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Abstract. Net ecosystem exchange (NEE) is an important in-
dicator of carbon cycling in terrestrial ecosystems. Many pre-
vious studies have combined flux observations and meteoro-
logical, biophysical, and ancillary predictors using machine
learning to simulate the site-scale NEE. However, system-
atic evaluation of the performance of such models is limited.
Therefore, we performed a meta-analysis of these NEE sim-
ulations. A total of 40 such studies and 178 model records
were included. The impacts of various features throughout
the modeling process on the accuracy of the model were
evaluated. Random forests and support vector machines per-
formed better than other algorithms. Models with larger
timescales have lower average R2 values, especially when
the timescale exceeds the monthly scale. Half-hourly models
(average R2

= 0.73) were significantly more accurate than
daily models (average R2

= 0.5). There are significant differ-
ences in the predictors used and their impacts on model ac-
curacy for different plant functional types (PFTs). Studies at
continental and global scales (average R2

= 0.37) with multi-
ple PFTs, more sites, and a large span of years correspond to
lower R2 values than studies at local (average R2

= 0.69) and
regional (average R2

= 0.7) scales. Also, the site-scale NEE

predictions need more focus on the internal heterogeneity of
the NEE dataset and the matching of the training set and val-
idation set.

1 Introduction

Net ecosystem exchange (NEE) of CO2 is an important in-
dicator of carbon cycling in terrestrial ecosystems (Fu et
al., 2019), and accurate estimation of NEE is important for
the development of global carbon-neutral policies. Although
process-based models have been used for NEE simulations
(Mitchell et al., 2009), their accuracy and the spatial resolu-
tions of the model outputs are limited probably due to a lack
of understanding and quantification of complex processes.
Many researchers have tried to use a data-driven approach as
an alternative (Fu et al., 2014; Tian et al., 2017; Tramontana
et al., 2016; Jung et al., 2011). On the one hand, this was
made possible by the increase in the growth of global carbon
flux observations and the large number of flux observation
data being accumulated. Since the 1990s, the use of the eddy
covariance technique to monitor NEE has been rapidly pro-
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moted (Baldocchi, 2003). Several regional and global flux
measurement networks have been established for the big
data management of the flux sites, including CarboEuro-flux
(Europe), AmeriFlux (North America), OzFlux (Australia),
ChinaFLUX (China), and FLUXNET (global). On the other
hand, machine learning approaches are increasingly used to
extract patterns and insights from the ever-increasing stream
of geospatial data (Reichstein et al., 2019). The rapid devel-
opment of various algorithms and high public availability of
model tools in the field of machine learning have made these
techniques easily available to more researchers in the fields
of geography and ecology (Reichstein et al., 2019). With the
above two major advances (i.e., increasing availability of flux
data and machine learning techniques) in the last 2 decades,
various machine learning algorithms have been used to simu-
late NEE at the flux station scale with various predictor vari-
ables (e.g., meteorological variables, biophysical variables)
incorporated for spatial and temporal mapping of NEE or un-
derstanding the driving mechanisms of NEE.

To date, studies on using machine learning to predict NEE
have high diversity in terms of modeling approaches. To
obtain a comprehensive understanding of machine-learning-
based NEE prediction, a synthesis evaluation of these ma-
chine learning models is necessary. At the beginning of this
century, when machine learning approaches were still rarely
used in geography and ecology research, neural networks
were already being used to perform simulations and mapping
of NEE in European forests (Papale and Valentini, 2003).
Subsequently, considerable efforts have been made by re-
searchers to improve such predictive models. Many studies
have demonstrated the effectiveness of their proposed im-
provements (i.e., using predictors with a higher spatial reso-
lution – Reitz et al., 2021 – and using data from the local flux
site network – Cho et al., 2021) by comparing them with pre-
vious studies. However, the improvements achieved in these
studies may be limited to smaller areas and specific condi-
tions and may not be generalizable (Cleverly et al., 2020;
Reed et al., 2021; Cho et al., 2021). We are more interested
in guidelines with universal applicability that improve model
accuracy, such as the selection of appropriate predictors and
algorithms under different conditions. Therefore, we seek to
synthesize the results of models applied to different condi-
tions and regions to obtain general insights.

Many factors may affect the performance of these NEE
prediction models, such as the predictor variables, the spa-
tial and temporal span of the observed flux data, the plant
functional type (PFT) of the flux sites, the model validation
method, the machine learning algorithm used, as described
below.

Predictors. Various biophysical variables (Zeng et al.,
2020; Cui et al., 2021; Huemmrich et al., 2019) and other
meteorological and environmental factors have been used in
the simulation of NEE. The most commonly used predic-
tor variables include precipitation (P ), air temperature (Ta),
wind speed (Ws), net/solar radiation (Rn/Rs), soil tempera-

