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Abstract. This study presents a novel ensemble regres-
sion model for forecasts of the hypoxic area (HA) in
the Louisiana–Texas (LaTex) shelf. The ensemble model
combines a zero-inflated Poisson generalized linear model
(GLM) and a quasi-Poisson generalized additive model
(GAM) and considers predictors with hydrodynamic and
biochemical features. Both models were trained and cal-
ibrated using the daily hindcast (2007–2020) by a three-
dimensional coupled hydrodynamic–biogeochemical model
embedded in the Regional Ocean Modeling System (ROMS).
Compared to the ROMS hindcasts, the ensemble model
yields a low root-mean-square error (RMSE) (3256 km2), a
high R2 (0.7721), and low mean absolute percentage biases
for overall (29 %) and peak HA prediction (25 %). When
compared to the shelf-wide cruise observations from 2012 to
2020, our ensemble model provides a more accurate summer
HA forecast than any existing forecast models with a high
R2 (0.9200); a low RMSE (2005 km2); a low scatter index
(15 %); and low mean absolute percentage biases for over-
all (18 %), fair-weather summer (15 %), and windy-summer
(18 %) predictions. To test its robustness, the model is further
applied to a global forecast model and produces HA predic-
tion from 2012–2020 with the adjusted predictors from the
HYbrid Coordinate Ocean Model (HYCOM). In addition,
model sensitivity tests suggest an aggressive riverine nutri-
ent reduction strategy (92 %) is needed to achieve the HA
reduction goal of 5000 km2.

1 Introduction

The Louisiana–Texas (LaTex) shelf has become a center of
hypoxia (bottom dissolved oxygen, DO< 2 mg L−1) study
since the 1980s (e.g., Rabalais et al., 2002, 2007a; Justić and
Wang, 2014). Regular mid-summer shelf-wide cruises doc-
umented that the area and volume of hypoxic bottom wa-
ter could reach up to 23 000 km2 and 140 km3, respectively
(Rabalais and Turner, 2019; Rabalais and Baustian, 2020).
The aquatic environments, fisheries, and coastal economies
are under threat of recurring hypoxia in summer (Chesney
and Baltz, 2001; Craig and Bosman, 2013; de Mutsert et
al., 2016; LaBone et al., 2021; Rabalais and Turner, 2019;
Rabotyagov et al., 2014; Smith et al., 2014). For exam-
ple, habitats of some fish species (e.g., croaker and brown
shrimp) shift to offshore hypoxic edges (Craig and Crowder,
2005; Craig, 2012) during summer hypoxia events, which
may impact organism energy budgets and trophic interac-
tions (Craig and Crowder, 2005; Hazen et al., 2009). The
horizontal displacement of habitats of brown shrimp in sum-
mer can also lead to changes in the distribution of Gulf of
Mexico shrimp fleets (Purcell et al., 2017). Although an ac-
tion plan has been launched by the Mississippi River/Gulf of
Mexico Hypoxia Task Force to control the size of the mid-
summer hypoxic zone below 5000 km2 in a 5-year running
average since 2001 (Mississippi River/Gulf of Mexico Wa-
tershed Nutrient Task Force, 2001, 2008), extents of the hy-
poxic area have experienced no significant decreases in re-
cent decades (Del Giudice et al., 2020). An accurate predic-
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tion of the hypoxic area is urgently needed for coastal man-
agers and the fishery industry.

Water column stratification and sediment oxygen con-
sumption (SOC) are two main factors regulating the forma-
tion, evolution, and destruction of bottom hypoxia from mid-
May through mid-September (Bianchi et al., 2010; Conley et
al., 2009; Fennel et al., 2011, 2013, 2016; Feng et al., 2014;
Hetland and DiMarco, 2008; Justić and Wang, 2014; Lau-
rent et al., 2018; McCarthy et al., 2013; Murrell and Lehrter,
2011; Rabalais et al., 2007b; Wang and Justić, 2009; Yu et
al., 2015). The stratification inhibits bottom water reoxy-
genation, while SOC, induced by water eutrophication asso-
ciated with high anthropogenic nutrient supplies by rivers,
can lead to anaerobic benthic environments. Nevertheless,
existing prediction models of hypoxic area (HA) rely mostly
on contribution from the nutrient load rather than hydrody-
namic features. Turner et al. (2006) built a multiple linear re-
gression model for summer HA prediction using the annual
and May nitrogen flux (nitrate+ nitrite) of the Mississippi
River as the predictors. The model provides a robust annual
prediction when no strong wind is present but overestimates
HA in windy years. Obenour et al. (2015) modeled HA using
the empirical relationship between HA and bottom DO con-
centration derived from a Bayesian biophysical model. Their
model accounts for primary biophysical processes solved for
steady-state conditions, water transport, May total nitrogen
loads by rivers, and parameterized water reaeration. Katin
et al. (2022) further adjusted the Bayesian model by taking
into account river flows, riverine bioavailable nitrogen load-
ings, and wind velocity in both summer (June–September)
and non-summer (November–May) months. Summer river-
ine inputs are projected using non-summer riverine variables,
river basin precipitation, and river basin temperature, while
summer wind velocity is resampled from historical records
between 1985 and 2016. Therefore, the seasonal prediction
model is known as a pseudo forecast model, since predic-
tors in future stages only include riverine inputs. This model
explains 71 % and 41 %–48 % of the variability in the hind-
cast (Del Giudice et al., 2020) and geostatistically estimated
HA (Matli et al., 2018), respectively. An additional Bayesian
model applied to summer bottom DO prediction accounts for
May total nitrogen loads, distance from the Mississippi River
mouth, and downstream velocity (Scavia et al., 2013). The
summer HA is determined by hypoxic length (HA= 57.8 hy-
poxic length) derived from summer bottom DO concentra-
tion. The model explains 69 % of the variability in observed
HA by the mid-summer shelf-wide cruises. Mechanistic pre-
diction methods have also been applied by Laurent and Fen-
nel (2019) to develop a weighted mean forecast that is cali-
brated using May nitrate loads and three-dimensional hind-
cast simulations over the period 1985–2018. Once calibrated,
the model only requires May nitrate loads as an input to pro-
duce the seasonal forecast for a given year. The model can
explain up to 76 % of the year-to-year variability in the HA

observation. However, the model is not favorable for years
with strong wind events during summer.

These above-mentioned models share some similar draw-
backs. (1) The effects of water column stratification are con-
sidered only implicitly by the associated wind speeds, wa-
ter transport, and riverine nutrient loads (usually correlated
to river discharges), although stratification is documented as
a crucial factor in regulating HA variability. (2) Forecasts
of the predictors are usually limited, which restricts some
of these seasonal models to pseudo ones. (3) Most mod-
els are only capable of capturing interannual HA variabil-
ity and are not reliable in summers when winds are strong.
According to the hindcast results by our three-dimensional
coupled hydrodynamic–biogeochemical model described in
the accompanying paper (Part 1), strong wind events bring
considerable uncertainties to monthly and daily variabilities
in HA. In this study we aim to provide a novel HA predic-
tion method that considers both stratification and biochemi-
cal effects. Our new model aims to produce daily HA fore-
casts based on selected predictors’ forecasts with a minimum
computational cost. The rest of the paper is organized as fol-
lows. Detailed descriptions of methods and data are given
in Sect. 2. The implementations of generalized linear mod-
els (GLMs), generalized additive models (GAMs), and an
independent model application using a global forecast prod-
uct (HYbrid Coordinate Ocean Model, HYCOM; Bleck and
Boudra, 1981; Bleck, 2002) are given in Sect. 3. Compar-
isons against existing forecast models and recommendations
on nutrient reduction strategy are given in Sect. 4.

2 Methods

2.1 Data preparation

We adapted a three-dimensional coupled hydrodynamic–
biogeochemical model embedded in the framework of the
Regional Ocean Modeling System (ROMS) on the platform
of Coupled Ocean–Atmosphere–Wave–Sediment Transport
(COAWST) modeling system (Warner et al., 2010) to the
Gulf of Mexico (GoM; Gulf–COAWST, for detailed descrip-
tions, validations, and results of the numerical model, see
Part 1). Numerical hindcasts (hereafter denoted as ROMS
hindcasts or ROMS simulations) are output daily from 1 Jan-
uary 2007 to 26 August 2020 and spatially averaged over
the LaTex shelf extending from the west of Mississippi River
mouth to 95◦W with water depths ranging from 6 to 50 m
(color shaded region in Fig. A1b).

