Landsat quality
flags;

2. optionally compute vegetation index per subpixel, or
use the raw spectral bands;

3. optionally spatially aggregate over a selection of sub-
pixels in the cutout to obtain one time series per site, or
decide to process all subpixels individually;

4. remove values of an index outside its defined ranges and
apply an additional outlier filter;

5. gap filling.

3.1.1 Quality control and computation of spectral
indices

Quality control of the MODIS reflectance-based vegetation
indices focused on three aspects: good inversion quality
of the bidirectional reflectance distribution function as in-
dicated by the BRDF_Albedo_Band_Quality_Bandx flags
in the MCD43A2 product, snow-free conditions according
to the Snow_BRDF_Albedo flag, and the omission of re-
flectance values that are affected by the presence of water in
the field of view using the BRDF_Albedo_LandWaterType
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flag. For the selected data samples which passed those cri-
teria, we computed a large set of spectral vegetation indices
(Table 2). An additional check removed possible values of
the vegetation indices outside their defined ranges. Some
of the time series contained obvious outlier values. We em-
ployed an empirical filter which largely removed those sam-
ples which had a particularly large difference to the median
of their surrounding values in a temporal window (Papale
et al., 2006, technical details on all filters in Appendix A).

In the Landsat data, the flag pixel_qa provided quality at-
tributes (CFMask, Foga et al., 2017) and removed pixels that
contained snow/ice, water, cloud, and/or cloud shadow using
a binary flag of presence. Similar to the MODIS product, we
computed a series of spectral vegetation indices (Table 2) us-
ing the good-quality observations and removed possible val-
ues of the indices outside their defined ranges. A slightly
modified filter removed possible outlier values also for the
Landsat data (see details in Appendix A.).

3.1.2 Gap filling

In the literature several gap-filling and smoothing approaches
are available which work in one or more dimensions (e.g.
Wang et al., 2012; Kandasamy et al., 2013; van Buttlar et al.,
2014; Weiss et al., 2014; Yan and Roy, 2018; Zhang et al.,
2021) or use fusion methods between sensors (Verger et al.,
2011; Moreno-Martínez et al., 2020). They differ in their lev-
els of sophistication and computational efforts. One of our
requirements for the gap-filling approach was that it employs
exclusively temporal operations and does not use additional
data sources. It is hence very generalisable and allows the gap
filling to be generally applicable to a single time series per
site, several subpixels in a cutout around a site, and global EO
data. A number of possible applications will require the anal-
ysis of actual observations, and consequently approaches that
fit smooth functions to available good-quality data (e.g. Jon-
sson and Eklundh, 2002; Gonsamo et al., 2013) to represent
a gap-free time series are not suitable. Therefore, the idea
was to retain the good-quality data and make as realistic of
estimates as possible for the gaps between them. The follow-
ing recipe describes the steps to estimate missing data points
conceptually; all technical details we report in Appendix A.
Unless stated otherwise, for each gap-filling step, the values
filled in previous steps guide the current and subsequent gap-
filling steps together with the good-quality observations.

1. Fill short non-snow-related gaps (≤ 5 d or ≤ 1 month
for MODIS and Landsat, respectively) with a median
across valid values in moving windows of 16 d (3
months for Landsat). The moving median only fills
gaps; it does not change/smooth valid data points.

2. Fill snow-related gaps with a constant baseline value
which is identified as the average of valid data points
adjacent to snow-covered periods, i.e. immediately be-
fore snowfall or after snowmelt (after Beck et al., 2007,

but see details in Appendix A). Consider all times with
a snow flag larger than 0.1 or missing snow information
as snow covered. The latter periods are included as the
snow flag appears to systematically miss snow periods
in higher latitudes in the beginning of the winter. Still,
frequent gaps with missing snow information also oc-
cur during the growing season. In order to avoid wrong
filling with a constant value during the growing season,
this gap-fill step is not applied when the probability of
snow cover is low, i.e. when the average seasonal cycle
indicates typically snow-free conditions at a given time
of the year, or when typically no snow occurs at all at a
given site.

3. Subsequently, another moving median in windows of
40 d (4 months for Landsat) fills gaps shorter than 65 d
(2 months for Landsat).

4. Linearly regress the time series on its own median sea-
sonal cycle (MSC). Compute a re-scaled MSC with the
obtained regression parameters and use it to fill longer
gaps. Execute the regression and re-scaling in tempo-
ral moving windows as this guarantees more flexibil-
ity to correctly represent inter-annual variations in the
time series and even partly accounts for changes in the
shape of the seasonal cycle due to disturbances. It is,
however, not suited to fill regularly recurring gaps at a
certain time of the year, e.g. during rain seasons (Verger
et al., 2013).

5. Fill the remaining gaps by piecewise cubic polynomial
interpolation. Time series with fewer than 300 valid data
(12 months for Landsat) points in the whole record after
application of all the previous gap-filling steps will not
be meaningful for analysis but are still filled by nearest-
neighbour interpolation.

6. Temporal operations cannot meaningfully fill gaps at
the beginning and at the end of the record. Therefore
the first (last) valid data points are repeatedly appended
at the beginning (end) of the record.

The described processing steps are generalisable across
a range of spectral vegetation indices and can reliably fill
missing data points across sites globally (see examples in
Sect. 4). However, a number of sites have extremely low
data availability after quality checks, and the gaps in their
time series are challenging to temporally interpolate in a
meaningful way. This can lead to problematic gap-filled data
points with questionable reliability and realism. Examples
are tropical sites and/or sites with a pronounced wet sea-
son with permanent cloud cover. The same generally ap-
plies for MODIS in the years 2000–2002 when observa-
tions stem mainly from the Terra satellite, and therefore
data availability is comparatively low. For Landsat, the num-
ber of available scenes is relatively heterogeneous across
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the globe (https://www.usgs.gov/media/images/cumulative-
number-scenes-landsat-archive, last access: 3 May 2022),
with some regions having very good coverage (e.g. North
America) while other regions are observed less frequently
(e.g. Russia and Africa). Such differences in the availability
of good-quality data between sites strongly affect the qual-
ity of the gap filling at the site level. In addition, FluxnetEO
provides for each data layer a gap-fill flag, consisting of a
range of integer values to identify original good-quality data
(flag= 0) from gap-filled estimates (flags= 1. . .n) where in-
formation is provided in which gap-filling step a certain data
sample has been imputed. This allows users to explore indi-
vidual sites and use (parts of) the gap-filled data or resort to
only using the high-quality original data points.

3.2 Preprocessing of MODIS land surface temperature

The processing of the LST follows this order:

1. outlier filter for each LST data stream and check that
any daytime LST is higher than any nighttime LST per
subpixel and day

2. optionally apply a geometrical correction per subpixel

3. optionally aggregate over a selection of subpixels in the
cutout per time step and LST data stream

4. gap-fill the aggregated time series or each subpixel for
all four MODIS LSTs simultaneously.

3.2.1 Quality checks

The quality control of the MODIS LST focused on removing
outlier values. Negative outlier values in LST might represent
residual cloud contamination, whereas unusually high val-
ues might originate from undetected saturation in the level 1
data. We found that the flags provided in the MxD11A1 prod-
ucts are insufficient to achieve this. Instead, empirical quality
checks followed the procedure for the MODIS reflectances;
i.e. they discarded data points that deviated strongly from the
median of their surrounding values in temporal windows of
30 d (Papale et al., 2006). An additional sanity check elimi-
nated any daytime LST lower than the minimum of Aqua and
Terra nighttime LST for a given day.

3.2.2 Geometrical correction

For several applications, variable viewing geometries as in-
herent in the MODIS LST observations are not desirable. A
geometrical correction approach developed by Ermida et al.
(2018) accounted for directionality in LST retrievals due to
vegetation structure and topographical effects. A parametric
model estimates the magnitude of LST as if constantly ob-
served from nadir or an angle of 40◦ between the sensor and
the zenith above a given site. Ermida et al. (2018) derived
the coefficients for this geometrical model at a resolution of

0.05◦. We followed the pragmatic approach of selecting the
model coefficients for the correction from the pixel contain-
ing a given site. We acknowledge that we did not investigate
to what extent the given site conditions represent the overall
characteristics of the land surface in the allocated pixel. Fur-
ther input to the geometrical model were the viewing azimuth
angles, solar angles at the overpass time, and estimates of
daily potential radiation at the top of the atmosphere. The ge-
ometrical correction was applied to each subpixel in a cutout
separately.

3.2.3 Gap filling

Also for the gap filling of LST, several approaches are
present in the literature (e.g. Gerber et al., 2018; Ghafar-
ian Malamiri et al., 2018; Li et al., 2018; Dumitrescu et al.,
2020). When using exclusively operations in time and no an-
cillary data to estimate invalid LST observations, one needs
to consider the shorter autocorrelation of LST compared to
the reflectance-based indicators. According to Vinnikov et al.
(2008), the weather-related component of clear-sky LST has
an autocorrelation of about 3 d. The following sequence of
steps filled the four MODIS LST data streams (for technical
details refer to Appendix B).