ture (Ts), soil texture, soil moisture (SM) (Zhou et al., 2020),
vapor-pressure deficit (VPD) (Moffat et al., 2010; Park et al.,
2018), the fraction of absorbed photosynthetically active ra-
diation (FAPAR) (Park et al., 2018; Tian et al., 2017), vege-
tation indices (e.g., normalized difference vegetation index
– NDVI, enhanced vegetation index – EVI), the leaf area
index (LAI), and evapotranspiration (ET) (Berryman et al.,
2018). The predictor variables used vary with the natural con-
ditions and vegetation functional types of the study area. In
contrast, in models that include multiple PFTs, some vari-
ables that play a significant role in the prediction of each of
the multiple PFTs may have higher importance. For exam-
ple, growing degree days (GDDs) may be a more effective
variable for NEE of tundra in the Northern Hemisphere high
latitudes (Virkkala et al., 2021), while measured groundwa-
ter levels may be important for wetlands (Zhang et al., 2021).
Some of these predictor variables are measured at flux sta-
tions (e.g., meteorological factors such as precipitation and
temperature), while others are extracted from reanalyzed me-
teorological datasets and satellite remote sensing image data
(e.g., vegetation indices). The spatial and temporal resolu-
tion of predictors can lead to differences in their relevance
to NEE observations. Most measured in situ meteorological
factors have a good spatio-temporal match to the observed
NEE (site scale, half-hourly scale). However, the proportion
of NEE explained by remotely sensed biophysical covariates
may depend on their spatial scales and timescales. For exam-
ple, the MODIS-based 8-daily NDVI data may better capture
temporal variation in the relationship between NEE and veg-
etation growth than the Landsat-based 16-daily NDVI data.
In contrast, the interpretation of NEE by variables such as
soil texture and soil organic content (SOC), which do not
have temporal dynamic information, may be limited to the
interpretation of spatial variability, although they are con-
sidered to be important drivers of NEE. Therefore, the im-
portance of variables obtained from NEE simulations based
on a data-driven approach may differ from that in process-
based models as well as in the actual driving mechanisms.
This may be related to the spatial and temporal resolution of
the predictors used and the quality of the data. It is necessary
to consider the spatio-temporal resolution of the data for the
actual biophysical variables used in the different studies in
the systematic evaluation of data-driven NEE simulations.

The spatio-temporal heterogeneity of datasets and val-
idation method. The spatio-temporal heterogeneity of the
dataset may affect model accuracy. Typically, training data
with larger regions, multiple sites, multiple PFTs, and longer
spans of years may have a higher degree of imbalance (Kaur
et al., 2019; Van Hulse et al., 2007; Virkkala et al., 2021;
Zeng et al., 2020). Modeling with unbalanced data (where the
difference between the distribution of the training and valida-
tion sets is significant even if selected at random) may result
in lower model accuracy. To date, the most commonly used
methods for validating such models include spatial (Virkkala
et al., 2021), temporal (Reed et al., 2021), and random (Cui
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Table 1. Article search query design: “[A1 OR A2 OR A3, etc.] AND [B1 OR B2, etc.] AND [C1 OR C2, etc.]”.

ID A B C

1 Carbon flux “Eddy covariance” “Machine learning”
2 CO2 flux “Flux tower” Regress
3 “Net ecosystem exchange” “Support vector”
4 Net ecosystem produc “Neural network”
5 Gross primary produc “Random forest”
6 Carbon exchange

et al., 2021) cross-validation. The imbalance of data between
the training and validation sets may affect the accuracy of the
models when using these validation methods. Spatial valida-
tion is used to assess the ability of the model to adapt to dif-
ferent regions or flux sites of different PFTs, and a common
method is “leave-one-site-out” cross-validation (Virkkala et
al., 2021; Zeng et al., 2020). If the data from the site left out
are not covered (or only partially covered) by the distribution
of the training dataset, the model’s prediction performance
at that site may be poor due to the absence of a similar type
in the training set. Temporal validation typically uses some
years of data as training and the remaining years as valida-
tion to assess the model’s fitness for interannual variability.
For a year that is left out (e.g., a special extreme drought
year which does not occur in the training set), the accuracy
of the model may be limited if there are no similar years (ex-
treme drought years) in the training dataset. K-fold cross-
validation is commonly used in random cross-validation to
assess the fitness of the model with regards to the spatio-
temporal variability. In this case, different values of K may
also have a significant impact on the model accuracy. For
example, for an unbalanced dataset, the average model accu-
racy obtained from a 10-fold (K = 10) validation approach
is likely to be higher than that of a 3-fold (K = 3) validation
approach (Marcot and Hanea, 2021).

Machine learning algorithms used. Simulating NEE us-
ing different machine learning algorithms may influence the
model accuracy, which may be induced by the characteristics
of these algorithms themselves and the specific data distribu-
tion of the NEE training set. For example, neural networks
can be used effectively to deal with nonlinearities, while as
an ensemble learning method, random forests can avoid over-
fitting due to the introduction of randomness. Therefore, a
comprehensive evaluation of this is necessary.

In this study, to evaluate the impacts of predictor use,
algorithms, spatial scale/timescale, and validation methods
on model accuracy, we performed a meta-analysis of papers
with prediction models that combine NEE observations from
flux towers, various predictors, and machine learning for the
data-driven NEE simulations. In addition, we also analyzed
the causality of multiple features in NEE simulations and the
joint effects of multiple features on model accuracy using the
Bayesian network (BN) (a multivariate statistical analysis ap-

proach; Pearl, 1985). The findings of this study can provide
some general guidance for future NEE simulations.

