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Abstract. Lack of direct carbon, water, and energy flux ob-
servations at global scales makes it difficult to calibrate land
surface models (LSMs). The increasing number of remote-
sensing-based products provide an alternative way to ver-
ify or constrain land models given their global coverage
and satisfactory spatial and temporal resolutions. However,
these products and LSMs often differ in their assumptions
and model setups, for example, the canopy model complex-
ity. The disagreements hamper the fusion of global-scale
datasets with LSMs. To evaluate how much the canopy
complexity affects predicted canopy fluxes, we simulated
and compared the carbon, water, and solar-induced chloro-
phyll fluorescence (SIF) fluxes using five different canopy
complexity setups from a one-layered canopy to a multi-
layered canopy with leaf angular distributions. We modeled
the canopy fluxes using the recently developed land model
by the Climate Modeling Alliance, CliMA Land. Our model
results suggested that (1) when using the same model in-
puts, model-predicted carbon, water, and SIF fluxes were all
higher for simpler canopy setups; (2) when accounting for
vertical photosynthetic capacity heterogeneity, differences
between canopy complexity levels increased compared to
the scenario of a uniform canopy; and (3) SIF fluxes mod-
eled with different canopy complexity levels changed with
sun-sensor geometry. Given the different modeled canopy
fluxes with different canopy complexities, we recommend
(1) not misusing parameters inverted with different canopy
complexities or assumptions to avoid biases in model out-
puts and (2) using a complex canopy model with angular dis-
tribution and a hyperspectral radiation transfer scheme when
linking land processes to remotely sensed spectra.

1 Introduction

Land surface models (LSMs) simulate the carbon, water, and
energy fluxes at the land–atmosphere interface at regional
and global scales and are a key component for Earth system
models (ESMs). The ability of LSMs to accurately model the
carbon, water, and energy fluxes within vegetation canopy
largely determines the predictive skills of the ESMs. Model-
ing canopy carbon, water, and energy fluxes dates back to the
early 20th century, and various canopy models have different
complexities from a single layer to multiple layers (see Bo-
nan et al., 2021, for an overview). To date, the most widely
used canopy models in the LSM community are the “big-leaf
model family”.

It should be noted that a big-leaf model may refer to
different models within the last decades given their inter-
changeable uses (Luo et al., 2018). According to Luo et al.
(2018), the big-leaf model can be categorized at least as
the following types given the purposes for which they were
developed. (1) The one-big-leaf canopy model considers a
canopy to be a single big leaf and was typically used with the
Penman–Monteith equation (Penman, 1948; Monteith, 1965)
to compute land surface evaporation in early LSMs. Sell-
ers et al. (1992) updated the one-big-leaf model by adding
an exponentially diminishing photosynthetic rate within the
canopy depth to upscale photosynthesis for the carbon–water
coupled LSMs. Yet, this scheme often underestimated the
canopy assimilation rate, as the exponential function cannot
properly represent the vertical light and photosynthesis pro-
files. (2) A two-leaf radiation scheme separates the canopy
into a group of sunlit leaves and a group of shaded leaves
(Norman, 1982; De Pury and Farquhar, 1997; Campbell and
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Norman, 1998; Chen et al., 1999) and was used to account for
the horizontal and vertical light heterogeneity in the canopy.
(3) A two-big-leaf canopy model combines the one-big-leaf
canopy model and two-leaf radiation scheme to upscale car-
bon and water fluxes and treats each of the sunlit and shaded
fractions as a single big leaf, where leaf biochemical pa-
rameters and radiation are upscaled to the canopy level (De
Pury and Farquhar, 1997; Wang and Leuning, 1998). (4) A
two-leaf canopy model uses a two-leaf radiation scheme and
treats each of the sunlit and shaded fractions as a leaf with av-
erage traits for its representation (not an integrated value as
in a big leaf) (Chen et al., 1999, 2012; Sprintsin et al., 2012).
Therefore, one needs to be cautious when using the term big-
leaf model, as it may refer to (i) a two-leaf radiation scheme
which is a canopy radiative transfer model or (ii) upscaling
schemes which differ in the way leaf biochemical parame-
ters are integrated (such as the one-big-leaf and two-big-leaf
models) or averaged (such as the two-leaf canopy model).

The biggest advantage of the big-leaf model family is com-
putational efficiency given the simple mathematical formula-
tion. The potential disadvantages of the big-leaf model fam-
ily are also obvious; e.g., the model is too simplified and thus
not able to resolve vertically varying profiles and microcli-
mates in the canopy, such as air temperature, humidity, and
wind speed (Bonan et al., 2021). Thus, there is an increasing
demand for LSMs to move from a simple one-layered canopy
to a multi-layered one.

One of the most important functions of canopy models is
to predict carbon, water, and energy fluxes globally in the
future to determine whether the land will remain a carbon
sink. Though canopy models with different complexity lev-
els have been extended to a global scale in different LSMs,
researchers are facing a key problem: a lack of direct global-
scale carbon, water, and energy flux observations. The lack
of data makes it difficult to calibrate the LSMs at global
scales, particularly those using more complex canopy setups
given the more parameters required. As a result, though it
is shown that a multi-layered canopy model better resolves
energy fluxes in the canopy (Bonan et al., 2021), little is
known about whether the multi-layered canopy models show
improved predictive skills (particularly in terms of carbon
and water fluxes) compared to the big-leaf models which are
widely used in existing LSMs.

To better constrain LSMs with data, people realized the
promise of remote sensing data given their global coverage
and satisfactory spatial and temporal resolutions. Regarding
carbon, research has shown that solar-induced chlorophyll
fluorescence (SIF) and the near-infrared reflection of vege-
tation (NIRv) are correlated with plant gross primary pro-
ductivity (GPP; Frankenberg et al., 2011; Zhang et al., 2016;
Sun et al., 2018; Badgley et al., 2019). Regarding water, re-
searchers also found SIF to be useful for inverting the tran-
spiration rate by prescribing stomatal responses to the en-
vironment (e.g., Shan et al., 2021) and the vegetation opti-
cal depth to be useful in sensing aboveground biomass and

canopy water stress (Momen et al., 2017; Zhang et al., 2019).
Regarding energy, various models and algorithms have been
used to detect the surface energy balance using optical light
and microwaves (e.g., Roerink et al., 2000; Norman et al.,
2003). Further, methods and applications have been devel-
oped to invert plant traits from remote sensing data, such as
leaf area index (e.g., Colombo et al., 2003; Deng et al., 2006)
and chlorophyll content (Croft et al., 2020).