2.1.1 Hydrodynamic-related predictors

Both water stratification and bottom biochemical processes
modulate the variability in bottom DO concentration in the
LaTex shelf. Potential energy anomaly (PEA, in J m−3) is
introduced as an estimate of water column stratification ac-
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cording to

PEA=
1
H

∫ η

−h

(ρ− ρ)gzdz, (1)

where ρ is the water density profile (estimated by water
temperature and salinity profiles) over the water column of
depth H = h+ η, h is the location of the bed, η is water sur-
face elevation, g is the gravitational acceleration (9.8 m s−2),
z is the vertical axis, and ρ is the depth-integrated water
density given by ρ = 1

H

∫ η
−h
ρdz (Simpson and Hunter, 1974,

1978; Simpson, 1981; Simpson and Bowers, 1981). The PEA
represents the amount of energy per volume required to ho-
mogenize the entire water column (Simpson and Hunter,
1974). Thus, a greater PEA value represents a more stratified
water column. As a river-dominated area, water stratification
in the LaTex shelf is highly affected by freshwater-induced
buoyancy from the Mississippi and Atchafalaya rivers. Sea
surface salinity (SSS) is a good proxy for representing the
distribution and variability in river freshwater across the
shelf. Indeed, the correlation of regionally averaged PEA and
SSS is significantly high as−0.87 (p<0.001; Fig. 1a), which
emphasizes the importance of freshwater-induced stratifica-
tion. Therefore, we considered SSS as another candidate pre-
dictor besides PEA.

Surface heating and wind mixing are two other factors that
influence water stratification (Simpson, 1981). The tidal ef-
fects considered in Simpson (1981) are neglected here due to
the relatively weaker contribution in stratification in the shelf
when compared to the effects of rivers and winds. The two
mixing terms are quantified as follows:

d(PEA)
dt

=
αg

2c
Q− δkaρaW

3, (2)

where Q is the rate of surface heat input, α is the volume
expansion coefficient, c is water specific heat capacity, δ is
a coefficient of wind mixing, ka is the drag coefficient, ρa is
the density of humid air near the sea surface, and W is the
wind speed near the sea surface. The first term on the right-
hand side of Eq. (2) represents the rate of change in water
stratification due to surface heating, while the second term
is the rate of working by wind stress contributing negatively
to water stratification. Therefore, the heat-induced change in
PEA is proportional to surface heat input, which is

d(PEA)heat ∝Q. (3)

The total net heat flux, a sum of net shortwave and net
longwave radiation flux, is derived from the National Centers
for Environmental Prediction (NCEP) Climate Forecast Sys-
tem Reanalysis (CFSR) 6-hourly products (Saha et al., 2010,
2011) in this study. The term Q is added to the candidate list
of predictors and is denoted as PEAheat (heat-induced PEA
changes) for simplification (Fig. 1a).

Daily variability in the term (δkaρaW
3) is dominated by

that of W 3, since the ρa fluctuates much less than the W 3 on

a daily scale (Fig. A2). We obtained ρa according to (Picard
et al., 2008):

ρa =
pMd

ZRT

[
1− xv

(
1−

Mv

Md

)]
, (4)

where p represents the absolute air pressure,
Md (28.96546 g mol−1) is the molar mass of dry air,
Mv (18.01528 g mol−1) is the molar mass of water vapor,
Z indicates compressibility, R (8.314472 J mol−1 K−1) is
the molar gas constant, T is thermodynamic temperature,
and xv is the mole fraction of water vapor. We assumed that
air parcels at the sea surface are ideal gases (Z = 1) and are
always saturated with water vapor. Thus, xv is a function of
the absolute air pressure (p) and saturation vapor pressure of
water (psat) and can be calculated as follows:

xv =
psat

p
. (5)

According to the adjusted Tetens equation (Murray, 1967;
Monteith and Unsworth, 2014), psat (in Pa) can be estimated
by

psat = 611e
17.27(T−237.3)

T−T ′ , (6)

where T ′ = 36 K. Substituting Eqs. (5)–(6) for Eq. (4) with
the assumption of Z = 1, we obtained air density as a func-
tion of both air pressure and air temperature in the following:

ρa = ρa(T ,p)=
pMd

RT

[
1−

611
p

(
1−

Mv

Md

)
e

17.27(T−237.3)
T−T ′

]
. (7)

ρa is then estimated using sea surface air pressure and air
temperature 2 m above the sea surface provided by NCEP
CFSR 6-hourly products. The correlation of daily ρaW

3 and
W 3 (provided by NCEP CFSR 6-hourly products) is signif-
icantly high as 0.9988 (p<0.001, Fig. A2), emphasizing the
importance of term W 3 in controlling the daily variability in
wind-induced PEA changes over the shelf. We, thus, approx-
imated the relationship as

d(PEA)wind ∝W
3. (8)

The term W 3 is introduced as another candidate predictor
and is denoted as PEAwind (wind-induced PEA changes) for
simplification (Fig. 1a).

2.1.2 Biochemical-related predictors

Sedimentary biochemical processes directly influence the
bottom DO consumption rate. However, global forecast mod-
els such as HYCOM do not cover biochemical parameters.
Therefore, the biochemical-related term SOC needs to be re-
placed by an alternative term (denoted as SOCalt). Accord-
ing to the SOC scheme (Eq. 9) stated in Part 1, the biochem-
ical features are attributed to the sedimentary particulate or-
ganic nitrogen concentration (PONsed, derived from ROMS
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hindcasts). The total nitrate+ nitrite loads by the Mississippi
River are used to represent the PONsed variability due to
the long-term data supports. The daily Mississippi River dis-
charges at site 07374000 have been updated daily by the
U.S. Geological Survey (USGS) National Water Information
System (NWIS) since March 2004. The total nitrogen con-
centration at site 07374000 has been provided and updated
daily by USGS since November 2011. Prior to 2011, nitrogen
loads (at site 07374000) were provided monthly by USGS
and, in this study, are interpolated to daily intervals accord-
ing to the corresponding monthly loads. Although phosphate
and silicate are another two important nutrients in the shelf,
daily measurements are still not available for the Missis-
sippi River. Monthly total nitrate+ nitrite loads, phosphate
loads, and silicate loads by both the Mississippi River and
the Atchafalaya River are significantly correlated (Table A1).
Therefore, the total nitrate+ nitrite loads applied here can
be interpreted as total nutrient loads by both river systems.
Due to lateral transports and vertical settling of particulate
organic matter, a leading period should be introduced to the
time series of riverine nutrient loads. The optimal length
of leading days is obtained by examining the highest lin-
ear correlation of regionally averaged ROMS-hindcast SOC
and SOCalt (Eq. 10) and is calculated as 44 d (R = 0.7427,
p<0.001, Fig. A3a). The exponential term in Eqs. (9)–(10)
estimates the temperature-dependent decomposition rate of
organic matter:

SOC= PONsed ·VP2N0 · e
KP2N·Tb , (9)

SOCalt=Mississippi River inorganic

nitrogen loads (led by 44 d) · e0.0693Tb , (10)

where VP2N0 is a constant representing the decomposition
rates of sedimentary particulate organic nitrogen PONsed at
0 ◦C, KP2N is a constant (0.0693 ◦C−1) indicating temper-
ature coefficients for decomposition of PONsed, and Tb is
bottom water temperature (in ◦C). The Q10 (2 given the
above chosen coefficients; van ’t Hoff and Lehfeldt, 1899;
Reyes et al., 2008) assumption is applied to mimic the aer-
obic decomposition rate of PONsed. Along with SOCalt, the
temperature-dependent decomposition rate e0.0693·Tb is also
considered a candidate predictor in statistical models and is
denoted as DCPTemp for simplification.