2 Methodology

2.1 Criteria for including articles

In the Scopus database, a literature query was applied to ti-
tles, abstracts, and keywords (Table 1) according to preferred
reporting items for systematic reviews and meta-analyses
(PRISMA) guidelines (Moher et al., 2009) (Fig. 1):

a. Articles were filtered for those that modeled NEE. Ar-
ticles that modeled other carbon fluxes such as methane
flux were not included.

b. Articles that used only univariate regression rather than
multiple regression were screened out.

c. Articles reported the determination coefficient (R2) of
the validation step (Shi et al., 2021; Tramontana et al.,
2016; Zeng et al., 2020) as the measure of model per-
formance. Although RMSE is also often used for model
accuracy assessment, its dependence on the magnitude
of water flux values makes it difficult to use for fair com-
parisons between studies.

d. Articles were published in journals with language lim-
ited to English.

e. Articles were filtered for those that were published in
specific journals (Table S1 in the Supplement) for re-
search quality control because the data, model imple-
mentation, and peer review in these journals are often
more reliable.

2.2 Features of prediction models

Typically, the flow of the NEE prediction modeling frame-
work (Fig. 2) based on flux observations and machine learn-
ing is as follows: first, half-hourly scale NEE flux observa-
tions are aggregated into various timescale NEE data, and
gap-filling techniques (Moffat et al., 2007) are often used
in this step to obtain complete NEE series when data are
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Figure 1. PRISMA-based paper filtering flowchart.

missing. Various predictors including meteorological vari-
ables, remote-sensing-based biophysical variables, etc. are
extracted to match site-scale NEE series to generate a train-
ing dataset containing the target variable NEE and various
covariates. Subsequently, various algorithms are used for the
NEE prediction model construction and validated in different
ways (e.g., leave-one-site-out validation; Zeng et al., 2020).
Finally, in some studies, prediction models were applied to
gridded covariate data to map the regional- or global-scale
NEE spatial and temporal variations (Zeng et al., 2020; Pa-
pale and Valentini, 2003; Jung et al., 2020). The information
of R2 (at the validation phase) and the associated model fea-
tures reported in the article are considered one data record for
the formal meta-analysis (i.e., each R2 record correspond-
ing to a prediction model). From the included papers, R2

records and various features (Table 2) involved in the NEE
modeling framework (Fig. 2) were extracted (including the
algorithms used, modeling/validation methods, remote sens-
ing data, meteorological data, biophysical data, and ancillary
data). In some studies, multiple algorithms were applied to
the same dataset or models with different features were de-
veloped (Virkkala et al., 2021; Zhang et al., 2021; Cleverly et
al., 2020; Tramontana et al., 2016). In these cases, multiple
data records will be documented.

In the practical information-extracting step, we catego-
rized such features in a comparable manner. First, we cate-
gorized the various algorithms used in these papers, although
the same algorithm may also have a variant form or an opti-

mized parameter scheme. They are categorized into the fol-
lowing families of algorithms: random forest (RF), multiple
linear regression (MLR), artificial neural network (ANN),
support vector machine (SVM), partial least-squares regres-
sion (PLSR), generalized additive model (GAM), boosted
regression tree (BRT), Bayesian additive regression tree
(BART), cubist, and model tree ensemble (MTE). Second,
we classified the spatial scales of these studies. Models with
study areas (spatial extent covered by flux stations) smaller
than 100× 100 km were classified as “local”-scale models;
those with study area sizes exceeding the continental scale
were classified as “global” scale; and those with study area
sizes in between were classified as “regional” scale. Third,
for various predictors, we only recorded whether the predic-
tors were used or not without distinguishing the detailed data
sources and categories (e.g., grid meteorological data from
various reanalysis datasets and in situ meteorological obser-
vations from flux stations), measurement methods (e.g., soil
moisture measured/estimated by remote sensing or in situ
sensors), etc. Fourth, we documented PFTs for the predic-
tion models from the description of study areas or sites in
these papers. They are classified into the following types:
forest, grassland, cropland, wetland, savannah, tundra, and
multi-PFTs (models containing a mixture of multiple PFTs).
Models not belonging to the above PFTs were not given a
PFT field and were not included in the subsequent analysis
of the PFT differences. Other features (Table 2) are extracted
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directly from the corresponding descriptions in the papers in
an explicit manner.

Subsequently, the model accuracies corresponding to dif-
ferent levels of various features are compared in a cross-
study fashion. In the evaluation of algorithms and timescales,
we also implement comparisons within individual studies.
For example, in the evaluation of the effects of the algo-
rithms, we compare the accuracy of models using the same
training data and keeping other features as constants in indi-
vidual studies. In this intra-study comparison step, only al-
gorithms with relatively large sample sizes in the cross-study
comparisons were selected. In this study, algorithms with
fewer than 10 available model records are not considered to
have a sufficient sample size and we do not give further con-
clusive opinions on the accuracy of these algorithms due to
their small samples (e.g., PLSR and BART with high R2 but
very few records as evidence). MLR, RF, SVM, and ANN al-
gorithms were found to have large sample sizes (Fig. 5a), and
thus their accuracies can be comparable. Based on this, in the
intra-study comparison step, we only compare the accuracy
differences between MLR, RF, SVM, and ANN algorithms in
the context of using the same data and the same other model
features (Fig. 5b).

2.3 Bayesian network for analyzing joint effects

Based on the Bayesian network (BN), the joint impacts of
multiple model features on the R2 are analyzed. A BN can
be represented by nodes (X1, Xn) and the joint distribution
(Pearl, 1985):

P(X)= P (X1,X2, . . .,Xn)=

n∏
i=1

P (Xi |pa(Xi)) , (1)

where pa(Xi) is the probability of the parent node Xi . The
expectation–maximization (EM) approach (Moon, 1996) is
used to incorporate the collected model records and compile
the BN.

