

Supplement of

Physiological control on carbon isotope fractionation in marine phytoplankton

Karen M. Brandenburg et al.

Correspondence to: Karen M. Brandenburg (k.m.brandenburg@uu.nl)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1. Slopes of ϵ_p in response to POC production/CO2 for the different species and studies using a

Reference	Group	Species	Strain	No	Slope	sd	p-value
		Phaeodactylum	CCMP	54.03			
Laws et al. 1997	Diatoms	tricornutum Dhaaadaatulum	1327 CCAR	[10]	-1.66	0.39	0.00
Cassar et al. 2003: 2002	Diatoms	tricornutum	1052/1A	[5]	-1 36	0 34	0.01
Cussur of ul. 2003, 2002	Diatoms	Phaeodactylum	CCMP	[9]	1.50	0.51	0.01
Cassar et al. 2003	Diatoms	tricornutum	1327	[4]	-0.99	0.16	0.00
		Phaeodactylum	CCAP				
Riebesell et al. 2000b	Diatoms	tricornutum Dhasa da stalaan	1052/1A	[14]	-0.69	0.09	0.00
Riebesell et al. 2000b	Diatoms	tricornutum	1327	[14]	-0.61	0.02	0.00
Kebesen et al. 20000	Diatoms	Phaeodactylum	CCAP	[14]	0.01	0.02	0.00
Burkhardt et al. 1999a	Diatoms	tricornutum	1052/1A	[3]	-0.48	0.11	0.00
Hinga et al. 1994	Diatoms	Skeletonema costatum	SKEL	[7]	2.57	1.25	0.05
Brandenburg et al. 2020	Dinoflagellates	Alexandrium ostenfeldii	AON15	[2]	-0.40	0.15	0.06
Van de Waal et al. 2013	Dinoflagellates	Thoracosphaera heimii	RCC1512	[17]	-0.36	0.07	0.00
Hoins et al. 2016	Dinoflagellates	Gonyaulax spinifera	409	[9]	-0.35	0.23	0.37
		j in i	CCMP	L. 1			
Wilkes et al. 2017	Dinoflagellates	Alexandrium tamarense	1771	[18]	-0.12	0.01	0.00
Brandenburg et al. 2020	Dinoflagellates	Alexandrium ostenfeldii Protoceratium	AON13	[2]	-0.09	0.03	0.03
Hoins et al. 2016	Dinoflagellates	reticulatum	1889	[9]	-0.04	0.01	0.19
Hoins et al. 2016	Dinoflagellates	Scrippsiella trochoidea	S267	[9]	-0.02	0.02	0.35
Hoins et al. 2015	Dinoflagellates	Scrippsiella trochoidea	S267	[8]	-0.02	0.01	0.04
Hoins et al. 2015	Dinoflagellates	Gonyaulax spinifera	409	[8]	-0.01	0.01	0.08
Hoins et al. 2015	Dinoflagellates	Alexandrium tamarense	A5	[8]	-0.01	0.00	0.00
	U	Protoceratium					
Hoins et al. 2015	Dinoflagellates	reticulatum	1889	[8]	-0.01	0.00	0.05
Hoins et al. 2016	Dinoflagellates	Alexandrium tamarense	A5	[9]	0.00	0.01	0.56
Brandenburg et al. 2020 Bidigare et al. 1997; Popp et al.	Dinoflagellates	Alexandrium ostenfeldii	AON5.26	[2]	0.10	0.05	0.09
1998	Haptophytes	Emiliania huxleyi	BT6	[1]	17.03	3.29	0.01
Bidigare et al. 1997; Popp et al.	Hantonhytas	Emiliania huvlavi	B02/11	[1]	-	2 67	0.05
$\frac{1770}{1004}$	Haptophytes	Emiliania huxleyi	D72/11	[1]	2 66	2.07	0.05
Hiliga et al. 1994	Haptophytes	Emmania nuxieyi	DI0 PML	[/]	-3.00	4.30	0.40
Rost et al. 2002	Haptophytes	Emiliania huxleyi	B92/11	[15]	-2.18	0.57	0.00
Piabasall at al. 2000	Hantonhytas	Emiliania huvlavi	PML B02/11	[12]	1.00	0.08	0.00
McClalland et al. 2000	Haptophytes		D72/11	[13]	-1.09	0.08	0.00
McClelland et al. 2017	Haptophytes	Gepnyrocapsa oceanica	RCC1211		-0.33	0.23	0.22
McClelland et al. 2017	Haptophytes	Emiliania huxleyi	RCC1256		-0.23	0.32	0.49
Rickaby et al. 2010	Haptophytes	Coccolithus braarudii	4762	[12]	-0.19	0.06	0.01
McClelland et al. 2017	Haptophytes	Gephyrocapsa oceanica	RCC1314	[11]	-0.15	0.04	0.01
McClelland et al. 2017	Haptophytes	Emiliania huxleyi	RCC1216	[11]	-0.13	0.17	0.47
Fiorini et al. 2010	Haptophytes	Syracosphaera pulchra	AC418	[6]	0.02	0.29	0.96
Rickaby et al. 2010	Haptophytes	Gephyrocapsa oceanica	PZ 3.1	[12]	0.13	0.28	0.64
Fiorini et al. 2010	Haptophytes	Calcidiscus leptoporus	AC370	[6]	0.31	0.19	0.24
Fiorini et al. 2010	Haptophytes	Emiliania huxleyi	AC472	[6]	2.33	0.30	0.02