2.1.3 HA estimation

As listed in Table 1, six candidate predictors are considered
in the statistical models including four stratification-related
variables (PEA, SSS, PEAheat, and PEAwind) and two bot-
tom biochemical variables (SOCalt and DCPTemp). The cor-
relation matrix (Fig. 1a) indicates that multicollinearity may
become a problem in regression models, since linear correla-
tions among some predictors are significantly high, e.g., 0.74
(p<0.001) between PEA and SOCalt and −0.87 (p<0.001)
between PEA and SSS. The multicollinearity can violate the

assumption that predictors are independent. It can lead to dif-
ficulties in individual coefficient tests and numerical instabil-
ity (Siegel and Wagner, 2022). The frequency distribution of
HA (Fig. 1b) illustrates that the response variable is highly
skewed to the right with ∼ 42 % of samples (2081 out of
4943) being exactly zero. HA is estimated by the number of
hypoxia cells (ROMS computational cells reaching hypoxic
conditions) times a nearly constant value (area of the com-
putational cell), which is 25.56± 0.17 km2 (mean± 1 SD).
Thus, HA can be estimated by the number of grid cells
when the Poisson and negative binomial regression models
are applied. However, the great portion of zero samples leads
to overdispersion (magnitude of variance � magnitude of
mean, i.e., 45 730 441� 4507) and zero-inflated problems
(Lambert, 1992). The overdispersion issue violates the mean-
variance equality assumption employed in regular Poisson
regression models, while zero-inflated problems can weaken
the model performances.

2.2 Data pre-processes

We first spatially averaged ROMS-derived predictors (daily)
over the LaTex shelf (color-shaded area in Fig. A1b) and
then applied the min–max normalization (Eq. 11) to the one-
dimensional time series. Predictive models can be beneficial
from the min–max normalization when applying to a new
dataset, since the method guarantees that the normalized pre-
dictors from different datasets range from 0 to 1 as the min-
imum and maximum values are prescribed. Note that the re-
sponse is not normalized.

Xnor =
Xorg−minprescribed(

maxprescribed−minprescribed
) , (11)

where Xnor, Xorg, minprescribed, and maxprescribed represent
the normalized value, original value, prescribed minimum,
and prescribed maximum, respectively. The daily samples
are then split into a training set (for model construction) ac-
counting for 80 % of the total samples and a test set (for
assessment of model performances) accounting for the re-
maining 20 %. To maintain the HA distribution in both sets,
a stratified random resampling method is applied in differ-
ent HA intervals individually. For example, 80 % of sam-
ples with HA= 0 are chosen randomly for the training set
out of all daily samples with HA= 0, while the rest of the
samples with HA= 0 are grouped into the test set. HA= 0
is the first interval to which the resampling process is ap-
plied, while the remaining samples are split at intervals of
5000 km2. However, the distribution of HA from each year
is similar with a right-skewed structure and numerous zero
values. Thus, even through random processes, both the train-
ing and test sets contain samples from each year including
samples with non-peak and peak HA. This splitting method
increases the model applicability and provides a comprehen-
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Table 1. Description of daily response variable and candidate predictors. The data cover a time range from 1 January 2007 to 26 August 2020.
Prescribed min and max values are used for min–max normalization.

Variables [units] Description Min Median Mean Max Prescribed (min : max)

HA [km2] Hypoxic area (when bottom
dissolved oxygen < 2 mg L−1)

0 1137 4507 34 097 Non-normalized

PEA [J m−3] Potential energy anomaly
measuring the water
stratification

3.3 35.6 47.2 187.9 (0 : 200)

SSS [non-dim] Sea surface salinity 20.0 30.8 30.4 33.9 (0 : 40)

PEAheat [W m−3] Q, an approximation of
surface-heat-induced water
stratification

−54.4 151.9 142.7 261.3 (−60 : 300)

PEAwind [m3 s−3] W3, an approximation of
water stratification changes
due to wind mixing

0.5 164.7 296.1 7013.2 (0 : 7100)

SOCalt [mmol s−1] An alternative term for
sediment oxygen consumption

789 319 10 423 383 13 377 287 41 984 069 (770000 : 43000000)

DCPTemp [non-dim] e0.0693·Tb ,
temperature-dependent
decomposition rate of
organic matter

2.6 5.1 5.2 8.0 (0 : 10)

sive assessment of prediction performances on both non-peak
and peak HA.

2.3 Model skill assessment

The R2, root-mean-square error (RMSE), mean absolute per-
centage bias (MAPB), and scatter index (SI; Zambresky,
1989) are used to assess the model performances in HA pre-
dictions. The SI is a normalized measure of error or a rela-
tive percentage of expected error with respect to the mean
observation. The calculations of the statistics are given in
Eqs. (12)–(15):

R2
= 1−

∑N
i=1(Pi −Oi)

2∑N
i=1(Pi −O)

2
, (12)

RMSE=

√∑N
i=1(Pi −Oi)

2

N
, (13)

MAPB=
1
N

∑N

i=1

∣∣∣∣Pi−OiOi

∣∣∣∣× 100%, (14)

SI=
RMSE

O
× 100 %, (15)

where Pi and Oi represent the ith record of prediction and
observation (or hindcast), while O represents the average of
all observed (or hindcast) records.

3 Model construction and results

3.1 Model built-up process

Several regression models are explored using the statistical
programming language R. To find the “best” model balanc-
ing both model interpretability and prediction performance,
a procedure is conducted for model selection (Fig. 2) and is
summarized below. (1) Choose a regression model. (2) Ap-
ply an exhaustive best-subset searching approach to the cho-
sen model. Models with possible combinations of candi-
date predictors from the ROMS training set are built. A 10-
fold cross-validation (CV) method is applied to each model,
yielding 10 RMSEs and 1 corresponding mean. The candi-
date predictors of PEA and SOCalt are forced into each sub-
set. Thus, the number of fitted models with a subset size of k
is C (6− 2,k− 2)= 4!

(6−k)!(k−2)! , 2≤ k ≤ 6 (the total num-
ber of candidate predictors is 6). The optimal subset of this
size is found as the one with the lowest mean CV RMSE
among these models. The best subset is then obtained by
comparing mean CV RMSEs of the optimal subsets of dif-
ferent sizes. (3) Steps (1)–(2) are repeated for the selected
M candidate regression models. (4) Prediction performances
of different models with the corresponding best subsets are
assessed by the 10-fold CV RMSEs and bootstrap (1000 iter-
ations) aggregating (i.e., bagging) ensemble algorithms. The
bagging method builds the given model N (1000) times dur-
ing each of which the given model is trained using different
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Figure 1. (a) A correlation matrix of the response variable and candidate predictors and (b) the frequency distribution of HA. Data are
provided daily from 1 January 2007 to 26 August 2020.

samples chosen randomly and repeatedly from the ROMS
training set and is executed for HA prediction using samples
in the ROMS test set. The ensemble means and ensemble
95 % prediction intervals (PIs) of forecast HA are given ac-
cording to the prediction results in the 1000 iterations. The
best model (model X in Fig. 2) is chosen according to the
comparisons of the 10-fold CV RMSEs and the bagging re-
sults.

3.2 Generalized linear models (GLMs)

3.2.1 Regular GLMs and zero-inflated GLMs

The response variable can be treated as count data. Regular
Poisson (function glm in R package stats version 3.6.2),
quasi-Poisson (function glm in R package stats version
3.6.2), and negative binomial (function glm.nb in R pack-
age MASS version 7.3-54; Venables and Ripley, 2002) GLMs
are explored in this section. The latter two GLMs are known
for solving overdispersion problems by relaxing the mean-
variance equality assumption. These GLMs make use of a
natural log link function. Thus, a natural logarithm of the
area of a single ROMS cell (∼ 25.56 km2) is added to the
models as an offset term (an additional intercept term).

In addition, the overdispersion issue can result from
the great percentage (∼ 42 %) of zero values in the re-
sponse variable (Fig. 1b). Zero-inflated GLMs (using func-
tion zeroinfl in R package pscl version 1.5.5; Jackman,
2020; Zeileis et al., 2008) are developed for dealing with re-
sponse variables of this kind. Rather than resetting dispersion
parameters, a zero-inflated count model is a two-component
mixture model blending a count model and a zero-excess
model. The count model is usually a Poisson or negative bi-
nomial GLM (with log link), while the zero-excess model
is a binomial GLM (with a logit link in this study) estimat-
ing the probability of zero inflation. An offset term of log

(25.56) is also introduced into the count model. Instead of
applying the best-subset searching to the count and zero-
excess models simultaneously, in this study, the searching
is conducted, respectively, for these two models to reduce
the demands of computational resources. The best subset of
the zero-excess model (binomial GLM) is given first. The
best subset of the count model (Poisson or negative binomial
GLMs) is then provided blending the zero-excess model with
the corresponding selected best subset.