1. Similar to the reflectances, a first step consisted of a
temporal moving median in windows of 8 d to fill gaps.

2. A second step was inspired by Li et al. (2018) and
Crosson et al. (2012) and foresaw using one of the four
MODIS LST time series as a “reference” to fill gaps in
a second “imputed” one. We computed a MSC of the
difference between the “reference” and the “imputed”
MODIS LST. This average shift was linearly scaled to
the actual shift in temporal windows. The scaled aver-
age shift added to the “reference” LST represented the
values used to fill gaps in the “imputed” LST time se-
ries. This procedure iteratively used three of the MODIS
LST data streams to fill the fourth; i.e. each one is
imputed once by all three others (see details in Ap-
pendix B). This gap-fill step was only possible in cases
where not all four MODIS LST observations were in-
valid during a given day, but extremely advantageous
to preserve short synoptic variability in the gap-fill esti-
mates.

3. In fully cloudy days without any valid LST observation,
or in case a period has too few valid observations for a
meaningful calibration of the linear model in the previ-
ous step, the gap-filling followed the same steps as for
the reflectance-based spectral indices: in temporal win-
dows, find a linear scaling between one LST time series
and its own MSC. Use the slope and intercept parame-
ters to compute a re-scaled MSC, which fills gaps in the
time series for days of the year when the MSC is valid.
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4. Interpolate the remaining gaps with cubic polynomials,
or nearest neighbour in case of very low data availabil-
ity (fewer than 300 valid data points in the entire time
series).

5. Missing values at the beginning and the end of the
record cannot be meaningfully filled by temporal meth-
ods and are therefore simply repeated.

Steps 3–5 produced very smooth and, therefore, less realis-
tic LST estimates than steps 1–2. Also, one needs to be aware
that any LST estimate in data gaps from this procedure neces-
sarily represents an LST estimate under clear-sky conditions,
which can be very different from the real LST under overcast
skies (Ermida et al., 2019). This needs to be considered for
a given application to prevent the effects of clear-sky bias in
the LST data sets on the results. Like the vegetation indices,
LST data layers have a gap-fill flag in FluxnetEO describ-
ing which data points are original and which gap-filling step
filled the missing values.

3.3 Evaluation and benchmarking

3.3.1 FluxnetEO performance in comparison to a
machine learning approach (missForest)

A common approach to benchmarking gap-filling methods is
to artificially remove samples at positions where the true data
value is known and then subject the time series to the gap-
filling approach and compare the gap-filled estimates with
the original values (Moreno-Martínez et al., 2020; Zhang
et al., 2021; van Buttlar et al., 2014; Wang et al., 2012; Verger
et al., 2011, 2013; Gerber et al., 2018). We apply this ap-
proach to FluxnetEO in artificial gaps for MODIS and Land-
sat variables and randomly remove 20 % and 40 % of data
samples (corresponding to a low and medium gap fraction;
compare Fig. 1) per site at positions with originally good
quality. We remove data points from a gap-free time series;
i.e. the data points which had been gap-filled before guide
the gap filling in the artificial gaps. We feed the time series
of the station pixel with artificial gaps into the gap-filling
approaches described in Sect. 3 and quantify the gap-filling
performance compared to the true values with the Nash–
Sutcliffe efficiency (NSE, Nash and Sutcliffe, 1970). NSE
close to 1 indicates good performance, while negative values
mean worse performance than inputting the simple average
into the gaps. Decidedly, the NSE refers exclusively to the
data samples from the artificial gaps and not to the complete
time series.

To have an independent benchmark of FluxnetEO, we
compare to the performance of a versatile imputation
method, missForests (Stekhoven and Bühlmann, 2011), in
the same artificial gaps. MissForest is based on random
forests and can handle variables of different types and di-
mensions. It is a multi-output machine learning method that
iteratively fills gaps across variables, considering their po-

tential non-linear dependencies. We input all MODIS (Land-
sat) variables per site together with the information on snow
fraction and the day of year or month of year for MODIS or
Landsat, respectively. Hence, per site and mission, missFor-
est iteratively imputes all variables collectively.

3.3.2 Comparison with other gap-filled data sets:
Moreno-Martínez et al. (2020)

A complementary and mandatory approach to assessing the
quality and characteristics of the proposed pre-processing
steps is a comparison against independent data sets and ap-
proaches (e.g. Moreno-Martínez et al., 2020; Robinson et al.,
2017; Sun et al., 2017). Different spatio-temporal resolutions
in the provided data sets and the fact that often mass down-
loads of data are necessary to evaluate them at the site level
challenge this approach. However, Moreno-Martínez et al.
(2020) provide their gap-filled Landsat surface reflectance at
the same spatio-temporal resolution as FluxnetEO, and ac-
cess and cutout at the site level via GEE are feasible. We,
therefore, compare the FluxnetEO Landsat product and the
Moreno-Martínez et al. (2020) surface reflectance at 86 sites
in the CONUS for the years 2009–2017, which corresponds
to the spatiotemporal domain in which both are available.
In the comparison, we do not differentiate between original
good-quality and gap-filled estimates because quality con-
trol and, therefore, gap structure differ between the products.
However, unphysical reflectance values lower than 0 or larger
than 1 occur, especially in winter, and were removed before
the cross-consistency analysis, from both good-quality and
gap-filled estimates.

4 Results and discussion

4.1 Gap statistics across indices

Data availability after quality screening is highly variable be-
tween sites and depends on the data stream (Fig. 1). Large
differences in the amount of good-quality data in groups of
different climate regions, especially for the reflectances, mir-
ror general atmospheric conditions in different regions. Dif-
ferences between spectral bands and reflectance-based in-
dices are very minor in both MODIS and Landsat. MODIS
LST generally has fewer valid data points among the data sets
than the reflectance-based indicators, and often fewer during
daytime than nighttime. While the LSTs are instantaneous
values, the reflectances represent averages over 16 d periods.
A lower number of good-quality observations in indices that
rely on band 6 relate to degraded detectors in Aqua MODIS
band 6.

4.2 Temporal patterns of the gap-filled time series

We illustrate some characteristics of the time series in
FluxnetEO using the pixel containing an EC station at ex-
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Figure 1. Fraction of good-quality data in the MODIS (a) and Landsat (b) time series. Colours represent the median data availability in
tower pixels across sites grouped by Köppen climate classification. Data refer to the period 2003–2020 for MODIS (the time period when
both Terra and Aqua satellites are in space) and 1990–2017 for Landsat.

ample sites. The Austrian site Neustift (AT-Neu) was situ-
ated in a valley in the Alps and surrounded by grasslands
which were typically mown three times a year (Wohlfahrt
et al., 2008). According to their nature, the MODIS LST
time series exhibit faster variability than the vegetation in-
dices (Fig. 2). Midday observations (AQUAday) partly show
an LST increase after the first harvest event in a year around
the 150th day of the year. The MSC of most vegetation in-
dices clearly marks the mowing timing, although the relative
magnitude varies between indices. Constant values in win-
ter represent snow-covered times. For Landsat, the granular-
ity of temporal patterns is clearly lower due to the monthly
sampling, but the characteristic management effects are also
visible here (Fig. 3).

Focusing on the example of the EVI, other sites illustrate a
few characteristics of the gap-filling procedure in more detail
(Figs. 4, 5): at the evergreen needleleaf forest site El Saler
in Spain (ES-ES1) much data pass the quality control, and
mostly short gaps are reliably filled, also in the absence of a
very regular seasonal cycle in EVI in both MODIS and Land-
sat. The boreal forest site Saskatchewan (CA-SF1) illustrates
the effect of a disturbance that happened in 2015 (though the
site was operated only until 2006). The gap-filling procedure
adapts to the modified conditions both abruptly when the dis-
turbance happens and gradually during recovery in the fol-
lowing years. There is a problematic group of high MODIS
EVI values during winter 2006/2007. The moving window
outlier filter applied to the MODIS reflectances is by design
unable to detect those outliers as they occur consecutively in
a short period of time. Tharandt (DE-Tha, evergreen needle-
leaf forest) and Lonzée (BE-Lon, crops) are examples of
the challenges that data-scarce periods bring for both Land-
sat and MODIS. For MODIS, estimated values in the years
2000–2002 (where only Terra was in operation) are less reli-
able at both sites. Landsat is particularly scarce and the gap

filling unsuccessful at Tharandt in the 1980s, 1994–1995, and
2008–2012, and in Lonzée a clear seasonality in EVI estab-
lishes only after 2000. In addition, for MODIS false filling
by the snow baseline value during the growing season could
not entirely be prevented, causing an unrealistic dip in one
year in each of the sites. Note that the snow flag contains
partly long data gaps in CA-SF1, DE-Tha, and BE-Lon. Fi-
nally, the woody savanna site Adelaide River (AU-Ade) is a
typical example of EC sites in climates with a dry and a wet
season. While in the dry season basically no data gaps oc-
cur, cloud coverage in the rainy season is long enough such
that mainly the last gap-filling steps of a linearly scaled MSC
and interpolation take effect for MODIS (Fig. 2). Although
the scaling of the MSC does not fully succeed in all years
to produce smooth transitions between the good-quality data
and the gap-filled ones, the interpolation is able to preserve
inter-annual variations in the MODIS EVI.

