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Abstract. Anthropogenic climate change is now considered
to be one of the main factors causing an increase in both
the frequency and severity of wildfires. These fires are prone
to release substantial quantities of CO2 into the atmosphere
and to endanger natural ecosystems and biodiversity. De-
pending on the ecosystem and climate regime, fires have dis-
tinct triggering factors and impacts. To better analyse this
phenomenon, we investigated post-fire vegetation anomalies
over different biomes, from 2012 to 2020. The study was
performed using several remotely sensed quantities ranging
from visible–infrared vegetation indices (the enhanced veg-
etation index (EVI)) to vegetation opacities obtained at sev-
eral passive-microwave wavelengths (X-band, C-band, and
L-band vegetation optical depth (X-VOD, C-VOD, and L-
VOD)), ranging from 2 to 20 cm. It was found that C- and
X-VOD are mostly sensitive to fire impact on low-vegetation
areas (grass and shrublands) or on tree leaves, while L-VOD
depicts the fire impact on tree trunks and branches better. As
a consequence, L-VOD is probably a better way of assessing
fire impact on biomass. The study shows that L-VOD can be
used to monitor fire-affected areas as well as post-fire recov-
ery, especially over densely vegetated areas.

1 Introduction

Fires are a natural part of many ecosystems, being histori-
cally triggered by lightning strikes (de Groot et al., 2013).
Nevertheless, most wildfires are now ignited by human ac-
tivities (95 % in the Mediterranean basin, 85 % in Asia and
South America; FAO, 2006). In recent years, and in spite

of various efforts, wildfires were proven to increase both
in frequency and in severity worldwide, largely due to an-
thropogenic climate change and human pressure (Weber and
Stocks, 1998; Jin et al., 2012). The 2020 fire season became
historically significant in southern Australia and in the west-
ern United States, linked with extreme vegetation dryness
(Higuera and Abatzoglou, 2020). Summer 2021 saw an un-
precedented number of fires around the Mediterranean Sea,
in Siberia, and in North America (CAMS, 2021). In tropical
rainforests, the Amazon in particular, wildfires have become
increasingly prevalent over the past decades due not only to
more frequent droughts and periodic El Niño events (Aragão
et al., 2018; Chen et al., 2013; Cochrane, 2003) but also to
selective logging and deforestation that lead to forest desic-
cation and reduce rainfall (Asner et al., 2010).

Wildfire likelihood factors were categorized into climatic
(e.g. precipitation, temperature, air humidity, wind speed),
topographic, in situ, historical, and anthropogenic factors
(Mhawej et al., 2015). Drought, i.e. the concomitant increase
in air dryness and decrease in soil moisture, was identified as
the most significant fire likelihood factor (Ray et al., 2005).
Indirectly, drought also causes vegetation drying, leaf shed-
ding, and branch losses, which increase forest flammability
(Nepstad et al., 2001; Chuvieco et al., 2012). Surveying the
soil moisture (SM) and the vegetation water content (VWC)
could then be a good indicator for fire risk detection, and
passive-microwave remote sensing is a useful tool for that.
Indeed, the SM deficit monitored with AMSR-E (Advanced
Microwave Scanning Radiometer for EOS (Earth Observ-
ing System)) was previously proven to be a major factor
for the evolution of extreme fire events in Siberia (Forkel et
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al., 2012). GRACE-assimilated (Gravity Recovery and Cli-
mate Experiment) SM was also exploited for fire risk assess-
ment in the United States (Jensen et al., 2018; Farahmand
et al., 2020). SMOS (Soil Moisture and Ocean Salinity) SM
anomalies have been found to explain singular fire episodes
in the north-western Iberian Peninsula (Chaparro et al., 2016)
and in Canada (Ambadan et al., 2020). SMOS SM has been
used as an alternative source of moisture information in the
McArthur Forest Fire Danger Index (FFDI; Holgate et al.,
2017). Finally, AMSR-E vegetation optical depth (VOD) was
successfully used in data-driven fire models (Forkel et al.,
2017; Kuhn-Régnier et al., 2021).

In addition to endangering populations, wildlife, and
ecosystems and to releasing overwhelming quantities of CO2
into the atmosphere (CAMS, 2021), wildfires have several
negative effects on soil and vegetation properties. They cause
deterioration of soil structure and porosity, ash entrapment,
removal of organic matter and nutrients, decrease of mi-
crobial and invertebrate communities, etc. (Certini, 2005).
Plant cover removal also increases soil water repellency and
runoff, which can lead to floods and erosion (Shakesby and
Doerr, 2005). Post-fire vegetation regeneration highly de-
pends on the ecosystem and on the fire severity (Chu and
Guo, 2013). In humid tropical forests, the Amazon in particu-
lar, wildfires can significantly reduce above-ground biomass
(AGB) for decades by amplifying tree mortality (Barlow et
al., 2003; Silva et al., 2018; de Faria et al., 2021). Conversely,
some ecosystems can recover much faster. For instance, some
coniferous trees (e.g. jack pine, black spruce) evolved to be-
come fire resistant and to use the flames as a means for
spreading their seeds, as the heat causes the opening of cones
(Weber and Stocks, 1998). Some eucalyptus communities of
south-east Australia are also able to survive fire by activating
dormant vegetative buds to produce regrowth (Heath et al.,
2016). In savannas, recurrent seasonal fires help maintain the
structure, species composition, and biological diversity (Me-
naut et al., 1990). In forests, prescribed burning enables the
reduction of hazardous accumulations of fuel and thus miti-
gates the severity of wildfires (Sackett, 1975). Fires can even
be necessary for canopy regeneration: a decline in sequoia
population was observed when fires were suppressed in Cali-
fornia (Parsons and DeBenedetti, 1979). Vegetation can thus
recover from fire, and if plants succeed in promptly recolo-
nizing the burned area, the pre-fire level of most properties
can be recovered and even enhanced (Certini, 2005).

