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Abstract. Separating the components of ecosystem-scale
carbon exchange is crucial in order to develop better models
and future predictions of the terrestrial carbon cycle. How-
ever, there are several uncertainties and unknowns related to
current photosynthesis estimates. In this study, we evaluate
four different methods for estimating photosynthesis at a bo-
real forest at the ecosystem scale, of which two are based
on carbon dioxide (CO2) flux measurements and two on
carbonyl sulfide (COS) flux measurements. The CO2-based
methods use traditional flux partitioning and artificial neu-
ral networks to separate the net CO2 flux into respiration
and photosynthesis. The COS-based methods make use of
a unique 5-year COS flux data set and involve two different
approaches to determine the leaf-scale relative uptake ratio
of COS and CO2 (LRU), of which one (LRUCAP) was de-
veloped in this study. LRUCAP was based on a previously
tested stomatal optimization theory (CAP), while LRUPAR
was based on an empirical relation to measured radiation.

For the measurement period 2013–2017, the artificial neu-
ral network method gave a GPP estimate very close to that
of traditional flux partitioning at all timescales. On aver-
age, the COS-based methods gave higher GPP estimates than
the CO2-based estimates on daily (23 % and 7 % higher, us-
ing LRUPAR and LRUCAP, respectively) and monthly scales

(20 % and 3 % higher), as well as a higher cumulative sum
over 3 months in all years (on average 25 % and 3 % higher).
LRUCAP was higher than LRU estimated from chamber mea-
surements at high radiation, leading to underestimation of
midday GPP relative to other GPP methods. In general, how-
ever, use of LRUCAP gave closer agreement with CO2-based
estimates of GPP than use of LRUPAR. When extended to
other sites, LRUCAP may be more robust than LRUPAR be-
cause it is based on a physiological model whose parame-
ters can be estimated from simple measurements or obtained
from the literature. In contrast, the empirical radiation rela-
tion in LRUPAR may be more site-specific. However, this re-
quires further testing at other measurement sites.

1 Introduction

Photosynthetic carbon uptake (or gross primary production,
GPP) is a key component of the global carbon cycle, with
the terrestrial ecosystems removing approximately 30 % of
annual anthropogenic carbon dioxide (CO2) emissions from
the atmosphere (Luo et al., 2015; Friedlingstein et al., 2020).
With the current climatic warming it has been suggested that
both photosynthesis and respiration are increasing due to the
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CO2 fertilization effect and rising temperatures providing
more favourable conditions not only for photosynthesis but
also for respiration (Dusenge et al., 2019). However, it is not
known at which rate these two processes are changing and
thus the extent to which they offset each other. In addition,
their relative importance varies seasonally, with photosynthe-
sis predicted to increase more than respiration in spring, lead-
ing to greater carbon uptake, while respiration is predicted to
increase more than photosynthesis in autumn, leading to net
carbon emission in northern terrestrial ecosystems (Piao et
al., 2008). Methods to measure and study photosynthesis and
respiration individually are thus crucial for future carbon cy-
cle predictions.

Eddy covariance (EC) is widely used to measure the
biosphere–atmosphere exchange of CO2 at the ecosystem
scale. However, EC only measures net ecosystem CO2 flux
(NEE), which includes contributions from both CO2 uptake
by photosynthesis (GPP) and ecosystem respiration (R). Tra-
ditionally, NEE partitioning into GPP and respiration uses
the method of Reichstein et al. (2005), in which tempera-
ture response curves are fitted to nighttime CO2 flux data
(respiration). However, this method relies on nighttime EC
flux measurements, which are uncertain and often filtered
out due to low-turbulence conditions and possible advec-
tive gas transport (Aubinet, 2008). To address this problem,
partitioning methods have been developed based on a com-
bination of nighttime temperature responses of respiration
(as in nighttime method) and daytime radiation responses
of GPP (daytime method) (Lasslop et al., 2010; Kulmala
et al., 2019). However, both the nighttime method and the
daytime method assume that respiratory processes operate in
the same way during the day and night and have uncertain-
ties due to assumptions of functional relationships (Tramon-
tana et al., 2020). These assumptions lead to uncertainties
in partitioning because different biomass compartments (soil
organic matter, roots, stems, branches, foliage) could have
different drivers and respiration responses even within the
same ecosystem (Kolari et al., 2009; Keenan et al., 2019).
Leaf respiration during the day may be inhibited by radia-
tion, the so-called Kok effect (Kok, 1949; Wohlfahrt et al.,
2005; Heskel et al., 2013; Yin et al., 2020), and Keenan et
al. (2019) and Wehr et al. (2016) suggest that, as a result,
global GPP based on the nighttime method has been over-
estimated. On the other hand, photorespiration, which is an
oxidation process competing with carboxylation under radi-
ation, might offset inhibition by the Kok effect (Heskel et al.,
2013).