Despite the increasing number of inverted fluxes and plant
trait datasets, there is limited research into testing the capa-
bility of these data in improving LSM predictions. Among
the various reasons that hamper the fusion of large-scale
datasets into LSMs, incompatibility between model and data
assumptions seems to be the major reason. For example,
the disagreement in canopy complexity may introduce er-
rors into modeling if one uses the data inverted from a
canopy complexity level (e.g., one-layered canopy) in a
model with a different canopy complexity level (e.g., multi-
layered canopy). Further, the flux and trait maps inverted
from remote sensing data often use simplified plant physi-
ological representations, which are, however, key processes
in land modeling. For example, studies that derive GPP from
SIF or NIRv often assume linear correlation between them,
whereas vegetation models must account for light saturation
(Zhang et al., 2016).

Ideally, LSMs can be constrained using raw reflection and
fluorescence spectra. This, nevertheless, requires the LSMs
to move from broadband canopy radiation to a hyperspec-
tral representation and from sunlit and shaded fractions to
leaf angular distributions (such as the land model devel-
oped by Climate Modeling Alliance, CliMA Land; Wang
et al., 2021b). This way, the LSM can be directly coupled
to remotely sensed canopy spectra (e.g., Shiklomanov et al.,
2021) rather than to reprocessed datasets using often in-
compatible assumptions. The increasing canopy complex-
ity, however, comes with high costs: (a) many more com-
putational resources are required by the increasing num-
ber of leaves (e.g., CliMA Land canopy has a default of
6500 leaves per tree in the canopy, whereas a two-leaf
canopy has two “leaves”); (b) canopy radiation and fraction
(e.g., the CliMA Land model calculates the radiation and
fraction based on leaf angular distribution for a default of
6500 leaves) are more complicated; and (c) most importantly,
there is increasing difficulty for research communities when
understanding or using the model.

To resolve the problems of a complicated canopy, we ex-
amined by how much carbon, water, and SIF fluxes may
differ when using different canopy complexity representa-
tions in the CliMA Land model, spanning from a one-layered
canopy to a multi-layered canopy with hyperspectral radia-
tion and leaf angular distributions (Fig. 1). With the model
simulations, we were able to answer the following questions:
(1) how does canopy complexity impact modeled canopy
fluxes, and (2) could data inverted using different canopy
complexity levels be compatible? Regarding the ease of un-
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Figure 1. Canopy complexity levels. 1X: single-layer canopy with-
out sunlit or shaded fractions. 2X: single-layer canopy with sun-
lit and shaded fractions. KX: multiple-layer canopy without sun-
lit or shaded fractions. 2KX: multiple-layer canopy with sunlit and
shaded fractions per layer. IJKX: multiple-layer canopy with sunlit
and shaded fractions per layer, with the sunlit fraction being further
partitioned based on leaf inclination and azimuth angular distribu-
tions.

derstanding and using an LSM with various canopy com-
plexities, we presented and suggested the highly modularized
CliMA Land model, which can be easily set up to simulate
canopy fluxes using different canopy complexity levels.

2 Materials and methods

We used the CliMA Land model (v0.1) to evaluate how
canopy model complexity impacts the simulated carbon, wa-
ter, and SIF fluxes. The CliMA Land model mechanistically
addresses soil–plant–air continuum processes and is able to
simulate canopy carbon and water fluxes as well as SIF si-
multaneously (Wang et al., 2021b). CliMA Land model code
and documentation are freely and publicly available at https:
//github.com/CliMA/Land (last access: 15 November 2021).

2.1 Canopy complexity levels

Leaf physiological responses to light are highly non-linear,
such as stomatal conductance to water vapor (gsw) and net
photosynthetic rate (Anet). Typically, when absorbed photo-
synthetically active radiation (APAR) is low, gsw and Anet
increase with higher APAR (Fig. 2a); when APAR is high,
gsw and Anet saturate. If one has a leaf with low APAR and a
leaf with high APAR (e.g., closed circles on the solid curves
of Fig. 2a), the mean behavior of the two leaves ought to
be the average gsw and Anet values (closed circles on the
colored dashed lines of Fig. 2a). However, if one uses the
mean APAR of the two leaves and calculates gsw and Anet
based on the mean APAR, gsw and Anet would be overesti-
mated (open circles on the colored solid curves of Fig. 2a).

Note that averaging APAR values that are beyond the turn-
ing point, say 350 µmolm−2 s−1, may not result in any bias
in modeled gsw and Anet (such as for sunlit and shaded
leaves in the top canopy layer); however, averaging APAR
for leaves with high APAR and low APAR, say 300 and
50 µmolm−2 s−1, would result in overestimated gsw and Anet
(such as for shaded leaves in an upper and lower canopy as
typically done in the two-leaf radiation scheme). Thus, an
overly simplified canopy model may overestimate canopy-
level carbon and water fluxes, because of the inappropriately
averaged APAR, as f (x) 6= f (x) when averaging non-linear
functions (Anet(APAR) > Anet(APAR) in leaf photosynthe-
sis).

To evaluate how much canopy model complexity matters,
we modeled the canopy using five different levels of com-
plexity, and they are denoted as “1X”, “2X”, “KX”, “2KX”,
and “IJKX” (Fig. 1). 1X represents the scenario in which the
canopy is treated as a single average leaf without sunlit or
shaded fractions, and leaf radiation is averaged for the entire
canopy. 2X complicates 1X by partitioning the average leaf
to sunlit and shaded fractions. KX enhances 1X by partition-
ing the canopy to multiple layers (but no sunlit or shaded
fractions per layer). 2KX partitions each canopy layer of
KX to sunlit and shaded fractions. IJKX further modifies
2KX by accounting for leaf inclination and azimuth angle
distributions per layer (Fig. 1). See Table 1 for the canopy
model complexity adopted by other vegetation models (see
https://yujie-w.github.io/PAGES/dev/methods/#Vegetation-
canopy-model-complexity for a growing list).