It is essential to monitor post-fire vegetation conditions,
and satellite remote sensing proved its ability to achieve this
goal in addition to field campaigns (Chu and Guo, 2013). In-
dicators and metrics based on multispectral satellite imagery
(visible and infrared) are the most frequently used, such as
the normalized difference vegetation index (NDVI), the en-
hanced vegetation index (EVI), and the normalized burn ra-
tio (NBR) (Pérez-Cabello et al., 2021). Despite a quick sat-
uration over dense forests, they still provide a good proxy
for green vegetation regrowth. Microwave data have also

shown a good potential to monitor post-fire recovery. L-band
SAR (synthetic-aperture radar) was used to assess forest re-
growth in South-East Asia (Mermoz and Le Toan, 2016) and
to estimate the tree survival in eucalyptus forests of West-
ern Australia (Fernandez-Carrillo et al., 2019). C-band VOD
was used to analyse the Amazon canopy dynamics during
the 2019 fire season (Zhang et al., 2021). Authors found
a lower magnitude of canopy damage and a longer recov-
ery period for C-VOD than for optical-based indices (NDVI,
EVI, NBR). Indeed, the optical-based indices only represent
the canopy greenness, whereas microwave measurements are
more sensitive to woody components (Guglielmetti et al.,
2007; Frappart et al., 2020). Microwave VODs are also sen-
sitive to VWC and can help to monitor the biomass status
(Fan et al., 2018; Konings et al., 2019).

With the arrival of L-band radiometers such as the SMOS
satellite, it is now possible to infer surface soil moisture,
biomass (i.e. fuel), and its water content at deeper sensing
depth. The rationale for this study is to investigate how L-
band radiometry responds to fire events in various ecosys-
tems and climates. The SMOS satellite has been operating
for over 12 years now, and we have access to a large cata-
logue of major fires. This study also presents for the first time
L-VOD used in conjunction with other sensors, from visible-
infrared (EVI) to microwave X- and C-VOD, for the study of
post-fire vegetation recovery. The complementarity of these
vegetation variables along with climate variables (air temper-
ature (T ), precipitation (P ), soil moisture (SM), and terres-
trial water storage (TWS)) was used to identify the fire likeli-
hood factors and the immediate and long-term fire impact on
vegetation. To evaluate the long-term impact and recovery,
the study focused on areas with unique fire events, thereby
excluding areas with regular seasonal fires (e.g. the Sahel)
where the vegetation cannot fully recover before the follow-
ing fire event. We first observed three particular cases of large
fires and then extended the analysis to different biomes.

2 Data

2.1 Fires

Fires were obtained from the National Aeronautics and Space
Administration (NASA) Moderate Resolution Imaging Spec-
troradiometer (MODIS) active fire product (MOD14A1_M).
The product is a quantification of the number of fires ob-
served within a 1000 km2 area over a month. A fire must
cover at least ∼ 1000 m2 to be detected and must not be cov-
ered by clouds, heavy smoke, or tree canopy (Giglio et al.,
2020). The active fire product is based on the 1 km fire chan-
nels at 3.9 and 11 µm of the MODIS Terra and Aqua satellites
(Justice et al., 2006). It is distributed at 0.1◦ resolution and at
a monthly timescale by the NASA Earth Observations (NEO)
portal.
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2.2 Precipitation

Precipitation (P ) data come from the Precipitation Estima-
tion from Remotely Sensed Information using Artificial Neu-
ral Networks–Climate Data Record (PERSIANN-CDR). The
precipitation estimate uses the PERSIANN algorithm on
GridSat-B1 infrared satellite data and training of the artificial
neural network on the National Centers for Environmental
Prediction (NCEP) hourly precipitation data (Ashouri et al.,
2015). The dataset is distributed by the National Oceanic and
Atmospheric Administration (NOAA) at a daily timescale
and at 0.25◦ resolution in the latitude band 60◦ S–60◦ N.

2.3 Soil moisture

The soil moisture (SM) dataset comes from the SMOS satel-
lite, launched by the European Space Agency (ESA) in 2009
(Kerr et al., 2001). It performs passive measurements of the
thermal emission of Earth at the L band (1.4 GHz, 21 cm).
L-band VOD and SM are derived from SMOS brightness
temperatures using the L-band Microwave Emission of the
Biosphere (L-MEB) radiative transfer model (Wigneron et
al., 2007; Kerr et al., 2012). L-band SM is the volume of wa-
ter per volume of soil (m3 m−3) in the top surface soil layer
(∼ 5 cm). The footprint size is ∼ 43 km on average (Kerr et
al., 2010). We considered the ESA Level 2 SM dataset in ver-
sion 7.2 (L2 v720) resampled to the global cylindrical Equal-
Area Scalable Earth (EASE) Grid version 2.0 (Brodzik et
al., 2012) at 625 km2 spatial sampling (25 km× 25 km at 30◦

of latitude). Ascending (06:00) and descending (18:00) over-
passes were averaged, from June 2010 to December 2020.

2.4 Terrestrial water storage

Terrestrial water storage (TWS) anomalies from the Gravity
Recovery and Climate Experiment (GRACE) satellite were
also considered. We used the monthly GRACE/GRACE-FO
(Follow-On) Level 3 product provided through the Grav-
ity Information Service (GravIS) web portal of the Ger-
man Research Centre for Geosciences (GFZ) at 1◦ latitude–
longitude grids (Boergens et al., 2019). TWS anomalies
(cm) represent the water mass anomalies from snow, sur-
face water, soil moisture, and deep groundwater. They are
derived from measurements of temporal changes in Earth’s
gravity field. Data were lacking for 35 months in the 10-
year dataset. One-time gaps were filled by linear inter-
polation; consecutive missing months were not considered
(September–November 2016, July 2017–May 2018, and
August–October 2018; 17 months in total).

2.5 Temperature

Temperature (T ) data come from the land surface tem-
perature (LST) dataset from the MODIS Terra satellite
(NASA). Daytime and nighttime measurements were aver-
aged (MOD11C3 Version 6 product in the Climate Model-

ing Grid (CMG), LST_Day_CMG, and LST_Night_CMG;
Wan et al., 2015). These datasets are obtained using MODIS
thermal infrared bands from 3 to 15 µm and distributed by
the NASA Land Processes Distributed Active Archive Center
(LP DAAC) at a monthly timescale and at 0.05◦ resolution.