Sensitivity analysis is used for the evaluation of node in-
fluence based on mutual information (MI), which is calcu-
lated as the entropy reduction of the child node resulting from
changes at the parent node (Shi et al., 2020):

MI=H (Q)−H (Q |F )

=

∑
q

∑
f
P (q, f ) log2

(
P (q,f )

P (q)P (f )

)
, (2)

where H represents the entropy, Q represents the target node,
F represents the set of other nodes, and q and f represent the
status of Q and F .

3 Results

3.1 Articles included in the meta-analysis

We included 40 articles (Table S2) and extracted 178 model
records for the formal meta-analysis (Fig. 1). Most studies
were implemented in Europe, North America, Oceania, and
China (Fig. 3). The number of such papers has been increas-
ing recently (Fig. 4), and it can be seen that the machine
learning approach for NEE prediction has recently been of
interest to more researchers. The main journals in which
these articles have been published (Fig. 4) include Remote
Sensing of Environment, Global Change Biology, Agricul-
tural and Forest Meteorology, Biogeosciences, and Journal
of Geophysical Research: Biogeosciences.

3.2 The formal meta-analysis

We assessed the impact of the features (e.g., algorithms,
study area, PFTs, number of data, validation methods, pre-
dictor variables) used in the different models based on differ-
ences in R2.

3.2.1 Algorithms

Among the more frequently used algorithms, ANN and SVM
algorithms performed better (Fig. 5a) on average across stud-
ies (slightly better than RF). On the other hand, since cross-
study comparisons of algorithm accuracy include differences
in data used in model construction, we performed a pairwise
comparison (Fig. 5b) of these four algorithms (i.e., ANN,
SVM, RF, and MLR). In these studies, multiple models are
developed for consistent training data with the interference
of training data differences removed. It shows that RF and
SVM algorithms perform best in the inter-study compari-
son (Fig. 5b). Whereas the ANN category performed slightly
worse than RF and SVM, all three of them were stronger than
MLR. Overall, the performance of RF and SVM algorithms
may be good and similar in the NEE simulations.

3.2.2 Timescales

The impact of timescale on R2 is considerable (Fig. 6), with
models with larger timescales having lower average R2, es-
pecially when the timescale exceeds the monthly scale. The
most frequently used scales were the daily, 8 d, and monthly
scales. In studies where multiple timescales were used with
other characteristics being the same, we found that models
with half-hourly scales were significantly more accurate than
models with daily scales (Fig. 6). However, the difference
in accuracy between the day-scale and week-scale models is
small. The accuracy of models with a monthly scale is the
lowest.
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Table 2. Description of information extracted from the included papers.

Field/feature Definition Categories adopted

Paper ID Identification number of the paper (internal)

Paper Paper metadata

Author(s) Name(s) of author(s)

Title Title of the paper

Year Year of publication

Publication title Name of the journal where the paper was published

Plant functional type
(PFT)

PFTs for the flux sites used 1 – forest, 2 – grassland, 3 – cropland, 4 – wetland,
5 – savannah, 6 – tundra, and multi-PFTs

Location More precise location (with the latitude and longitude of
the center of the studied sites). Global- (mainly based on
FLUXNET; Tramontana et al., 2016) and continental-scale
studies are not shown on the map due to the difficulty of identi-
fying specific locations.

Latitude, longitude

Algorithms Algorithm families used in the multivariate regression Random forest (RF), multiple linear regression (MLR), artificial
neural network (ANN), support vector machine (SVM), par-
tial least-squares regression (PLSR), generalized additive model
(GAM), boosted regression tree (BRT), Bayesian additive re-
gression tree (BART), cubist, model tree ensemble (MTE)

Site number Number of the flux sites used

Study area/
spatial scale

Area representatively covered by the flux sites Local (less than 100×100 km), regional, global (continent scale
and global scale)

Timescale The timescale of the model Half-hourly, hourly, daily, weekly, 8-daily, monthly, seasonally,
yearly

Study period The period of the data used in the model Year, growing season, daytime, spring, summer, autumn, winter

Year span The span of years of the flux data used

Site year The volume of total flux data with the number of sites and years
aggregated.

Cross-validation The chosen method of cross-validation. Spatial (e.g., leave one site out), temporal (e.g., leave 1 year
out), random (e.g., K-fold)

Training / validation The ratio of the data in training and validation sets.

Satellite images The source of satellite images used to derive NDVI, EVI, LAI,
LST, etc.

Landsat, MODIS, Hyperion (EO-1), AVHRR, IKONOS

Biophysical predictors LAI, NDVI and EVI, evapotranspiration (ET) (i.e., the latent
heat observed by the flux station), enhanced vegetation index
(EVI), the fraction of absorbed photosynthetically active radia-
tion/photosynthetically active radiation (FAPAR/PAR), etc.

Used (recorded as 1) or not used (recorded as 0)

Meteorological
variables

Precipitation (P ), net radiation/solar radiation (Rn/Rs), air tem-
perature (Ta), vapor-pressure deficit (VPD), relative humidity
(RH), etc.