For IJKX, we simulated the canopy radiative transfer using
the CliMA Land-adapted SCOPE model (Soil Canopy Ob-
servation, Photochemistry and Energy fluxes; SCOPE v1.7;
Yang et al., 2017). The adaptations included that carotenoid
absorption was accounted for as APAR (Wang et al., 2021b)
and that canopy clumping was addressed using a clumping
index (Braghiere et al., 2021). At layer i, the shaded-leaf
fraction (relative to total leaf area in the canopy) is psh,i ,
and the sunlit-leaf fraction (relative to total leaf area in the
canopy) is psl,i(incl, azi) (“incl” is the inclination angle, and
“azi” is the azimuth angle). The fraction of sunlit leaves rela-
tive to total canopy leaf area in a given canopy layer is com-
puted as

∑
incl,azi

psl,i(incl,azi)=
LAI(i+ 1)−LAI(i)

LAI

·

LAI(i+1)∫
LAI(i)

exp(−k�x) · dx, (1)

where LAI is total leaf area index, LAI(i) is the leaf area
index above the ith canopy layer, LAI(i+ 1) is the leaf area
index in and above the ith canopy layer, k is the extinction
coefficient as a function of leaf inclination angle distribution,
and� is the clumping index. Then psl,i(incl,azi) is computed
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Figure 2. Non-linear leaf responses to the environmental and physiological parameters. (a) Responses of stomatal conductance to water vapor
(gsw; cyan solid curve) and net photosynthetic rate (Anet) to absorbed photosynthetically active radiation (APAR). The black dotted vertical
lines indicate two leaves at low- and high-light conditions. Mean behavior of the two leaves ought to be the closed circles on the colored dotted
lines. However, using mean APAR for the leaves would result in overestimated gsw and Anet (open circles). (b) Non-linear gsw and Anet
responses to leaf photosynthetic capacity, represented by the maximum carboxylation rate (Vcmax). Environmental and leaf physiological
settings for the simulations are the following: air and leaf temperatures at 298.15 K, atmospheric vapor pressure at 1500 Pa (relative humidity
at 0.47), atmospheric CO2 partial pressure at 40 Pa, atmospheric pressure at 101 325 Pa, Vcmax (for panel a) at 60 µmolm−2 s−1, and maximal
stomatal conductance at 0.3 molm−2 s−1.

Table 1. A list of vegetation models corresponding to our tested canopy complexity schemes. CLM: Community Land Model. ISBA: Interac-
tions between soil–biosphere–atmosphere. JULES: Joint UK Land Environment Simulator. ORCHIDEE: Organising Carbon and Hydrology
In Dynamic Ecosystems. SCOPE: Soil Canopy Observation, Photochemistry and Energy fluxes. 2X: single-layer canopy with sunlit and
shaded fractions. KX: multiple-layer canopy without sunlit or shaded fractions. 2KX: multiple-layer canopy with sunlit and shaded fractions
per layer. IJKX: multiple-layer canopy with sunlit and shaded fractions per layer, with the sunlit fraction being further partitioned based on
leaf inclination and azimuth angular distributions.

Model Version Reference Complexity

CLM 4 Bonan et al. (2011) 2X
5 Lawrence et al. (2019) 2X
ml Bonan et al. (2018) 2KX

ISBA A-gs Carrer et al. (2013) 2KX
MEB Boone et al. (2017) 2KX

JULES can_rad_mod 1 Jogireddy et al. (2006) one-big-leaf
can_rad_mod 4 Clark et al. (2011) IJKX
can_rad_mod 5 Clark et al. (2011) 2KX

ORCHIDEE CAN v1 Ryder et al. (2016) KX
SCOPE 1 van der Tol et al. (2009) IJKX

2, lite off Yang et al. (2021) IJKX
2, lite on Yang et al. (2021) 2KX

using

psl,i(incl,azi)=
∑

incl,azi
psl,i(incl,azi) ·

1
I
·

1
J
, (2)

where I is the number of inclination angles and J is the num-
ber of azimuth angles. The fraction of shaded leaves relative
to total canopy leaf area in a given canopy layer is computed

as

psh,i =
LAI(i+ 1)−LAI(i)

LAI

·

1−

LAI(i+1)∫
LAI(i)

exp(−k�x) · dx

 . (3)

Corresponding APAR values for the shaded and sun-
lit leaves are APARsh and APARsl,i(incl, azi), respec-
tively. We used default values of I = 9 inclination angles,
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J = 36 azimuth angles, and K = 20 vertical layers for IJKX
(K= 20 for 2KX and KX as well).

The 2KX fraction and APAR were derived from IJKX by
weighing APAR for sunlit leaves per canopy layer:

2KXpsl,i =
∑

incl,azi
psl,i(incl,azi),

2KXpsh,i = psh,i,

2KXAPARsl,i =

∑
incl,azi

[
APARsl,i(incl,azi) ·psl,i(incl,azi)

]∑
incl,azi

[
psl,i(incl,azi)

] ,

2KXAPARsh,i = APARsh,i .

(4)

The KX fraction and APAR were derived from 2KX by
weighing APAR for all sunlit and shaded leaves per canopy
layer:

KXpi =
2KXpsl,i +

2KXpsh,i ,

KXAPARi =
2KXAPARsl,i ·

2KXpsl,i +
2KXAPARsh,i ·

2KXpsh,i
KXpi

.

(5)

The 2X fraction and APAR were derived from 2KX by
weighing APAR for sunlit and shaded leaves for all canopy
layers, respectively, the following:

2Xpsl =
∑
i

psl,i,

2Xpsh =
∑
i

psh,i,

2XAPARsl =

∑
i

(2KXAPARsl,i ·
2KXpsl,i

)∑
i

(
2KXpsl,i

) ,

2XAPARsh =

∑
i

(2KXAPARsh,i ·
2KXpsh,i

)∑
i

(
2KXpsh,i

) . (6)

1X APAR was derived from KX by weighing APAR for
all layers:

1XAPAR=
∑
i

(KXAPARi ·KXpi
)
. (7)

We emphasize here that to derive canopy fluorescence
spectrum and its sun-sensor geometry, we need to simulate
the canopy radiative transfer using hyperspectral reflectance,
transmittance, and fluorescence. Due to the high spectral res-
olution and multiple layers required, radiative transfer and
canopy fractions in complex models such as SCOPE are
computed numerically. In comparison, radiative transfer and
sunlit/shaded fractions are computed analytically in the two-
leaf radiation scheme, as the model is single layered and uses
broadband reflectance and transmittance (Campbell and Nor-
man, 1998; Bonan et al., 2021). Yet, the two-leaf radiation

Figure 3. Comparison of profiles of mean absorbed photosyn-
thetically active radiation (APAR) for four different canopy com-
plexity levels. 1X: single-layer canopy without sunlit or shaded
fractions. 2X: single-layer canopy with sunlit and shaded frac-
tions. KX: multiple-layer canopy without sunlit or shaded fractions.
2KX: multiple-layer canopy with sunlit and shaded fractions per
layer. IJKX: multiple-layer canopy with sunlit and shade fractions
per layer, with the sunlit fraction being further partitioned based
on leaf inclination and azimuth angular distributions. The abbrevia-
tions “sl” and “sh” stand for sunlit and shaded leaves, respectively.

schemes that use broadband radiative transfer are not ade-
quate for accurate fluorescence modeling. Crucially, the dif-
ference in the analytic and numerical solutions could result
in biases in the simulated APAR and fraction. To avoid such
bias, we computed APAR and sunlit/shaded fractions for the
simpler canopy setups numerically using the algorithm in
IJKX. See Fig. 3 for the APAR profiles for 2KX, KX, 2X,
and 1X derived from IJKX. Also, we note here that leaf bio-
chemical parameters and APAR were not integrated within a
canopy layer or sunlit/shaded fractions; instead, we used av-
erage APAR and leaf traits in our simulations. Thus, our 1X
model is a one-leaf model rather than a one-big-leaf model,
and our 2X model resembles the two-leaf model rather than
the two-big-leaf model.