Missing MODIS LST values were estimated most reliably
in the gap-filling steps 1–2 (moving median and scaled av-
erage shift to observations at other overpass times) because
the typical short-term variability in the time series could be
preserved. In the Spanish site Majadas de Tiétar (ES-LMa,
Fig. 6 top panel), savanna-type vegetation is prevalent with
a dry summer and wet winter. Visually the gap-filling proce-
dure succeeds in preserving the typical higher LST variabil-
ity in the dry season and seasonally changing diurnal am-
plitudes. Also, in Saskatchewan (CA-SF1), gap-filling step 2
successfully estimates the largest fraction of missing values
for each data stream from the complementary observation
times. The EVI indicated a disturbance event at the begin-
ning of 2015 (Fig. 4) that continued to strongly affect the
EVI also in the following year. The event also marks the LST
time series in that daytime LST, and therefore, the diurnal
amplitude clearly increases in summer after 2015. The gap-
filling procedure follows this behaviour. Relative to Majadas
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Figure 2. Median seasonal cycle (red) and individual yearly trajectories (grey) for MODIS LST (top row) and MODIS vegetation indices
and surface reflectance (second to last rows) in the pixel containing the Austrian site Neustift (AT-Neu). Depending on the data set the central
pixel measures 500 m or 1 km.

de Tiétar or Saskatchewan, in the mixed forest in Vielsalm
(BE-Vie), data gaps are much more persistent throughout a
day, and the gap filling works more often with the third gap-
filling step using an average seasonal cycle of LST to esti-
mate missing observations. Finally, at the woody savanna site
Howard Springs in northern Australia (AU-How, Fig. 6 bot-
tom panel) there is a strong seasonal phasing between day-
time and nighttime LST. Data availability also changes with
the seasons. In the monsoon season, synoptic variability in
the filled data points is unrealistically low because the gap-
filling needs to resort to filling by a median seasonal cycle of
LST (obtained from those years in which the monsoon starts
late) or by interpolation.

Geometrical corrections to the nadir viewing angle are
much larger and have a stronger seasonality for daytime LST
than for nighttime observations (rightmost panel in Fig. 6,
Ermida et al., 2018). The daytime LST value from a nadir
view is consistently estimated to be several kelvin higher
than from an oblique view. The Australian Howard Springs
site is an exception in that the correction offset to nadir has
no consistent sign during the wet season.

4.3 Benchmarking

In the experiments where artificial gaps are introduced at
data points with known and valid values in the pixel con-
taining the eddy-covariance site, FluxnetEO performance for
MODIS is excellent with NSE values clearly above 0.9 for
all reflectance-based indices, and even above 0.95 for arti-
ficial gap fractions of 20 % (Fig. C1 top left). The NSE of
the gap-fill estimates for LST is systematically lower but
above 0.8 and therefore still very good. Interestingly, the me-
dian NSE across sites is very similar for the 20 % and 40 %
gap fraction experiments for the LST but clearly different for
the reflectance. Overall, FluxnetEO outperforms missForest
in the realism of the gap-fill estimates slightly but consis-
tently across most reflectance-based MODIS variables, and
more strongly so for the larger (and more realistic for the
majority of sites) artificial gap fraction of 40 % (Fig. 7a).
The NDWI variables are a special case, where missForest
does not succeed in producing reliable estimates (Fig. C1b)
and interestingly more so for low fractions of missing data.
For LST, the ranking between missForest and FluxnetEO
gap filling depends on the gap fraction: missForest consis-
tently produces higher NSE for the lower gap fractions and
FluxnetEO for 40 % of samples removed (Fig. 7a). For Land-
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Figure 3. Median seasonal cycle (red) and individual yearly trajectories (grey) of the different data sets in the 30 m pixel containing the
Austrian site Neustift (AT-Neu) Landsat.

sat, the NSE of the gap-fill estimates in FluxnetEO is gen-
erally comparable to (derived vegetation indices) or better
(spectral bands) than from missForest (Fig. 7b). The perfor-
mance of FluxnetEO is more sensitive to the number of miss-
ing values than missForest (Fig. C1c, d). A few more points
are of note: for both MODIS and Landsat, the gap-fill es-
timates of spectral surface reflectance in the visible range
(blue, green, red) are less reliable than the one in channels
with longer wavelength or derived vegetation indices. The
overall gap-fill performance is not satisfactory for Landsat,
either from FluxnetEO or from missForest. We did additional
tests and found that the signal-to-noise ratio and the temporal
resolution are decisive for the success of the gap filling. The
time series of the average across all subpixels in the Land-
sat cutout exhibit less noise than the time series of the centre
pixel, which also clearly increases the NSE of the artificial
gap-fill estimates (Fig. C2a). FluxnetEO generally performs
better on daily than on monthly data (see the lower NSE for
MODIS at monthly resolution in Fig. C2b), which calls for
attempts to improve the reliability of FluxnetEO at different
temporal resolutions in future releases.

Figure 8 compares the spatial and temporal patterns
of Landsat NIR reflectance from FluxnetEO and Moreno-
Martínez et al. (2020) across sites and shows a high con-
sistency (panels a, b, d). The largest differences and lowest

consistency in both spatial and temporal patterns happen out-
side the growing season (DJF in large parts of the CONUS,
panels b, d, f). This can be expected as NIR reflectance is
low during this time of the year, and because the treatment
of snow and clouds differs between the products (see time
series of one example site in Fig. C8). The temporal cor-
relation of the deviations from the mean seasonality has a
bimodal pattern with partly low Pearson correlations of un-
der 0.5 (panel e). The consistency between FluxnetEO and
Moreno-Martínez et al. (2020) surface reflectance products
generally increases with wavelength, with the lowest agree-
ment for the blue spectral band (Figs. C3, C4, C5, C6, C7).

These benchmarking exercises illustrate important short-
comings but at the same time clearly support the quality
of the gap-filling approach proposed by FluxnetEO as be-
ing comparable to or slightly higher than independent ap-
proaches and products. The artificial gaps at random posi-
tions in the first experiment might be comparable to those ex-
pected from bad inversion or clouds. Removing longer con-
secutive periods such as during snow periods or persistent
cloud cover in rainy seasons is not feasible due to limited
consecutive good-quality data, so we cannot test the per-
formance for gaps of this type. Compared to missForest,
FluxnetEO has the great advantage of being easily scalable to
large-scale gridded data products. Compared to the product
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Figure 4. Illustration of gap-filling steps in the 500 m pixel containing selected eddy-covariance sites for the MODIS EVI.

Figure 5. Illustration of gap-filling steps in the 30 m pixel containing selected eddy-covariance sites for the Landsat EVI.
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Figure 6. MODIS LST gap-filling steps in the 1 km pixel containing selected eddy-covariance sites for daytime and nighttime LST. The
rightmost column shows the average annual cycle of the correction factor between LST from variable viewing angles and LST corrected to
nadir view.

of Moreno-Martínez et al. (2020) FluxnetEO offers coverage
at global sites and is not restricted to the CONUS but lacks
the availability of gridded data.

4.4 On the importance of spatial context

In this section, we present different examples of the relevance
of spatial context. The type and distribution of the vegeta-
tion around a given EC measurement station are not neces-
sarily homogeneous. Instead, clusters of different vegetation
or land use types might prevail in different sections of the
immediate surroundings of a site. The area that a given flux
measurement is representative of (the flux footprint, Schmid,
1997) changes rapidly with wind direction, turbulence condi-
tions, atmospheric stability, and surface resistance (Schmid,
1997; Vesala et al., 2008; Chu et al., 2021). An exact match
between the flux footprint and EO data (or a model grid cell)
is challenging due to the often unknown or uncertain flux
footprints and coarse spatial grid sizes. The scale mismatch is
equally important for validation exercises for site-level mea-
surements of surface reflectance (Romá et al., 2009; Cescatti
et al., 2012), site-level energy-balance closure (Stoy et al.,

2013), and model–data integration (Williams et al., 2009).
The role that the scale mismatch between site-level and EO
data plays for ecosystem analyses clearly depends on the
site and the application. Some applications try to account for
the mismatch (Pacheco-Labrador et al., 2017; Wagle et al.,
2020); others ignore it and use a custom area around each
EC site. Approaches to quantify and account for heterogene-
ity within a satellite pixel or a certain area around a given site
do exist in the literature (Romá et al., 2009; Chu et al., 2021;
Duveiller et al., 2021) but seem less exploited.