2.6 Vegetation optical depth

Vegetation optical depth (VOD) is a remotely sensed indi-
cator related to AGB and to VWC (Kerr and Njoku, 1990;
Jackson and Schmugge, 1991; Jones et al., 2011; Rahmoune
et al., 2014; Vittucci et al., 2016; Rodriguez-Fernandez et al.,
2018; Mialon et al., 2020). No clear approach exists for dis-
entangling the contributions of AGB and VWC in the VOD
because of the co-sensitivity of microwave observables to
both quantities (Konings et al., 2019). The lower frequen-
cies have better capabilities of penetrating deeper within
the canopy (Ulaby et al., 1981). At the L band, VOD is
sensitive to coarse woody elements, such as trunks, stems,
and branches. At the C and X bands, VOD is more sensi-
tive to thin stems and leaves (Guglielmetti et al., 2007). L-
VOD is then more sensitive than higher-frequency VODs
to high AGB values and is a good proxy for dense vege-
tation (Rodriguez-Fernandez et al., 2018). In this paper, L-
VOD comes from the SMOS Level 2 dataset in version 7.2
(L2 v720) measured at 1.4 GHz (λ= 21 cm), resampled to
EASE-Grid 2.0 at 625 km2 resolution (25 km× 25 km at 30◦

of latitude). In the SMOS retrieval algorithm, the vegeta-
tion attenuation is taken into account by the τ parameter of
the τ −ω model (Mo et al., 1982), which corresponds to
the L-VOD. Data from June 2010 to December 2020 were
considered, and ascending (06:00) and descending (18:00)
overpasses were averaged. C- and X-VOD from the Japan
Aerospace Exploration Agency (JAXA) Global Change Ob-
servation Mission (GCOM) Advanced Microwave Scan-
ning Radiometer 2 (AMSR2) dataset were also considered
(Imaoka et al., 2010). C- and X-VOD are measured at
6.9 GHz (λ= 4.3 cm) and 10.7 GHz (λ= 2.8 cm) respec-
tively. The C2 band (7.3 GHz, λ= 4.1 cm) was not discussed
in this paper, as the data were mostly redundant with the
C1 band (6.9 GHz). We used the daily L3 V001 VOD prod-
ucts, from July 2012 to December 2020, processed with the
land parameter retrieval model (LPRM) algorithm (Owe et
al., 2008) and distributed by NASA on a regular grid at
25 km× 25 km resolution. Ascending (13:30) and descend-
ing (01:30) overpasses (LPRM_AMSR2_A_SOILM3 and
LPRM_AMSR2_D_SOILM3) were averaged.

2.7 Enhanced vegetation index

VOD values were compared with the visible–near-infrared-
based enhanced vegetation index (EVI) from MODIS
(NASA) MOD13C2 and MYD13C2 Version 6 for the Aqua
and Terra Satellites respectively, distributed at 5600 m res-
olution (Didan, 2015). EVI represents canopy greenness,
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with an improved sensitivity over high-AGB regions com-
pared to NDVI. It is obtained by combining measurements at
red (λ= 0.6–0.7 µm, f ∼ 460 THz) and near-infrared wave-
lengths (λ= 0.7–1.1 µm, f ∼ 330 THz).

2.8 Auxiliary data

2.8.1 Year of gross forest cover loss event

The year of gross forest cover loss event map (the so-called
lossyear product) from Hansen et al. (2013) was used to ob-
serve the forest loss rate and year within a SMOS pixel,
for the three major fires studied (Fig. 2). This map repre-
sents the first year of detected tree loss during the period
2000–2020, defined as a stand-replacement disturbance or a
change from a forest to non-forest state. This dataset is based
on Landsat images and is distributed at ∼ 30 m resolution
with 10× 10 square degree tiles at https://glad.earthengine.
app/view/global-forest-change (last access: 1 October 2021).
Each year of the period 2010–2020 was extracted from the
forest loss product and averaged into SMOS EASE-Grid 2.0
so as to obtain a yearly percentage of forest loss.

2.8.2 Land cover

A land surface climatology map based on 10 years (2001–
2010) of the MODIS MCD12Q1 product at 500 m resolution
(Broxton et al., 2014) was used to filter the data and to distin-
guish four different vegetation types (see Sect. 3). This land
cover map identifies 17 ecosystems based on the IGBP (In-
ternational Geosphere-Biosphere Programme) class labels.

2.8.3 Above-ground biomass

The global map of AGB (Mg ha−1) from Santoro et al. (2021)
was used to distinguish sparse from dense forests (see
Sect. 3.3). This map is distributed through the ESA Climate
Change Initiative (CCI) Biomass at 100 m resolution. It com-
bines a large pool of spaceborne remote sensing observations
from two SAR missions (Envisat and ALOS (Advanced Land
Observing Satellite)) and uses optical (Landsat) and lidar
(ICESat (Ice, Cloud, and land Elevation) GLAS (Geoscience
Laser Altimeter System)) data to support the model calibra-
tion procedure. The ESA CCI Biomass map representative
of 2010 was used here because it provides AGB information
prior to the studied fire events (2011–2020).

2.8.4 Snow and ice

The Interactive Multisensor Snow and Ice Mapping System
(IMS) database was used to mask areas covered with snow or
ice (see Sect. 3.1). We used the IMS Daily Northern Hemi-
sphere Snow and Ice Analysis at 4 km resolution, version 1
(Helfrich et al., 2007), provided by the National Snow and
Ice Data Center (NSIDC).

2.8.5 Flooding

Flooded areas were filtered out (see Sect. 3.1) based on
the Global Inundation Estimate from Multiple Satellites
(GIEMS-2) dataset (Prigent et al., 2019). It provides long-
term monthly estimates of surface water extent, includ-
ing open water, wetlands, and rice paddies. The method-
ology combines passive- and active-microwave, visible,
and near-infrared observations (SSM/I (Special Sensor Mi-
crowave/Imager), ERS (European Remote Sensing), AVHRR
(Advanced Very High Resolution Radiometer)). The water
fraction is delivered globally from 1992 to 2015, on an equal
area grid of 0.25◦× 0.25◦ at the Equator (∼ 28 km× 28 km).
Flooded areas were detected with a climatology over the
1992–2015 period.

2.8.6 Topography

Strong topographies were also filtered out for this study (see
Sect. 3.1). They were flagged using a mask created for the
SMOS retrieval (Mialon et al., 2008) based on a digital ele-
vation model (DEM) provided by the Shuttle Radar Topog-
raphy Mission (SRTM), a joint project between the National
Aeronautics and Space Administration (NASA) and the Na-
tional Geospatial-Intelligence Agency (NGA), conducted in
2000 (Jarvis et al., 2006).