2.2 Vertical canopy profile

Leaf traits in the canopy are not uniform among the canopy
layers. Typically, leaf photosynthetic capacity (usually repre-
sented by the maximum carboxylation rate at 25 ◦C, Vcmax)
is higher in upper canopy because of the better light environ-
ment. Further, leaf physiological responses to Vcmax are also
highly non-linear, and using average Vcmax may also result in
overestimated gsw and Anet and thus carbon and water fluxes
(e.g., shift from solid circles to open circles in Fig. 2b).

To examine how much the vertical Vcmax profile impacts
modeled canopy flux simulations, we ran the model simula-
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tion in two scenarios, one using uniform Vcmax in the canopy
and one using decreasing Vcmax towards the lower canopy.
For the latter scenario, Vcmax at layer i was tuned using an
exponential function following De Pury and Farquhar (1997)
and Chen et al. (2012):

Vcmax,i = Vcmax,top · exp[−0.15 ·LAI(i)] , (8)

where Vcmax,top is Vcmax at the top of the canopy and 0.15
is the shape factor that describes the decreasing Vcmax with
canopy depth. Note that as leaves are experiencing dynami-
cally changing light environment throughout the day, it is un-
realistic to assume the sunlit and shaded leaves have different
traits; thus, we only accounted for the vertical heterogene-
ity but neglected the horizontal heterogeneity in each canopy
layer, namely using the same characteristics for leaves within
the same canopy layer.

The Vcmax profile was applied to IJKX, 2KX, and KX
directly, whereas weighed mean Vcmax =

∑
iVcmax,i ·

KXpi
was used in 1X. The Vcmax profile or value stayed con-
stant in these four scenarios throughout the simulation, as
sunlit/shaded fractions did not impact them. We note here
that mean Vcmax changed with sunlit/shaded fractions in 2X
(Chen et al., 2012) and particular averages of Vcmax for sunlit
and shaded fractions (2XVcmax,sl and 2XVcmax,sh, respectively)
need to be updated with sunlit and shaded fractions:

2XVcmax,sl =

∑
i

(2KXVcmax,i ·
2KXpsl,i

)∑
i

(
2KXpsl,i

) ,

2XVcmax,sh =

∑
i

(2KXVcmax,i ·
2KXpsh,i

)∑
i

(
2KXpsh,i

) . (9)

Note that we tuned the maximum electron transport rate
and leaf respiration rate in the same manner as Vcmax.

2.3 Canopy flux simulations

We simulated the canopy carbon and water fluxes using a
stomatal optimization model developed in Wang et al. (2020)
given the good model performance and scalability (Wang
et al., 2021a). The stomatal optimization model posits that
stomatal opening is optimized when the difference between
carbon gain and risk is maximum:

maxAnet︸︷︷︸
gain

− Anet ·
E

Ecrit︸ ︷︷ ︸
risk

, (10)

where E is the leaf transpiration rate and Ecrit is the criti-
cal transpiration rate of the leaf beyond which leaf hydraulic
conductance drops below 0.1 % of the maximum (see Sperry
et al., 2016, and Wang et al., 2021b, for more details ofEcrit).

At each canopy complexity level, for a given environmen-
tal condition set, we were able to obtain the steady-state
stomatal conductance for each APAR, from which we com-
puted steady-state Anet using the classic C3 photosynthesis

model (Farquhar et al., 1980) and E as well as leaf fluo-
rescence quantum yield (φF) using the model developed in
van der Tol et al. (2014). Stand-level carbon flux, namely
net ecosystem exchange (NEE; normalized per ground area),
was computed using NEE= LAI ·

∑
(Anet ·p)−Rremain:

IJKXNEE= LAI ·
∑

i,incl,azi

[
Anet

(
APARsl,i(incl,azi)

)
·psl,i(incl,azi)

]
+LAI ·

∑
i

[
Anet

(
APARsh,i

)
·psh,i

]
−Rremain,

2KXNEE= LAI ·
∑
i

[
Anet

(
2KXAPARsl,i

)
·
2KXpsl,i

+Anet

(
2KXAPARsh,i

)
·
2KXpsh,i

]
−Rremain,

KXNEE= LAI ·
∑
i

[
Anet

(KXAPAR
)
·
KXpi

]
−Rremain,

2XNEE= LAI ·Anet

(
2XAPARsl

)
·
2Xpsl

+LAI ·Anet

(
2XAPARsh

)
·
2Xpsh−Rremain,

1XNEE= LAI ·Anet

(
1XAPAR

)
−Rremain, (11)

where LAI is the leaf area index and Rremain is the ecosys-
tem respiration rate per ground area excluding the leaves.
The transpiration rate from the canopy is computed and used
as a proxy for estimating the difference in model ecosystem
evapotranspiration (ET; normalized per ground area) using
ET≈ LAI ·

∑
(E ·p):

IJKXET≈ LAI ·
∑

i,incl,azi

[
E
(
APARsl,i(incl,azi)

)
·psl,i(incl,azi)

]
+LAI ·

∑
i

[
E
(
APARsh,i

)
·psh,i

]
,

2KXET≈ LAI ·
∑
i

[
E
(

2KXAPARsl,i

)
·
2KXpsl,i

+E
(

2KXAPARsh,i

)
·
2KXpsh,i

]
,

KXET≈ LAI ·
∑
i

[
E
(KXAPAR

)
·
KXpi

]
,

2XET≈ LAI ·E
(

2XAPARsl

)
·
2Xpsl

+LAI ·E
(

2XAPARsh

)
·
2Xpsh,

1XET≈ LAI ·E
(

1XAPAR
)
. (12)

We remind the reader here that soil evaporation is a func-
tion of soil water content, soil surface temperature, and
atmospheric-vapor-pressure deficit and that soil evaporation
should be the same for all tested canopy complexity models;
this is also the case for evaporation from intercepted water
on plant surface. Therefore, the modeled ET difference is
100 % caused by canopy transpiration, and using transpira-
tion would not result in any biases in the relative difference
of modeled ET.

