
Biogeosciences, 19, 3843–3861, 2022
https://doi.org/10.5194/bg-19-3843-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Recent extreme drought events in the Amazon rainforest:
assessment of different precipitation and evapotranspiration
datasets and drought indicators
Phillip Papastefanou1, Christian S. Zang2, Zlatan Angelov1, Aline Anderson de Castro3, Juan Carlos Jimenez4,
Luiz Felipe Campos De Rezende3, Romina C. Ruscica5,6,7, Boris Sakschewski8, Anna A. Sörensson5,6,7,
Kirsten Thonicke8, Carolina Vera5,6,7, Nicolas Viovy9, Celso Von Randow3, and Anja Rammig1

1Technical University of Munich, TUM School of Life Sciences, Freising, Germany
2Department of Forestry, Weihenstephan-Triesdorf University of Applied Sciences, Freising, Germany
3Earth System Sciences Centre, National Institute for Spatial Research, São José dos Campos, São Paulo, Brazil
4GCU/IPL, University of Valencia, Valencia, Spain
5Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Buenos Aires, Argentina
6Centro de Investigaciones del Mar y la Atmósfera (CIMA), Universidad de Buenos Aires–CONICET,
Buenos Aires, Argentina
7Instituto Franco-Argentino para el Estudio del Clima y sus Impactos (IRL 3351 IFAECI),
CNRS–IRD–CONICET–UBA, Buenos Aires, Argentina
8Potsdam Institute for Climate Impact Research (PIK), Leibniz Association, Telegrafenberg A31, Potsdam, Germany
9LSCE, CEA–CNRS–Université Paris-Saclay, Saclay, France

Correspondence: Phillip Papastefanou (papa@tum.de)

Received: 13 November 2020 – Discussion started: 2 December 2020
Revised: 6 June 2022 – Accepted: 23 June 2022 – Published: 24 August 2022

Abstract. Over the last decades, the Amazon rainforest has
been hit by multiple severe drought events. Here, we as-
sess the severity and spatial extent of the extreme drought
years 2005, 2010 and 2015/16 in the Amazon region and
their impacts on the regional carbon cycle. As an indicator
of drought stress in the Amazon rainforest, we use the widely
applied maximum cumulative water deficit (MCWD). Evalu-
ating nine state-of-the-art precipitation datasets for the Ama-
zon region, we find that the spatial extent of the drought in
2005 ranges from 2.2 to 3.0 (mean= 2.7) ×106 km2 (37 %–
51 % of the Amazon basin, mean= 45 %), where MCWD in-
dicates at least moderate drought conditions (relative MCWD
anomaly <−0.5). In 2010, the affected area was about 16 %
larger, ranging from 3.0 up to 4.4 (mean= 3.6) ×106 km2

(51 %–74 %, mean= 61 %). In 2016, the mean area affected
by drought stress was between 2005 and 2010 (mean=
3.2× 106 km2; 55 % of the Amazon basin), but the gen-
eral disagreement between datasets was larger, ranging from

2.4 up to 4.1× 106 km2 (40 %–69 %). In addition, we com-
pare differences and similarities among datasets using the
self-calibrating Palmer Drought Severity Index (scPDSI) and
a dry-season rainfall anomaly index (RAI). We find that
scPDSI shows a stronger and RAI a much weaker drought
impact in terms of extent and severity for the year 2016
compared to MCWD. We further investigate the impact of
varying evapotranspiration on the drought indicators using
two state-of-the-art evapotranspiration datasets. Generally,
the variability in drought stress is most dependent on the
drought indicator (60 %), followed by the choice of the pre-
cipitation dataset (20 %) and the evapotranspiration dataset
(20 %). Using a fixed, constant evapotranspiration rate in-
stead of variable evapotranspiration can lead to an overes-
timation of drought stress in the parts of Amazon basin that
have a more pronounced dry season (for example in 2010).
We highlight that even for well-known drought events the
spatial extent and intensity can strongly depend upon the
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drought indicator and the data sources it is calculated with.
Using only one data source and drought indicator has the
potential danger of under- or overestimating drought stress
in regions with high measurement uncertainty, such as the
Amazon basin.

1 Introduction

The severe drought events occurring in 2005, 2010 and
2015/16 in the Amazon basin are reasons for concern regard-
ing their frequency, severity and their impacts on the Ama-
zon rainforest. Different large-scale atmospheric processes
related to increased sea surface temperature (SST) in the Pa-
cific Ocean and the Atlantic Ocean seem to be responsible
for such repeated mega-drought events (Coelho et al., 2012):
while the 2015/16 drought was driven by a record-level El
Niño event enhanced by the strong underlying global warm-
ing trend (Jimenez et al., 2018), the 2010 drought was a com-
bination of a moderate El Niño event and anomalously warm
SSTs in the tropical North Atlantic (Marengo et al., 2011;
Marengo and Espinoza, 2016). Similarly, the 2005 drought
was attributed to anomalies of warm SSTs in the North At-
lantic (Marengo et al., 2008b; Zeng et al., 2008). As a conse-
quence, such events differ in their strength, their timing, and
their spatial patterns, and thus, impacted regions differ. While
drought events related to El Niño events show a southwest–
northeast gradient with dry conditions over the northeastern
Amazon region (Malhi et al., 2008), drought events caused
by anomalously warm North Atlantic SSTs show a north–
south gradient with dry conditions in the southern Amazon
region (Lewis et al., 2011; Marengo et al., 2008a). Even in
the case of El Niño events, SST anomalies over the east-
ern Pacific (EP) or the central Pacific (CP) can lead to
different impacts and spatial patterns of drought (Jimenez
et al., 2019). In addition to their influence on tempera-
ture, recent El Niño events also showed amplified anoma-
lies of atmospheric vapour pressure deficit (Barkhordarian et
al., 2019; Rifai et al., 2019). The impacts of such drought
events on humid tropical forests, which are often not adapted
to longer-lasting dryness, are severe. Increased forest mor-
tality connected to drought events was observed in central
and southern Amazonia (Feldpausch et al., 2016; Lewis et
al., 2011; Phillips et al., 2009), as well as shifts in tree species
composition (Esquivel-Muelbert et al., 2019). Droughts are
assumed to be one of the main drivers of the observed de-
cline in the Amazon carbon sink, indicating that more carbon
is lost to the atmosphere than taken up by the forest (Hubau et
al., 2020). Thus, such extreme drought events are altering the
carbon cycle of the Amazon forest (Feldpausch et al., 2016;
Gloor et al., 2015; Hubau et al., 2020; Phillips et al., 2009).

Losing tropical forests in the Amazon region through in-
creased mortality under drought also has implications for
regional- and continental-scale water cycling (Ruiz-Vásquez

et al., 2020). The rainforest transpires an enormous amount
of water which is transported by winds to remote regions
far beyond the borders of the rainforest (e.g. Dirmeyer et
al., 2009; van der Ent et al., 2010; Zemp et al., 2014, 2017).
In addition, the ongoing deforestation in the Amazon rain-
forest further decreases forest cover and thus, transpiration
rates, leading to a rainfall decline and enhanced drought con-
ditions in a positive feedback loop (Miralles et al., 2019;
Zemp et al., 2017). It can be expected that ongoing climate
change most likely will cause stronger and more frequent
drought events in the Amazon (Cai et al., 2015; Jiang et
al., 2020; Marengo and Espinoza, 2016).