Used (recorded as 1) or not used (recorded as 0)

Ancillary data The source of ancillary variables including terrain variables de-
rived from DEM, soil texture, or hydrology-related data: soil
organic content (SOC), soil texture, terrain, soil moisture/land
surface water index (SM/LSWI), etc.

Used (recorded as 1) or not used (recorded as 0)

Top three variables in
the ranking of impor-
tance of predictors

The interpretation of the importance of variables in
machine learning models.

Accuracy measure Accuracy measure used to assess the performance of the
estimation/prediction

R2 (in the validation phase)

Biogeosciences, 19, 3739–3756, 2022 https://doi.org/10.5194/bg-19-3739-2022
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Figure 2. Features of the machine-learning-based NEE prediction process. The flux tower photo is from https://www.licor.com/env/support/
Eddy-Covariance/videos/ec-method-02.html (last access: 23 March 2022). The map in the lower part is from Harris et al. (2021). P , Ta, Rn,
Ws, RH, and VPD represent precipitation, air temperature, net surface radiation, wind speed, relative humidity, and vapor-pressure deficit,
respectively. FAPAR is the fraction of absorbed photosynthetically active radiation. LST is the land surface temperature. LAI is the leaf area
index.

3.2.3 Various predictors

Among the commonly used predictors for NEE, there are sig-
nificant differences in the predictors used and their impacts
on model accuracy for different PFTs (Fig. 7). Ancillary data
(e.g., soil texture, soil organic content, topography) that do
not have temporal variability are used less frequently because
they can only explain spatial heterogeneity. In contrast, the
biophysical variables LAI, FAPAR, and ET were used signif-

icantly less frequently than NDVI and EVI, especially in the
cropland and wetland types. The meteorological variables Ta,
Rn/Rs, and VPD were used most frequently. For forest sites,
Rn/Rs and Ws appear to be the variables that improve model
accuracy. For grassland sites, we found that NDVI and EVI
appear to be the most effective, despite the small sample size.
For sites in croplands and wetlands, we did not find predictor
variables that had a significant impact on model accuracy.

https://doi.org/10.5194/bg-19-3739-2022 Biogeosciences, 19, 3739–3756, 2022
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Figure 3. Location of studies (a) with the number of flux sites in-
cluded and (b) their PFTs in the meta-analysis (total of 40 studies
and 178 model records). Global- (mainly based on FLUXNET; Tra-
montana et al., 2016) and continental-scale studies are not shown
on the map due to the difficulty of identifying specific locations.

For different PFTs, the top three variables in the ranking
of model importance differed (Fig. S1 in the Supplement).
SM, Rn/Rs, Ta, Ts, and VPD all showed high importance
across PFTs. This suggests that the variability in measured
site-scale moisture and temperature conditions is important
for the simulation of NEE for all PFTs. In contrast, in the
importance ranking, other variables such as precipitation and
NDVI and EVI may not lead because of the lag in their ef-
fect on NEE (Hao et al., 2010; Cranko Page et al., 2022).
And some other variables may improve model accuracy for
specific PFTs such as groundwater table depth (GWT) for
wetland sites and growing degree days (GDDs) for tundra
sites.

3.2.4 Other features

In addition, we evaluated other features of the model con-
struction that may contribute to differences in model accu-
racy (Fig. 8). Studies at continental and global scales with a
large number of sites and a large span of years correspond
to lower R2 values than studies at local and regional scales,
suggesting that studies with a large number of sites across
large regions are likely to have high variability in the relation-
ship between NEE and covariates and that studies at small
scales are more likely to have higher model accuracy. Spatial
validation (usually leave one site out) corresponds to lower
model accuracy compared to random and temporal valida-

tion. This again confirms the dominant role of heterogeneity
in the relationship between NEE and covariates across sites
in explaining model accuracy. This seems to be indirectly
supported by the fact that a high ratio of training to vali-
dation sets corresponds to a low R2 as this high ratio tends
to be accompanied by the use of the leave-one-site-out val-
idation approach. The accuracy of the models with a grow-
ing season period was slightly higher than that of the mod-
els with an annual period. For the satellite remote sensing
data used, the models based on MODIS data with biophysi-
cal variables extracted were slightly less accurate than those
based on Landsat data. For the daily scale models, Landsat
data performed a little better than MODIS (Fig. S2). This
suggests that the higher temporal resolution of MODIS com-
pared to Landsat may not play a dominant role in improving
model accuracy. This may also be partially attributed to stud-
ies using MODIS-based explanatory data that tend to include
too large surrounding areas around the site (e.g., 2× 2 km),
which can lead to a scale mismatch between the flux footprint
and the explanatory variables.