For IJKX, we used φF computed for each sunlit and shaded
leaf at each layer to compute the canopy-level SIF spectrum.
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For 2KX, we plugged the φF calculated for sunlit fraction
into all the sunlit leaves of the corresponding layer of IJKX
and the shaded φF into the shaded leaf of the correspond-
ing layer of IJKX. Then we re-simulated the SIF spectrum
at IJKX and used it as that of 2KX. For KX, we plugged the
φF calculated for the whole layer into all the leaves of the
corresponding layer of IJKX and recalculated the SIF spec-
trum. For 2X, we plugged the φF of the sunlit fraction into all
the sunlit leaves in IJKX and shaded φF into all the shaded
leaves in IJKX and recalculated the SIF spectrum. For 1X,
we plugged the φF into all the leaves in IJKX and recalcu-
lated the SIF spectrum. We compared SIF at 740 nm (SIF740)
among different complexity levels.

Despite the importance of vertical microclimate hetero-
geneity in modeled canopy energy fluxes (e.g., Bonan et al.,
2021), we held environmental conditions constant among
vertical canopy layers for all tested canopy complexities. Do-
ing this allowed us to tease apart the impact of APAR distri-
bution in the canopy (due to canopy complexity) on simu-
lated carbon, water, and SIF fluxes.

2.4 Sensitivity analysis

We ran a sensitivity analysis to environmental cues for all
five complexity levels to examine how much they differ in
predicted carbon, water, and SIF fluxes. The tested cues
included solar radiation, atmospheric-vapor-pressure deficit
(VPD), temperature, soil water potential (9soil), and atmo-
spheric CO2 partial pressure (PCO2 ). When we altered tem-
perature, we changed the air and leaf temperature at the same
time and held air relative humidity (RH) constant at 0.47
(fraction; unitless). Saturated water vapor pressure was com-
puted using the Clausius–Clapeyron equation:

Psat = Ptriple ·

(
T

Ttriple

)1cp
Rv

· exp
[

LHv0−1cp · Ttriple

Rv
·

(
1

Ttriple
−

1
T

)]
, (13)

where Ptriple is the vapor pressure at the triple point (in Pa),
T is the temperature (in K), Ttriple is the temperature at the
triple point (in K), 1cp is the difference in isobaric specific
heat of vapor and liquid (in JKg−1 K−1), Rv is the gas con-
stant of water vapor (in JKg−1 K−1), and LHv0 is the latent
heat of vaporization at the triple point. Atmospheric vapor
pressure was computed using Psat ·RH. For each tested envi-
ronmental cue, we changed only the tested cue while holding
all other environmental conditions constant. We ran the sen-
sitivity test in two scenarios: (a) Vcmax was uniform through-
out the canopy, and (b) Vcmax decreased exponentially in the
lower canopy. For the two scenarios, we let the entire-canopy
mean Vcmax be the same (namely mean Vcmax at 1X). We
compared the modeled site-level NEE, ET, and SIF740 among
canopy complexity levels.

2.5 Diurnal cycles

To evaluate how much the canopy complexity models differ
in real-world simulations, we ran the model using weather
data from a flux tower located at Ozark, Missouri, USA (US-
MOz; Gu et al., 2016). We used the weather and soil mois-
ture data from day 177 to 179 in the year 2019 and prescribed
leaf temperature and soil water potential to maximally reduce
uncertainty among model setups. Briefly, we used outgoing
longwave radiation from flux tower measurements to invert
canopy temperature and used it as leaf temperature; we also
used soil water content to estimate soil water potential and
used it as a boundary condition for the soil–plant–air con-
tinuum. Prescribing leaf temperature and soil water potential
allowed us to tease apart the difference caused by canopy
complexity from that caused by environmental and physio-
logical differences. See Wang et al. (2021b) for the model
setup details for US-MOz. In addition to the observations
that were used to set up the CliMA Land model (Wang et al.,
2021b), we further applied vertical Vcmax profiles in the sim-
ulations (note that Vcmax changed in the sunlit and shaded
fractions with time for 2X and stayed constant for the other
four complexity levels). We tuned Vcmax and the whole-plant
hydraulic conductance to let IJKX predict reasonable NEE
and ET values and used these tuned parameters in all the
tested canopy complexity levels. We note here that we were
not trying to argue one complexity was better than others but
to examine how much the complexity levels differ when we
used exactly the same model input parameters.

We compared the model-predicted carbon, water, and SIF
fluxes. Note here that observed SIF depends on the sun-
sensor geometry and that SIF retrievals often have different
sun-sensor geometries (e.g., the TROPOMI satellite; Köhler
et al., 2018). Thus, it is necessary to examine how the sun-
sensor geometry may impact the SIF flux across canopy com-
plexity levels. We ran the test using the weather data from
(a) 12:00–12:30 and (b) 16:00–16:30 of day 177 in the year
2019. At each tested time window, we computed the theoreti-
cal SIF at 740 nm for a series of viewing zenith angles from 0
to 85◦ and relative azimuth angles (angle between the sensor
and sun) from 0 to 360◦. We compared how much 2KX, KX,
2X, and 1X differed from IJKX.

Given that averaging APAR theoretically results in overes-
timated carbon and water fluxes, we expected that the differ-
ence among different canopy complexity levels meets the fol-
lowing trends: (a) 1X> 2X> 2KX and (b) 1X>KX> 2KX.
Further, as Vcmax also theoretically results in overestimated
carbon and water fluxes, we expected that adding a vertical
Vcmax profile further increases the difference in fluxes across
canopy complexity levels.
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Figure 4. Net ecosystem exchange of CO2 (NEE, normalized per ground area), evapotranspiration rate (ET, normalized per ground area),
and solar-induced fluorescence (SIF) responses to changes in environmental cues. (a) Responses to total radiation. (b) Responses to air and
leaf temperature (T ). (c) Responses to atmospheric-vapor-pressure deficit (VPD). (d) Responses to soil water potential (9soil). (e) Responses
to atmospheric CO2 partial pressure (PCO2 ). This sensitivity analysis was done assuming uniform photosynthetic capacity in the canopy.

3 Results

3.1 Sensitivity analysis

When a uniform Vcmax profile was applied, all tested five
canopy complexity levels exhibited similar carbon and wa-
ter flux responses to changing environmental cues (Fig. 4).
The responses included increasing canopy photosynthesis
and transpiration with higher radiation (Fig. 4a), increasing
and then decreasing photosynthesis and increasing transpi-
ration with a higher temperature (Fig. 4b), decreasing pho-
tosynthesis and increasing transpiration with a higher VPD
(Fig. 4c), decreasing photosynthesis and transpiration with
drier soil (Fig. 4d), and increasing photosynthesis and de-
creasing transpiration with higher atmospheric CO2 partial
pressure (Fig. 4e). Further, as expected, 1X, 2X, KX, and
2KX all overestimated canopy photosynthesis and transpi-

ration compared to the IJKX mode; and the overestimation
ratios met 1X> 2X> 2KX and 1X>KX> 2KX.