For assessing the severity; the spatial extent; and, in partic-
ular, the impacts of such drought events on existing ecosys-
tems, different gridded precipitation datasets are available,
which in some cases differ strongly in magnitude and spa-
tiotemporal distribution of precipitation amounts (Golian et
al., 2019). Typical problems of precipitation data for South
America encompass the underestimation of extreme rainfall
events in both dry or wet seasons (Blacutt et al., 2015; Giles
et al., 2020). Therefore, while for the Amazon region, the re-
cent drought events have been assessed in terms of severity
(Jimenez et al., 2018; Jiménez-Muñoz et al., 2016) and im-
pacts (Feldpausch et al., 2016; Lewis et al., 2011; Phillips
et al., 2009) based on single precipitation datasets, a sys-
tematic analysis of how the most frequently used precipita-
tion datasets differ regarding the spatial extent, location and
severity of recent extreme drought events is currently miss-
ing.

For our study, we selected precipitation from nine differ-
ent datasets. (1, 2) Data from the Tropical Rainfall Mea-
surement Mission (TRMM) versions 6 and 7 (Huffman et
al., 2007) have been frequently used e.g. to estimate drought
impacts on the carbon balance (Lewis et al., 2011; Malhi et
al., 2009) and are assumed to represent precipitation patterns
in the Amazon region best, since they are derived from radar
measurements (Huffman et al., 2007). (3) CHIRPS (Climate
Hazards group Infrared Precipitation with Stations; Espinoza
et al., 2019) has been used to study regional hydro-climatic
and environmental changes in the Amazon basin. These three
datasets only provide precipitation and no information about
other climatic variables such as temperature or radiation.
In addition, we selected five datasets that are often used as
drivers for ecosystem models (e.g. in Forkel et al., 2019;
Yang et al., 2015) and – in contrast to the other datasets –
provide information about more climate variables. (4) Data
from the Climatic Research Unit (CRU) have been used in a
joint project reanalysis (NCEP, National Centers for Environ-
mental Prediction), known as CRUNCEP (version 8; Viovy,
2018). (5) The WATCH (Water and Global Change) WFDEI
(WATCH Forcing Data methodology applied to ERA-Interim
reanalysis data; Weedon et al., 2011, 2014) dataset was orig-
inally derived from global sub-daily observations merged
with integrations from a general circulation model. (6) The
GSWP3 (Global Soil Wetness Project Phase 3; Kim et
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al., 2022) dataset is closely related to WATCH WFDEI, re-
lying on a similar forcing but with a different bias-correction
method applied. (7) The newer GLDAS (Global Land Data
Assimilation System) 2.1 is derived from various geostation-
ary infrared satellite measurements and microwave observa-
tions (Rodell et al., 2004). (8) The latest ECMWF atmo-
spheric reanalysis dataset, ERA5, is the successor to ERA-
Interim and provides higher spatial and temporal resolutions
and a more recent model and data assimilation system than
the previous ERA-Interim reanalysis (Albergel et al., 2018).
Finally, (9) the GPCC (named after the Global Precipita-
tion Climatology Centre) dataset (Schneider et al., 2018) is
based on globally available land stations (rain gauges) com-
bined with an empirical interpolation method (Willmott et
al., 1985). The datasets were chosen because they are of-
ten used to force dynamic global vegetation and hydrological
simulation models in climate impact studies. A more detailed
description of the datasets is given in the “Methods” section.

We evaluate the precipitation datasets based on the maxi-
mum cumulative water deficit (MCWD; Aragão et al., 2007),
a well-established drought index that is particularly suit-
able for estimating drought stress in the Amazon region
(e.g. Esquivel-Muelbert et al., 2019; Lewis et al., 2011;
Malhi et al., 2009; Phillips et al., 2009; Zang et al., 2020).
In addition, we included two other measures to complement
our analysis: a rainfall anomaly index (RAI), which does ac-
count for the mean deviation (in units of standard deviation)
of precipitation during the driest months of the year, and
the scPDSI (self-calibrating Palmer Drought Severity Index;
Wells et al., 2004). The scPDSI index has a more complex
formulation compared to RAI and MCWD and takes avail-
able soil water content into account. Both RAI and scPDSI
have been used in studies describing the recent Amazonian
drought events (e.g. Jiménez-Muñoz et al., 2016; Lewis et
al., 2011). Many studies (e.g. Flack-Prain et al., 2019; Hubau
et al., 2020) currently still use a fixed evapotranspiration
rate for the calculation of MCWD instead of using evapo-
transpiration datasets as input. To assess the robustness of
a fixed evapotranspiration rate, we include two evapotran-
spiration datasets GLEAM (Global Land Evaporation Ams-
terdam Model; Martens et al., 2017) and DOLCE (Derived
Optimal Linear Combination Evapotranspiration; Hobeichi
et al., 2018) for the calculation of MCWD and scPDSI. The
goals of our study are (1) to analyse and quantify the uncer-
tainty in strength, extent and location of three recent Amazon
droughts in the years 2005, 2010 and 2015/16 in precipitation
from nine state-of-the-art precipitation or climate datasets
based on MCWD and (2) to examine differences among these
drought events by taking two additional drought indicators
(RAI and scPDSI) and two evapotranspiration datasets into
account.

2 Methods

2.1 Study area

Our study covers the Amazon River basin as delineated by
Döll and Lehner (2002; see black contour in Fig. 1). Us-
ing 0.5◦ spatial resolution in longitude and latitude results
in 1946 grid cells of interest for this study area. Note that
differences in the comparison of our results with Lewis et
al. (2011) arise because of differences in the delineation
of the Amazon region; i.e. the area used in our study is
0.6× 106 km2 larger.