linear fit. Numbers between brackets refer to the different studies (used in Fig. 3).

 Table S2. Model results for haptophytes.

Model	AIC	BIC
Limitation	764	791
CO ₂ manipulation	757	784
Culturing Approach	775	803
Light dark cycle	711	738

 Table S3. Model results for diatoms.

Model	AIC	BIC
Limitation	609	639
CO ₂ manipulation	600	625
Culturing Approach	604	623
Light dark cycle	633	657

 Table S4. Model results for dinoflagellates.

Model	AIC	BIC
Limitation	551	575
CO ₂ manipulation	531	555
Culturing Approach	490	520
Light dark cycle	527	546

Table S5. Slopes of ϵ_p in response to μ_i/CO_2 for the different species and studies using a linear fit.

Reference	Group	Species	Strain	No	Slope	sd	<i>p</i> -value
Popp et al. 1998	Diatoms	Prorosira glacialis	CCMP980	[13]	-1019	365	0.04
Hinga et al. 1994	Diatoms	Skeletonema costatum Phaeodactylum	SKEL CCAP	[8]	-25	7	0.00
Cassar et al. 2003; 2002	Diatoms	tricornutum Phaeodactylum	1052/1A CCAP	[6]	-10	3	0.01
Riebesell et al. 2000b	Diatoms	tricornutum Phaeodactylum	1052/1A CCMP	[16]	-10	1	0.00
Laws et al. 1997	Diatoms	tricornutum Phaeodactylum	1327	[11]	-8	2	0.00
Riebesell et al. 2000b	Diatoms	tricornutum Phaeodactylum	1327 CCMP	[16]	-8	0	0.00
Cassar et al. 2003	Diatoms	tricornutum	1327	[5]	-8	1	0.00
Burkhardt et al. 1999b	Diatoms	Thalassiosira weissflogii Phaeodactylum	ССАР	[4]	-4	1	0.05
Burkhardt et al. 1999a	Diatoms	tricornutum	1052/1A	[3]	-4	1	0.00
Burkhardt et al. 1999b	Diatoms	Skeletonema costatum Alexandrium		[4]	-3	4	0.50
Brandenburg et al. 2020	Dinoflagellates	ostenfeldii Alexandrium	AON5.26	[2]	-903	316	0.05
Brandenburg et al. 2020	Dinoflagellates	ostenfeldii	AON15	[2]	-831	456	0.14
Hoins et al. 2016	Dinoflagellates	Gonyaulax spinifera	409 CCMP	[10]	-583	9	0.01
Wilkes et al. 2017	Dinoflagellates	Alexandrium tamarense Alexandrium	1771	[20]	-539	68	0.00
Brandenburg et al. 2020	Dinoflagellates	ostenfeldii Protoceratium	AON13	[2]	-265	78	0.03
Hoins et al. 2016	Dinoflagellates	reticulatum	1889	[10]	-133	33	0.16
Van de Waal et al. 2013	Dinoflagellates	Thoracosphaera heimii	RCC1512	[19]	-102	21	0.00
Hoins et al. 2016	Dinoflagellates	Scrippsiella trochoidea	S267	[10]	-73	68	0.35
Hoins et al. 2015	Dinoflagellates	Alexandrium tamarense	A5	[9]	-34	4	0.00
Hoins et al. 2015	Dinoflagellates	Scrippsiella trochoidea	S267	[9]	-34	14	0.03
Hoins et al. 2015	Dinoflagellates	Gonyaulax spinifera Protoceratium	409	[9]	-30	25	0.26
Hoins et al. 2015	Dinoflagellates	reticulatum	1889	[9]	-20	22	0.37
Hoins et al. 2016 Bidigare et al. 1997; Popp et al.	Dinoflagellates	Alexandrium tamarense	A5	[10]	18	26	0.53