3 Methods

First, we investigated three various regions which recently
experienced severe fires. These areas consist in (i) a eucalyp-
tus open forest in a human-affected environment, under dry
El Niño conditions in Australia; (ii) a mixed area of needle-
leaf forests, woody savannas, and human activities under a
Mediterranean climate in California; and (iii) a remote pri-
mary rainforest in a tropical wet climate in Amazonia (see
Sect. 3.2). Second, the study was extended to the ecosystem
scale, for five vegetation types, by selecting the major fires of
the last decade (see Sect. 3.3). The rationale was to capture
significant and unique events occurring over an area large
enough to be observed with the SMOS satellite without any
ambiguity. Four climate variables related to the fire risk were
considered: precipitation, SM, TWS, and temperature. Wind
is another predominant fire likelihood factor (Albini, 1993)
but was not studied here due to the lack of reliable data at the
required spatiotemporal scale. Vegetation status before, dur-
ing, and after fire was monitored with four vegetation vari-
ables: EVI, X-VOD, C-VOD, and L-VOD.
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3.1 Data preprocessing

Data from June 2010 to December 2020 were considered
(10.5 years), except for C- and X-VOD from AMSR2 which
were only available from July 2012. Monthly averages of all
datasets were computed and resampled to SMOS EASE-Grid
2.0 (∼ 25 km resolution) with a weighted average interpo-
lation, using GDAL (Geospatial Data Abstraction Library)
(GDAL/OGR contributors, 2020). SMOS data (SM and L-
VOD) were filtered from RFI (radio frequency interference)
impacts by using a 20 % maximum threshold on the RFI
probability, provided by the SMOS Level 2 product. Only
the centre part of the swath was considered (less than 450 km
away from the sub-satellite track) so as to only use opti-
mal retrievals. Microwave measurements were also proven
to be disturbed by strong topography (Mialon et al., 2008),
snow (Schwank et al., 2014), and standing water (Ye et al.,
2015; Jones et al., 2011; Bousquet et al., 2021). Hence, for
all datasets, we removed strong-topography areas based on
the SMOS topography mask, snow-covered months based on
the IMS database (20 % maximum snow coverage), water-
contaminated areas based on the land cover map (50 % max-
imum water fraction), and flooded ones based on GIEMS-2
climatology (20 % maximum water fraction).

3.2 Case study: analysis of three major fires

3.2.1 Wildfires on the South Coast of New South Wales
in Australia

The first studied area is located on the South Coast of
New South Wales in Australia at 33.53–37.72◦ S, 149.40–
150.17◦ E (Fig. 1) and covers 13 SMOS pixels. The dom-
inant vegetation type is eucalyptus open forest (McColl,
1969; DEWR, 2007). The climate is warm temperate with
dry summers (Kottek et al., 2006). The mean rainfall is
∼ 1000 mm yr−1, and the mean temperature is ∼ 15◦ C (Mc-
Coll, 1969). The topography varies between 0 and 600 m
above sea level. The 2019–2020 wildfires in Australia were
influenced by the El Niño Southern Oscillation (Dowdy,
2018). They became historically significant, as they were
widespread and extremely severe, in particular in New South
Wales (Ehsani et al., 2020). The tree cover loss map (Hansen
et al., 2013) indicates a 25 % forest loss in 2020 in the studied
area (Fig. 2).

3.2.2 Mendocino Complex Fire in California

The second studied area is located in California, near Lake-
port, at 38.96–39.46◦ N, 122.68–123.20◦W (Fig. 1). It corre-
sponds to four SMOS pixels. The area is covered with ever-
green needleleaf forest and woody savannas (Broxton et al.,
2014) and is very urbanized. The climate is warm temperate
(Kottek et al., 2006), with dry, windy, and often hot weather
conditions from spring through late autumn that can pro-
duce severe wildfires (Crockett and Westerling, 2018). The

2018 fire season was the most extreme on record in northern
California (now second to the 2020 fire season) in terms of
number of fatalities, destroyed structures, and burned areas
(Brown et al., 2020). The Mendocino Complex is the largest
fire complex in state history and burned nearly 1860 km2 of
vegetation between July and September 2018. It included two
wildfires: the Ranch Fire in the north, which was the largest
single fire in state history and burned 1660 km2, and the River
Fire in the west, which burned 198 km2 (BLM, 2018). The
Mendocino Complex caused a 34 % vegetation loss in this re-
gion (26 % in 2018 and 8 % in 2019, Fig. 2) and was predom-
inantly classified as moderate severity (62 %; BLM, 2018).

3.2.3 Santarém wildfire in the Amazon

The third studied area is located in the Amazon rain-
forest near the city of Santarém (Brazil) at 3.14–2.75◦ S,
53.95–54.13◦W (Fig. 1) and covers two SMOS pixels.
The evergreen broadleaf forest is dense (L-VOD= 1.02;
AGB= 280 Mg ha−1 on average over the area). The climate
is hot and humid, with an annual mean temperature of 25◦ C
and mean precipitation of 1920 mm yr−1 (Berenguer et al.,
2018). During the strong El Niño event in December 2015,
a severe drought caused large fires in this area, with no link
to anthropic deforestation (Berenguer et al., 2018). They in-
duced a 20 % forest loss in 2016 in the studied area (Fig. 2).

3.2.4 Anomaly time series computation

Anomaly time series of EVI; X-, C-, and L-VOD; P ; SM;
TWS; and T were plotted over the three studied sites. The
anomaly (anom) time series of a variable x is the difference
between the original time series and the mean climatology,
which is the mean seasonal cycle of this variable. They are
defined as

anom(x (t))= x (t)− climatology(x (m)) (1)

and

climatology(x (m))=
1
yn

∑yn

y=1
x (m+ (y− 1) · 12) ,

m= 1− 12 (2)

where t is the month number from January 2010 (6 to 132
in this study); m is the month of the year, between 1 and 12,
with m= (t−1 mod 12)+ 1; and y is the year number, from
1 to yn, with yn = 11 here, as the climatology is computed
for the period 2010–2020. Plotting the anomaly time series
enables the removal of the natural seasonal cycle so as to ob-
serve only the variations due to specific events. The average
pre-fire variable value was subtracted from the anomaly time
series, only if at least 12 months of data were available be-
fore the fire event. It enables the observation of the anomalies
with respect to the pre-disturbance value. The time series of
the number of fires were plotted in absolute values.
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Figure 1. Global maps of SMOS L-VOD (left) and SM (right), with averages for 2011–2020. The red dots show the locations of the three
areas of interest: the Mendocino Complex in California, Santarém in Amazonia, and the South Coast of New South Wales in Australia.