2.2 Data sources

In the following, we briefly describe the nine precipitation
datasets applied in our study (see also Table 1): the Tropical
Rainfall Measuring Mission (TRMM v7) product (Huffman
et al., 2007) is a precipitation-only dataset based on multi-
ple microwave–infrared satellite data, developed as a joint
product between NASA and the Japan Aerospace Explo-
ration Agency (JAXA). We also included the predecessor, v6,
for comparison in our study, because it has been frequently
and prominently used to derive drought impacts to the Ama-
zon basin (e.g. Lewis et al., 2011; Phillips et al., 2009) and
shows significantly lower precipitation throughout the basin
compared to v7 (Seto et al., 2011). CHIRPS (Climate Haz-
ards group Infrared Precipitation with Station) is a novel
dataset (Funk et al., 2015) which is a quasi-global (full longi-
tude but only 50◦ S–50◦ N latitude extent) precipitation-only
merged product, based on multi-satellite estimates (similar
to TRMM 6 and TRMM 7) and approx. 2000 in situ obser-
vations per month in South America. TRMM 6, TRMM 7
and CHIRPS share the quasi-global spatial extent; however,
in comparison to TRMM 6 and TRMM 7 with a resolution
of 0.25◦× 0.25◦, CHIRPS has a much higher spatial reso-
lution of 0.05◦× 0.05◦. ERA5 (Muñoz-Sabater et al., 2018)
shows improvements in e.g. land evapotranspiration, surface
soil moisture and turbulent heat fluxes over its predeces-
sor, ERA-Interim (Albergel et al., 2018), which we decided
not to include in our study, as it showed higher system-
atic errors over tropical areas (Nogueira, 2020). Similarly,
CRUNCEP (Viovy, 2018) is generated based on a reanaly-
sis from the National Centers for Environmental Prediction
(NCEP) and the National Center for Atmospheric Research
(NCAR), corrected with the CRU TS 3.2 (Time Series; Har-
ris et al., 2014) dataset. GPCC is mainly based on data from
rain-gauge land stations. Similar to CRUNCEP, it is also
based on the NCEP Reanalysis dataset and has been used in
global drought studies (Ziese et al., 2014). Both GPCC and
CRUNCEP cover the longest periods of all selected datasets
in this study with time spans from 1891 until 2016 and from
1901 until 2016, respectively. WATCH WFDEI (Weedon et
al., 2011, 2014) is based on the reanalysis ERA-Interim cor-
rected with GPCC precipitation. GSWP3 (Kim et al., 2022) is
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Figure 1. Relative MCWD anomalies (from October to September) as an indicator of drought stress in the Amazon basin during the record-
breaking drought event in 2016. Displayed are only the datasets that include the year 2016 in their temporal range. The baseline period of
the MCWD calculation is 2001 to 2016.

based on the atmospheric reanalysis method “20CR” (Twen-
tieth Century Reanalysis version 2; Compo et al., 2013),
which has been dynamically downscaled to 0.5◦× 0.5◦ res-
olution. Corrections with observational data have been ap-
plied not only to precipitation but also to short-/longwave
radiation, air temperature and the daily temperature range.
Both WATCH WFDEI and GSWP end in the year 2010.
The GLDAS 2.1 dataset is built by using the Noah land sur-
face model forced by the Goddard Earth Observing System
(GEOS) Data Assimilation System with corrected precipita-
tion and radiation (Rodell et al., 2004; Sheffield et al., 2006).
Starting in January 2000 (version 2.1), it is the dataset with
the latest time onset and hence defines the lower-bound time
interval considered in this study. For the 2015/16 drought
event, only seven datasets were available, as three of the
datasets (TRMM 6, GSWP3 and WATCH WFDEI) end be-
fore. All datasets were (if not directly available) aggregated
to 0.5◦× 0.5◦ spatial resolution and to monthly time steps.

2.3 Drought indices and evaluation of drought area
and extent

2.3.1 Calculation of maximum climatological water
deficit (MCWD)

We calculate MCWD based on Aragão et al. (2007) defining
water deficit (WD) as follows:

WD(t)=

{
P(t)−ET(t) if P(t)−ET(t) < 0

0 else
, (1)

where WD(t) stands for water deficit, which is calculated
for a time step t , in this case monthly; P(t) is for monthly
precipitation; and ET(t) is for monthly evapotranspiration.
To estimate the impacts of persistent drought events, the cu-
mulative water deficit (CWD) is defined as the accumula-
tion of water deficit of each month of the hydrological year
(see below for details), for which P(t) is smaller than ET(t);
hence WD(t) is negative. MCWD is the most negative value
of CWD(t) over a specific period. As proposed by Aragão et
al. (2007), we use a fixed value of ET(t)= ETfixed = 100 mm
per month derived from ground measurements of evapo-
transpiration in different locations and seasons in Amazonia
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Table 1. Overview of the 10 precipitation datasets used in our study. Columns show the name of the dataset, the official abbreviation, the
short abbreviation used here, the spatial and temporal resolution, and the references.

Precipitation dataset Abbreviation Details Resolutions Derived from References

Climate Hazards group CHIRPS Quasi-global High resolution Remote sensing, Funk et al.
Infrared Precipitation (50◦ S–50◦ N) (0.05◦); daily, in situ observations (2015)
with Stations pentadal,

monthly

Tropical Rainfall TRMM v6 Quasi-global Quarter-degree Remote sensing Huffman et
Measurement Mission (50◦ S–50◦ N) resolution (0.25◦); al. (2007)

TRMM v7 3B43 daily, pentadal,
monthly

Joined product from the Climate Research CRUNCEP v8 Global Half-degree Reanalysis corrected Viovy et
Unit (CRU) with the National Centers resolution (0.5◦); by CRU gridded al. (2017)
for Environmental Prediction (NCEP) daily, pentadal, observational

monthly dataset

European Centre for Medium-Range ERA5 Global Quarter-degree Reanalysis Albergel et
Weather Forecasts (E) reanalysis resolution (0.25◦); al. (2018)
(RA) product version 5 sub-daily, daily,

monthly

Global Land Data GLDAS 2.1 Global Quarter-degree Geostationary satellite Rodell et
Assimilation resolution (0.25◦); infrared cloud-top al. (2004)
System daily, pentadal, temperature measurements

monthly and microwave observation
techniques

Global Precipitation GPCC 2018 Global Quarter-degree Gridded in situ Schneider et
Climatology Centre at resolution (0.25◦); observations al. (2018)
Deutscher Wetterdienst monthly

Global Soil Wetness GSWP3 Global Half-degree Reanalysis (20CR) Kim et al.
Project Phase 3 resolution (0.5◦); corrected with (2022)

daily, gridded observation
monthly (GPCC)

WATCH Forcing Data (WFD) WATCH WFDEI Global Half-degree Hydrological model Weedon et al.
+WATCH Forcing Data resolution applied to (2011, 2014)
methodology applied (0.5◦); ERA-Interim
to ERA-Interim daily, data
data (WFDEI) monthly

(da Rocha et al., 2004; von Randow et al., 2004). As a result,
water deficit builds up whenever monthly rainfall P(t) falls
below 100 mm.

We calculate annual MCWD for the hydrological year
from October of the previous year to September of the suc-
ceeding year; e.g. the MCWD for the year 2005 is calculated
from October 2004 to September 2005 (similar to Lewis et
al., 2011). CWD and consequently MCWD are reset after
each hydrological year.

In contrast to e.g. Lewis et al. (2011), we use the rela-
tive MCWD anomaly (from now also denoted as rMCWD)
as our main drought indicator. For deriving rMCWD, we esti-
mate the absolute MCWD anomaly (from now also denoted
as aMCWD) for 2005 and 2010, respectively, by first cal-
culating the mean MCWD for the “baseline” period from
2000 to 2010 and second by subtracting the mean MCWD
from 2005 and 2010, respectively. The rMCWD anomaly is
then estimated as the normalised deviation of the aMCWD

anomaly in units of standard deviation. The same procedure
was applied for the rMCWD anomaly for 2016, extending
the baseline period from 2000 to 2016.

We define relative thresholds of rMCWD anomaly <−0.5
as moderate, rMCWD anomaly <−2.0 as severe and rM-
CWD <−2.5 as extreme drought stress. Previously, levels
of drought stress were based on aMCWD anomaly (often
also referred to as 1MCWD, e.g. Lewis et al., 2011), with
aMCWD anomaly < −25 mm as moderate drought stress
because at this level, tree mortality already significantly in-
creased in inventory plots.