The SIF responses to changing environmental cues in gen-
eral agreed in trends among tested complexity levels (Fig. 4).
However, SIF responses to radiation, temperature, and atmo-
spheric CO2 differed dramatically among the five canopy
complexity levels given the different response magnitudes
(Fig. 4b and e). 1X and KX often resulted in different trends
compared to IJKX (Fig. 4). 2X and 2KX overall tracked the
SIF responses though slightly overestimated SIF of IJKX
well. Notably, we found high disagreement between 2X and
IJKX at intermediate radiation and increasing disagreement
at higher atmospheric CO2 (Fig. 4a and e).

When an exponential vertical Vcmax profile (lower Vcmax
in the lower canopy) was applied when simulating canopy
fluxes, we found similar trends compared to the scenario with
constant Vcmax (Fig. 5). The differences, however, were that
all carbon, water, and SIF fluxes were lower when we ap-
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Figure 5. Net ecosystem exchange of CO2 (NEE, normalized per ground area), evapotranspiration rate (ET, normalized per ground area),
and solar-induced fluorescence (SIF) responses to changes in environmental cues. (a) Responses to total radiation. (b) Responses to air and
leaf temperature (T ). (c) Responses to atmospheric-vapor-pressure deficit (VPD). (d) Responses to soil water potential (9soil). (e) Responses
to atmospheric CO2 partial pressure (PCO2 ). This sensitivity analysis was done assuming exponentially decreasing photosynthetic capacity
in the lower canopy.

plied a vertical Vcmax profile (Fig. 5). Again, like the scenario
of a uniform Vcmax, we also found divergent SIF responses
to radiation and increasing disagreements among 2X, 2KX,
and IJKX for elevated CO2 (Fig. 5a and e). The divergent
flux responses to PCO2 underlined the importance of adopt-
ing a more complex canopy in future land modeling given
that (i) CO2 concentration within the canopy airspace may
change dramatically within a diurnal cycle due to plant car-
bon fixation and (ii) atmospheric mean CO2 is increasing
rapidly due to anthropogenic emissions.

2KX and 2X had a lower difference from IJKX compared
to KX and 1X, and 2KX had the lowest error given the
better-resolved APAR fractions (Figs. 4 and 5). Combining
all response curves together from Fig. 4, we found that when
Vcmax was evenly distributed in the canopy, relative differ-
ences between 2KX and IJKX for carbon, water, and SIF
fluxes were 2.4 %, 1.2 %, and 2.8 %, respectively (Fig. 6).

In comparison, the differences between 2X and IJKX were
all higher at 5.4 %, 3.8 %, and 4.2 %, respectively (Fig. 6).
Overall, 2KX had a relative error lower than 5 % (Fig. 6).

When accounting for a vertically heterogeneous Vcmax
profile, we still found a lower difference between 2KX
and IJKX, and the relative differences were 11.1 %, 3.7 %,
and 7.9 % (the differences for 2X were 23.4 %, 8.2 %, and
13.2 %; Fig. 6). Overall, 2KX had a relative error lower
than 10 %. Further, the higher error when adopting a vertical
Vcmax profile agreed with our expectation as the impacts from
APAR and Vcmax added up (canopy fluorescence was lower
for the simpler canopy model at low radiations; Fig. 6).

3.2 Diurnal cycle

Our model simulations suggest that all tested canopy com-
plexity levels can qualitatively capture the trends of carbon
and water fluxes at the tested flux tower site (Fig. 7). How-
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Figure 6. Relative differences between IJKX, 2KX, and 2X for the
net ecosystem exchange of CO2 (NEE), evapotranspiration (ET),
and solar-induced chlorophyll fluorescence (SIF740) fluxes. The
lighter bars indicate the case with uniform leaf photosynthetic ca-
pacity in the canopy. The darker bars indicate the case with a profile
of vertical photosynthetic capacity (exponentially decreasing capac-
ity in the lower canopy). The bars plot relative differences of the
fluxes compared to IJKX (positive value means overestimated flux).

ever, the tested complexity levels differed dramatically in the
magnitudes of carbon and water fluxes. In general, 1X had
the highest fluxes for both carbon and water fluxes (repre-
sented by NEE and ET), followed by KX, 2X, 2KX, and
IJKX (Figs. 7 and 8). Though 2KX and 2X, in general, had
relatively small differences from IJKX, we were still able to
distinguish the difference (Figs. 7 and 8). We note here again
that Figs. 7 and 8 were meant to highlight the difference be-
tween canopy complexity levels in model simulations but not
to say that some models were better than others.

3.3 Sun-sensor geometry

Using less complicated canopy complexity (namely 2KX,
KX, 2X, and 1X) impacted the observed SIF depending on
the sun-sensor geometry (Figs. 9 and 10). For the tested time
window at 12:00–12:30, 2KX has the least difference from
IJKX, followed by 2X, KX, and 1X. In general, 2KX had a
difference lower than 11 % at any viewing zenith angle or rel-
ative azimuth angle for the tested time window (Figs. 9). The
impact of sun-sensor geometry changed with time because
of changes in solar zenith angle and total radiation (e.g.,
at 16:00–16:30 in the afternoon; Fig. 10). While 2KX still
had lower overestimated SIF compared to 2X, KX had better
agreement with IJKX, and 1X even underestimated SIF. The
dramatic changes in SIF from KX and 1X were due to lower
incident radiation from 16:00 to 16:30 (Fig. 5a).

Figure 7. Diurnal cycle of carbon and water fluxes using five differ-
ent canopy complexity levels. (a) Site-level net ecosystem exchange
of CO2 (NEE). (b) Site-level evaporation transpiration using plant
transpiration as a proxy (ET). The dotted lines were observations
from a flux tower at Ozark, Missouri, USA (US-MOz). The colored
lines were model simulations with a profile of vertical leaf pho-
tosynthetic capacity using observed weather drivers from day 177
to 179 in the year 2019, such as air and soil humidity. For NEE,
a more negative value means higher carbon flux; for ET, a higher
value means higher water flux.