Figure 2. Yearly forest loss (%) attributed to the three burned areas under study, from the Hansen et al. (2013) “lossyear” product.

3.3 Extension to the ecosystem scale

Fires were then studied at the ecosystem scale to assess
the general factors and impacts of fire according to the
specific features of each biome (Fig. 3). Five land cover
classes were studied: grasslands and croplands (IGBP la-
bels 10, 12, and 14), savannas and shrublands (IGBP la-
bels 6, 7, 8, and 9), needleleaf forests (IGBP labels 1
and 3), sparse broadleaf forests (IGBP labels 2 and 4;
AGB≤ 150 Mg ha−1), and dense broadleaf forests (IGBP la-
bels 2 and 4; AGB> 150 Mg ha−1). Only the latitude band
60◦ S–60◦ N was retained in order to be consistent with
the precipitation dataset extent. Only the range July 2012–
December 2020 was conserved here for all datasets so as to
match with AMSR2 time period. For fire event selection, the
time range was reduced from September 2013–October 2019
to avoid fire events occurring at the very beginning (or end
respectively) of the period to be able to study possible pre-
and post-fire anomalies. Only areas showing a unique and
intense fire event over the 6-year period were considered to
properly observe the factors and impacts of this event over
a long time period without any other disturbance. This ex-
cluded dry areas with regular seasonal fires, such as the Sahel
region. Two conditions were empirically defined as manda-

tory to select a fire event over a given pixel: (i) a minimum
number of fires of 5 at the height of the fire and (ii) a maxi-
mum number of fires of 2.5 outside the period (±6 months)
around the main fire event to ensure that the vegetation re-
covery is linked with the main fire event and is not affected
by another significant one. Anomalies were computed with
Eqs. (1) and (2), with a climatology over all dates excepted
the year of the fire event, in order to remove these exceptional
values. The anomaly time series were then shifted to collo-
cate in time all fire events and averaged by ecosystem. To
ensure the spatial representativeness of each ecosystem, the
months with a number of available points lower than half the
maximum number of points of the ecosystem were filtered
out from the shifted time series.

Pre-fire climatic anomalies and post-fire vegetation
anomalies were also aggregated at different timeframes and
plotted, in order to compare their temporal behaviour in dif-
ferent ecosystems. The standard error of the mean of the
measurements σ was also computed with Eq. (3):

σ (p)=
SD(p)
√
n
, (3)

where SD is the standard deviation of the population p and n
is the number of samples.
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Figure 3. Location of the selected fires and histograms of the fire dates, for grasslands and croplands (IGBP labels 10, 12, and 14), savannas
and shrublands (IGBP labels 6, 7, 8, and 9), needleleaf forests (IGBP labels 1 and 3), sparse broadleaf forests (IGBP labels 2 and 4;
AGB≤ 150 Mg ha−1), and dense broadleaf forests (IGBP labels 2 and 4; AGB> 150 Mg ha−1). Areas affected by water, snow, or strong
topography were excluded (see Sect. 3.1).

4 Results

4.1 Case study: analysis of three major fires

In evergreen forests of the South Coast of New South
Wales in Australia (Fig. 4a), fires reached a maxi-
mum in January 2020 (mean number of fires= 8). They
are associated with high temperature and low precipita-
tion (anom(T )=+3◦ C, anom(P )=−80 mm). The drought
started 3 years before fire (decrease in precipitation, SM, and
TWS). All vegetation data exhibit the same pattern, which
is (i) a constant and mild decrease since 2012, (ii) a strong
decrease just before and during the fire event (∼−0.15), and

(iii) a rapid post-fire recovery (∼ 1 year). C-VOD is the most
affected vegetation variable.

In California, no major pre-fire drought is visible in
summer 2018 (Fig. 4b). The Mendocino Complex was
the strongest of the three case studies, with 20 fires ob-
served on average in August 2018. It provoked a de-
crease in all vegetation variables, particularly in L-VOD
(anom(L-VOD)=−0.08) and in EVI (anom(EVI)=−0.10).
Whereas C- and X-VOD regained their pre-fire values
rapidly (∼ 1 year), EVI and L-VOD did not.

In the dense rainforest near Santarém (Brazilian Amazon),
the number of detected fires in December 2015 is quite low
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(∼ 4.5) (Fig. 4c), but this value may be underestimated be-
cause of cloud coverage (Giglio et al., 2020). Vegetation
variables are stable before the fire event, even if the L-
VOD signal is quite noisy because only two SMOS pixels
were considered here. Strong positive temperature anoma-
lies (+3◦ C), negative precipitation anomalies (−160 mm),
and TWS anomalies (−60 cm) are visible during the fire and
reach their extremum at the end of the fire period. Surpris-
ingly, SM stayed stable during the fire. L-VOD was substan-
tially impacted by the fire (anom(L-VOD)=−0.14), as well
as EVI (anom(EVI)=−0.09). C- and X-VOD were barely
affected (anom(C-VOD)=−0.04, anom(X-VOD)=−0.01).
EVI recovered in ∼ 2–3 years, whereas L-VOD never recov-
ered its pre-fire level.

4.2 Extension to the ecosystem scale

In this section, major fires from September 2013 to Octo-
ber 2019 were analysed at the ecosystem scale by shifting
the anomaly time series of all variables on the fire date tfire.
The considered fires are well spread spatially and temporally
over the 6-year period (Fig. 3). In grasslands and savannas
(Fig. 5a and b), pre-fire anomalies of hydrologic variables
are slightly positive, and temperature anomalies are negative
during 2 years before fire. Concurrently, vegetation variables
start to increase and reach a maximum a few months before
the fire event (particularly C- and X-VOD). Anomalies of
vegetation variables also show a light surplus over needle-
leaf forests just before the fire event (Fig. 5c). Over forests
(Fig. 5c, d, e), a 1-year pre-fire drought is visible through the
temperature increase and the decrease in precipitation, SM,
and TWS. For all ecosystems, these drought conditions in-
tensify just before and during fire and end a few months after
fire. During fire, all vegetation variables abruptly decrease in
all ecosystems, EVI being the most impacted one and also
faster to recover. L-VOD is particularly long to recover over
forests, especially dense broadleaf ones (more than 4 years,
Fig. 5e). In needleleaf forests (Fig. 5c), VODs continue to
decrease for 1 year. In low-vegetation ecosystems (Fig. 5a
and b), C- and X-VOD never regain their immediate pre-fire
values, which were particularly high.