By comparing empirical cumulative density functions of
aMCWD and rMCWD anomalies (Fig. S1 and Sect. S1
in the Supplement) we are also able to give absolute esti-
mates for our relative thresholds with aMCWD <−26 mm,
aMCWD <−106 mm and aMCWD <−132 mm reflecting
moderate, severe and extreme drought stress, respectively.
Choosing relative over absolute anomalies enables a direct
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comparison of MCWD to the other drought indices used in
this study. We used the rMCWD anomaly for every analysis
conducted in our study. We also estimated seasonal patterns
of cumulative water deficit (CWD) by defining rCWD sim-
ilarly to rMCWD as the relative anomaly of each month’s
CWD in units of standard deviation.

2.3.2 Calculation of rainfall anomaly index (RAI)

For the rainfall anomaly index, dry-season rainfall was taken
as the mean precipitation from July–September following
Lewis et al. (2011). Like for the MCWD estimation, we cal-
culated the mean dry-season rainfall from a baseline period
of 2000–2010 to investigate the drought impacts of 2005 and
2010, and for 2016 we selected a baseline period from 2000
to 2016 excluding 2005, 2010 and 2016. The relative rain-
fall anomaly index (rRAI) was estimated as “standardised
anomaly” from the baseline period similarly to the rMCWD
anomaly calculation. As rRAI only reflects the precipitation
anomaly during July and September, it can also be described
as a dry-season anomaly.

2.3.3 Calculation of the self-calibrating Palmer
Drought Severity Index (scPDSI)

The self-calibrating Palmer Drought Severity Index (scPDSI,
Wells et al., 2004) has in recent studies been used to assess
the impacts of droughts on the Amazon basin (e.g. Jiménez-
Muñoz et al., 2016). It improves the original PDSI by using
a self-calibrating procedure based on historical climate data,
eliminating the empirically derived climatic characteristics.
Next to precipitation, it also takes monthly evapotranspira-
tion ET into account. In our study, we use ET data gener-
ated from DOLCE and GLEAM (Sect. 2.4). Additionally, the
scPDSI takes soil water capacity as input, which we assumed
here as a constant value of 100 mm. scPDSI was estimated
using the R package scPDSI (Ruida et al., 2018).

To enable cross-comparison with the rMCWD and rRAI
anomalies, we selected identical baseline periods from 2000
to 2010 for the 2005 and 2010 events and from 2000 to 2016
for the 2016 drought event. Again, we used the relative de-
viation rscPDSI, defined as “standardised anomaly” from the
baseline period of monthly scPDSI values as the drought in-
dicator.

2.4 Evapotranspiration datasets

In addition to assuming a constant evapotranspiration of
ET(t)= ETfixed = 100 mm for the calculation of MCWD,
for the calculation of scPDSI we use the two ET datasets
GLEAM and DOLCE. The Global Land Evaporation Ams-
terdam Model (GLEAM) v3a dataset (Martens et al., 2017)
is derived from a set of algorithms incorporating satellite-
observed soil moisture, vegetation optical depth, reanaly-
sis air temperature and radiation, and multiple precipitation
datasets. The Derived Optimal Linear Combination Evapo-

transpiration (DOLCE; Hobeichi et al., 2018) dataset is de-
rived by combining and weighting multiple other evapotran-
spiration datasets, also including GLEAM.

2.5 Calculation of drought area and extent

Each grid cell’s area was approximated as a trapezoid to its
boundary coordinates (in 0.5◦× 0.5◦ resolution), resulting
in an area between 2900 and 3090 km2 per grid cell. Ac-
cumulating the associated areas over all grid cells resulted
in a total area of 5.94× 106 km2 representing the Amazon
basin. Note that for comparison of our results with Lewis et
al. (2011), differences in absolute areas arise because of dif-
ferences in study area size (5.94×106 vs. 5.3×106 km2, re-
spectively). For the calculation of the drought-affected area,
we summed up the area of grid cells that matched the respec-
tive drought classification (e.g. rMCWD anomaly <−2.5 for
extreme drought stress). The spatial agreement of drought lo-
cation among datasets was estimated by selecting the grid
cells matching the drought classification per dataset and sub-
sequently counting the number of datasets per grid cells
showing the respective drought classification.

3 Results

All areas in the following section are expressed as a percent-
age with respect to the entire Amazon basin according to our
delineation (5.94×106 km2). For an overview of the areas af-
fected in millions of square kilometres, see Tables S1 and S2.

3.1 Comparison of total drought area based on the
relative MCWD anomaly

We first evaluate differences in rMCWD for 2016 across the
datasets (Fig. 1). Here, we find that the spatial patterns of
the rMCWD anomaly generally match across the available
datasets, showing severe and extreme drought stress mainly
in the northern Amazon basin. Only GLDAS diverges, show-
ing extreme drought stress in the central and western part of
Amazonia (Fig. 1d), where none of the other datasets show
any drought stress during the same year. The other datasets
mostly differ in the intensity of the drought stress. While
ERA5 and TRMM 7 show values of rMCWD <−2.5 in the
Columbian part of the basin, CRUNCEP and GPCC do show
such a strong drought impact only in northern Brazil. The ab-
solute areas of drought stress across different severity levels
are similar across most datasets with only GLDAS showing
a significantly larger area affected by extreme drought stress
of rMCWD <−2.5.

Across all precipitation datasets, in 2005, an area rang-
ing from 37 % to 51 % (mean 45 %) of the whole Amazon
basin was moderately affected (Table S1, Fig. 2a). ERA5 dis-
played the smallest area affected by moderate drought (2.2×
106 km2; Table 1, Fig. 2), while CHIRPS and CRUNCEP
showed a vast affected area (3.0× 106 km2), an area about
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36 % larger than displayed by ERA5. For severe and extreme
drought conditions, ERA5 shows the smallest affected area
with 3 % and 1 % of the basin affected. For severe drought
conditions, CRUNCEP suggests that an area approximately
3 times larger was affected compared to ERA5 (0.2×106 vs.
0.6×106 km2). CRUNCEP and GLDAS also encompass the
largest area of extreme drought stress (0.2×106 km2; 3 % of
the basin less than rMCWD <−2.5; Fig. 2a).

During the 2010 drought, a larger area ranging between
a minimum of 52 % (GPCC) and a maximum of 74 %
(TRMM 6) was affected by moderate drought stress, which is
about 36 % larger than during the 2005 drought (3.6×106 vs.
2.7× 106 km2; Table S1, Fig. 2). In addition, the area under
severe drought stress was on average 25 % larger compared
to 2005, and the area affected by extreme drought was dou-
ble the size of the 2005 drought event. Particularly, GLDAS
and TRMM 6 showed the largest area affected throughout the
three drought classifications (Fig. 2b).