4 Discussion

4.1 Fluorescence and radiation

While simpler canopy models in general predicted higher
carbon, water, and SIF fluxes, there were some scenarios that
the simpler models predict contrasting SIF responses com-
pared to IJKX: (a) when total radiation increased, SIF of the
simpler canopy models was lower than that of IJKX at low
radiation but were higher than that of IJKX at high radiation
(Figs. 4 and 5); (b) 1X model SIF increased and then de-
creased and stayed unchanged with higher atmospheric CO2
(Figs. 4 and 5); and (c) KX model SIF increased marginally
with higher atmospheric CO2 for a canopy without a vertical
Vcmax gradient but decreased with higher CO2 for a canopy
with a vertical Vcmax profile (Figs. 4 and 5). These contrast-
ing patterns of the simpler models resulted from the differ-
ent photosynthesis system II (PSII) quantum yield and flu-
orescence quantum yield (namely φF) responses to APAR
and CO2 (Fig. 11a, b). The PSII quantum yield measures
the efficiency of converting absorbed photons to electrons
by PSII; and φF measures the efficiency of converting ab-
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Figure 8. Difference between five different canopy complexity levels in a diurnal-cycle simulation of carbon and water fluxes. The carbon
flux was represented by the site-level net ecosystem exchange of CO2 (NEE). The water flux was represented by site-level evaporation
transpiration using plant transpiration as a proxy (ET). The bars plot the mean difference between model simulation and observations, and
error bars plot 1 standard deviation. The observation was from a flux tower at Ozark, Missouri, USA (US-MOz). The model simulations
were run with a profile of vertical leaf photosynthetic capacity using observed weather drivers from day 177 to 179 in the year 2019, such as
air and soil humidity. For NEE, negative values stand for overestimated carbon fluxes; for ET, positive values stand for overestimated water
fluxes.

sorbed photons to fluorescence photons. The PSII yield in-
creases and then saturates with higher leaf internal CO2 and
lower APAR. In our model, φF follows the parameteriza-
tion of van der Tol et al. (2014) but fitted on leaves mea-
sured by Flexas et al. (2002), as first used in Lee et al.
(2015). Typically, the PSII-to-φF relationship depends on the
state of non-photochemical quenching (NPQ; Porcar-Castell
et al., 2014). φF has a maximum at intermediate PSII lev-
els (around 0.6) but decreases at lower PSII yields (increased
NPQ) as well as higher PSII yields (increased competition
with photochemical quenching). This general behavior ex-
plains what we see the following: φF (a) stays unchanged at
low radiation with higher leaf internal CO2, (b) increases and
then decreases and stays unchanged with higher leaf internal
CO2 at intermediate APAR, (c) increases with higher CO2 at
high CO2, and (d) increases and then decreases with higher
APAR (Fig. 11a, b). Though φF in general agrees with the
PSII yield patterns at high APAR (typical experimental and
top-of-canopy scenarios), the disagreements at low APAR
could result in problems when APAR is inappropriately aver-
aged. In our case, the turnover from APAR regions in which
PSII and φF are anticorrelated (light-limited) to the region
in which they are correlated (increase in NPQ) happens at
around 200 µmolm2 s−1.

When total radiation was higher, the product of φF and
APAR (leaf-level SIF) increased (Fig. 11c). When φF stayed
unchanged at low APAR, leaf-level SIF increases linearly
with higher APAR, and SIF increases faster when φF starts
to increase after a certain threshold (the threshold increased
with higher leaf internal CO2; Fig. 11b). Then leaf-level SIF
slowed down with higher APAR due to decreasing φF at

higher APAR and was higher when leaf internal CO2 was
higher (Fig. 11b, c). As leaf internal CO2 was theoretically
lowest for 1X, then followed by KX, 2X, and 2KX given the
way APAR was averaged, it was expected that 2KX increased
earliest with higher APAR and that 1X had the highest SIF
value at high radiation (Figs. 4a and 5a). Therefore, in the
diurnal-cycle simulations, 1X SIF overestimated SIF at noon
when radiation was high (Fig. 9) but underestimated SIF in
the late afternoon as a result of lower radiation (Fig. 10). The
inconsistent SIF patterns at low and high radiation from sim-
pler canopy models may potentially result in biases in mod-
eled diurnal and seasonal SIF, and thus we suggest using a
complex canopy model when possible to minimize the im-
pact from heterogeneous canopy radiation and leaf physiol-
ogy.

The 1X model SIF response to atmospheric CO2 ought to
depend on the mean canopy APAR (Fig. 11b): (a) if mean
APAR was low, 1X SIF should stay constant with higher
CO2; (b) if mean APAR was moderate, 1X SIF ought to in-
crease and then decrease and stay constant with higher CO2;
and (c) if mean APAR was high, 1X SIF would increase
with higher CO2 (Fig. 11b, d). For the simulations in Figs. 4
and 5, mean APAR was 156 µmolm−2 s−1, and thus 1X SIF
increased and then decreased with higher CO2.

The KX model SIF response to atmospheric CO2 was im-
pacted by both leaf internal CO2 and the vertical APAR pro-
file given the heterogeneous APAR. As φF was higher in the
middle layers at lower atmospheric CO2 when there is no
vertical Vcmax gradient, modeled SIF showed marginal in-
crease with higher CO2 (Figs. 4 and 11e). However, when
there was a vertical Vcmax gradient, φF was much higher
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Figure 9. Difference between five different canopy complexity levels in modeled solar-induced chlorophyll fluorescence (SIF) at a different
viewing zenith angle and relative azimuth angle. The color indicates SIF at 740 nm of a tested canopy complexity level relative to IJKX. The
model simulations were run with a profile of vertical leaf photosynthetic capacity using observed weather drivers at 12:00–12:30 of day 177
in the year 2019 at a flux tower at Ozark, Missouri, USA (US-MOz).

in the lower canopy at lower CO2, potentially resulting in
higher SIF at low atmospheric CO2, which was contrary to
the IJKX prediction. The erroneous predicted SIF patterns of
1X and KX highlighted the importance of appropriately av-
eraged leaf APAR, particularly the partitioning of sunlit and
shaded leaves.

4.2 Dataset compatibility

Our model simulations showed that different canopy com-
plexity levels predicted divergent carbon, water, and SIF
fluxes. 1X and KX without partitioning the canopy to sun-
lit and shaded fractions, in particular, showed very high bi-
ases compared to the other three levels of complexity, namely
2X, 2KX, and IJKX. Further, as we expected, IJKX, which
has the most complex canopy, had the lowest predicted car-
bon and water fluxes, followed by 2KX and 2X and then KX
and 1X. Moreover, when we accounted for a profile of ver-
tical canopy photosynthetic capacity, the difference among
canopy complexity levels increased. Though 2KX and 2X
were, in general, close to IJKX in predicted canopy fluxes,

the disagreements may range up to > 20 % (maximum) for
2KX and up to > 40 % (maximum) for 2X. Given the differ-
ences in predicted fluxes using different canopy complexity
levels and the varying difference (not a constant ratio), we
do not recommend using photosynthetic parameters inverted
from different canopy complexity models; i.e., parameter fit-
ting has to be performed with the same underlying model as
for the full forward modeling. Given the higher realism of
the enhanced complexity models, however, leaf-level fits of
photosynthetic parameters could be employed in models of
higher complexity but would result in high biases when used
in simple big-leaf models.