Anomalies of climate variables were also averaged in
space and in time, within timeframes of 6 months, from 24
to 1 month pre-fire, in order to observe their general trends
(Fig. 6). The error bars were computed with Eq. (3). Pre-
cipitation anomalies (Fig. 6a) are negative from 6 months
pre-fire for all classes and reach −15 mm per month on
average before the fire event. The precipitation deficit is
more intense in dense broadleaf forests, starting 2 years
pre-fire and reaching −55 mm per month before the fire
event. SM anomalies (Fig. 6b) are similar for the three for-
est classes. The SM deficit starts 18 months pre-fire and
reaches −0.04 m3 m−3 before the fire event. Savannas and
grasslands are affected later (6 months pre-fire) and to a
lesser extent (∼−0.01 m3 m−3), as previously observed in

Fig. 5. TWS anomalies (Fig. 6c) are negative from 24 months
pre-fire for needleleaf forests and from 6 months pre-fire for
dense broadleaf forests. This ecosystem is again the most im-
pacted one, with a minimum TWS anomaly of −7 cm before
fire. Temperature anomalies (Fig. 6d) show significant nega-
tive anomalies in grasslands, savannas, and needleleaf forests
from 2 to 1 year pre-fire. From 6 months pre-fire, temperature
anomalies show a surplus in nearly all ecosystems and reach
+1.1◦ C in needleleaf forests and+0.7◦ C in dense broadleaf
forests before the fire event. In summary, pre-fire drought is
mainly observed in forests, with particularly low hydrologi-
cal values in dense forests (rainforests) and particularly high
temperatures in needleleaf forests (boreal ecosystems). Sa-
vannas and grasslands barely suffer from pre-fire drought;
temperatures are even mild 1 year pre-fire.

Vegetation variable anomalies were averaged within time-
frames of 6 months, from 1 to 36 months post-fire, in or-
der to observe the global impacts and recovery time (Fig. 7).
We considered that a variable has totally recovered when
its anomaly is between −0.005 and +0.005. Immediately
after fire, EVI is the most impacted variable, with average
anomalies of−0.026 over grasslands,−0.022 over savannas,
−0.033 over needleleaf forests,−0.051 over sparse broadleaf
forests, and −0.048 over dense broadleaf forests (Fig. 7a).
EVI recovers rapidly, in about 25 to 30 months. X-VOD is
less affected over forests (−0.015) than over low vegeta-
tion (−0.025) (Fig. 7b). X-VOD gets back to normal within
3 years, savannas and shrublands taking the longest to re-
cover. C-VOD recovers slower than X-VOD, in particular
over forests (Fig. 7c). L-VOD is mainly affected over dense
broadleaf forests (Fig. 7d). Negative anomalies decrease up
to −0.05 6 months post-fire, then slowly increase. L-VOD is
less affected than C-VOD elsewhere. It also shows a delayed
impact over needleleaf forests, as for C- and X-VOD.

5 Discussion

5.1 Case study: analysis of three major fires

In south-east Australia, a strong pre-fire drought is visible
not only in the climate variables but also in the mild decrease
in vegetation variables (Fig. 4a), linked with VWC deficit.
Ehsani et al. (2020) stated that the air temperature from De-
cember 2019 to February 2020 was about 1◦ C higher than
usual, which increased evapotranspiration, while the lack of
precipitation prevented the soil from satisfying the moisture
demand and led to a significant vegetation drying (fuel) that
facilitated the propagation of fires. After the fire event, L-
VOD regained its pre-fire values within a year, meaning that
the woody biomass was not entirely destroyed. Indeed, these
eucalyptus forests are known to be somewhat fire resistant
(Wilkinson and Jennings, 1993; Caccamo et al., 2015). They
can regenerate branches and leaves by resprouting from heat-
resistant buds (Burrows, 2002). The rapid recovery of vege-
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Figure 4. Time series of the number of fires and anomaly time series of EVI; X-, C-, and L-VOD; P ; SM; TWS; and T for (a) south-east
Australia (13 SMOS pixels); (b) the Mendocino Complex, California (4 SMOS pixels); and (c) Santarém (2 SMOS pixels).

tation data can also be explained by the recovery of VWC,
linked with the post-fire increase in precipitation and SM
(Konings et al., 2021). Indeed, in 2020, SM values exceeded
those of the previous decade (anom(SM)=+0.15 m3 m−3),
corresponding to the end of the severe drought affecting
south-east Australia associated with the 2020–2021 La Niña
event (BoM, 2021). The increase in SM and precipitation
may also have expedited the extinction of fires (Ehsani et al.,
2020).

For California, the study by Brown et al. (2020) provides
a comprehensive analysis of the climate and fuel conditions
leading to the 2018 Mendocino Complex and reports sev-
eral events that are also noticeable in our analysis. Among
these, positive rainfall and SM anomalies in winter 2016/17
are depicted in Fig. 4b, which led to the second consec-
utive spring with above-average accumulation of fine fuel
(grasses). Positive temperature anomalies in winter 2017/18
are also visible, when a lack of storm enabled the survival of
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Figure 5.
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Figure 5. Time series of the number of fires and anomaly time series of EVI; X-, C-, and L-VOD; P ; SM; TWS; and T , shifted on the fire
date, for the following biomes: (a) grasslands and croplands, (b) savannas and shrublands, (c) needleleaf forest, (d) sparse broadleaf forest,
and (e) dense broadleaf forest. Missing values appear when the number of available points is lower than half the maximum number of points
of the biome (empty circles in the lower panel). This is mostly due to snow filtering. Data are kept otherwise (black filled dots).

grasses. In April 2018, precipitation and warm temperatures
led to above-normal spring brush and grass growth. No major
drought is visible in summer 2018, but low rainfall and warm
temperatures led to a rapid drying of fuels and induced a
poor overnight humidity recovery. All these similarities with
the findings by Brown et al. (2020) support our observations.
The dramatic fire impacted EVI and L-VOD in the long term.
Eucalyptus, pine trees, and chaparral were burned. Even if
this type of vegetation is fire-adapted, the strength of the fire
seemed to have destroyed most of it (34 % vegetation loss,
Hansen et al., 2013). Increased forest fire activity in recent

decades in California has likely been enabled by the legacy
of fire suppression, human settlement, and anthropogenic cli-
mate change (Abatzoglou and Williams, 2016). Stephens et
al. (2018) stated that the massive current tree mortality in
California will undoubtedly provoke severe “mass fires” in
the coming decades, driven by the amount of dry and com-
bustible wood.