We computed the average flux footprints for every day
(MODIS) and month (Landsat) around three example EC sta-
tions (Majadas de Tiétar, ES-LM1, Gebesee, DE-Geb, and
Zotino, RU-Zo2). We illustrate how the relationship between
EC-derived gross primary productivity (GPP) and EVI as an
EO-derived proxy of the same changes according to whether
the footprint area is taken into account or custom cutout sizes
are chosen. In RU-Zo2, we compare surface temperature in-
verted from sensible heat flux to LST and illustrate how the
pixel sizes relate to the flux footprint area (see details on the
data processing in Appendix D).
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Figure 7. Benchmarking in artificial gaps: distribution of NSE per site of the gap-fill estimates in artificial gaps by FluxnetEO compared
to missForest within the physical ranges of the indices for 20 % and 40 % of good-quality data removed. For MODIS (a) and Landsat (b),
random good-quality samples are removed from the tower pixel.

The site ES-LM1 (El-Madany et al., 2018) is a tree–grass
ecosystem. While the trees are evergreen, the herbaceous
layer senesces in summer and re-greens in autumn (Luo et al.,
2018). The EO cutout includes irrigated agricultural areas
north of the flux footprint. These fields are barren in winter
and are covered with crops in summer. MODIS and Landsat
EVI are strongly negatively correlated to GPP derived from
EC in the pixels over agricultural areas, as are the anoma-
lies of EVI and GPP (Fig. D1a–d). Conversely, high positive
correlations prevail across the remaining larger parts of the
EO cutouts. Landsat EVI overlaid by the average flux foot-
print for two example months illustrates that the EC GPP
is only representative of the tree–grass ecosystem (Fig. 9e,
g). Hence, the spatial representativeness of EO data for EC
fluxes might differ strongly depending on which satellite pix-
els are chosen for the analysis. We computed the average
EVI that is representative of the flux footprint (henceforth
fpa for footprint area). We compared it with an average EVI
weighted with the probability density function of the flux
footprint in order to take into account the decreasing influ-
ence of subpixels further away from the tower (henceforth
fpw for weighted footprint area), as well as with two prag-
matic approaches in case a flux footprint is unknown: an EVI
average over all subpixels in the cutout with a radius of 2 km
(henceforth fex for full extent) or only the single subpixel that
contains the tower (cpx for centre pixel). The most noticeable
difference between the time series for the different intersec-
tion methods is that the full extent (fex) in both Landsat and
MODIS EVI is comparatively lower during the winter period

(Fig. 9a,c). The agricultural areas contribute to fex, while the
footprint intersection methods (fpa and fpw) and the centre
pixel (cpx) EVI consistently indicate high greenness in the
tree–grass ecosystem.

Gebesee, DE-Geb, is an agricultural site. The common ap-
proach in conducting EC measurements is to put the tower in
a location where the land use is as homogeneous as possible,
to be able to attribute fluxes to a targeted ecosystem, e.g. a
known crop type. In Gebesee, this was assured for most of
the years in the long site history (e.g. Fig. 9h), but not from
2011–2013. In these years, the field was split into two dif-
ferent adjacent crop types that contributed to the measured
fluxes (Fig. 9f), raising the risk for pitfalls in the analyses
of the fluxes. Also, in situations/years when the flux foot-
print represents a single field, additional potential difficul-
ties originate from phenological differences between fields
within the EO cutouts (Fig. 9f, h) if not properly matched.
For example, the anomalies of both GPP and EVI are only
highly correlated with each other in the immediate surround-
ings of the tower (Fig. D1g–h). Phenological heterogeneity
between fields might explain why the EVI averaged over the
full cutout (fex) is clearly different from the EVI in the foot-
print area (fpa, fpw) or the tower pixel (cpx) during the grow-
ing season maxima in 2015/2016 (Fig. 9b, d). Also, con-
sistent with the GPP, the EVI in the tower pixel indicates
slightly later senescence in 2017 than averaged over the foot-
print area or the full cutout, highlighting considerable effects
of a mismatch between the flux footprint and the EO area.

Biogeosciences, 19, 2805–2840, 2022 https://doi.org/10.5194/bg-19-2805-2022



S. Walther et al.: A view from space on global flux towers by MODIS and Landsat 2819

Figure 8. Benchmarking Landsat NIR reflectance from FluxnetEO against the product produced by Moreno-Martínez et al. (2020) at EC
sites in the CONUS. Each sample NIR_s,t,p refers to one site (s), time step (t), and subpixel (p). Comparing spatial patterns: (a) scatter-
plot of the temporally averaged NIR reflectance (mean_t(NIR_s,p,t), each dot reflects one subpixel and site. (b) Temporal average across
years for each month separately and the spatial Pearson correlation across all subpixels in a cutout per site and month cor_p(mean_t-
month(NIR FluxnetEO_s,p,t), mean_t-month(NIR Moreno et al_s,p,t)). (c) Temporal correlation as a function of the number of missing
values in the FluxnetEO product in each subpixel and site (cor_t(NIR FluxnetEO_s,t,p, NIR Moreno_s,t,p). (d–f) Compute a spatial average
across all subpixels in a cutout per time step: NIR∗_s,t = mean_p(NIR_s,t,p). (d) Temporal Pearson correlation of the spatially averaged NIR
(cor_t(NIR FluxnetEO∗_s,t, NIR Moreno∗_s,t). (e) Pearson correlation of the deviations from the mean seasonal cycle of the spatially aver-
aged time series. (f) Difference between FluxnetEO and Moreno NIR reflectance and their average per month of the year mean_t-month(NIR
FluxnetEO∗_s,t – NIR Moreno∗_s,t). r refers to the Pearson correlation coefficient and NSE to the Nash–Sutcliffe efficiency (Nash and Sut-
cliffe, 1970).

Irrespective of the match between flux footprint and the
area that the EVI is representative of, Fig. 9 illustrates the
complimentarity between MODIS and Landsat in terms of
resolution. Although Landsat offers high spatial detail, the
temporal patterns that can be resolved with monthly aver-
ages are much coarser than the shorter variations that daily
MODIS data can describe. Depending on the application, the
user of FluxnetEO might choose one or the other.

RU-Zo2, the Zotino tall tower observatory ZOTTO, is lo-
cated in the taiga–tundra transition zone. The landscape in
the proximity of the EC station is a heterogeneous mix of
forest, bogs, and wetlands. At the tall tower, fluxes are mea-
sured at different heights above the canopy. The size of the
flux footprint strongly increases with height, and the fluxes
at the highest level partly represent areas more than 2 km
away from the site (Fig. 10b–d). Flux footprints of measure-
ments closer to the canopy are usually much smaller than the
MODIS pixel size of 1 km for the LST, but the flux footprints
of the higher measurement levels at RU-Zo2 partly integrate

over multiple such pixels. Size and direction of the footprint
extents strongly vary over time (note that Fig. 10b–d rep-
resent 3 consecutive days), such that the vegetation types
and surface conditions sampled not only differ between mea-
surement heights but also between days. We compare space-
borne LST AQUAday integrated over the flux footprint area
(LSTfpa) with surface temperature inverted from sensible
heat flux measured at the tower for clear-sky days (Fig. 10a;
see details about the methods in Appendix D). We observe
a tendency of LSTfpa at all three measurement heights to be
slightly lower than inverted surface temperature under freez-
ing conditions with a notable scatter. For temperatures above
0 ◦C, the scatter decreases, and LSTfpa of all three heights is
consistently higher than the inverted surface temperature. For
the peak surface temperatures during a year (above approx-
imately 285 K), the slope between LSTfpa and surface tem-
perature visually decreases, which might indicate significant
changes in surface emissivity during the brief peak growing

https://doi.org/10.5194/bg-19-2805-2022 Biogeosciences, 19, 2805–2840, 2022



2820 S. Walther et al.: A view from space on global flux towers by MODIS and Landsat

Figure 9. Time series of EVI and GPP for ES-LM1 (a, c) and DE-Geb (b, d). MODIS EVI (a, b) and Landsat EVI (c, d) represent areas
with different extents: full extent of the cutout (EVIfex), the centre pixel that contains a tower (EVIcpx), the EVI averaged over the flux
footprint area (EVIfpa), and the EVIfpa weighted with the flux probability density function (EVIfpw). Panels (e)–(h): Landsat EVI overlaid
with the monthly flux footprint (black line) for ES-LM1 in November 2014 (e) and April 2016 (g) and for DE-Geb in February 2012 (f) and
February 2016 (h). Non-original low-quality EVI values are blacked out. Red circles indicate the location of the EC station, and the white
circle denotes 1 km diameter from the station.
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Figure 10. Relationship between MODIS AQUAday LSTfpa and surface temperature (Tsurf_H) calculated from the inverted sensible heat flux
(details about the methods in Appendix D). The red line represents the 1 : 1 line. Panels (b) to (d) show example footprints at the three levels
(black lines) overlaid on the LST map from 31 May to 2 June 2017, respectively. Non-original low-quality LST values are blacked out. The
white circle indicates the 1 km diameter around the tower.

season when vegetation extent is highest and the surface has
drained from snowmelt.