The disagreements among canopy complexity levels make
it difficult to parameterize a land model using a complex
canopy setup and thus hamper the fusion of large-scale
remote-sensing-based datasets with land models at a global
scale. Thus, it is necessary to revisit the flux and plant trait
inversions using more applicable land model setups to make
sure the inverted datasets and land models are consistent in
their assumptions. This is the only way to ensure that inverted
parameters are quantitatively useful in future land surface

Biogeosciences, 19, 29–45, 2022 https://doi.org/10.5194/bg-19-29-2022



Y. Wang and C. Frankenberg: Canopy model complexity 41

Figure 10. Difference between five different canopy complexity levels in modeled solar-induced chlorophyll fluorescence (SIF) at different
viewing zenith angle and relative azimuth angle. The color indicates SIF at 740 nm of a tested canopy complexity level relative to IJKX. The
model simulations were run with a profile of vertical leaf photosynthetic capacity using observed weather drivers at 16:00–16:30 of day 177
in the year 2019 at a flux tower at Ozark, Missouri, USA (US-MOz).

modeling. Moreover, it is also possible for land models to
go without the inverted fluxes or traits if the land model runs
using a complex canopy such as IJKX. This way, the model
can be directly compared against satellite observations (Shik-
lomanov et al., 2021) without an intermediate step that per-
forms the inversion from radiation observation canopy prop-
erties and thus surface water and carbon fluxes.

4.3 Necessity of a complex canopy

As suggested by Bonan et al. (2021), modelers need to move
to a multi-layered canopy modeling to account for the verti-
cal profiles and microclimates in the canopy. Further, to bet-
ter utilize the broadly available remote sensing data, model-
ers need to move from broadband radiation to hyperspectral
radiation and from sun/shade fractions to leaf angular distri-
bution. One may ask whether it is necessary to implement a
way more complex and inefficient multi-layered canopy with
leaf angular distributions to account for an average 5 %–22 %
difference, while the difference can be compensated by tun-
ing plant traits such as photosynthetic capacity and hydraulic

conductance. The answer varies depending on what types of
data are used in the model. If one uses parameters meant
to use with 2X (namely a two-leaf canopy), using a multi-
layered canopy such as 2KX and IJKX would not improve
the model performance but instead could result in higher bi-
ases. In this case, we suggest keeping the same canopy com-
plexity as used to derive plant traits. However, if one wants
to bridge plant physiology to both leaf-level measurements
as well as remotely sensed data such as the reflection and
fluorescence spectra, we would suggest using IJKX or us-
ing an even more complicated canopy model to be as accu-
rate as possible. We note here that 2KX approximates IJKX
well with an average 3 %–12 % difference, and 2KX would
be useful to speed the calculations for more qualitatively ori-
ented research as the trends generally agree between 2KX
and IJKX.

We recognize that increasing model complexity can make
it (a) less user-friendly for researchers to use (e.g., when
implementing the model into their research projects) and
(b) slower to run the model, particularly using less efficient
programming languages such as Python and R (compared
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Figure 11. Leaf fluorescence responses to radiation, CO2 partial pressure, and the leaf maximum carboxylation rate. (a) Photosynthesis
system II quantum yield responses to leaf absorbed photosynthetically active radiation (APAR) and leaf internal CO2 partial pressure.
(b) Leaf fluorescence quantum yield (φF) responses to APAR and leaf internal CO2. (c) Product of φF and APAR vs. APAR for leaves with
different internal CO2 (number labeled next to each curve; unit: Pa). (d) Product of φF and APAR vs. internal CO2 at different APAR values
(number labeled next to each curve; unit µmolm−2 s−1). The simulations of panels (a–d) are done at a leaf temperature of 25 ◦C and a
maximum carboxylation rate (Vcmax) of 60 µmolCO2 m−2 s−1. (e) φF of different canopy layers was at a given atmospheric CO2 partial
pressure. Vcmax was the same among canopy layers. The simulation results are from Fig. 4e. (f) φF of different canopy layers was at a given
atmospheric CO2. Vcmax was lower in the lower canopy. The simulation results are from Fig. 5e.

to C). In our highly modularized CliMA Land model, we use
Julia, a just-in-time compiled programming language that al-
lows for the versatility of a scripting language like Python
but with the speed of fully compiled languages such as C and
Fortran (see https://julialang.org/benchmarks/, last accedss:
22 December 2021). The CliMA Land model can simulate

canopy radiation using either the mSCOPE-based radiative
transfer scheme (Yang et al., 2017) or the traditional sunlit-
and shaded-fraction scheme (e.g., De Pury and Farquhar,
1997; Campbell and Norman, 1998). Further, CliMA Land
supports both stomatal optimization models (including those
from Sperry et al., 2017; Anderegg et al., 2018; Eller et al.,
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2018; Wang et al., 2020) and empirical stomatal models (in-
cluding those from Ball et al., 1987; Leuning, 1995; Medlyn
et al., 2011). For the empirical stomatal models, CliMA Land
supports using an ad hoc tuning factor to account for stomatal
responses to soil moisture through tuning either the empiri-
cal fitting parameter (such as g1 in the Ball et al., 1987, and
Medlyn et al., 2011, models) or the leaf photosynthetic ca-
pacity (as done in Kennedy et al., 2019). Users may freely
customize the model setup by choosing among the provided
alternatives. We believe the practice of making land models
more open and modular will benefit the land model and plant
physiology communities in future research.

5 Conclusions

We evaluated how much canopy carbon, water, and SIF
fluxes differ when using five different canopy complexity
levels in a land model. We found that when using the same
model inputs, simpler canopy models predicted higher car-
bon, water, and SIF fluxes, and when we accounted for a
profile of vertically heterogeneous photosynthetic capacity,
we found more disagreements among canopy models with
varying complexity levels. We also found that the modeled
SIF varied with sun-sensor geometry among tested canopy
complexity levels. Our model results suggest that misusing
parameters inverted from different canopy complexities and
assumptions may have resulted in biases in predicted canopy
fluxes, and thus we recommend more cautious model param-
eterization regarding canopy complexity levels. Further, we
recommend using complex canopy models with leaf angu-
lar distribution and a hyperspectral radiation transfer scheme
to compare against remote sensing data in order to accu-
rately mimic observed radiation. However, the use of com-
plex canopy models in land surface modeling may be less ef-
ficient and not user-friendly for researchers. We believe more
open and modular land models like CliMA Land will help
lower the threshold to researchers.

Code and data availability. We coded our model and did the anal-
ysis using Julia (version 1.6.2), and the current version of the
CliMA Land model is available from the project website at https:
//github.com/CliMA/Land under the Apache License 2.0. The exact
version of the model used to produce the results employed in this pa-
per is archived on CaltechDATA (https://doi.org/10.22002/D1.2316,
Wang and Frankenberh, 2021).
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