However, it is hard to determine whether a given zero
value of HA is excessive; instead, it is relatively easy to
model hypoxia occurrence assuming that all the zero val-
ues are excessive. A new binary response, hypoxia, stated
in Eq. (16) is introduced for modeling hypoxia occurrence
using regular binomial GLMs (function glm in R package
stats version 3.6.2). The hypoxia is equal to 0 when HA
is 0 (no hypoxia); otherwise, it is equal to 1. The optimal
model selected three predictors: PEA, SOCalt, and DCPTemp
(Fig. 3b).

hypoxia=
{

0, no hypoxia
1, hypoxia occurs (16)

3.2.2 Performance of GLMs

The zero-inflated Poisson GLM serves as the best GLM in
terms of prediction performances, since it has the lowest
mean CV RMSE (Fig. 3a) among the five candidates GLMs.
The relaxation of the mean-variance equality assumption by
the negative binomial GLM and the quasi-Poisson GLM
does not guarantee salient improvement in performances
when comparing their CV RMSEs to those of regular Pois-
son GLM. The zero-inflated negative binomial GLM yields
similar performances to the three regular GLMs. The mean
CV RMSEs of zero-inflated Poisson GLM hit the trough
(3573 km2) at the size of 4. However, the greatest drop of
RMSEs (3586 km2) occurs at the size of 3 beyond which
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Figure 2. A flowchart of building up regression models.

the RMSEs remain stable. It is worth considering a model
with fewer predictors satisfying model interpretability. Thus,
the best zero-inflated Poisson GLM accounts for three pre-
dictors (PEA, SOCalt, and DCPTemp) in the count model
and three predictors (PEA, SOCalt, and DCPTemp) in the
zero-excess model. As indicated in the correlation matrix
(Fig. 1a), the robustness of a model can be impaired by mul-
ticollinearity which can be estimated by variance inflation
factors (VIFs). VIFs among the selected predictors are 2.15,
2.70, and 1.59 for PEA, SOCalt, and DCPTemp, respectively.
The VIFs are all less than 5, suggesting that both the count
and the zero-excess models with these predictors involved
are merely violated by multicollinearity. For simplicity, the
best zero-inflated Poisson GLM is symbolized as GLMzip3.

The bagging ensemble method is implemented to estimate
the prediction performance of GLMzip3 (Fig. 4a). It is noted
that the training set and test set are resampled according to
different HA intervals. Since the distributions of HA in each
year are similar (see Sect. 2.2), both the training and test set
contain peak and non-peak HA values in each year. There-
fore, samples shown in Fig. 4 are listed sequentially in the
time dimension from 2007 to 2020 but are not necessarily
evenly distributed. The listed samples should not be regarded
as time series. The bagging means of predicted HA pro-
vide an RMSE of 3614 km2 and an R2 of 0.7214 against the
ROMS hindcasts. The bagging 95 % PIs are restricted within
a narrow range with a slight increase at the predicted peaks.
Within different ranges of hindcast HA, the MAPB between
predicted and hindcast HA ranges from 29 % to 38 % with an
average of 33 % (Table 2). Particularly, GLMzip3 produces
the lowest bias (29 %) for the hindcast HA at ≥ 30 000 km2.
The results suggest that GLMzip3 is capable of providing not
only accurate but also stable HA forecasts. Nevertheless, we
noted salient overestimations (e.g., peaks around samples 30,
481, and 901) and underestimations (e.g., peaks around sam-
ples 181, 390, and 826) at some peaks. Instead of the predic-
tion performance at non-peak HA, here we focused more on
the forecasts at HA peaks which impose more threats to the

shelf ecosystem. In Sect. 3.3, GAMs are investigated with an
expectation of further improvements in peak predictions by
considering non-parametric or non-linear effects of the pre-
dictors.

3.2.3 Model interpretation for GLMzip3

We applied the complete ROMS training set to the model
construction of GLMzip3. Coefficients for PEA, SOCalt, and
DCPTemp (Table 3) are all found to be significantly posi-
tive (p<0.001) in the count model, while coefficients for
these predictors are significantly negative (p<0.001) in the
zero-excess model. The count model simulates HA, while
the zero-excess model estimates the probability of HA being
zero. Higher PEA is consistent with stronger water stratifica-
tion, while higher SOCalt and DCPTemp are both correspond-
ing to higher sediment oxygen consumption. Therefore, there
is no surprise that higher PEA, SOCalt, and DCPTemp are re-
lated to greater HA and higher hypoxia occurrence or a lower
probability of HA being zero. Results indicate that GLMzip3
essentially builds up reasonable relationships between the re-
sponse and predictor variables with a high agreement with
physical and biochemical mechanisms. Since the ranges of
normalized predictors are from 0 to 1, comparisons of re-
gression coefficients indicate that effects of PEA (2.8037 in
the count model and −10.4439 in the zero-excess model,
same hereafter) are considered more important than SOCalt
(0.9057 and −7.3100) and DCPTemp (0.8425 and −9.5698).
The result is consistent with the findings of previous stud-
ies which emphasized that the physical impacts are stronger
than the biological impacts on HA estimates (Yu et al., 2015;
Mattern et al., 2013).

3.3 Generalized additive models (GAMs) and the
ensemble model

GAMs are explored with an expectation of improving predic-
tion performance in HA peaks by introducing non-parametric
effects of predictors. Using function gam in R package mgcv
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Figure 3. Comparisons of mean 10-fold CV RMSEs among different regression models with various sizes of predictors subsets. The response
variable in (b) binomial GLM and (a) other models is hypoxia occurrence (hypoxia) and hypoxic area (HA), respectively. Note that the CV
RMSEs of negative binomial GAM and Poisson GAM with the size of 6 are out of the range shown. CV RMSE curves of the Poisson GLM,
negative binomial GLM, and quasi-Poisson GLM overlap, while those of Poisson GAM and quasi-Poisson GAM overlap when the size ≤ 5.
The minimum size of predictor subsets is 2, since PEA and SOCalt are forced into every subset.

Figure 4. Comparisons of model-predicted HA and ROMS-hindcast HA in the test set. RMSEs and R2s are derived between the model
bagging mean and ROMS-hindcast HA.

(version 1.8-36; Wood, 2011) with smooth functions as pure
thin plate regression splines (degrees of freedom= 9; Wood,
2003), three GAMs are studied and compared, i.e., Poisson
GAM, quasi-Poisson GAM, and negative binomial GAM.
Following the same procedure in GLM exploration, the best-
subset searching approach is applied to the GAMs first. Al-
though mean 10-fold CV RMSEs for the Poisson and quasi-
Poisson GAMs (Fig. 3a) exhibit insignificant differences at
sizes from 2 to 5, the CV RMSEs for the former increase
dramatically at a size of 6, which indicates that the model

stability decreases with size. The negative binomial GAM
has the greatest mean CV RMSEs among the GAMs stud-
ied and has an extremely high mean CV RMSE at the size
of 6. The quasi-Poisson GAM is considered the best GAM
among the three. Although the mean CV RMSEs for the
quasi-Poisson GAM reach the lowest at the size of 6, the
best size is considered three (including PEA, SOCalt, and
DCPTemp) at which CV RMSEs exhibit the most saline de-
cline and beyond which mean CV RMSEs stabilize around
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Table 2. Mean absolute percentage bias between predicted and hindcast HA in the test set within different ranges of hindcast HA. The
mean bias when hindcast HA< 5000 km2 is not shown, since the prediction accuracy at high HA ranges is a more important feature of HA
prediction models. The threshold of 5000 km2 is chosen because it is the goal HA set by the action plan (Mississippi River/Gulf of Mexico
Watershed Nutrient Task Force, 2001, 2008). HA above this threshold is more worthy of attention.