One way to address these uncertainties in flux partitioning
is to use machine learning methods, such as artificial neural
networks, to separate NEE into respiration and GPP (Tra-
montana et al., 2020). The advantage of this method is that
it makes no a priori assumptions about responses to envi-
ronmental drivers but determines these based only on data.
In a pioneering study, Desai et al. (2008) attempted to use
an artificial neural network to emulate the nighttime parti-

tioning method but obtained no significant improvements.
More recently, Tramontana et al. (2020) proposed a new ap-
proach (NNC-part) involving novel methods for implementing
the network’s structure and of inferring GPP and R signals
from NEE. Both nighttime and daytime NEE are used for
network training, so the dynamics of biophysical processes
are accounted for in a comprehensive way.

Yet another approach to addressing uncertainties in GPP
estimates is to use proxies for photosynthetic CO2 uptake.
One such proxy is carbonyl sulfide (COS), which is a sulfur
compound with a tropospheric mixing ratio of approximately
500 ppt (parts per trillion) (Montzka et al., 2007). While the
use of different CO2-based partitioning methods is primarily
aimed at more accurate GPP estimation, in contrast the use
of COS as a proxy for GPP is aimed at a better process un-
derstanding of GPP. COS is mainly produced by oceans and
anthropogenic sources (Kettle et al., 2002; Berry et al., 2013;
Launois et al., 2015; Whelan et al., 2018), while vegetation is
the largest sink (Sandoval-Soto et al., 2005; Blonquist et al.,
2011). COS has been proposed as a proxy for GPP because
it is taken up by plants through the same diffusive pathway
as CO2 and transported to the chloroplast surface. There it is
destroyed by a hydrolysis reaction catalysed by the enzyme
carbonic anhydrase (CA, also located within the cytoplasm;
Polishchuk, 2021), while CO2 continues its journey inside
the chloroplast, where it is assimilated in the Calvin cycle
(Wohlfahrt et al., 2012). It is assumed that COS is completely
removed by hydrolysis so that there is no back-flux from the
leaf to the atmosphere (Protoschill-Krebs et al., 1996). Esti-
mates of GPP from COS flux measurements use the leaf rel-
ative uptake ratio (LRU), that is, the ratio of COS and CO2
deposition rates at the leaf scale. While LRU has been treated
either as a global or plant-specific constant (Asaf et al., 2013;
Stimler et al., 2012), recent studies have shown that LRU is
a function of solar radiation because CO2 uptake is highly
radiation dependent, while COS uptake is not (Stimler et al.,
2010; Yang et al., 2018; Kooijmans et al., 2019; Spielmann
et al., 2019) and may also vary with vapour pressure deficit
(Sun et al., 2018b; Kooijmans et al., 2019). In addition to
uncertainties related to variation in LRU, COS-based GPP
estimates are uncertain because ecosystem-scale COS flux
measurements typically have a low signal-to-noise ratio and
high random uncertainty at a 30 min timescale, although this
is reduced when fluxes are averaged over longer time periods
(Kohonen et al., 2020).

In this study, we compare the annual, seasonal, daily,
and sub-daily variation of (i) a traditional GPP estimate
(GPPNLR, NLR referring to non-linear regression) based on
a combination of daytime and nighttime methods, (ii) a
neural network GPP estimate based on NEE and NNC-part
(GPPANN), (iii) a GPP estimate based on COS flux mea-
surements using the radiation-dependent LRU function from
Kooijmans et al. (2019) (GPPCOS,PAR), and (iv) a GPP esti-
mate based on COS flux measurements using a previously
published stomatal optimization model (CAP) to calculate
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LRU (GPPCOS,CAP) in a boreal evergreen needle–leaf forest
during the years 2013–2017. Our aim is to study potential
inconsistencies in diel or seasonal patterns of GPP that may
arise from extrapolating nighttime temperature responses to
daytime ones, as well as to discuss the limitations and uncer-
tainties of all four methods. We also make recommendations
for improving COS-based GPP estimates.

2 Materials and methods

2.1 Site description

Measurements were conducted at the Hyytiälä forest Station
for Measuring Ecosystem Atmosphere Relations (SMEAR)
II measurement site (61◦51′ N, 24◦17′ E), where the forest
stand is already more than 50 years old (Hari and Kul-
mala, 2005). The stand is dominated by Scots Pine (Pinus
Sylvestris L.) with some Norway spruce (Picea abies L.
Karst.) and deciduous trees (e.g. Betula sp., Populus trem-
ula, Sorbus aucuparia). The daytime flux footprint covers
a ca. 50 ha area of the forest. The canopy height increased
from approximately 18 to 20 m during the measurement pe-
riod (2013–2017), and the all-sided leaf area index (LAI) was
ca. 8 m2 m−2.