3.3 The joint causal impacts of multi-features based on
the BN

We selected the features that had a more significant impact
on model accuracy in the above assessment and further in-
corporated them into the BN-based multivariate assessment
to understand the joint impact of multiple features on R2. The
features incorporated included the spatial scale, the number
of sites, the timescale, the span of years, the cross-validation
method, and whether some specific predictors were used. We
discretized the distribution of individual nodes and compiled
the BN (Fig. 9a) using records from different PFTs as in-
put. Sensitivity analysis of the R2 node (Fig. 10) showed that
R2 was most sensitive to “year span”, the cross-validation
method, Rn/Rs, and the timescale under multi-feature con-
trol. In the forest and cropland types, R2 is more sensitive
to Rn/Rs, while in the wetland type it is more sensitive to
SM and LSWI and Ta. The sensitivity of R2 to year span
was much higher in the cropland type compared to the other
PFTs, which may suggest that the interannual variability in
the NEE simulations of the cropland type is higher due to
potential interannual variability in the planting structure and
irrigation practices. For the cropland type, differences in the
phenology, harvesting, and irrigation (water volume and fre-
quency) in different years can lead to significant interannual
differences in NEE simulations. Subsequently, using the con-
structed BN (with the empirical information in previous stud-
ies incorporated), for new studies we can instructively in-
fer the probability distribution of the possible R2 (Fig. 9b)
with some model features predetermined. In previous stud-
ies, spatio-temporal mapping of NEE based on statistical
models has often lacked accuracy assessment since there are
no grid-scale NEE observations, and this BN may have the
potential to be used to validate the accuracy (R2) of the NEE

Biogeosciences, 19, 3739–3756, 2022 https://doi.org/10.5194/bg-19-3739-2022



H. Shi et al.: Variability and uncertainty in flux-site-scale NEE simulations 3747

Figure 4. The number of studies published across journals and the total number of publications per year.

time series output of the grid scale (i.e., inferring possible
R2 values from model features, where the output of the grid
scale is considered to be of the form leave one site out).

4 Discussions

Many studies have evaluated the incorporation of various
predictors and model features using machine learning for im-
proving the site-scale NEE predictions (Tramontana et al.,
2016; Zeng et al., 2020; Jung et al., 2011). A comprehensive
evaluation of these studies to provide definitive guidance on
the selection of features in NEE prediction modeling is lim-
ited. This study fills the research gap with a meta-analysis
of the literature through statistics on the accuracy and per-
formance of models. Machine-learning-based NEE simula-
tions and predictions still suffer from high uncertainty. By
better understanding the expected improvements that can be
achieved through the inclusion of different features, we can
identify priorities for the consideration of different features
in modeling efforts and avoid operations decreasing model
accuracy.

Compared to previous comparisons of machine-learning-
based NEE prediction models, this study is more comprehen-
sive. Previous studies (Abbasian et al., 2022) have also found
advantages of RF over other algorithms in NEE prediction.
This study consolidated this finding using a larger amount
of evidence. Previous studies (Tramontana et al., 2016) have
also compared the impact of different practices in NEE pre-
diction models based on R2, such as comparing the differ-
ence in accuracy between the two predictor combinations
(i.e., using only remotely sensed data and using remotely
sensed data and meteorological data together). In contrast,

since this study incorporated more detailed factors influenc-
ing model accuracy, the understanding of such issues was
deepened. However, there are still many uncertainties and
challenges in NEE prediction that have not been clarified in
this study.

4.1 Challenges of the site-scale NEE simulation and
implications for other carbon flux simulations

4.1.1 Variations in timescales

In the above analysis, we found that the effect of the
timescale of the model is considerable. This suggests that
we should be careful in determining the timescale of the
model to consider whether the predictor variables used will
work at this timescale. Previous studies have reported the
dependence of the NEE variability and mechanism on the
timescales. On the one hand, the importance of variables af-
fecting NEE varies at different timescales. For example, in
tropical and subtropical forests in southern China (Yan et al.,
2013), seasonal NEE variability is predominantly controlled
by soil temperature and moisture, while interannual NEE
variability is controlled by the annual precipitation varia-
tion. A study (Jung et al., 2017) showed that for annual-scale
NEE variability, water availability and temperature were the
dominant drivers at the local and global scales, respectively.
This indicates the need to recognize the temporal and spatial
driving mechanisms of NEE in advance in the development
of NEE prediction models. On the other hand, dependence
may exist between NEE anomalies at various timescales. For
example, previous studies (Luyssaert et al., 2007) showed
that short-term temperature anomalies may be interpreted as
both the daily and the seasonal NEE anomalies. This implies
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Figure 5. Differences in model accuracy (R2) using different algorithms across studies (a) and internal comparisons of the model accuracy
(R2) of selected pairs of algorithms within individual studies (b). Regression algorithms: random forest (RF), multiple linear regression
(MLR), artificial neural network (ANN), support vector machine (SVM), partial least-squares regression (PLSR), generalized additive model
(GAM), boosted regression tree (BRT), Bayesian additive regression tree (BART), cubist, model tree ensemble (MTE). In (a) the horizontal
line in the box indicates the medians. The top and bottom border lines of the box indicate the 75th and 25th percentiles, respectively.

Figure 6. Differences in model accuracy (R2) at different timescales across studies with the linear regression between R2 and timescales (a)
and comparison of the model accuracy (R2) of selected pairs of timescales within individual studies (b). All model records were included
in (a), while studies that used multiple timescales (with other model characteristics unchanged) were included in (b). Timescales: 0.02 d
(half-hourly), 0.04 d (hourly), 30 d (monthly), and 90 d (quarterly).
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Figure 7. The impact of the various predictors incorporated in models of different PFTs on R2. Dark blue boxes indicate that the predictor
was used in the model, while dark red boxes indicate that the predictor was not used. Predictors: soil organic content (soil_OC), precipitation
(P ), soil moisture and land surface water index (SM_LSWI), net radiation/solar radiation (Rn_Rs), enhanced vegetation index (EVI), air tem-
perature (Ta), vapor-pressure deficit (VPD), the fraction of absorbed photosynthetically active radiation/photosynthetically active radiation
(FAPAR_PAR), relative humidity (RH), evapotranspiration (ET), leaf area index (LAI).