In the Santarém region (Amazon), the winter 2015 wild-
fire was attributed to high temperature and low precipitation
linked with El Niño event (Berenguer et al., 2018), which
clearly emerges from Fig. 4c. These extreme drought con-
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Figure 6. Anomalies of (a) precipitation, (b) SM, (c) TWS, and (d) temperature, for each ecosystem, at several pre-fire timescales. The error
bars were computed with Eq. (3).

ditions worsened during and at the end of the fire and may
explain its strength. Several factors can explain this observa-
tion. First, MODIS may not detect all fires in January 2016
in this area because of (i) the cloud coverage (Roy et al.,
2008) and (ii) the dense vegetation cover hiding understorey
fires (Withey et al., 2018). This would be in line with the
2016 Hansen et al. (2013) tree cover loss detection (Fig. 2).
Secondly, drought may sometimes keep increasing after fire
extinguishment because the removal of the vegetation cover
and the deterioration of the soil contributes to maintaining a
hot and dry climate (Auld and Bradstock, 1996; Veraverbeke
et al., 2010). This phenomenon is also visible in the savanna
and in the sparse broadleaf biome (Fig. 5b and d). Contrary
to TWS and precipitation, SM stayed stable during the fire,
maybe because of the reduced accuracy of SM measurements
under very dense forest. The 3-year recovery time of EVI af-
ter the severe fire indicates a moderate regrowth of leaves
and grasses. In contrast, L-VOD never regained its pre-fire
values, meaning that trunks were impacted in the long term.

5.2 Extension to the ecosystem scale

Grasslands, croplands, shrublands, and savannas do not show
signs of pre-fire drought (Figs. 5a, b and 6). Indeed, in these
dry ecosystems, the standard summer conditions are often
prone to wildfire ignitions (Chaparro et al., 2016). A sub-
stantial increase in vegetation variables, C- and X-VOD in
particular, occurs 1 to 2 years before fire, which implies an
increase in vegetation density, e.g. available fuel. This is con-
sistent with the fact that the C and X bands are more sensi-
tive to dry low shrubland vegetation (Jackson et al., 1982; de
Jeu et al., 2008). Immediately before fire, both VOD and SM
values drop down, suggesting a decrease in VWC, especially
over grasslands (Fig. 5a). The increase in vegetation material
combined with the decrease in VWC may contribute to trig-
gering large wildfires (Forkel et al., 2017; Kuhn-Régnier et
al., 2021). Indeed, the fire risk in savannas is highest for dry
vegetation with enough fuel to enable drastic burning (Mbow
et al., 2004). This vegetation growth might be enabled by
negative pre-fire temperature anomalies and a light positive
anomaly in pre-fire hydrological variables (Fig. 6). Vegeta-
tion variables are less impacted by fires (Fig. 7), which are
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Figure 7. Anomalies of (a) EVI, (b) X-VOD, (c) C-VOD, and (d) L-VOD, for each ecosystem, at several post-fire timescales. The error bars
were computed with Eq. (3).

rapid and burn through the grass layer, resulting in less de-
struction than in forests (Menaut et al., 1990; Gignoux et al.,
1997). L-VOD in particular is slightly impacted because the
burned vegetation is mainly leaf biomass. EVI quickly recov-
ers after fire, probably because fire burns most of the AGB of
grass species but spares their large underground root systems,
resulting in a rapid establishment of new shoots (Hochberg et
al., 1994). The exceptionally high pre-fire vegetation variable
values are never regained.

In needleleaf forest anomaly time series (Fig. 5c), the nu-
merous missing values correspond to the filtering of snow
in winter. These wildfires are located in the Northern Hemi-
sphere temperate and boreal forests and mostly occur in late
spring and summer (Fig. 3). De Groot et al. (2013) explained
that most fires in Canada occur during summer, due to light-
ning strikes, whereas most fires in Russia occur during spring
and are human-caused. We found a strong pre-fire drought in
this ecosystem (low SM and high temperature 1 year pre-fire,
Fig. 6), which is well documented for previous fire episodes
(Weber and Stocks, 1998). Our results are in line with those
of Forkel et al. (2012), who found that previous-summer SM
was a good predictor for burned area in Siberian larch forests.

Indeed, negative summer anomalies led to low frozen water
the following winter and to less water being released during
the following spring–summer season, which in turn eased the
outbreak of large wildfires. VODs also showed a light surplus
before fire, possibly linked with litter thickening (e.g. dead
needles, cured grass, leaf litter), which also facilitates fire
propagation (de Groot et al., 2013). We found a delayed im-
pact of fire on vegetation variables, as well as a longer re-
covery time than in other ecosystems, of about 3–4 years
(Figs. 5c and 7). This duration is slightly less than what was
found in other studies (5 years in Canada, Goetz et al., 2006;
5 to 8 years in North America, Jin et al., 2012), but our find-
ings still confirm previous results from Yang et al. (2017),
who showed with NDVI analyses over North America that
the fire effect on needleleaf trees was stronger and longer
than on other vegetation types. Fires in North America are
predominantly stand-replacing and high-intensity crown fires
(Stocks et al., 2004; Jin et al., 2012), whereas fires in Eurasia
are generally lower-intensity surface fires and less destruc-
tive for the vegetation (de Groot et al., 2013). These differ-
ent fire regimes are influenced by tree species (Rogers et al.,
2015). Time series were plotted separately over each conti-
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Figure 8. Anomalies of vegetation variables (V ) averaged (a) from 1 to 3 months post-fire and (b) from 24 to 35 months post-fire, with
respect to the number of fires by pixel (MODIS), for dense broadleaf forests only. The anomalies were normalized with the 99th quantile of
each variable Vmax (EVImax = 0.60, X-VODmax = 1.03, C-VODmax = 1.20, and L-VODmax = 1.20).

nent (Fig. S1). L-VOD and EVI recover more slowly in North
America than in Eurasia (∼ 4 vs. ∼ 2 years for L-VOD, ∼ 3
vs. ∼ 2 years for EVI), confirming these different boreal fire
regimes. Moreover, we found that L-VOD is moderately im-
pacted during fire, which can be attributed to the dominant
destruction of needles and branches by boreal fires (Alexan-
der and Cruz, 2011).

