Supplement of

Ideas and perspectives: Emerging contours of a dynamic exogenous kerogen cycle

Thomas M. Blattmann

Correspondence to: Thomas M. Blattmann (blattmannt@jamstec.go.jp)

The copyright of individual parts of the supplement might differ from the article licence.
This supplementary document details how the reported kerogen oxidation fluxes (F_{L-A}) were calculated in Table 1 from the references that require conversion.

S1 Bouchez et al. (2010)

Kerogen oxidation flux reported from the Madeira floodplain:
\[0.25 \frac{Mt C}{yr} = 2.5E + 11 \frac{SC}{yr} \]

Normalizing this flux to the catchment area (850,000 km2) of the Madeira floodplain reported in Clark et al. (2017) delivers:
\[F_{L-A} \geq 0.3 \frac{MgC}{km^2 yr} \]

As Bouchez et al. (2010) report the kerogen oxidation flux as a “lower bound”, greater than or equal to is used.

S2 Clark et al. (2017)

Revising Bouchez et al.’s (2010) figures, the kerogen oxidation flux reported from the Madeira floodplain:
\[1 \frac{Mt C}{yr} = 1E + 12 \frac{SC}{yr} \]

Normalizing this flux to the catchment area (850,000 km2) of the Madeira floodplain reported in Clark et al. (2017) delivers:
\[F_{L-A} = 1.2 \frac{MgC}{km^2 yr} \]

S3 Keller and Bacon (1998)

Kerogen oxidation flux is reported as:
\[0.35 \frac{mol C}{m^2 yr} \]

Converting this leads to:
\[F_{L-A} = 4.2 \frac{MgC}{km^2 yr} \]

S4 Littke et al. (1991)

Using scenarios S1B and S2B assuming weathering started after the last glacial period (10,000 yrs before present), Littke report organic matter weathering rates between 3.3 and 4.8 kgOM m$^{-3}$ yr$^{-1}$. Converting mass of organic matter to organic carbon using the conversion factor of 1.5 delivers a carbon flux emanating from 1 m3 of shale of 2.2-3.2 kgC m$^{-3}$ yr$^{-1}$. Assuming a weathering depth of 5 m (Littke et al., 1991), this value is converted (by multiplication and unit conversion) to an aerial kerogen oxidation flux of
\[F_{L-A} = 11-16 \frac{MgC}{km^2 yr} \]
S5 Rogieri Pelissari et al. (2021)

Rogieri Pelissari et al. (2021) report volumetric CO$_2$ fluxes of 54,000 $\frac{\text{ml CO}_2}{\text{t yr}}$ emanating per unit mass of tar sandstone. Using the universal gas law (assuming 295 K temperature) and converting the units yields 27 $\frac{\text{g C}}{\text{t yr}}$ per unit mass of tar sandstone. Taking a density of 2000 kg/m3 for tar sand sandstone:

$$27 \frac{\text{g C}}{\text{t yr}} * 2000 \frac{\text{kg}}{\text{m}^3} = 54 \frac{\text{g C}}{\text{m}^3 \text{yr}}$$

Assuming a conservative weathering depth of 1 m leads to a 54 $\frac{\text{g C}}{\text{m}^3 \text{yr}}$ aerial flux. Converting the units further:

$$F_{L-A} = 54 \frac{\text{Mg C}}{km^2 \text{yr}}$$

S6 Chang and Berner (1998, 1999)

The oxygen consumption rate of subaquatic bituminous coal is around $2 \times 10^{-12} \frac{\text{mol O}_2}{\text{m}^2 \text{s}}$, with surface area normalized to specific surface area of coal. See Chang and Berner (1998, 1999) for details on experimental setup. These authors report a CO$_2$ production rate which is 30-50% of the O$_2$ consumption rate. Multiplying these and converting moles to mass of carbon delivers:

$$0.72 - 1.2 \times 10^{-11} \frac{\text{g C}}{\text{m}^2 \text{s}}$$

Converting this to annual CO$_2$ release:

$$2.3 - 3.8 \times 10^{-4} \frac{\text{g C}}{\text{m}^2 \text{yr}}$$

Taking specific surface area of coal as 1 m2/g (Chang and Berner, 1999) converts the above to coal mass normalized CO$_2$ release:

$$2.3 - 3.8 \times 10^{-4} \frac{\text{g C}}{\text{g Coal yr}}$$

Taking the density of bituminous coal as 1.4 t/m3 converts to volumetric normalized CO$_2$ release by multiplication with the above:

$$320 - 530 \frac{\text{g C}}{\text{m}^3 \text{Coal yr}}$$

Assuming a conservative weathering depth of 1 m, and converting the units:

$$320 - 530 \frac{\text{Mg C}}{km^2 \text{yr}}$$
S7 Bertassoli Jr. et al. (2016)

Bertassoli Jr. et al. (2016) report volumetric CO$_2$ fluxes between 211 and 2645 m3CO$_2$/t*day emanating per unit mass of shale. Using the universal gas law (assuming 295 K temperature) and converting the units yields 38-479 gC/t*yr per unit mass of shale. Taking a density of 2200 kg/m3 for shale:

$$38 - 479 \frac{gC}{t*yr} \times 2200 \frac{kg}{m^3} = 84 - 1053 \frac{gC}{m^3*yr}$$

Assuming a conservative weathering depth of 1 m leads to a 54 gC/m2*yr aerial flux. Converting the units further:

$$F_{L-A} = 84 - 1053 \frac{MgC}{km^2*yr}$$

S8 Ait-Langomazino et al. (1991)

Ait-Langomazino et al. (1991) report CO$_2$ release from bitumen from microbial cultures releasing between 3.4 and 6.4 wt. % carbon released per unit weight of bitumen. Converting this:

$$0.0093 - 0.0175 \frac{gC}{gBitumen}$$

Normalizing this per unit time, by dividing by 2400 hours (the duration of the incubation experiment):

$$0.03 - 0.06 \frac{gC}{gBitumen*yr}$$

Assuming 10 wt.% bitumen content in oil sand with a bulk density of 2000 kg/m3 and a conservative weathering depth of 1 m:

$$F_{L-A} = 6800 - 13000 \frac{MgC}{km^2*yr}$$