For 2016, two datasets (CHIRPS and CRUNCEP) showed
with 38 % a considerably smaller area that was moderately
affected by drought stress compared to GLDAS with 63 %
of the area affected, respectively (datasets ranging between
2.2× 106 and 3.7× 106 km2). Generally, in 2016, the size
of the area affected by moderate drought was between the
size of the area affected in 2005 and 2010, but the extent
of severely and extremely drought-affected areas was larger.
Here, particularly GLDAS followed by GPCC showed the
largest affected area, with 21 % severely affected and 6 % ex-
tremely affected (Table S2).

3.2 Spatial agreement of rainfall datasets using the
rMCWD anomaly

While the agreement of the total area affected by drought is
relatively high (see Sect. 3.1), the datasets only partly agree
on the spatial extent and location of extreme drought condi-
tions, particularly during the 2010 and 2016 events (Fig. 3).
For 2005, all datasets agree on the drought epicentre being
in central Amazonia. Datasets agree that an area of about
15 % of the Amazon basin was at least moderately affected
(Fig. 3a). Only a small overlap was found for the area af-
fected by severe and extreme drought stress (Fig. 3b, c).
Here, only half of the datasets agreed on 4 % of central Ama-
zonia being severely and 1.5 % being extremely affected.

For 2010, all datasets agreed on an affected area of 21 % in
the Amazon basin, and half of the datasets agreed on an area
of 60 % of the Amazon basin being moderately affected by
drought stress (Fig. 3d). The 2010 drought displayed no cen-
tral hotspot, but rather there are three most affected areas in
the eastern, southern and central parts of Amazonia on which
most of the datasets agreed (Fig. 3d). Severe drought stress
in 2010 was in the southern part of Amazonia, where four
datasets agreed (Fig. 3e), while for extreme drought stress
almost no overlap between datasets was found (Fig. 3f).

For 2016, all datasets agreed on an area of about 7 % of
moderate drought stress, and half of the datasets agreed on
51 % of the basin being affected (Fig. 3g). Agreement for
severe and extreme drought stress was lower compared to
the other drought years (Fig. 3h, i). Most of the datasets lo-
cated the epicentre of the drought in the northwestern Ama-
zon basin. Some datasets also showed the south-central part
of the basin being severely affected (Fig. 3i).

We could not find any pronounced biases between the pre-
cipitation datasets (Figs. S3–S5) but rather a generally higher
correlation of the rMCWD anomalies for 2005 compared
to 2010 and 2016. Only ERA5 and GLDAS showed some
spikes in the rMCWD anomalies that are located within the
high-latitude regions of the Andes.

3.3 Constant vs. varying evapotranspiration rates:
effects on drought severity and extent estimates

We find that assuming a constant ET rate of 100 mm per
month is only realistic in the northern part of the Ama-
zon basin and only when compared to the DOLCE dataset
(Fig. 4a, b), which shows ET rates of about 100 mm per
month during both the wettest (as averaged between June
and August) and the driest months (as averaged between Jan-
uary and March). Using GLEAM, average ET rates are be-
tween 30 % and 50 % higher than 100 mm per month during
the wettest months (Fig. 4c) and remain higher than 100 mm
per month also in the northern part during the dry season
(Fig. 4f). Evapotranspiration rates can be as low as 50 mm
per month on average throughout the driest months for both
ET datasets in the south of the basin (Fig. 4b and f).

This spatial heterogeneity in evapotranspiration rates has
implications for the extent and severity of drought stress
expressed as the rMCWD anomaly when compared to us-
ing constant evapotranspiration. Using the two evapotranspi-
ration datasets we find lower drought impacts across most
parts of the Amazon basin for the 2 years of 2005 and 2010
(Fig. 4c, d, g, h). In 2005 the mean area of moderate drought
stress was lower when using variable ET: 44 % of the basin
for GLEAM and 39 % for DOLCE, compared 46 % for a
constant ET. Interestingly, these differences were not partic-
ularly located in the epicentre of drought during that year
(see Fig. 3a, b, c) but rather in the south and the high-latitude
regions toward the Andes (Fig. 4c, g). The total area of se-
vere drought stress did only slightly decrease from 9 % (con-
stant ET) to 8 % (GLEAM) and 7 % (DOLCE). In 2010, we
find stronger differences between variable and constant ET.
The area of moderate drought stress is 52 % for GLEAM and
49 % for DOLCE, which is significantly lower than the 60 %
when using constant evapotranspiration. For this year the ar-
eas of these differences (Fig. 4d, h) strongly overlap with the
epicentres of the drought (see Fig. 3d, e, f). Consequently,
also the areas of severe drought stress are lower (7 % for
GLEAM, 8 % for DOLCE) compared to using constant evap-
otranspiration (12 %). We find similar patterns for 2016 (not
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Figure 2. Total area of the Amazon basin affected by drought stress (%) according to the relative MCWD anomaly for each of the precipitation
datasets. Displayed are the three drought events: (a) 2005, (b) 2010 and (c) 2016. The total area representing the Amazon basin in our study
is 5.94× 106 km2. For absolute area affected, see Tables S2 and S3.

shown), where the mean area of severe drought stress is ap-
proximately 11 % for both GLEAM and DOLCE, which is
lower compared to using constant ET (15 %).

3.4 Comparison of drought indices: rMCWD, rscPDSI
and rRAI anomalies

Similar to rMCWD, there is variable agreement among
datasets when evaluating the other two drought metrics, rRAI
and rscPDSI (Fig. 5). The largest dry-season anomaly (rRAI)
in 2005 was displayed by GPCC with 6.5 % (0.4× 106 km2;
Table 2), followed by TRMM 7 with 5.7 % of the Ama-
zon basin being severely affected. ERA5 showed with 3 %
the smallest area affected. In 2005, spatial patterns of rRAI
matched with rMCWD anomalies despite rMCWD anoma-
lies showing a larger area affected by severe drought stress
(Fig. 5a, d). rscPDSI displayed the smallest area affected
by drought stress in 2005 also with GPCC and TRMM 7
showing the largest severely affected area with 5.5 % and
3.1 %, respectively. All other datasets showed less than 1 %
of severely drought-affected areas in 2005. The small spatial
area of rscPDSI differed compared to the other two drought
indicators (Fig. 5a, d, g): some areas showed a strong dis-
agreement between drought indices; e.g. central Amazonia
was hit by severe drought stress according to rMCWD and
rRAI (with three to four climate datasets in agreement),
while, in contrast, rscPDSI did not indicate abnormally dry
conditions there.

In 2010, the differences in drought-affected areas were
even more pronounced between the three indices (Fig. 5b,
e, h). Here, ERA5 and TRMM 7 showed the largest areas af-
fected by severe drought stress based on the dry-season rRAI
anomaly with 7 % and 5 %, respectively. Using rscPDSI

Table 2. Fraction of overall variability in rMCWD anomaly based
on precipitation datasets, drought indicators and evapotranspiration
datasets.

Drought Fraction of overall variability in
event rMCWD anomaly based on

precipitation drought evapotranspiration
datasets indicators datasets

2005 0.21 0.6 0.19
2010 0.21 0.58 0.21
2016 0.22 0.59 0.19

all datasets showed an area between 1 % and 2.5 % being
severely affected. Interestingly, the area affected based on
rMCWD roughly encompasses the area affected by rRAI but
additionally shows a large area in the southeastern part of the
basin being affected by severe drought stress (Fig. 5b, e).