that the models at different timescales may not be indepen-
dent. In the previous studies, the relationship between pre-
diction models at different scales has not been well investi-
gated, and it may be valuable to compare the relations be-
tween data and models at different scales in depth. Larger
timescales correspond to lower model accuracy, possibly re-
lated to the fact that some small-timescale relations between
NEE and covariates (especially meteorological variables) are
smoothed. In particular, for models with timescales smaller

than 1 d (e.g., half-hourly models), the 8-daily and 16-daily
biophysical variable data obtained from satellite remote sens-
ing are difficult to use to explain the temporal variation in
the sub-daily NEE. Therefore, for models at small timescales
(i.e., half-hourly, hourly, daily scale models), in situ meteo-
rological variables may be more important. The inclusion of
some ancillary variables (e.g., soil texture, topographic vari-
ables) with no temporal dynamic information may be inef-
fective unless many sites are included in the model and the
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Figure 8. The impacts of other features (i.e., spatial scale, study period, number of sites, year span, site year, cross-validation method,
training / validation, and satellite imagery) on the model performance.

spatial variability in the ancillary variables for these sites is
sufficiently large (Virkkala et al., 2021).

In terms of completeness and purity of training data,
hourly and daily models can be better compared to monthly
and yearly models. Hourly and daily models can usually pre-
clude those low-quality data and gaps in the flux observa-
tions. However, for monthly and yearly scale models, gap fill-
ing (Ruppert et al., 2006; Moffat et al., 2007; Zhu et al.,
2022) is necessary because there are few complete and con-
tinuous flux observations without data gaps on the monthly
to yearly scales. Since various gap-filling techniques rely on
environmental factors (Moffat et al., 2007) such as meteoro-
logical observations, this may introduce uncertainty into the
predictive models (i.e., a small fraction of the observed in-
formation of NEE is estimated from a combination of inde-
pendent variables). How it would affect the accuracy of pre-
diction models at various timescales remains uncertain, al-
though various gap-filling techniques have been widely used
in the pre-processing of training data.

In addition, the impacts of lagged effects (Hao et al., 2010;
Cranko Page et al., 2022) of covariates are not considered
in most models, which may underestimate the degree of ex-
planation of NEE for some predictor variables (e.g., pre-
cipitation). Most of the machine-learning-based models use
only the average Ta and do not take into account the max-
imum temperature, minimum temperature, daily difference
in temperature, etc. as in the process-based ecological mod-
els (Mitchell et al., 2009). This suggests that the inclusion
of different temporal characteristics of individual variables
in machine-learning-based NEE prediction models may be
insufficient.

4.1.2 Scale mismatch of explanatory predictors and
flux footprints

An excessively large extraction area of remote sensing
data (e.g., 2× 2 km) may be inappropriate. In the non-
homogeneous underlying conditions, the agreement of the
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Figure 9. The joint effects of multiple features on R2 based on the BN with all records input (a) and the inference on the probability
distribution of R2 based on the BN with the status of some nodes determined (b). The values before and after the “±” indicate the mean and
standard deviation of the distribution, respectively. The gray boxes indicate that the status of the nodes has been determined. In (b), specific
values of parent nodes such as “spatial scale” are determined (shown in the red box), leading to an increase in the expected R2 compared
to the average scenario of (a) (as inferred from the posterior conditional probabilities with the status of the node spatial scale determined as
local).

area of flux footprints with the scale of the predictors should
be considered in the extraction of the predictor variables in
various PFTs (Chu et al., 2021).

The effects of this mismatch between explanatory vari-
ables and flux footprints may be diverse for different PFTs.
For example, for cropland types, the NEE is monitored at a
range of several hundred meters around the flux towers, but

remote sensing variables such as FAPAR, NDVI, or LAI can
be extracted at coarse scales (e.g., 2× 2 km) and some ef-
fects outside the extent of the flux footprint (Chu et al., 2021;
Walther et al., 2021) are incorporated (e.g., planting struc-
tures with high spatial heterogeneity, agricultural practices
such as irrigation). And for more homogeneous types such as
grasslands, coarse-scale meteorological data may still cause
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Figure 10. The sensitivity analysis of the R2 node to other nodes based on the mutual information (MI) across PFTs. “Cross-validation” is
the cross-validation method including spatial, temporal, and random cross-validation.

spatial mismatches, even though the differences in land cover
types within the 2× 2 km and 200× 200 m extent around
the flux stations in grasslands may not be considerable. For
example, precipitation with high spatial heterogeneity can
dominate the spatial variability in soil moisture and thus af-
fect the spatial variability in grassland NEE (Wu et al., 2011;
Jongen et al., 2011). However, using 0.25◦×0.25◦ reanalysis
precipitation data (Zeng et al., 2020) may make it difficult for
predictive models to capture this spatial heterogeneity around
the flux station.

Since few of the studies included in this meta-analysis con-
sidered the effect of variation in the flux footprint, this fea-
ture was difficult to consider in this study. However, its in-
fluence should still be further investigated in future studies.
With flux footprints calculated (Kljun et al., 2015) and the
factors around the flux site (Walther et al., 2021) that affect
the flux footprint incorporated, it is promising to clarify this
issue.