Next to matching the flux footprints with the EO data pix-
els, spatial context is equally important in studies of vegeta-
tion recovery after a disturbance event. The Sky Oaks-Young
Stand (US-SO3) is a closed shrubland with less than 2 m tall
woody vegetation. The US-SO3 site experienced a fire dur-
ing the period 2002–2003, followed by regrowth. Landsat
allows us to observe the impact structure and the spatially
very heterogeneous recovery dynamics with remarkable de-
tail (Fig. 11): the fire caused lower-than-average EVI in large
parts of the cutout during the period 2002–2004 (Fig. 11d-
f). From 2005 onwards, some patches, particularly the west-
ern part of the cutout, appear to have recovered faster from
the disturbance than other patches (Fig. 11g). By 2011, EVI
has reached pre-fire values in most parts of the area around

the site with only small patches as exceptions indicating that
regrowth was complete (Fig. 11n). This example illustrates
how high-spatial-resolution EO combined with EC at the site
level can provide complementary insights for better under-
standing disturbance regimes and the associated recovery dy-
namics.

5 Conclusions

The proposed methods aim at assuring good quality and
producing as reliable as possible gap-free estimates of EO-
derived surface reflectance, vegetation indices, and LST for
pixels around EC sites, while remaining independent of ad-
ditional data sources and being generalisable. Depending on
the question/application at hand, either MODIS or Landsat
EO data might be more suitable with their inherently very di-
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Figure 11. Annual EVI dynamics at the site US-SO3 as observed by Landsat. Time series of spatial average annual EVI for the full 4×4 km2

cutout (a) and the long-term temporal average spatial patterns of EVI (b). Annual anomalies of EVI for the period 2003–2011 in panels (c)–
(n) (anomaly EVI=year n = EVIyear n−mean(EVI1985−2001)).

verse spatial and temporal resolutions, reliability of the gap-
filling approach, and temporal coverage. The requirements
for the strictness of the quality checks and the sophistica-
tion of the gap-filling methods differ by use case. No ap-
proach can fit all requirements, but we expect FluxnetEO
to offer many opportunities to advance our understanding of
land–atmosphere fluxes for individual sites across regional
networks and globally. It helps bridging the Fluxnet, remote
sensing, and modelling communities and facilitates consis-
tent benchmarking of EO-based flux models of any kind. We

anticipate that this will accelerate our ability to monitor and
understand land–atmosphere fluxes across spatial and tem-
poral scales. For the future, we plan to maintain, update, and
improve FluxnetEO. This will include extending the time se-
ries to the most recent years, adding EC sites as measure-
ments become available in one of the networks, improving
the processing based on newly identified drawbacks and/or
user needs (e.g. Landsat sensors harmonisation, better per-
formance also at lower temporal resolutions), and updating
to new EO data collections (e.g. Landsat collection 2, inte-
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gration of Landsat 9). Importantly, forthcoming FluxnetEO
versions shall more strongly facilitate complementary usage
of multiple missions to exploit their synergy potential, so that
future additions will include further EO products, for exam-
ple the Sentinel missions. Although temporal overlap with
most of the EC records is low, it will grow with the lifetime
of the different Sentinel missions because strong efforts in
the EC community target the timely, free, and open distribu-
tion of site-level measurements.

Appendix A: Technical details about the processing of
surface reflectance

In this section we provide all specific technical details nec-
essary to reproduce our processing steps for the surface re-
flectance of MODIS and Landsat.

The quality control of the MODIS reflectance-based land
surface indicators included the following steps.

– Omission of the MCD43A2
BRDF_Albedo_Band_Quality_BandX flags ≥ 3
for each band to remove bad inversion quality from the
surface reflectances.

– The flag Snow_BRDF_Albedo eliminated pixels that
contain snow. As the gap-filling procedure used the
snow information, a spatially aggregated snow flag was
needed for the processing version that averages valid
data within 1 km of the tower. For this, we defined the
aggregated snow flag as the fraction of subpixels in the
cutout that are snow covered. If more than 50 % of sub-
pixels have missing snow information for a certain day,
the aggregated snow flag is set to missing as well.

– The presence of water in a scene seen by an op-
tical sensor can strongly affect the observation. The
BRDF_Albedo_LandWaterType flag allowed us to filter
for pixels exclusively on land (flag= 1). This eliminated
all data for many Swiss, Dutch, Italian, and Finnish sites
which are situated close to water bodies. Inclusion of
ocean coastlines and lake shorelines (flag= 2) and shal-
low inland water (flag= 3) resulted in reasonable time
series at most sites. This came at the cost of having a few
other sites that were affected by the presence of water.
As a trade-off between data availability and quality, we
decided to include land–water flags 1–3.

– After the computation of the vegetation indices from
the individual spectral bands, an additional check re-
moved possible values of the spectral vegetation indices
outside their defined ranges. An outlier filter compared
each value to the median of all valid values in temporal
windows of 30 d (Papale et al., 2006). A large difference
of a given value to the median of its surrounding values
indicates a potential outlier. The threshold z as in Papale
et al. (2006) was set to 2, and only a less conservative

threshold of z= 3 acted when more than 20 valid values
were available in a given window.

The empirical outlier filter for Landsat slightly differed
from the one for MODIS and removed observations in the
five highest and lowest percentiles of the median seasonal
cycle of an index if they differed more than 75 % from their
surrounding 3-month moving window median. The second
criterion was critical in order to preserve observations of dis-
turbance events or recovery dynamics.

Technical details for the gap filling are as follows.

1. The first step is a moving window median to fill short
non-snow-related gaps. If the entire time series has less
than 40 % valid data, a given moving window contains
both the actual values and the median seasonal cycle for
the given time of the year. The median for the moving
window then refers to the distribution of both.

2. The second step fills reflectance values with a con-
stant value in the presence of snow (snow flag≥ 0.1).
Partly long periods with missing snow information in
the Snow_BRDF_Albedo flag needed special treatment.
Some of these gaps appeared systematically in early
winter in higher latitudes, so times of missing snow in-
formation are also considered as snow covered. How-
ever, also during the growing season long periods of
missing snow information occur at several sites glob-
ally. The following criteria check whether a period that
is considered snow covered by high values or missing
snow flags is filled with a constant baseline value or not.

– If a given site has fewer than 60 d (10 months
for Landsat) with valid snow coverage (i.e.
Snow_BRDF_Albedo=1) in the total record, snow
typically does not occur at the site. In this case the
gap-filling procedure does not apply this gap-filling
step at all for this site.

– The gap filling with a constant value only addresses
gaps with a minimum length of 20 consecutive days
(1 month for Landsat) with snow flag missing or
1. This avoids filling very short intermittent snow
periods or short gaps in snow information during
the growing season.

– This gap-filling step does not consider gaps due to
missing snow information if the median seasonal
cycle of snow coverage indicates ≤ 5 % of snow
cover at the given time of the year and the differ-
ence between the fill value and the median seasonal
cycle is large (i.e. exceeds the 85th percentile of the
differences in times of missing snow information).

The constant baseline value that is used to fill snow pe-
riods in the time series for a site represents the third
percentile of the median seasonal cycle of the spectral
vegetation indices. If a given index typically has high

https://doi.org/10.5194/bg-19-2805-2022 Biogeosciences, 19, 2805–2840, 2022



2824 S. Walther et al.: A view from space on global flux towers by MODIS and Landsat

Table
A

1.FluxnetE
O

com
pared

to
a

selection
ofotherproducts

and
services

featuring
L

andsatand
M

O
D

IS
E

O
data.

FluxnetE
O

version1.0
O

R
N

L
D

A
A

C
subsetting

tool
R

obinson
etal.(2017)

M
oreno-M

artínez
etal.(2020)

Sun
etal.(2017)

M
ain

service
quality

control&
gap

filling
sub-setting

quality
control&

gap
filling

quality
control&

gap
filling,

quality
control&

gap
filling

sensorfusion

Products
M

O
D

IS
N

B
A

R
surface

reflectance
&

,
a

range
ofsatellites

and
sensors,

L
andsatN

D
V

I(30
m

,16-daily)
L

andsatsurf.reflectance
M

O
D

IS
surface

reflectance,
vegetation

indices
(daily,500

m
)

com
plem

entary
to

FluxnetE
O

and
uncertainties

albedo
and

B
R

D
F

param
eters

M
O

D
IS

L
ST

(daily,1
km

)
in

6
bands

in
land

bands
and

three
broad

bands
L

andsatsurface
reflectance

&
(30

m
,m

onthly)
(daily,30

arcsec)
vegetation

indices
(m

onthly,30
m

)

Site
selection

338
eddy-covariance

sites
m

ore
than

3000
field

sites
none,gridded

data
set

none,gridded
data

set
none,gridded

globaldata
set

(L
aT

huile,Fluxnet2015,
ofany

kind
and

netw
ork

forthe
C

O
N

U
S

forthe
C

O
N

U
S

IC
O

S
D

rought2015)

Pre-processing
quality

control(retrieval,clouds,
none

quality
control(clouds,outliers,

quality
control(clouds,

quality
controlofB

R
D

F
param

eters
snow

,w
ater,outlier),

snow
only

partly)
snow

,w
ater)