In 2016, rscPDSI shows the largest area affected by
drought stress with GLDAS showing 39 % (followed by
TRMM 7, 16 %) of the basin being severely affected. Four
datasets agreed on the affected area in the northeastern part of
the basin (Fig. 5i). Only one dataset (GLDAS) showed severe
drought stress in 2016 when calculating dry-season rainfall
anomalies (rRAI, Fig. 5c), indicating no pronounced anoma-
lies in dry-season rainfall according to all other datasets. rM-
CWD and rscPDSI roughly agreed on the northern part of the
basin being severely affected (Fig. 5f, i).

Average seasonal patterns are quite consistent across
datasets but differ depending on the choice of drought in-
dex and drought event (Fig. 6). The strongest (most negative)
rainfall anomaly was visible from May to July during the
2005 drought event (Fig. 6a). Accumulating such low rain-
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Figure 3. Agreement of precipitation datasets on drought area as identified by relative MCWD anomalies. In columns, different levels of
drought severity are displayed, and rows show the different drought years: (a–c) 2005, (d–f) 2010 and (g–i) 2016. The colours indicate the
number of datasets that agree on a specific drought level in a given pixel. Drought severity levels are defined as moderate (rMCWD <−0.5),
severe (rMCWD <−2.0) and extreme (rMCWD <−2.5). Orange pixels indicate areas where only one dataset shows the respective drought
stress (no agreement is labelled “None”). White pixels represent areas where no dataset shows any drought signal. Note that in panels (a)–(f),
TRMM 6 and GSWP3 were excluded, as they were either very similar to their successor (TRMM 7) or due to a similar reanalysis procedure
(WATCH WFDEI). In panels (g)–(i), only six datasets were included which cover the full time period until 2016.

fall estimates resulted in very low values of rCWD during
that period (Fig. 6d) in 2005. rscPDSI values were also low
but more constant throughout the year (Fig. 6g).

The 2010 drought followed similar patterns regarding
rRAI with a lower absolute impact during May to July com-

pared to 2005 (Fig. 6b). Interestingly, the wet-season months
March to May showed a strong anomaly during 2010 com-
pared to the 2005 event. Subsequently, rCWD was also al-
ready lower during the wet season in 2010 compared to 2005
(Fig. 6e). rscPDSI anomalies values were similar for 2010

https://doi.org/10.5194/bg-19-3843-2022 Biogeosciences, 19, 3843–3861, 2022



3852 P. Papastefanou et al.: Quantifying drought stress

Figure 4. (a, b, e, f) Spatial pattern of ET for the dry and wet season for the DOLCE and GLEAM datasets and the differences between using
the two ET datasets to calculate the rMCWD anomaly and the rMCWD based on the assumption of constant ET= 100 mm per month for
(c, g) 2005 and (d, h) 2010. Wet- and dry-season ET is calculated as a mean from June to August and January to March, respectively. Negative
(positive) differences in the rMCWD anomalies indicate an overestimation (underestimation) of drought stress when using ET= 100 mm per
month compared to the respective evapotranspiration dataset.

compared to 2005 with a slight downward trend towards the
end of the year (Fig. 6g, h).

To investigate the seasonal patterns of 2016, we also con-
sidered the drought indices of 2015, since both years were
El Niño years. We found a strong rainfall anomaly already
starting during September 2015 continuing until April 2016
(Fig. 6c). Consequently, also rCWD values were very low
during that period (Fig. 6f). While rMCWD was applied as
the maximum value from October to September, drought
stress before October of the previous year cannot be ac-
counted for when using rMCWD. The 2-year drought impact
was also visible using scPDSI (Fig. 6i), showing a steady de-
cline from 2015 to 2016.

3.5 Overall variability: precipitation datasets vs.
drought indices vs. evapotranspiration datasets

When assessing the variability in drought severity and ex-
tent across the nine different precipitation datasets, the two
drought indices (rMCWD and rscPDSI) and the two evapo-
transpiration datasets (DOLCE and GLEAM), we find that
across all drought events the choice of drought index ac-
counts for roughly 60 % of the variability, while both the pre-
cipitation dataset and the evapotranspiration dataset account
for 20 % each (Table 2).

4 Discussion

We assessed the severity and spatial extent of the extreme
drought years 2005, 2010 and 2015/16 in the Amazon region
by computing different drought indices using a range of pre-
cipitation datasets. When analysing how drought conditions
are captured in nine different precipitation datasets for the
Amazon basin, we find that while the datasets mostly agree
on the extent of the drought area, they differ in their location
of drought

4.1 Critical aspects regarding the detection of drought
events in the Amazon basin

4.1.1 Drought indices

The idea of defining water deficit based on evapotranspira-
tion rates goes back to Stephenson (1998), and the MCWD
is now one of the most widely used indicators to assess
drought stress in tropical forests (Lewis et al., 2011; Phillips
et al., 2009; Esquivel-Muelbert et al., 2019). In its simplest
form the calculation of MCWD only requires precipitation
data and assumes a constant evapotranspiration (ET) rate of
100 mm per month (Aragão et al., 2007). Although the sim-
plicity of rMCWD and aMCWD is a main advantage, a fixed
ET (which we also used in our study) is inappropriate for
regions other than the lowland tropics, where the lower sup-
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Figure 5. Agreement of precipitation datasets on drought area as identified by different drought metrics. Comparison of the Amazon drought
events in 2005, 2010 and 2016 (columns) vs. three different drought indexes (rows): (a–c) rMCWD, (d–f) rscPDSI and (g–i) rRAI. Only
the area affected by severe drought stress is displayed, which is defined equally for each of the drought indices. Orange pixels indicate areas
where only one dataset shows the respective drought stress (“None”). White pixels represent areas where no dataset shows any drought
signal.

ply of energy may result in lower ET values. Most impor-
tantly, an approximated ET does not account for either sea-
sonal variation (driven mainly by radiation, temperature and
phenology) or spatial variation in ET related to soil and root
properties (Malhi et al., 2009). Hence, changes in rMCWD
purely account for changes in rainfall (Phillips et al., 2009).
In contrast, scPDSI is driven with spatially and temporally
resolved evapotranspiration data. However, currently avail-
able evapotranspiration products for the Amazon rainforest
show significant differences in areas and extent of evapotran-
spiration (Sörensson and Ruscica, 2018), hence introducing
another source of uncertainty when using them for the calcu-
lation of drought indices. In the last decade, better products
of spatially and temporally resolved evapotranspiration data
(e.g. ERA5) have been developed, and an increasing num-
ber of studies are now estimating MCWD based on such data
(e.g. Staal et al., 2020). However, using a constant evapotran-
spiration (ET) rate of 100 mm per month across the Amazon

rainforest is still very common (e.g. Flack-Prain et al., 2019;
Koch et al., 2021).

Using variable evapotranspiration consistently reduced the
moderately drought-affected area by 5 %–10 % per drought
event (Fig. 4). Extending the baseline period of the MCWD
calculation to include also years before 2001 leads to overall
lower MCWD values and, hence, an increased intensity of
the three drought events. This finding highlights the drought
anomaly that the recent decade from 2001 to 2016 has com-
pared to the years before that period.