Hindcast HA range (km2) GLMzip3 GAMqsp3 Ensemble

[5000, 10 000] 38 40 36
[10 000, 20 000] 32 25 28
[20 000, 30 000] 34 26 28
≥ 30000 29 28 25

Average 33 30 29

Table 3. Regression coefficients of GLMzip3.

Count model coefficients (Poisson with a log link): Zero-excess model coefficients (binomial with a logit link):

Estimate SD Error z value Pr (>|z|) Estimate SD error z value Pr (>|z|)

Intercept 3.6397 0.0017 2120.5 <2× 10−16∗∗∗ Intercept 7.7641 0.2761 28.12 <2× 10−16∗∗∗

PEA 2.8037 0.0014 1984.6 <2× 10−16∗∗∗ PEA −10.4439 0.6794 −15.37 <2× 10−16∗∗∗

SOCalt 0.9057 0.0014 639.6 <2× 10−16∗∗∗ SOCalt −7.3100 0.5714 −12.79 <2× 10−16∗∗∗

DCPTemp 0.8425 0.0029 287.7 <2× 10−16∗∗∗ DCPTemp −9.5698 0.4611 −20.75 <2× 10−16∗∗∗

Significance codes: ∗∗∗ 0, ∗∗ 0.001, ∗ 0.01. Log likelihood: −2.675× 106 on 8 degrees of freedom.

3200 km2. The quasi-Poisson GAM with three predictors in-
volved is symbolized as GAMqsp3.

Component plots of GAMqsp3 (Fig. 5) imply that HA gen-
erally increases as the chosen predictors increase. Note that
the summation of all smooth-function terms contributes di-
rectly to the log of fitted HA. Such results agree with those
found by model GLMzip3. However, the component plots
provide more detailed information about the rate of changes
in HA. The effective degrees of freedom range from 6.79
to 8.90, indicating strong non-linear effects of the predic-
tors on the variability in HA. HA is more sensitive to the
predictors in the low-value ranges but becomes nearly sta-
ble in the medium- and high-value ranges of predictors. This
implies that bottom hypoxia develops rapidly in early sum-
mer when water stratification and sediment oxygen demand
start to increase. On the other hand, the smooth functions of
SOCalt and DCPTemp have a sharper slope than that of PEA
at the low-value range. It suggests that at the first stage of
hypoxia development in late spring and early summer, sed-
imentary biochemical processes contribute more than water
stratification. The bottom hypoxic water further extends with
a much lower expansion rate as the stratification and SOCalt
further intensify. Nevertheless, the smooth function of PEA
is slightly greater and also has a more acute slope than those
found for SOCalt and DCPTemp in the medium- and high-
value regimes of the predictors. It indicates that the HA vari-
ability is more related to the hydrodynamic changes in the
shelf than the biochemical effects during mid-summers. The
result is consistent with the findings by Yu et al. (2015) and

Mattern et al. (2013). The GAMqsp3 model provides reason-
able interpretations of the mechanisms of hypoxic area.

The prediction performance of GAMqsp3 is estimated us-
ing the bagging ensemble method (Fig. 4b). The RMSE
and R2 between the bagging mean and ROMS-hindcast
HA are 3157 km2 and 0.7858, respectively. They are 13 %
lower and 9 % higher than the corresponding statistics found
for GLMzip3, respectively. MAPB between GAMqsp3 pre-
dicted and hindcast HA ranges from 25 % to 40 % with
an average of 30 % (Table 2). Such statistics are generally
lower than those found in GLMzip3. Results suggest that
GAMqsp3 outcompetes GLMzip3 in terms of overall per-
formance. However, GAMqsp3 tends to underestimate HA
peaks (such as the peaks around samples 750 and 901), some
of which are overestimated by GLMzip3. Therefore, instead
of determining the best model out of the two, ensemble HA
predictions blending efforts of both GLMzip3 and GAMqsp3
are carried out with an expectation to improve model perfor-
mance in the peak forecast. We assumed that the contribu-
tions of GLMzip3 and GAMqsp3 are equally weighted and
thus averaged the predicted HA by GLMzip3 and GAMqsp3
and calculated the 95 % PIs given the bagging results of these
models (Fig. 4c). As expected, the overall performance of the
ensemble forecast is somewhere between the performance of
GLMzip3 and GAMqsp3 with an RMSE of 3256 km2 and
an R2 of 0.7721. However, some HA peak events (such as
the peaks around samples 750 and 901) which are overesti-
mated by GLMzip3 but are underestimated by GAMqsp3 are
accurately predicted by the ensemble approach. MAPB also
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Figure 5. Component plots of the model GAMqsp3. Solid black lines represent the mean of the smooth function, while the red area denotes
the range of mean ±1 SE (standard error). Numbers in brackets represent effective degrees of freedom for the corresponding smooth terms.
Black bars at the x axis indicate the density of corresponding normalized predictors. Dashed black lines are straight lines of zero along the
predictor domains.

indicates an increase in peak prediction performance by the
ensemble model. The statistic is within a range of 25 % to
36 % with an average of 29 %. At extreme peaks (hindcast
HA≥ 30 000 km2), compared to the MAPB by GLMzip3
(29 %) and by GAMqsp3 (28 %), the statistic decreases to
25 % by the ensemble model. The ensemble model provides
a higher accuracy in peak forecast given minor sacrifices in
overall performance.

3.4 Application to global forecast products (HYCOM)

The power of the prediction model relies on the availabil-
ity of the forecast of predictors. In this section, we discuss
the model’s transferability using an independent global ocean
product. The Global Ocean Forecasting System (GOFS) 3.1
provides global daily analysis products and an 8 d forecast
in a daily interval with a horizontal resolution of 1/12◦. The
products (hereafter referred to as HYCOM-derived products)
are derived by a 41-layer HYCOM global model (Bleck and
Boudra, 1981; Bleck, 2002) with data assimilated via the
Navy Coupled Ocean Data Assimilation (NCODA) system
(Cummings, 2005; Cummings and Smedstad, 2013). The
Mississippi River total nitrate+ nitrite loadings are provided
by USGS NWIS as described in Sect. 2.1.2. Daily HYCOM-
derived hydrodynamics and USGS river nitrogen loads from
1 January 2007 to 26 August 2020 are used to reconstruct
predictors of PEA, SOCalt, and DCPTemp. Relationships of
ROMS-derived and HYCOM-derived predictors are exam-
ined in Fig. 6. The magnitudes of HYCOM-derived SO-

Calt and DCPTemp match up with the corresponding ROMS-
derived predictors, respectively, although HYCOM-derived
predictors are found to be slightly greater. Simple linear re-
gression for these predictors illustrates that the linear rela-
tionships between the ROMS and HYCOM products are sig-
nificant with the R2 ranging from 0.94 to 0.96. The intercept
terms are at least 1 order of magnitude smaller than the mag-
nitudes of corresponding predictors. Therefore, the HYCOM
global products are deemed to agree with the ROMS hind-
casts for SOCalt and DCPTemp. Nevertheless, the magnitude
of HYCOM-derived PEA is found to be much lower than the
ROMS-derived PEA (Fig. 6a). Simple linear regression indi-
cates a significant linear relationship between the natural log
transformation of PEA from the two datasets (R2