(inversion,cloud,snow
,outliers)

gap
filling

gap
filling

by
user-defined

clim
atology

gap
filling

by
clim

atology
gap

filling
ofB

R
D

F
param

eters
and

sensorfusion

C
utoutsize

4
×

4
km

2,re-projected
to

regulargrid
8
×

8
km

2,native
projection

none
none

none

Site
coordinates

verified
coordinates

reported
from

the
netw

orks
none

none
none

L
ength

ofrecord
2000–2020

forM
O

D
IS

up
to

the
very

recentpast(about1
m

onth),
1984–2019

2009–2020
2000–2017

1987–2017
forL

andsat
sensordata

are
only

archived
forperiods

regularupdates
planned

w
hen

a
site

is
active

File
form

at
N

etC
D

F
csv,json

G
E

O
tiff

tiff
hdf

A
ccess

IC
O

S
C

arbon
portal

O
R

N
L

D
A

A
C

(2018)
http://ndvi.ntsg.um

t.edu/,lastaccess:3
M

ay
2022

G
E

E
N

A
SA

E
arthdata

Biogeosciences, 19, 2805–2840, 2022 https://doi.org/10.5194/bg-19-2805-2022

http://ndvi.ntsg.umt.edu/


S. Walther et al.: A view from space on global flux towers by MODIS and Landsat 2825

values outside the growing season, the baseline value
represents the 97th percentile instead. However, if for a
given winter the average over the last five (one obser-
vation for Landsat) valid data points at the end of the
growing season or over the first five valid data points at
the beginning of the next growing season is lower than
the baseline value (higher than the baseline for indices
which are typically high outside the growing season),
the baseline takes the value of this average for the given
winter (similar to Beck et al., 2007).

3. Linearly scale the median seasonal cycle (MSC) to the
time series to fill longer gaps (Verger et al., 2013). Cal-
ibration happens in moving temporal windows of 80 d
(24 months for Landsat) and application of the scaling
in steps of 20 d (4 months for Landsat). In the following
x represents a time series of reflectance-based indices
and x∗ the time series with some of its gaps filled by a
scaled MSC.

xt=k:k+80 = f (MSC(x)t=k:k+80)

x∗t=k:k+20 =m ·MSC(x)t=k:k+20+ n

Appendix B: Technical details about the processing of
MODIS LST

In this section we provide all specific technical details neces-
sary to reproduce the processing steps for the MODIS LST.

The empirical filter to remove potential outlier values (Pa-
pale et al., 2006) followed the same procedure as for the veg-
etation indices but used a constant z value of 1.5 as it pro-
vided the best trade-off between filter success, false positives,
and false negatives.

Estimates of LST in data gaps originate from the following
steps.

– In contrast to the procedure for the reflectance-based
vegetation indices, the distribution of values in the tem-
poral windows of 8 d is not supplied by the median sea-
sonal cycle in case of low data availability. The mov-
ing window median was not applied for windows with
fewer than three valid values.

– Filling by linearly scaling the median seasonal shift be-
tween any two of the four MODIS LST time series to
each other (Crosson et al., 2012; Li et al., 2018). The
following explains this gap-filling step for TERRAday
as the “imputed” time series.

1. Compute the shift between TERRAday and
AQUAday (1(TERRAday, AQUAday)) and ob-
tain the MSC of the shift: MSC(1(TERRAday,
AQUAday)).

2. Linearly scale the MSC of the shift to the shift it-
self in temporal windows of 80 d (provided a mini-
mum of 10 valid values in a given window). Apply

the scaling in windows and steps of 20 d to obtain
estimates of the shift (1(TERRAday, AQUAday)∗)
from its MSC where it is missing.

1
(
TERRAday,AQUAday

)
t=k:k+80

= f
(

MSC
(
1

(
TERRAday,AQUAday

))
t=k:k+80

)
1

(
TERRAday,AQUAday

)∗
t=k:k+20

=m ·MSC
(
1

(
TERRAday,AQUAday

))
t=k:k+20

+n

3. Add the scaled average shift to the AQUAday to ob-
tain an estimate of TERRA∗day

[
AQUAday

]
that can

fill gaps in TERRAday.

TERRA∗day t=k:k+20
[
AQUAday

]
= AQUAday t=k:k+20

+1
(
TERRAday,AQUAday

)∗
t=k:k+20

Analogously to TERRA∗day[AQUAday], the night-
time LST observations also contributed to estimate
TERRA∗day[TERRAnight] and TERRA∗day[AQUAnight].
All three estimates, TERRA∗day[AQUAday],
TERRA∗day[TERRAnight], and TERRA∗day[AQUAnight],
served to fill gaps in TERRAday, namely in the order
of increasing standard deviation of the differences be-
tween valid TERRAday and each of the three estimated
TERRA∗day values.

The procedure analogously filled AQUAday,
TERRAnight, and AQUAnight accordingly using
valid observations of the remaining three, respectively.

– Linearly scale the valid LST observations of each of
the four data streams to their own median annual cy-
cle in temporal windows. As in step 2, the calibration
happened in temporal windows of 80 d, while the scal-
ing was applied in windows of 20 d. Exemplarily for
TERRAday.

TERRAday t=k:k+80 = f
(

MSC
(
TERRAday

)
t=k:k+80

)
TERRA∗day t=k:k+20 =m ·MSC

(
TERRAday

)
t=k:k+20

+ n
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Appendix C: Details about the benchmarking exercises

Figure C1. Benchmarking in artificial gaps: distribution of NSE per site of the gap-fill estimates in artificial gaps by FluxnetEO (a, c) and
missForest (b, d) within the physical ranges of the indices for 20 % and 40 % of good-quality data removed. For MODIS (a, b) and Landsat (c,
d), random good-quality samples are removed from the tower pixel. Note the different x-axis limits.
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Figure C2. Benchmarking in artificial gaps: distribution of NSE per site of the gap-fill estimates in artificial gaps by FluxnetEO. A total of
20 % and 40 % of data were removed and gap-filled. (a) Landsat time series of the average reflectance/vegetation index across the whole
cutout. (b) The centre pixel of MODIS data aggregated to monthly temporal resolution.

Figure C3. Benchmarking Landsat reflectance in the blue spectral band from FluxnetEO against the product produced by Moreno-Martínez
et al. (2020) at EC sites in the CONUS. Each sample reflectance_s,t,p refers to one site (s), time step (t), and subpixel (p). Comparing
spatial patterns: (a) scatterplot of the temporally averaged reflectance (mean(reflectance_s,p)_t); each dot reflects one subpixel and site.
(b) Spatial Pearson correlation across all subpixels in a cutout per site of the average grouped by month. (c) Temporal correlation as a
function of the number of missing values in each subpixel and site. (d–f) Compute a spatial average across all subpixels in a cutout per time
step. (d) Temporal Pearson correlation of the spatial average. (e) Pearson correlation of the deviations from the mean seasonal cycle of the
spatially averaged time series. (f) Difference between FluxnetEO and Moreno reflectance and their average per month of the year. r refers to
the Pearson correlation coefficient and mef to the Nash–Sutcliffe efficiency (Nash and Sutcliffe, 1970).
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Figure C4. Same as Fig. C3 but for the green spectral band.

Figure C5. Same as Fig. C3 but for the red spectral band.
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Figure C6. Same as Fig. C3 but for the first shortwave infrared spectral band.

Figure C7. Same as Fig. C3 but for the second shortwave infrared spectral band.
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Figure C8. Example site US-Fmf: comparing the gap-filled surface reflectance products in spectral channels.
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Appendix D: Details about the analysis of spatial
context

For the analysis at DE-Geb and ES-LM1 we used night-
time partitioned GPP (Reichstein et al., 2005) with the mean
of the variable u∗ threshold (GPP_NT_VUT_MEAN) from
the Drought 2018 Team and ICOS Ecosystem Thematic
Centre (2020) data release (Migliavacca et al., 2020; ICOS
Ecosystem Thematic Centre and Gebesee, 2019). We com-
puted the actual flux footprints after Kljun et al. (2015) from
ICOS drought 2018 data (Drought 2018 Team and ICOS
Ecosystem Thematic Centre, 2020) using the R-code version
(V1.41) of the FFP tool. As a flux footprint for the intersec-
tion with EVI, we define the area that contributes 80 % to the
flux footprint probability density function (80 % isoline of
the monthly/daily cumulative flux footprint for Landsat and
MODIS, respectively).