1998	Haptophytes	Emiliania huxleyi	BT6	[1]	-141	27	0.01
Hinga et al. 1994 Bidigare et al. 1997; Popp et al.	Haptophytes	Emiliania huxleyi	BT6	[8]	-109	37	0.03
1998	Haptophytes	Emiliania huxleyi	B92/11	[1]	-92	22	0.05
Rickaby et al. 2010	Haptophytes	Coccolithus braarudii	4762	[14]	-42	12	0.00
Fiorini et al. 2010	Haptophytes	Syracosphaera pulchra	AC418 PML	[7]	-19	82	0.84
Rost et al. 2002	Haptophytes	Emiliania huxleyi	B92/11	[17]	-19	5	0.00
McClelland et al. 2017	Haptophytes	Coccolithus pelagicus	ср	[12]	-14	5	0.03
McClelland et al. 2017	Haptophytes	Gephyrocapsa oceanica	RCC1314	[12]	-7	2	0.01
McClelland et al. 2017	Haptophytes	Gephyrocapsa oceanica	RCC1211 PML	[12]	-7	3	0.11
Riebesell et al. 2000	Haptophytes	Emiliania huxleyi	B92/11	[15]	-6	1	0.00

Numbers between brackets refer to the different studies (used in Fig. S1).

McClelland et al. 2017	Haptophytes	Emiliania huxleyi	RCC1256	[12]	-5	3	0.21
McClelland et al. 2017	Haptophytes	Emiliania huxleyi	RCC1216	[12]	-2	2	0.46
Fiorini et al. 2010	Haptophytes	Calcidiscus leptoporus	AC370	[7]	3	11	0.83
Rickaby et al. 2010	Haptophytes	Gephyrocapsa oceanica	PZ 3.1	[14]	15	10	0.15
Fiorini et al. 2010	Haptophytes	Emiliania huxleyi	AC472	[7]	53	15	0.07

Figure S1. Slopes of ε_p in response to $\mu_i/[CO_2]$ for the different species and studies using a linear fit. Numbers between brackets refer to the different studies (Table S5). Blue dots represent diatoms, orange triangles dinoflagellates, and red squares haptophytes. Significance is indicated by the asterisks (*** P<0.001, ** P<0.01, * P<0.05).

Figure S2: ε_p against $\mu_i/[CO_2]$ (log-transformed) across all phytoplankton groups. Colors indicate the light-dark cycle; marker shapes indicate the culturing approach. Black line illustrates the log-linear relationship (R² and P indicated in the panel).

Figure S3: $\mu_i/[CO_2]$ (log-transformed) against ε_p for the different phytoplankton groups, where the colored points indicate the respective light-dark cycle, and the shape of the points indicates the culturing approach. Black line illustrates the linear relationship (R² and *p*-values indicated in the panels).

Figure S4. ε_p against POC production/[CO₂] (C-demand/C-supply) for the different phytoplankton groups, where the colored points indicate the differences in light hours per day, and the shape of the points indicates the respective culturing approach. Black line illustrates the decaying relationship.

Figure S5. POC production/[CO₂] (C-demand/C-supply; log-transformed) against ε_p for *Alexandrium tamarense* under different carbonate chemistry manipulation methods.