= 0.66).
At land–sea interfaces, the HYCOM global model is

forced by monthly riverine discharges, which weaken the
model performance in coastal regions. The hydrodynamics
in the LaTex shelf is highly affected by the freshwater and
momentum from the Mississippi and the Atchafalaya rivers.
Monthly river forcings in HYCOM are essentially weaker
than daily forcings used in our ROMS setups and can result in
a less stratified water column (i.e., lower PEA). Therefore, it
is necessary to scale the magnitude of HYCOM-derived PEA
to that of the ROMS hindcast. It can be achieved by using
the natural log transformation and simple linear regression
as discussed. We then adjusted HYCOM-derived PEA but
kept the HYCOM-derived SOCalt and DCPTemp unchanged
before the application of the ensemble model.
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The bagging approach is implemented again to assess
the performances of the ensemble model. During each it-
eration (N = 1000), GLMzip3 and GAMqsp3 are trained
using the ROMS training set and then applied to the ad-
justed HYCOM-derived predictors for HA prediction from
1 January 2012 to 26 August 2020 (Fig. 7a). The ensem-
ble method provides averages and 95 % PIs of predicted HA
blending bagging results by GLMzip3 and GAMqsp3. Com-
pared to observed HA by mid-summer shelf-wide cruises,
the ensemble model fails in the summers of 2013, 2014,
2017, and 2018 but provides accurate predictions in other
summers. The width of 95 % PI is larger during high-HA
periods, suggesting less stability in the HA peak forecast.
The overall performance is barely acceptable, with an R2

of 0.4242, an RMSE of 5088 km2, and an SI of 38 %. The
bias against the observations can be ascribed to HYCOM’s
failures in reproducing the shelf hydrodynamics, although
HYCOM-derived predictors are adjusted before being ap-
plied to the model (Fig. 6a). We noticed that among the three
variables, HYCOM-derived PEA exhibits the largest devi-
ation from that generated by ROMS. We then applied the
model using ROMS-derived PEA, HYCOM-derived SOCalt,
and HYCOM-derived DCPTemp (Fig. 7b). The performance
of the ensemble model was largely enhanced with a higher
R2 (0.9255), a much lower RMSE (3751 km2), and a lower
SI (28 %) compared to the one using the pure HYCOM prod-
ucts. These results indicate that the ensemble model can pro-
duce a highly accurate prediction for HA summer peaks once
water stratification is well resolved. Instead of using monthly
river forcings, the HYCOM model may possibly resolve the
shelf hydrodynamics by utilizing daily river discharges of the
Mississippi and the Atchafalaya rivers.

4 Discussion

4.1 Model performance evaluation

To further assess the robustness of our model, we reviewed
a suite of existing forecast models that are transitioned op-
erationally (in early June) to the NOAA ensemble forecast
for each summer (data sources are listed in Table 4). Using
the ROMS-derived predictors, daily HA predictions during
the shelf-wide cruise periods are averaged for each summer
from 2012 to 2020 and are compared to the cruise observa-
tions. As shown in Fig. 8a, our model predictions fit well
with the shelf-wide observation for summers with or with-
out strong windy events prior to the cruises. Other seasonal
forecast models have similar performances to our model in
fair-weather summers (i.e., 2012, 2014, 2015, and 2017) but
fail to produce an accurate forecast for several summers with
strong wind conditions (i.e., 2018 and 2020). Percentage dif-
ferences between predictions and observations (Fig. 8b) also
emphasize the superiority of our model with the percentages
ranging from −24 % to 7 % for fair-weather summers and

Figure 6. Scatterplots of (a) log(PEA) (unit: log(J m−3)), (b) SO-
Calt (unit: mmol s−1), and (c) DCPTemp (unit: non-dim) between
ROMS and HYCOM simulations. Note that the solid red lines rep-
resent linear regression lines, while the dashed grey lines are diag-
onals with a slope of 1 and an intercept of 0. Daily data compared
are from 2007 to 2020.

from 7 % to 35 % for summers with strong winds or storms.
All models either underestimate or overestimate observed
HA in fair-weather summers but overestimate HA in windy
summers. Our model provides the most accurate overall per-
formance with the highest R2 (0.9200, N = 8), the lowest
RMSE (2005 km2, N = 8), the lowest SI (15 %, N = 8), and
the lowest MAPB (18 %,N = 8) among all models (Table 4).
The multiple linear regression model developed by Forrest
et al. (2011) provides the second best prediction. For fair-
weather summers, the NOAA ensemble predictions produce
the best estimation of the observed HA with an MAPB of
9 % (N = 4), while our model results rank the second (15 %,
N = 4). However, our model performs the best in windy
summers with an MAPB of 18 % (N = 4), while other mod-
els produce an MAPB from 33 % to 74 %.

Models developed by Turner et al. (2006, 2008, 2012)
and Laurent and Fennel (2019) are calibrated on May nitrate
or nitrate+ nitrite loads from the Mississippi–Atchafalaya
River basin, assuming that the predicted HA in summers
is under fair weather. It is expected that models excluding
wind effects can hardly produce accurate forecasts during
summers with strong winds or storms. Wind mixing effects
on HA are considered in reaeration by introducing a wind
stress term in the mechanistic model (Obenour et al., 2015),
while in the Bayesian model by Scavia et al. (2013), the
wind effects are considered indirectly via an estimation based
on current velocity and the reaeration rate given different
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Figure 7. Comparisons of daily predicted HA by ensemble model ((GLMzip3+GAMqsp3) / 2) when applied to adjusted HYCOM products
and shelf-wide measurements from 2012 to 2020. Model results shown in (a) are predicted using pure HYCOM-derived products (i.e., PEA,
SOCalt, and DCPTemp), while those in (b) are predicted by ROMS-derived PEA, HYCOM-derived SOCalt, and HYCOM-derived DCPTemp.
Discontinuity of the predictions is due to the lack of riverine nitrate+ nitrite records at USGS site 07374000 in the Mississippi River.

Figure 8. (a) Comparisons of shelf-wide measured and the best estimates of model-predicted HA during the shelf-wide cruise periods.
(b) Percentage differences between different model predictions and shelf-wide measurements. The superscript asterisks indicate high-wind
years prior to the cruises.

wind conditions (i.e., fair weather, strong westerly winds,
and storms). However, as shown in Fig. 1a, PEAwind, which
can also be interpreted as wind power, is found poorly corre-
lated to daily HA (R =−0.2458) compared to other highly
correlated predictors and is dropped out of the candidate list
by the best-subset searching approach. Forrest et al. (2011)
also found that monthly wind power is not significantly cor-
related to summer HA due to the short timescales of strong
wind events. Therefore, the wind mixing effects considered
by Obenour et al. (2015) and Scavia et al. (2013) have lim-
ited contribution to the prediction of the interannual vari-

ability in HA. Indeed, our model construction process indi-
cates that wind mixing, freshwater plume, and water temper-
ature jointly control the water stratification and vertical mix-
ing, which directly modulates the reoxygenation of shelf wa-
ter. PEA can serve better in representing such effects rather
than by wind speed or wind power alone. The daily PEA is
significantly correlated to daily HA (R = 0.8178, p<0.01;
Fig. 1a), while the non-linear effects of PEA cannot be ne-
glected (Fig. 5a). Therefore, an accurate forecast of shelf hy-
drodynamics is critical for a robust summer HA prediction.

Biogeosciences, 19, 3575–3593, 2022 https://doi.org/10.5194/bg-19-3575-2022



Y. Ou et al.: Hydrodynamic and biochemical impacts on the development of hypoxia 3587

Figure 9. Mean for 2015–2020 (except 2016) predicted HA in scenarios of different nutrient load reduction strategies given different sets
of predictors considered. Predictions by the ensemble model are conducted individually for the shelf-wide cruise periods in different sum-
mers and averaged from 2015–2020. Horizontal bars indicate ranges of 95 % PIs. Grey dashed lines represent the goal of 5000 km2 set
by the Mississippi River/Gulf of Mexico Hypoxia Task Force. Note here nutrient reduction percentages refer to mid-June nutrient loads in
corresponding years.

4.2 Task force nutrient reduction

In this section we assess the effects of nutrient reduc-
tions on HA using our model. Since 2001, the Missis-
sippi River/Gulf of Mexico Hypoxia Task Force has had
the goal of controlling the size of the mid-summer hypoxic
zone below 5000 km2 in a 5-year running average (Missis-
sippi River/Gulf of Mexico Watershed Nutrient Task Force,
2001; 2008) by reducing riverine nutrient loads. Because
the monthly riverine silicate, phosphate, and nitrate+ nitrite
loads are highly correlated (Table A1), here we refer to ni-
trogen load (the only nutrient that has daily measurements)
as the proxy for all riverine nutrients. The averaged summer
HA during the shelf-wide cruises in the most recent 5 years
(2015, 2107, 2018, 2019, and 2020) is calculated with dif-
ferent nutrient reduction scenarios and is shown in Fig. 9.
The PEA, bottom temperature, and river discharges are un-
changed, while the SOCalt is altered by reducing the nutrient
concentration from 5 % to 90 %. The averaged observed HA
is 14 000 km2, while the averaged prediction by our ensemble
model is 15 478 km2, which is 11 % greater than the obser-
vation. As a leading time of 44 d (Fig. A3a) is prescribed
in SOCalt prior to shelf-wide summer cruises in mid–late
July, reduction strategies are applied to mid-June nutrient
loads rather than May loads in our model. The monthly aver-
aged total nitrogen loads for the 1980–1996 summers (April,
May, and June) are 1.96× 108 kg per month (Battaglin et
al., 2010). It is comparable to the June mean total nitrogen
load (1.6× 108 kg per month) for the 2015–2020 period. We
find that a 92 % reduction, which corresponds to a total ni-
trogen load of 5.5× 105 kg d−1 or 1.6× 107 kg per month, is

needed for the mid-June nutrient loads to achieve the goal of
a 5000 km2 HA.