Flux footprint calculation followed the same procedure for
the three measurement heights at RU-Zo2. Surface tempera-
ture was inverted from sensible heat flux and meteorological
variables (Knauer et al., 2018) with the following equation:

Tsurf = Tair+H/
(
ρ · cp ·Gah

)
, (D1)

with Tair the air temperature at measurement height (K), H
the sensible heat flux (W m−2), ρ the density of air (kg m−3),
cp the specific heat capacity of the air (J kg−1 K−1), and Gah
the aerodynamic conductance to heat (m s−1).Gah is defined
asGah = 1/(Ram+Rbh), with the aerodynamic resistance to
momentum Ram = u/u∗2 and the canopy boundary layer re-
sistance for heat Rbh = 6.2×u∗−2/3. As the inverted surface
temperature was compared to LST AQUAday, the average of
half-hourly sensible heat flux of the nominal overpass time at
1.30± 1.5 h was taken. Only days with good quality in both
the LST and sensible heat flux are used according to the fol-
lowing criteria: (i) more than 90 % of the EO cutouts have
valid (i.e. non-gap-filled) values, which restricts the com-
parison to clear-sky conditions, and (ii) at least 50 % of the
half-hourly long-wave fluxes and all meteorological data in
a given day are of good quality. A larger cutout of 5× 5 km2

was extracted for MODIS LST to fully also cover the extent
of the flux footprint of the highest measurement level but is
used only for illustrative purposes and not in the data pro-
vided in the FluxnetEO collections.

Figure D1. Spearman correlation between EVI and GPP using
monthly Landsat (a, c, e, g) and daily MODIS (b, d, f, h) data for
ES-LM1 (a–d) and DE-Geb (e–h) Fluxnet sites. The correlation es-
timates were computed on the raw time series (a, b, e, f) and on the
anomalies (c, d, g, h).
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Appendix E: Site selection

Table E1. Sites in FluxnetEO product version 1.0: site codes and coordinates (rounded to four decimals). Site codes including a ∗ indicate
sites for which currently only MODIS data are provided.

Site code Latitude, longitude Site code Latitude, longitude

AR-SLu −33.4648, −66.4598 AR-Vir −28.2395, −56.1886
AT-Neu 47.1167, 11.3175 AU-ASM −22.283, 133.249
AU-Ade −13.0769, 131.1178 AU-Cpr −34.0021, 140.5891
AU-Cum −33.6152, 150.7236 AU-DaP −14.0633, 131.3181
AU-DaS −14.1593, 131.3881 AU-Dry −15.2588, 132.3706
AU-Emr −23.8587, 148.4746 AU-Fog −12.5452, 131.3072
AU-Gin −31.3764, 115.7138 AU-How −12.4943, 131.1523
AU-RDF −14.5636, 132.4776 AU-Rob −17.1175, 145.6301
AU-TTE −22.287, 133.64 AU-Tum −35.6566, 148.1517
AU-Wac −37.4259, 145.1878 AU-Whr −36.6732, 145.0294
AU-Wom −37.4222, 144.0944 AU-Ync −34.9883, 146.2916
BE-Bra 51.3076, 4.5198 BE-Lon 50.5516, 4.7462
BE-Vie 50.3049, 5.9981 BR-Ban −9.8244, −50.1591
BR-Cax −1.7197, −51.459 BR-Ji2 −10.0832, −61.9309
BR-Sa1 −2.8567, −54.9589 BR-Sa2 −3.0119, −54.5365
BR-Sa3 −3.018, −54.9714 BR-Sp1 −21.6195, −47.6499
BW-Ma1 −19.9165, 23.5603 CA-Ca1 49.8673, −125.3336
CA-Ca2 49.8705, −125.2909 CA-Ca3 49.5346, −124.9004
CA-Gro 48.2167, −82.1556 CA-Let 49.7093, −112.9402
CA-Man 55.8796, −98.4808 CA-Mer 45.4094, −75.5186
CA-NS1 55.8792, −98.4839 CA-NS2 55.9058, −98.5247
CA-NS3 55.9117, −98.3822 CA-NS4 55.9144, −98.3806
CA-NS5 55.8631, −98.485 CA-NS6 55.9167, −98.9644
CA-NS7 56.6358, −99.9483 CA-Oas 53.6289, −106.1978
CA-Obs 53.9872, −105.1178 CA-Ojp 53.9163, −104.692
CA-Qcu 49.2671, −74.0365 CA-Qfo 49.6925, −74.3421
CA-SF1 54.485, −105.8176 CA-SF2 54.2539, −105.8775
CA-SF3 54.0916, −106.0053 CA-SJ1 53.908, −104.656
CA-SJ2 53.945, −104.649 CA-SJ3 53.8758, −104.6453
CA-TP1 42.6609, −80.5595 CA-TP2 42.7744, −80.4588
CA-TP3 42.7068, −80.3483 CA-TP4 42.7102, −80.3574
CA-TPD 42.6353, −80.5577 CA-WP1 54.9538, −112.467
CA-WP3 54.47, −113.32 CG-Tch −4.2892, 11.6564
CH-Aws 46.5832, 9.7904 CH-Cha 47.2102, 8.4104
CH-Dav 46.8153, 9.8559 CH-Fru 47.1158, 8.5378
CH-Lae 47.4781, 8.365 CH-Oe1 47.2858, 7.7319
CH-Oe2 47.2863, 7.7343 CN-Anh 33.0, 117.0
CN-Bed 39.5306, 116.252 CN-Cha 42.4025, 128.0958
CN-Cng 44.5934, 123.5092 CN-Dan 30.4978, 91.0664
CN-Din 23.1733, 112.5361 CN-Do1 31.5167, 121.961
CN-Do2 31.5847, 121.903 CN-Do3 31.5169, 121.972
CN-Du1 42.0456, 116.671 CN-Du2 42.0467, 116.2836
CN-Du3 42.0551, 116.2809 CN-HaM 37.37, 101.18
CN-Hny 29.31, 112.51 CN-Ku1 40.5383, 108.694
CN-Ku2 40.3808, 108.549 CN-Qia 26.734, 115.0663
CN-Sw2 41.7902, 111.8971 CN-Xi1 43.5458, 116.6778
CZ-BK1 49.5021, 18.5369 CZ-BK2* 49.4944, 18.5428
CZ-Lnz 48.6816, 16.9464 CZ-RAJ 49.4437, 16.6965
CZ-Stn 49.036, 17.9699 CZ-wet 49.0246, 14.7704
DE-Akm 53.8662, 13.6834 DE-Bay 50.1419, 11.8669
DE-Geb 51.0997, 10.9146 DE-Gri 50.95, 13.5126
DE-Hai 51.0792, 10.453 DE-Har 47.9344, 7.601
DE-HoH 52.0853, 11.2192 DE-Hte 54.2103, 12.1761
DE-Hzd 50.9638, 13.4898 DE-Kli 50.8931, 13.5224
DE-Lkb 49.0996, 13.3047 DE-Lnf 51.3282, 10.3678
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Table E1. Continued.

Site code Latitude, longitude Site code Latitude, longitude

DE-Meh 51.2753, 10.6555 DE-Obe 50.7867, 13.7213
DE-RuR 50.6219, 6.3041 DE-RuS 50.8659, 6.4471
DE-RuW 50.5049, 6.331 DE-Seh 50.8706, 6.4497
DE-SfN 47.8064, 11.3275 DE-Spw 51.8922, 14.0337
DE-Tha 50.9626, 13.5652 DE-Wet 50.4535, 11.4575
DE-Zrk 53.8759, 12.889 DK-Eng 55.6905, 12.1918
DK-Fou 56.4842, 9.5872 DK-Lva 55.6833, 12.0833
DK-Ris 55.5303, 12.0972 DK-Sor 55.4859, 11.6446
ES-Abr 38.7018, −6.7859 ES-Amo 36.8336, −2.2523
ES-ES1 39.346, −0.3188 ES-ES2 39.2756, −0.3153
ES-LJu 36.9266, −2.7521 ES-LM1 39.9427, −5.7787
ES-LM2 39.9346, −5.7759 ES-LMa 39.9415, −5.7734
ES-LgS 37.0979, −2.9658 ES-Ln2 36.9695, −3.4758
ES-VDA 42.1522, 1.4485 FI-Hyy 61.8474, 24.2948
FI-Jok 60.8986, 23.5134 FI-Kaa 69.1406, 27.2698
FI-Let 60.6418, 23.9595 FI-Lom 67.9972, 24.2092
FI-Sii 61.8326, 24.1928 FI-Sod 67.3624, 26.6386
FI-Var 67.7549, 29.61 FR-Aur 43.5497, 1.1061
FR-Bil 44.4937, −0.9561 FR-EM2 49.8721, 3.0206
FR-Fon 48.4764, 2.7801 FR-Gri 48.8442, 1.9519
FR-Hes 48.6741, 7.0646 FR-LBr 44.7171, −0.7693
FR-Lam 43.4965, 1.2378 FR-Lq1 45.6431, 2.7358
FR-Lq2 45.6392, 2.737 FR-Pue 43.7413, 3.5957
GF-Guy 5.2788, −52.9249 GH-Ank 5.2685, −2.6942
GL-NuF∗ 64.1308, −51.3861 GL-ZaF 74.4814, −20.5545
GL-ZaH 74.4733, −20.5503 HU-Bug 46.6911, 19.6013
HU-Mat 47.8469, 19.726 ID-Pag 2.345, 114.036
IE-Ca1 52.8588, −6.9181 IE-Dri 51.9867, −8.7518
IL-Yat∗ 31.345, 35.052 IS-Gun 63.8333, −20.2167
IT-Amp 41.9041, 13.6052 IT-BCi 40.5238, 14.9574
IT-Bon 39.4778, 16.5347 IT-CA1 42.3804, 12.0266
IT-CA2 42.3772, 12.026 IT-CA3 42.38, 12.0222
IT-Col 41.8494, 13.5881 IT-Cp2 41.7043, 12.3573
IT-Cpz 41.7052, 12.3761 IT-Isp 45.8126, 8.6336
IT-LMa 45.1526, 7.5826 IT-La2 45.9542, 11.2853
IT-Lav 45.9562, 11.2813 IT-Lec 43.3036, 11.2698
IT-Lsn 45.7405, 12.7503 IT-MBo 46.0147, 11.0458
IT-Mal 46.114, 11.7033 IT-Noe 40.6062, 8.1512
IT-Non 44.6902, 11.0911 IT-PT1 45.2009, 9.061
IT-Pia 42.5839, 10.0784 IT-Ren 46.5869, 11.4337
IT-Ro1 42.4081, 11.93 IT-Ro2 42.3903, 11.9209
IT-SR2 43.732, 10.291 IT-SRo 43.7279, 10.2844
IT-Tor 45.8444, 7.5781 JP-MBF 44.3842, 142.3186
JP-Mas 36.054, 140.0269 JP-SMF 35.2617, 137.0786
JP-Tak 36.1462, 137.423 JP-Tom 42.7395, 141.5149
MY-PSO 2.973, 102.3062 NL-Ca1 51.971, 4.927
NL-Haa 52.0036, 4.8056 NL-Hor 52.2404, 5.0713
NL-Lan 51.9536, 4.9029 NL-Loo 52.1666, 5.7436
NL-Lut 53.3989, 6.356 PA-SPn 9.3181, −79.6346
PA-SPs 9.3138, −79.6314 PL-Wet 52.7622, 16.3094
PT-Esp 38.6394, −8.6018 PT-Mi1 38.5406, −8.0001
PT-Mi2 38.4765, −8.0246 RU-Che 68.613, 161.3414
RU-Cok 70.8291, 147.4943 RU-Fy2 56.4476, 32.9019
RU-Fyo 56.4615, 32.9221 RU-Ha1 54.7252, 90.0022
RU-Ha3 54.7046, 89.0778 RU-Sam 72.3738, 126.4958
RU-SkP 62.255, 129.168 RU-Tks 71.5943, 128.8878
RU-Vrk 67.0547, 62.9405 RU-Zot 60.8008, 89.3508
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Table E1. Continued.