Sparse broadleaf forests (AGB ≤ 150 Mg ha−1) subject
to wildfires are mostly located in subtropical and temperate
areas of the Americas, West Africa, Australia, and South-
East Asia (Fig. 3). A drying trend is visible 1 year pre-fire
(Figs. 5d and 6). The link between drought and wildfires was
previously observed by de Marzo et al. (2021) in the Argen-
tine Gran Chaco, by Cheng et al. (2013) in the Mexican Yu-
catán forest, and by Vadrevu et al. (2019) in South-East Asian
forests, with a prominent influence of precipitation variations
over temperature variations. L-VOD and EVI are particularly
impacted by fire, but they recover quickly (1 year for EVI,
2.5 years for L-VOD). Yang et al. (2017) also found a rapid
recovery time over North American broadleaf trees due to
their fire-adaptive resprouting regeneration mode. The same
observations were made in the fire-prone Argentine Chaco
forest by Torres et al. (2014).

Dense broadleaf forests are mostly located in the trop-
ics (Fig. 3). We can notice a few fires in the densest rain-
forests (Congo basin, central Amazon) because (i) they are
usually too humid to burn (Cochrane, 2003; Forkel et al.,
2017), (ii) MODIS active fire detections are underestimated
under thick cloud coverage or for understorey fires (Giglio et
al., 2020), and (iii) seasonally flooded areas were excluded
in order to use only robust VOD estimations (Bousquet et
al., 2021). A consistent drought is visible 8 months before
fire events (Fig. 5e), with high negative SM, TWS, and pre-
cipitation anomalies (Fig. 6). Chen et al. (2013) also found

TWS deficits before severe fire seasons across the south-
ern Amazon. Indeed, rainfall shortage generates high water
deficits (i.e. high negative TWS and SM anomalies), which
cause tree mortality and leaf shedding (visible in pre-fire EVI
decrease) and thus increase fuel availability (Aragão et al.,
2018). Nevertheless, no pre-fire VOD decrease is observed
here, showing that tree species of dense forests can maintain
their VWC. Drought-related fires were suggested to prevail
over deforestation fires in the Amazon and are predicted to
increase in the near future (Aragão et al., 2018). The opening
of forest canopies also boosts incident radiation levels which
leads to temperature rise (Ray et al., 2005). The combination
of fuel increase in a drier and hotter environment converts
forests into fire-prone ecosystems (Aragão et al., 2018). We
also found that dense broadleaf forests were the ecosystem
most impacted by fire (Fig. 7) because the absolute pre-fire
values of vegetation variables are particularly high and be-
cause it is not a fire-adapted ecosystem (Cochrane, 2003).
L-VOD in particular decreases strongly and recovers very
slowly (Fig. 7d), as previously observed over the Santarém
fire (Fig. 4c). The strong post-fire decrease in L-VOD is due
not only to biomass destruction but also to water stress in
the remaining vegetation (Konings et al., 2021). This finding
confirms the significant and damaging impact of fires in the
dense broadleaf ecosystem previously observed by Silva et
al. (2018) and de Faria et al. (2021). L-VOD was previously
proven to be more sensitive to high AGB values than C- and
X-VOD (Rodriguez-Fernandez et al., 2018). Here, we sug-
gest that L-VOD depicts the fire impact on high-AGB areas
better than the other vegetation variables.

For all biomes, EVI is the most rapid index to recover,
because leaves rapidly resprout. EVI and X-VOD seem better
adapted for grassland fire monitoring; C-VOD is better for
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savanna fire monitoring; and L-VOD is better for forest fire
monitoring.

5.3 The potential of L-VOD for vegetation recovery
monitoring over dense forests

Normalized anomalies of vegetation variables were also
plotted with respect to the number of fires in the dense
broadleaf ecosystem, immediately after fire (1–3 months
post-fire, Fig. 8a) and over a longer period (1–2 years post-
fire, Fig. 8b). A quasi-linear relationship is visible between
all vegetation estimates and the number of fires. As previ-
ously observed in Sect. 4.2, EVI and L-VOD are the most
impacted variables immediately after fire (Fig. 8a), while L-
VOD is still significantly affected 1 to 2 years after fire (up to
−0.06, Fig. 8b). L-VOD then shows a clear response to fire
events over high-AGB areas, not only immediately but also in
the long term and proportionally to the number of fires within
a SMOS pixel. Thanks to its sensitivity to coarse woody el-
ements and to its deep penetration through the vegetation
layer, L-VOD is better correlated with high AGB than other
vegetation variables (Rodriguez-Fernandez et al., 2018) and
could be used for post-fire recovery monitoring over dense
forests. One must keep in mind that not only the biomass
density (AGB) but also its hydrological status (VWC) are
depicted in the VOD.

6 Conclusions

In this paper, we analysed the pre-fire behaviour of four
satellite-based fire likelihood factors, including SMOS SM.
In forests, which generally maintain a steady humidity,
we found that fires are linked with intense and prolonged
drought. Pre-fire temperature anomalies are particularly high
in boreal needleleaf forests. In savannas and grasslands, in
agreement with previous studies (Mbow et al., 2004), we
found evidence of an increase in available fuel prior to
fire events, enabled by humid and cold conditions a few
years before. We also found that vegetation variables re-
cover rapidly in these ecosystems, as wildfires are often rapid
and mildly destructive for trees. In contrast, over forests,
fires can damage the vegetation in the long term. Zhang
et al. (2021) demonstrated the potential of C-band vegeta-
tion optical depth to detect the vegetation change patterns
caused by fire in the southern Amazon. Our study confirms
these findings and extends it to the ecosystem scale and to
two extra wavelengths. Dense broadleaf forest fires partic-
ularly impact the L-band emission, which represents coarse
woody elements (trunks and stems), whereas sparse vegeta-
tion fires affect the C and X bands more, which are more
sensitive to small branches and leaves. For all biomes, the
visible-infrared index (EVI) drops down after fire but recov-
ers quickly, as it represents only herbage and canopy foliage.
The long-term impact on L-VOD in dense broadleaf forests

shows that fires in this ecosystem are severely destructive for
trunks, while smaller woody elements and leaves resprout
faster. Thus, L-VOD seems to be the best-adapted vegeta-
tion variable for the monitoring of dense vegetation recovery
after large fires.

The increasing number of wildfires threatens the stabil-
ity of several ecosystems. It is then particularly important
to monitor the vegetation health, and the L band proved to
be complementary to existing measurements, especially over
dense forests.
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