The recommended reduction strategy of our model is
much more demanding than that of other models (Scavia
et al., 2013; Obenour et al., 2015; Turner et al., 2012; Lau-
rent and Fennel, 2019), which recommend a load reduction
of 52 %–58 % related to the 1980–1996 average (Scavia et
al., 2017). A recommendation of 92 % reduction is close to
that by Forrest et al. (2011) (80 %) when the coastal wester-
lies from 15 June to 15 July were considered in their regres-
sion model. Since water stratification is attributed to not only
wind mixing effects but also effects from other physical pro-
cesses (e.g., riverine freshwater transports and surface heat-
ing), models developed based solely on May nutrient loads
(Turner et al., 2012; Laurent and Fennel, 2019) or nutrient
loads and wind mixing (Scavia et al., 2013; Obenour et al.,
2015) fail to capture water stratification’s contribution to hy-
poxia development. If a model considers the variability in
HA to rely highly on the nutrient loads, then a moderate de-
crease in nutrient loads would result in a substantial HA re-
duction. For further illustration, we reran the model without
consideration of the PEA (i.e., using DCPTemp and SOCalt or
using only SOCalt). Model results show a substantial shrink-
ing of HA with moderately reduced riverine nitrogen loads
(Fig. 9). In details, if only DCPTemp and SOCalt are used as
the predictors, a nutrient reduction of 60 % will satisfy the
5000 km2 HA goal. And if we only use SOCalt as the predic-
tor, then a 55 % reduction is sufficient. These results high-
light the importance of considering PEA in HA predictions.
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5 Conclusions

In this study, we present a novel HA forecast model for the
LaTex shelf using statistical analysis. The model is trained
using numeric simulations from 1 January 2007 to 26 Au-
gust 2020 by a three-dimensional coupled hydrodynamic–
biogeochemical model (ROMS). Multiple GLMs (regular
Poisson GLMs, quasi-Poisson GLMs, negative binomial
GLMs, zero-inflated Poisson GLMs, and zero-inflated neg-
ative binomial GLMs) and GAMs (regular Poisson GAMs,
quasi-Poisson GAMs, and regular negative binomial GAMs)
are assessed for HA predictions. Comparisons of model pre-
diction performance illustrate that an ensemble model com-
bining the prediction efforts of a zero-inflated Poisson GLM
(GLMzip3) and a quasi-Poisson GAM (GAMqsp3) provides
the most accurate HA forecast using PEA, SOCalt, and
DCPTemp as predictors. The ensemble model is capable of
explaining up to 77 % of the total variability in the hindcast
HA and also provides a low RMSE of 3256 km2 and low
MAPBs for overall (29 %) and peak predictions (25 %) when
compared to the daily ROMS hindcasts.

We then applied the hydrodynamics field generated by a
global model (HYCOM, GOFS 3.1) and performed a HA
hindcast for the period from 1 January 2012 to 26 Au-
gust 2020. The overall performance is barely acceptable with
an R2 of 0.4242, an RMSE of 5088 km2, and an SI of 38 %
against the shelf-wide summer cruise observations, largely
due to HYCOM’s relatively poor representation of shelf
stratification. A substitution of ROMS-derived PEA led to
a pronounced improvement with an R2 of 0.9255, an RMSE
of 3751 km2, and an SI of 28 %.

The ensemble model also provides an efficient yet more
robust summer HA forecast compared to existing HA fore-
cast models. Comparing against the shelf-wide cruise obser-
vations, our model provides a high R2 (0.9200 vs. 0.2577–
0.4061 by existing forecast models, same comparison here-
inafter); a low RMSE (2005 km2 vs. 4710–9614 km2); a low
SI (15 % vs. 36 %–95 %); and low MAPBs for overall (18 %
vs. 44 %–132 %), fair-weather summer (15 % vs. 8 %–46 %),
and windy-summer (18 % vs. 33 %–74 %) predictions. Sensi-
tivity tests were conducted and suggest that a 92 % reduction
in riverine nutrients related to the 1980–1996 summer aver-
age is required to meet the goal of a 5000 km2 HA. These
results highlight the importance of considering PEA in HA
prediction.

Biogeosciences, 19, 3575–3593, 2022 https://doi.org/10.5194/bg-19-3575-2022

https://gulfhypoxia.net/
http://scavia.seas.umich.edu/hypoxia-forecasts/
https://www.vims.edu/research/topics/dead_zones/forecasts/gom/index.php
https://obenour.wordpress.ncsu.edu/news/
https://memg.ocean.dal.ca/news/
https://www.noaa.gov/news


Y. Ou et al.: Hydrodynamic and biochemical impacts on the development of hypoxia 3589

Appendix A

Figure A1. (a) Bathymetry of the entire domain of the Gulf–COAWST described in the accompanying study (Part 1) and (b) zoom-in
bathymetry plot of the northern Gulf of Mexico (nGoM). The range of bathymetry of the color shaded area in (b) is from 6 to 50 m, over
which the regional averages of parameters are conducted.

Figure A2. A scatterplot of ρaW
3 against W3 and their linear correlation.

https://doi.org/10.5194/bg-19-3575-2022 Biogeosciences, 19, 3575–3593, 2022
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Figure A3. (a) Lead–lag correlation coefficients between ROMS-hindcast daily SOC and SOCalt (Mississippi River inorganic nitrogen
loads · e0.0693Tb ) with the Mississippi nitrogen loads leading by different days; (b) daily time series of ROMS-hindcast SOC and SOCalt
when the Mississippi nitrogen loads lead by 44 d. The time series are regional average results over the LaTex shelf and are normalized.

Table A1. A correlation matrix of monthly mean inorganic nutrient loads by the Mississippi River and the Atchafalaya River from 2007 to
2020. Correlation coefficients shown are all significant (p<0.001).

Mississippi Atchafalaya Mississippi Atchafalaya Mississippi Atchafalaya
nitrate+ nitrite nitrate+ nitrite phosphate phosphate silicate silicate

Mississippi 1
nitrate+ nitrite

Atchafalaya 0.9207 1
nitrate+ nitrite

Mississippi 0.8258 0.7551 1
phosphate

Atchafalaya 0.7576 0.7764 0.9308 1
phosphate

Mississippi 0.8511 0.7770 0.8664 0.7972 1
silicate

Atchafalaya 0.7989 0.7781 0.8147 0.7942 0.9673 1
silicate

Biogeosciences, 19, 3575–3593, 2022 https://doi.org/10.5194/bg-19-3575-2022
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Code and data availability. Model data are available at the
Louisiana State University (LSU) mass storage system, and de-
tails are on the web page of the Coupled Ocean Modeling
Group at LSU (https://lsu.app.box.com/folder/168361434653?s=
8qhpz2glpxlbsu9z9m6g4cudcegfseh4, Ou, 2022). Data requests
can be sent to the corresponding author via this web page.

Author contributions. BL and ZGX designed the experiments, and
YO carried them out. YO developed the model code and performed
the simulations. YO, BL, and ZGX prepared the manuscript.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. Research support was provided through the
Bureau of Ocean Energy Management (grant nos. M17AC00019
and M20AC10001). We thank Jerome Fiechter at the University
of California, Santa Cruz, for sharing his NEMURO (North Pa-
cific Ecosystem Model for Understanding Regional Oceanography)
model codes. Computational support was provided by the high-
performance computing facility (clusters SuperMIC and Queen-
Bee3) at Louisiana State University.