Site code Latitude, longitude Site code Latitude, longitude

SD-Dem 13.2829, 30.4783 SE-Abi 68.3624, 18.7948
SE-Deg 64.182, 19.5565 SE-Htm 56.0976, 13.419
SE-Lnn* 58.3406, 13.1018 SE-Nor 60.0865, 17.4795
SE-Ros* 64.1725, 19.738 SE-Sk2 60.1297, 17.8401
SE-St1 68.3541, 19.0503 SE-Svb* 64.2561, 19.7745
SJ-Adv 78.186, 15.923 SJ-Blv 78.9216, 11.8311
SK-Tat 49.1208, 20.1635 SN-Dhr 15.4028, −15.4322
UK-ESa 55.9069, −2.8586 UK-Gri 56.6072, −3.7981
UK-Ham 51.1535, −0.8583 UK-PL3 51.45, −1.2667
UK-Tad 51.2071, −2.8286 US-AR1 36.4267, −99.42
US-AR2 36.6358, −99.5975 US-ARM 36.6058, −97.4888
US-ARb 35.5497, −98.0402 US-ARc 35.5465, −98.04
US-Atq 70.4696, −157.4089 US-Aud 31.5907, −110.5104
US-Bar 44.0646, −71.2881 US-Bkg 44.3453, −96.8362
US-Blo 38.8953, −120.6328 US-Bn2 63.9198, −145.3782
US-Bn3 63.9227, −145.7442 US-Bo1 40.0062, −88.2904
US-Bo2 40.009, −88.29 US-Brw 71.3225, −156.6092
US-CRT 41.6285, −83.3471 US-CaV 39.0633, −79.4208
US-Cop 38.09, −109.39 US-Dk3 35.9782, −79.0942
US-FPe 48.3077, −105.1019 US-FR2 29.9495, −97.9962
US-Fmf 35.1426, −111.7273 US-Fuf 35.089, −111.762
US-Fwf 35.4454, −111.7718 US-GBT 41.3658, −106.2397
US-GLE 41.3665, −106.2399 US-Goo 34.2547, −89.8735
US-Ha1 42.5378, −72.1715 US-Ho1 45.2041, −68.7402
US-Ho2 45.2091, −68.747 US-IB1 41.8593, −88.2227
US-IB2 41.8406, −88.241 US-Ivo 68.4865, −155.7503
US-KS1 28.4583, −80.6709 US-KS2 28.6086, −80.6715
US-LWW 34.9604, −97.9789 US-Lin 36.3566, −119.8423
US-Los 46.0827, −89.9792 US-MMS 39.3232, −86.4131
US-MOz 38.7441, −92.2 US-Me1 44.5794, −121.5
US-Me2 44.4523, −121.5574 US-Me3 44.3154, −121.6078
US-Me4 44.4992, −121.6224 US-Me5 44.4372, −121.5668
US-Me6 44.3233, −121.6078 US-Myb 38.0498, −121.7651
US-NC1 35.8118, −76.7119 US-NR1 40.0329, −105.5464
US-Ne1 41.1651, −96.4766 US-Ne2 41.1649, −96.4701
US-Ne3 41.1797, −96.4397 US-ORv 40.0201, −83.0183
US-Oho 41.5545, −83.8438 US-PFa 45.9459, −90.2723
US-Prr 65.1237, −147.4876 US-SO2 33.3738, −116.6228
US-SO3 33.3771, −116.6226 US-SO4 33.3845, −116.6406
US-SP1 29.7381, −82.2188 US-SP2 29.7648, −82.2448
US-SP3 29.7548, −82.1633 US-SRC 31.9083, −110.8395
US-SRG 31.7894, −110.8277 US-SRM 31.8214, −110.8661
US-Sta 41.3966, −106.8024 US-Syv 46.242, −89.3477
US-Ton 38.4316, −120.966 US-Tw1 38.1074, −121.6469
US-Tw2 38.1047, −121.6433 US-Tw3 38.1159, −121.6467
US-Tw4 38.103, −121.6414 US-Twt 38.1087, −121.653
US-UMB 45.5598, −84.7138 US-UMd 45.5625, −84.6975
US-Var 38.4133, −120.9507 US-WBW 35.9588, −84.2874
US-WCr 45.8059, −90.0799 US-WPT 41.4646, −82.9962
US-Whs 31.7438, −110.0522 US-Wi0 46.6188, −91.0814
US-Wi1 46.7305, −91.2329 US-Wi2 46.6869, −91.1528
US-Wi3 46.6347, −91.0987 US-Wi4 46.7393, −91.1663
US-Wi5 46.6531, −91.0858 US-Wi6 46.6249, −91.2982
US-Wi7 46.6491, −91.0693 US-Wi8 46.7223, −91.2524
US-Wi9 46.6188, −91.0814 US-Wkg 31.7365, −109.9419
US-Wrc 45.8205, −121.9519 VU-Coc −15.4427, 167.192
ZA-Kru −25.0197, 31.4969 ZM-Mon −15.4378, 23.2528
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Data availability. Data sets are available for open and free us-
age under ICOS Carbon Portal in separate collections for Land-
sat (Walther et al., 2021a, https://doi.org/10.18160/0Z7J-J3TR) and
for MODIS (Walther et al., 2021b, https://doi.org/10.18160/XTV7-
WXVZ). Zipped folders package the data by continents and groups
of countries. In the zip directories, the files are organised by site
and in two processing versions: one version contains spatially ex-
plicit data fields for each subpixel in the cutout of 4× 4 km2 and
is denoted by “subpixel” in the file name. A second version is an
average time series per site that represents the area within 1 km ra-
dius of the site (“average_cutout”). The inverse distance to the tower
serves as weight in the average to account for the fact that areas far-
ther away from the stations contribute less to the measured fluxes
than the immediate surroundings of a site also in the average of
land surface characteristics. In this version, at every time step all
valid subpixels closer than 1 km to the site are averaged after the
quality checks, and the gap-filling procedure applies to this average
time series. The data fields contained in both processing versions
are listed in Table 2. Each data field has a complementary data layer
(“gapfilltype”) with an integer flagging which data point is of orig-
inal good quality (= 0) or in which gap-filling step a given point
has been imputed in the gap-filling procedure (flags≥ 1). The key
to this integer flag is given in the file attributes. The processing ver-
sion “average_cutout” has additional fields that indicate how many
valid pixels within 1 km of the tower contributed to the spatial av-
erage per time step (“N”) and the spatial standard deviation of the
vegetation index or LST for the given time step (“NSTD”).
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