The key difference between the three drought indices ap-
plied in our study is the temporal resolution: RAI is only
calculated for the three driest months (July–September), and
thus, for example, a rainy season with deficient rainfall is not
captured. MCWD, in contrast, accumulates over 12 months
and is reset to zero at the end of the hydrological year. In this
way, drought events caused by low precipitation in both dry
and rainy seasons are captured; however, drought events last-
ing for more than a year are not detected. scPDSI captures
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Figure 6. Monthly development of the Amazon drought events in 2005, 2010 and 2016 (columns) as described by the three different drought
indices (rows): (a–c) rMCWD, (d–f) rscPDSI and (g–i) relative rainfall anomaly (rRAI). Coloured lines indicate the indices of the 10th
percentile of all grid cells of each of the different precipitation datasets. The indices are estimated as the relative deviation from a 2001 to
2016 baseline period for each month.

multi-year drought events and is not reset to zero at the end
of the hydrological year.

These differences between the drought indicators can be
seen for the three drought events analysed in this study. For
2005, rRAI and rMCWD values roughly match in location of
the epicentre, indicating a particularly strong anomaly dur-
ing the dry season (Fig. 5a, d). This does not apply to the
2010 drought event, where despite some dry-season anoma-
lies an even stronger anomaly during the wet season is vis-
ible (Fig. 6b, e). The 2015/16 drought event is classified as
a severe multi-year drought according to Yang et al. (2018),
which is also displayed in our analysis when using rscPDSI
(Fig. 6i). rMCWD and rRAI, however, do not agree on a
spatially and temporally extensive drought event in 2016
(Fig. 5c, f, i) but instead display distinct regions of severe
drought stress. Seasonal patterns of the three drought indices
support this assumption (Fig. 6): resetting rMCWD once per
year neglects any influences from drought events of the pre-
ceding year (Fig. 6c). While the drought indices used in this
study showed pronounced differences in spatial and temporal
dynamics, including all of them can help better understand

the different characteristics that drought events can have in
the Amazon basin.

A common drawback of all drought metrics used in our
study is their incapability to explicitly represent the effect
of increasing atmospheric vapour pressure deficit (VPD) on
plant water stress. A steady amplification of atmospheric
vapour pressure deficit (VPD) has been detected over the
Amazon basin (Barkhordarian et al., 2019; Rifai et al., 2019).
Such stronger atmospheric water demand leads to additional
water loss of plants during drought, subsequently increasing
the severity of droughts. Hence, the role of VPD during a
drought and as a driver for plant stress should not be un-
derestimated (Grossiord et al., 2020). With increasing data
availability and better estimates of VPD across the Amazon
region, it should be included in future drought assessments
(Castro et al., 2020). One possibility for accounting for the
influences of VPD is choosing temporally and spatially re-
solved evapotranspiration instead of constant evapotranspi-
ration in the calculation of MCWD. Future studies could fur-
ther investigate the relationships between MCWD, ET and
VPD and the impacts on biomass.
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Furthermore, in the last decade, new methods have been
developed that assess impacts of drought on ecosystems;
e.g. analyses based on solar-induced fluorescence (SIF) data
show that tall forests are less sensitive to rainfall compared
to short forests (Giardina et al., 2018). Also, vegetation opti-
cal depth (VOD), used as a proxy for water content in forests,
is a promising satellite-derived indicator of mortality and im-
pacts of droughts on forests (Rao et al., 2019). However, con-
ducting analyses over the Amazon rainforest based on VOD
is difficult because of the limited penetration depth of mi-
crowaves in dense tropical forests (Chaparro et al., 2019) and
the influences of vegetation water status (Xu et al., 2021). So
far, VOD data could only be applied with limited success
across tropical rainforests (Konings and Gentine, 2017). Fu-
ture studies should estimate the impacts of droughts based
on multiple drought characteristics. For example, Toomey et
al. (2011) show that considering both heat stress and soil
moisture stress greatly improves the explanatory power of
drought impacts in the Amazon basin.

4.1.2 Precipitation datasets

For the three drought events in 2005, 2010 and 2016,
CHIRPS, GLDAS and ERA5 diverted the most from the
other datasets regarding the spatial drought extent. ERA5
shows the smallest area of moderate drought stress during
2005 but one of the largest areas in 2010 (Fig. 2). We found
no obvious bias between the precipitation datasets regard-
ing distribution and frequency of monthly rainfall (Fig. S2),
with only ERA5 showing higher rainfall more frequently.
Although TRMM 7 and CHIRPS are based on the same
satellite data as their input, they differ regarding the size
of the drought area, especially during 2016 (Fig. 2). Lewis
et al. (2011) estimated an area of 47 % (2.5× 106 km2) of
the Amazon basin moderately affected in 2005 using the
TRMM 6 dataset, which compares well with the size of the
affected area for most datasets analysed in our study (consid-
ering our 0.6× 106 km2 larger study area; see Sect. 2). For
2010, Lewis et al. (2011) reported an area of 3.2× 106 km2

being affected in comparison to 4.5× 106 km2 in our anal-
ysis using TRMM 6 with very similar spatial patterns. The
newer product, TRMM 7, however, shows less frequent rain-
fall but heavier rainfall than CHIRPS, maintaining a similar
total amount of precipitation (Giles et al., 2020). Also, both
versions (TRMM 6 and TRMM 7) differ regarding the total
area affected by drought stress in 2005 and in particular in
2010, where TRMM 6 showed a 10 % larger area of the Ama-
zon basin affected. This can be explained by the generally
higher precipitation rates detected in the TRMM 7 dataset
in comparison to TRMM 6 (Seto et al., 2011), leading to
lower absolute values of rMCWD. Spatially, this difference
was most pronounced in the western and northern parts of
Amazonia, in the states of Acre and Roraima, and in Peru.
Because of such higher precipitation rates in TRMM 7 as
compared to TRMM 6 and subsequently the much stronger

drought response according to our analysis, studies based on
TRMM 6 only might overstate the actual drought conditions
and should be revisited. Precipitation datasets usually show
remarkable differences in the representation of occurrence,
frequency, intensity and location of events, mainly due to
their nature of high spatial and temporal variability (Covey
et al., 2016; Dirmeyer et al., 2012). Generally, the sparse net-
work of observations in the Amazon rainforest may explain
the differences across precipitation datasets and drought in-
dices for datasets that rely on station data. Within the last
decade, the number of observations increased, due to a new
denser network of stations. This may improve the reanal-
ysis models that are used for several precipitation datasets
applied here; however, it does not improve datasets that
only rely on gauge observations. Bias correction is also ap-
plied different across precipitation datasets. CRUNCEP and
WATCH WFDEI use two different gridded bias-correction
inputs, while the simulated precipitation fields of ERA5 do
not use any bias corrections. Different datasets that are used
for bias corrections can give very different results on regional
scales (Doblas-Reyes et al., 2021).