Financial support. This research has been supported by the Bu-
reau of Ocean Energy Management (grant nos. M17AC00019
and M20AC10001).

Review statement. This paper was edited by Tina Treude and re-
viewed by Brandon Jarvis and two anonymous referees.

References

Battaglin, W. A., Aulenbach, B. T., Vecchia, A., and Buxton,
H. T.: Changes in streamflow and the flux of nutrients in the
Mississippi-Atchafalaya River Basin, USA, 1980–2007, Scien-
tific Investigations Report, Reston, VA, U.S. Geological Survey,
https://doi.org/10.3133/sir20095164, 2010.

Bianchi, T. S., DiMarco, S. F., Cowan, J. H., Hetland, R. D., Chap-
man, P., Day, J. W., and Allison, M. A.: The science of hypoxia in
the northern Gulf of Mexico: A review, Sci. Total Environ., 408,
1471–1484, https://doi.org/10.1016/j.scitotenv.2009.11.047,
2010.

Bleck, R.: An oceanic general circulation model framed in hy-
brid isopycnic-Cartesian coordinates, Ocean Model., 4, 55–88,
https://doi.org/10.1016/S1463-5003(01)00012-9, 2002.

Bleck, R. and Boudra, D. B.: Initial testing of a
numerical ocean circulation model using a hy-

brid (quasi-isopycnic) vertical coordinate, J. Phys.
Oceanogr., 11, 755–770, https://doi.org/10.1175/1520-
0485(1981)011<0755:ITOANO>2.0.CO;2, 1981.

Chesney, E. J. and Baltz, D. M.: The effects of hypoxia on the
northern Gulf of Mexico Coastal Ecosystem: A fisheries per-
spective, in: Coastal Hypoxia: Consequences for Living Re-
sources and Ecosystems, Am. Geophys. Union, 58, 321–354,
https://doi.org/10.1029/CE058p0321, 2001.

Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F.,
Seitzinger, S. P., Havens, K. E., Lancelot, C., and Likens, G. E.:
Controlling Eutrophication: Nitrogen and Phosphorus, Science,
323, 1014–1015, https://doi.org/10.1126/science.1167755, 2009.

Craig, J. K.: Aggregation on the edge: Effects of hypoxia avoidance
on the spatial distribution of brown shrimp and demersal fishes in
the Northern Gulf of Mexico, Mar. Ecol. Prog. Ser., 445, 75–95,
https://doi.org/10.3354/meps09437, 2012.

Craig, J. K. and Bosman, S. H.: Small Spatial Scale Variation in
Fish Assemblage Structure in the Vicinity of the Northwest-
ern Gulf of Mexico Hypoxic Zone, Estuar. Coast., 36, 268–285,
https://doi.org/10.1007/s12237-012-9577-9, 2013.

Craig, J. K. and Crowder, L. B.: Hypoxia-induced habitat shifts and
energetic consequences in Atlantic croaker and brown shrimp
on the Gulf of Mexico shelf, Mar. Ecol. Prog. Ser., 294, 79–94,
https://doi.org/10.3354/meps294079, 2005.

Cummings, J. A.: Operational multivariate ocean data as-
similation, Q. J. R. Meteorol. Soc., 131, 3583–3604,
https://doi.org/10.1256/qj.05.105, 2005.

Cummings, J. A. and Smedstad, O. M.: Variational Data Assim-
ilation for the Global Ocean, in: Data Assimilation for Atmo-
spheric, Oceanic and Hydrologic Applications, Vol. 2, edited by:
Park, S. K. and Xu, L., Springer Berlin Heidelberg, 303–343,
https://doi.org/10.1007/978-3-642-35088-7_13, 2013.

de Mutsert, K., Steenbeek, J., Lewis, K., Buszowski, J., Cowan, J.
H., and Christensen, V.: Exploring effects of hypoxia on fish and
fisheries in the northern Gulf of Mexico using a dynamic spa-
tially explicit ecosystem model, Ecol. Modell., 331, 142–150,
https://doi.org/10.1016/j.ecolmodel.2015.10.013, 2016.

Feng, Y., Fennel, K., Jackson, G. A., DiMarco, S. F.,
and Hetland, R. D.: A model study of the response
of hypoxia to upwelling-favorable wind on the north-
ern Gulf of Mexico shelf, J. Mar. Syst., 131, 63–73,
https://doi.org/10.1016/j.jmarsys.2013.11.009, 2014.

Fennel, K., Hetland, R., Feng, Y., and DiMarco, S.: A cou-
pled physical-biological model of the Northern Gulf of
Mexico shelf: model description, validation and analysis
of phytoplankton variability, Biogeosciences, 8, 1881–1899,
https://doi.org/10.5194/bg-8-1881-2011, 2011.

Fennel, K., Hu, J., Laurent, A., Marta-Almeida, M., and Hetland,
R.: Sensitivity of hypoxia predictions for the northern Gulf of
Mexico to sediment oxygen consumption and model nesting, J.
Geophys. Res.-Ocean., 118, 990–1002, 2013.

Fennel, K., Laurent, A., Hetland, R., Justic, D., Ko, D. S.,
Lehrter, J., Murrell, M., Wang, L., Yu, L., and Zhang,
W.: Effects of model physics on hypoxia simulations for
the northern Gulf of Mexico Mean for 2015: A model
intercomparison, J. Geophys. Res.-Ocean., 121, 5731–5750,
https://doi.org/10.1002/2015JC011516, 2016.

Forrest, D. R., Hetland, R. D., and DiMarco, S. F.: Multivariable
statistical regression models of the areal extent of hypoxia over

https://doi.org/10.5194/bg-19-3575-2022 Biogeosciences, 19, 3575–3593, 2022

https://lsu.app.box.com/folder/168361434653?s=8qhpz2glpxlbsu9z9m6g4cudcegfseh4
https://lsu.app.box.com/folder/168361434653?s=8qhpz2glpxlbsu9z9m6g4cudcegfseh4
https://doi.org/10.3133/sir20095164
https://doi.org/10.1016/j.scitotenv.2009.11.047
https://doi.org/10.1016/S1463-5003(01)00012-9
https://doi.org/10.1175/1520-0485(1981)011<0755:ITOANO>2.0.CO;2
https://doi.org/10.1175/1520-0485(1981)011<0755:ITOANO>2.0.CO;2
https://doi.org/10.1029/CE058p0321
https://doi.org/10.1126/science.1167755
https://doi.org/10.3354/meps09437
https://doi.org/10.1007/s12237-012-9577-9
https://doi.org/10.3354/meps294079
https://doi.org/10.1256/qj.05.105
https://doi.org/10.1007/978-3-642-35088-7_13
https://doi.org/10.1016/j.ecolmodel.2015.10.013
https://doi.org/10.1016/j.jmarsys.2013.11.009
https://doi.org/10.5194/bg-8-1881-2011
https://doi.org/10.1002/2015JC011516


3592 Y. Ou et al.: Hydrodynamic and biochemical impacts on the development of hypoxia

the Texas-Louisiana continental shelf, Environ. Res. Lett., 6,
045002, https://doi.org/10.1088/1748-9326/6/4/045002, 2011.

Del Giudice, D., Matli, V. R. R., and Obenour, D. R.: Bayesian
mechanistic modeling characterizes Gulf of Mexico hypoxia:
1968–2016 and future scenarios, Ecol. Appl., 30, 1–14,
https://doi.org/10.1002/eap.2032, 2020.

Hazen, E. L., Craig, J. K., Good, C. P., and Crowder, L. B.:
Vertical distribution of fish biomass in hypoxic waters on the
gulf of Mexico shelf, Mar. Ecol. Prog. Ser., 375, 195–207,
https://doi.org/10.3354/meps07791, 2009.

Hetland, R. D. and DiMarco, S. F.: How does the character
of oxygen demand control the structure of hypoxia on the
Texas-Louisiana continental shelf?, J. Mar. Syst., 70, 49–62,
https://doi.org/10.1016/j.jmarsys.2007.03.002, 2008.

Jackman, S.: pscl: Classes and Methods for R Developed in the
Political Science Computational Laboratory, https://github.com/
atahk/pscl/ (last access: 7 September 2021), 2020.
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