4.1.3 Possible unbalance of training and validation sets

In addition to the timescale of the models, the most signif-
icant differences in model accuracy and performance were
found in the heterogeneity within the NEE dataset and the
match of the training set and validation set. Often NEE sim-
ulations can achieve high accuracy in local studies, where the
main factor negatively affecting model accuracy may be the
interannual variability in the relationship between NEE and
covariates. However, the complexity may increase when the
dataset contains a large study area and many sites, PFTs, and
year spans. Under this condition, the accuracy of the model
in the leave-one-site-out validation may be more dependent
on the correlation and match between the training and valida-
tion sets (Jung et al., 2020). When the model is applied to an

outlier site (of which the NEE, covariates, and their relation-
ship are very different compared with the remaining sites),
it appears to be difficult to achieve a high prediction accu-
racy (Jung et al., 2020). If we further upscale the prediction
model to large spatial scales and timescales, the uncertain-
ties involved may be difficult to assess (Zeng et al., 2020).
We can only infer the possible model accuracy based on the
similarity of the distribution of predictors in the predicted
grid to that of the existing sites in the model. In the upscal-
ing process, reanalysis data with coarse spatial resolution are
often used as an alternative for site-scale meteorological pre-
dictors. However, most studies did not assess in detail the
possible errors associated with spatial mismatches in this op-
eration.

In summary, the site-scale NEE predictions may require
more focus on the internal heterogeneity of the NEE dataset
and the matching of the training set and validation set and
also require a better understanding of the influence of differ-
ent scales of the same variable (e.g., site-scale precipitation
and grid-scale precipitation in the reanalysis meteorological
data) across modeling and upscaling steps. For the prediction
of other carbon fluxes such as methane fluxes (in the same
framework as the NEE predictions), the results of this study
may also be partially applicable, although there may be sig-
nificant differences in the use of specific predictors (Peltola
et al., 2019).

4.2 Uncertainties

The uncertainties in this analysis may include the following:

a. Publication bias and weighting. Publication bias is not
refined due to the limitations of the number of articles
that can be included. Meta-analyses often measure the
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quality of journals and the data availability (Borenstein
et al., 2011; Field and Gillett, 2010) to determine the
weighting of the literature in a comprehensive assess-
ment. However, a high proportion of the articles in this
study did not make flux observations publicly available
or share the NEE prediction models developed. Fur-
thermore, meta-analysis studies in other fields typically
measure the impact of papers by evidence/data volume
and the variance of the evaluated effects (Adams et al.,
1997; Don et al., 2011; Liu et al., 2018). However, in
this study, because no convincing method is found to
quantify the weights of results from included articles,
some features (e.g., the number of flux sites, the span of
years) were directly assessed rather than used to deter-
mine the weights of the articles.

b. Limitations of the criteria for inclusion in the litera-
ture. In the model-accuracy-based evaluation, we se-
lected only literature that developed multiple regression
models. Potentially valuable information from univari-
ate regression models was not included. In addition,
only papers in high-quality English journals were in-
cluded in this study to control for possible errors due
to publication bias. However, many studies that fit this
theme may have been published in other languages or
other journals.

c. Independence between features. There is dependence
between the evaluated features (e.g., the dependency be-
tween the spatial extent and the number of sites). This
may negatively affect the assessment of the impact of in-
dividual features on the accuracy of the model, although
the BN-based analysis of joint effects can reduce the im-
pact of this dependence between variables by specifying
causal relationships between features. The interference
of unknown dependencies between features may still
not be eliminated when we focus on the effects of an in-
dividual feature on the model performance. We should
pay more attention to the effect of features on model ac-
curacy individually in future studies, and it may be valu-
able to keep other features as constants while changing
the level of only one feature and assessing the differ-
ence. This may help us to understand the real sensitiv-
ity of model accuracy to different features in specific
conditions. The sample size collected in this study (178
records in total) is not very large. This also suggests that
more efforts in future should be devoted to the compre-
hensive evaluation and summarization of NEE simula-
tions.

d. Other potential factors. Additionally, there are still
other potential factors not considered by this study such
as the uncertainty in climate data (site vs. reanalysis),
footprint matching between site and satellite images,
etc. Overall, although the quantitative results of this

study should be used with caution, they still have posi-
tive implications for guiding such studies in the future.

5 Conclusions

We performed a meta-analysis of the site-scale NEE simu-
lations combining in situ flux observations; meteorological,
biophysical, and ancillary predictors; and machine learning.
The impacts of various features throughout the modeling pro-
cess on the accuracy of the model were evaluated. The main
findings of this study include the following:

1. RF and SVM algorithms performed better than other
evaluated algorithms.

2. The impact of timescale on model performance is sig-
nificant. Models with larger timescales have lower av-
erage R2 values, especially when the timescale exceeds
the monthly scale. Models with half-hourly scales (av-
erage R2

= 0.73) were significantly more accurate than
models with daily scales (average R2

= 0.5).

3. Among the commonly used predictors for NEE, there
are significant differences in the predictors used and
their impacts on model accuracy for different PFTs.

4. It is necessary to focus on the potential imbalance be-
tween the training and validation sets in NEE simula-
tions. Studies at continental and global scales (average
R2
= 0.37) with multiple PFTs, more sites, and a large

span of years correspond to lower R2 values than stud-
ies at local (average R2

= 0.69) and regional (average
R2
= 0.7) scales.
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