Jiménez-Muñoz et al. (2016) quantified drought extent us-
ing scPDSI and found that 40 %, 25 % and 10 % of the Ama-
zon basin were affected by moderate, severe and extreme
drought stress, respectively, in March 2016. While we did not
evaluate scPDSI directly but focused on rscPDSI to allow for
a better cross-comparison to the other drought indicators, we
found similar patterns for moderate drought stress (47 % of
the basin affected) but different patterns under severe (11 %)
and extreme (1 %) drought stress when evaluating rscPDSI
using the ERA5 dataset. Our estimation diverted from the
results of Jiménez-Muñoz et al. (2016) not only because of
our different drought classification but also due to a different
reference area (see Sect. 2).

In addition, Jiménez-Muñoz et al. (2016) used spatially
resolved information on soil water capacity when calculating
scPDSI and a longer baseline period (onset year is 1979 in
their study vs. 2000 in our study). Furthermore, the choice
of the precipitation dataset plays an important role. Com-
pared to the datasets considered in our study, ERA5 showed
the weakest drought impact during the 2016 drought event.
GLDAS and TRMM 7 showed a much stronger drought im-
pact with over 70 % of the area moderately and between
15 % and 39 % severely affected (Table S2). This is partic-
ularly interesting because recent studies identify TRMM 7,
CHIRPS and ERA5 as the best precipitation datasets when
compared to gauge observations in South America (Albergel
et al., 2018; Burton et al., 2018; Rifai et al., 2019). The higher
scPDSI variability across the precipitation datasets can be ex-
plained with the more complex algorithm (including the self-
calibrating mechanism) the index has compared to MCWD
and RAI.
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4.1.3 Evapotranspiration datasets

Using a dataset with variable ET instead of a constant ET of
100 mm per month leads to smaller areas affected by drought
stress depending on the year and drought location (Fig. 4).
According to our findings using a constant ET of 100 mm per
month introduces not only a change in drought-affected areas
but also a bias, as drought intensity and spatial extent are
consistently higher for all drought years. The reason for this
bias lies within the calculation of MCWD, which computes
stronger deficits for higher values of ET (e.g. 100 mm per
month) than for lower values (e.g. 50 mm per month) during
months with low precipitation. This bias can be rather small
during drought events that are located in the northern, wetter
parts of the basin (as in 2005), but it can also be quite strong
for droughts that are located in the southern parts which have
a more pronounced dry season (as in 2010).

4.2 Implications for drought impact analyses in the
Amazon rainforest

Drought leads to increased tree mortality and carbon losses
in tropical forests (Hubau et al., 2020; Lewis et al., 2011;
Phillips et al., 2009). With the prospect of more severe and
frequent droughts in a future climate, more precise esti-
mates of how much carbon is lost from reductions in growth
and drought-induced mortality are necessary. Currently, the
Amazon rainforest is acting as a carbon sink, thereby remov-
ing CO2 from the atmosphere, but with more frequent and
severe drought events, this sink is already declining (Hubau
et al., 2020). Lewis et al. (2011) estimated a total loss of
biomass for the Amazon basin in 2005 of 1.6 PgC and a 38 %
more severe impact of 2.2 PgC for 2010 based on TRMM 6.
Using TRMM 7 instead of TRMM 6 and using variable ET
would likely decrease the impact of the 2010 drought on veg-
etation carbon as calculated in Lewis et al. (2011).

The affected areas (Fig. 2) for the drought events might be
underestimated, as (1) the total duration of the 2016 drought
was longer than 12 months (see the above paragraph and
Fig. 6) and can hence not be fully captured by the stan-
dard 12-month period of the aMCWD and rMCWD calcu-
lation used in this study and (2) potential lag effects due to
delayed plant mortality within the subsequent years are not
considered so far. We would recommend for future studies
to investigate the relationship of biomass losses with other
drought indices (such as scPDSI) in a similar manner as
done in Lewis et al. (2011). As the biomass of the Ama-
zon rainforest is heterogeneously distributed (e.g. Saatchi
et al., 2011), large-scale drought-induced biomass losses
which result from a severe aMCWD anomaly should be in-
terpreted carefully. Differences in the amount of biomass
in different forest types, species compositions and critical
hydraulic processes should be considered when estimating
potential biomass losses under drought stress (Feldpausch
et al., 2016). A step forward would be to use, for exam-

ple, remotely sensed biomass maps to account for regional
biomass distributions (e.g. Avitabile et al., 2016) or to sim-
ulate drought impacts with dynamic global vegetation mod-
els (DGVMs). DGVMs simulate the carbon and water cy-
cle of the biosphere in a process-based way, accounting for
the interplay of carbon uptake and water loss through stom-
atal opening; evapotranspiration (ET); carbon assimilation
via photosynthesis; and carbon allocation to different plant
compartments such as leaves, wood and roots (e.g. Schaphoff
et al., 2018; Smith et al., 2014). The simulated response of
tropical forests in DGVMs is particularly sensitive to precip-
itation input under present and future climate change scenar-
ios (e.g. Seiler et al., 2015). Therefore, we recommend using
multiple climate forcing datasets to test for climate data un-
certainty also under present climate conditions. Particularly,
studies based on TRMM 6 should possibly be revisited and
complemented with more forcing datasets for their analysis.

5 Conclusions

We find substantial variation in the spatial extent, location
and timing of the extreme drought events in the years 2005,
2010 and 2016 in the Amazon basin. Depending on the pre-
cipitation dataset and drought index used, the area affected
by severe (extreme) drought varied between 0 % and 39 %
(0 % and 13.7 %) for the 2016 event. Especially the area un-
der severe drought conditions changed from almost no severe
drought stress (five out of six datasets) when using rRAI to
greater than 10 % when using rMCWD and rscPDSI instead.
The variation partly results from the application of different
drought metrics (rMCWD, rRAI and rscPDSI) and from dif-
ferences in the underlying precipitation datasets. Such dif-
ferences also propagate when quantifying the impacts of
droughts on the carbon cycle of the Amazon rainforest and
result in a large variability in biomass carbon losses for a
particular drought year. The estimated intensity of droughts
depends predominantly on the selected drought indicator and
to a lesser extent on the choices of precipitation and evapo-
transpiration dataset.

We, therefore, recommend applying several drought met-
rics; climate (precipitation) datasets; and, if available, evap-
otranspiration datasets to account for model uncertainty
when assessing the spatial extent, duration and location of
droughts. We regard it as an important step when assessing
drought impacts on tropical rainforests also under current cli-
mate conditions. Communicating the uncertainty in the es-
timation of drought events and their impacts on the Ama-
zon rainforest is highly relevant, and thus, multiple datasets
should be applied by any large-scale study on drought im-
pacts on vegetation.
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Code availability. All scripts to reproduce analysis and fig-
ures are available at https://github.com/PhillipPapastefanou/
DroughtAnalysis (Papastefanou, 2021).

Data availability. CHIRPS can be accessed from ftp://ftp.chg.ucsb.
edu/pub/org/chg/products/CHIRPS-2.0/ (Climate Hazards Group,
2020). CRUNCEP can be accessed from https://crudata.uea.
ac.uk/cru/data/ncep/ (CRU – NCEP/NCAR Reanalysis, 2020).
ERA5 can be accessed from https://www.ecmwf.int/en/forecasts/
datasets/reanalysis-datasets/era5 (European Centre for Medium-
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