2.2 Measurements

Eddy covariance fluxes and environmental
measurements

EC measurements were made on a 23 m high tower. The
set-up consisted of a Gill HS (Gill Instruments Ltd., Eng-
land, UK) sonic anemometer measuring horizontal and verti-
cal wind velocities and sonic temperature, as well as a quan-
tum cascade laser (QCL; Aerodyne Research Inc., Billerica,
MA, USA) for measuring COS, CO2 and H2O mixing ratios
at 10 Hz frequency. The set-up is described in more detail in
Kohonen et al. (2020), and flux data are presented in Vesala et
al. (2022). Flux processing was done using EddyUH software
(Mammarella et al., 2016) following the methods presented
by Kohonen et al. (2020). Fluxes were corrected for stor-
age change and filtered according to friction velocity. Storage
change fluxes of COS were calculated from the COS profile
measurements in 2015–2017 and from concentration mea-
surements at one height in other years, as described in Koho-
nen et al. (2020); CO2 storage change fluxes were calculated
from CO2 concentration profile measurements. The friction
velocity threshold was determined from CO2 fluxes (Papale
et al., 2006), and a threshold of 0.3 ms−1 was applied to the
entire data set to exclude periods of low turbulence. COS flux
processing was done similarly to CO2 processing, but time
lag and spectral corrections were determined from CO2 mea-
surements and applied to COS as recommended by Kohonen
et al. (2020). Gap-filling of the COS flux was done using em-
pirical formulas based on photosynthetically active radiation

(PAR) and vapour pressure deficit (VPD), as described by
Kohonen et al. (2020). CO2 fluxes were gap-filled and par-
titioned using a procedure to be explained in more detail in
Sect. 2.3.1.

Environmental measurements used in the study include air
temperature (Ta) at 16.8 m (measured with a Pt100 temper-
ature sensor inside a ventilated custom shield), PAR above
the canopy (Li-190SZ quantum sensor, LI-COR, Lincoln,
NE, USA), relative humidity (RH) at 16.8 m height (Rotronic
MP102H, Rotronic Instrument Corp., NY, USA), soil tem-
perature (Tsoil) at 2–5 cm depth (KTY81-110 temperature
sensor, Philips, the Netherlands) as a mean of five locations,
and soil water content (SWC) in the humus layer (Delta-
T ML2 soil moisture sensor, Delta-T Devices, Cambridge,
UK).

2.3 GPP calculations

This section describes each of the four methods for estimat-
ing GPP. Daily average GPP was only calculated if more
than 50 % of the measured 30 min flux data were available
for each day, and monthly averages were calculated from
the daily means. In Vesala et al. (2022), COS fluxes were
found to have 52 % data availability on average. While set-
ting a 50 % threshold is somewhat subjective, it ensures that
the analysed daily estimates of GPPs reflect measured fluxes
rather than the gap-filling procedure. Gap-filled flux data
were used in estimating diurnal variation and cumulative
GPP. All comparisons between the methods used measured
(non-gap-filled) data only, when both CO2 and COS flux data
were available.

2.3.1 GPP from traditional CO2 flux partitioning

NEE was partitioned into respiration (R) and GPPNLR as

NEE= R−GPPNLR, (1)

where R was estimated as in the nighttime method,

R = RCQ
Tsa/10
10 , (2)

where RC is the respiration at a reference temperature (T =
0 ◦C), Q10 is the temperature sensitivity of R, and Tsa is
the arithmetic mean between the air temperature at 16.8 m
height and soil temperature at 5 cm depth. Previous studies
have shown Tsa to be a good choice of respiration driver at
Hyytiälä forest (Kolari et al., 2009; Lasslop et al., 2012).

When NEE measurements were not available, the GPP
model followed the formula

GPPNLR =(
αPAR+Pmax−

√
(αPAR+Pmax)2− 42PARPmax

) f (Ta)

22
, (3)

where α, Pmax, and 2 are fitting parameters, and f (Ta) is an
instantaneous temperature response that brings GPP gradu-
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ally towards zero at freezing temperatures, given by

f (Ta)=
1

1+ e(2(T0−Ta))
, (4)

where T0 =−2 ◦C is the inflection point (Kolari et al., 2014).
Parameters α, Pmax, and RC were estimated for 15 d pe-

riods, while Q10 was estimated from the weighted mean of
monthly Q10 values from June to August over several years.
Weights were the inverse of the confidence interval of each
Q10 estimate. 2 was determined as the value that gave the
best model fit when the partitioning was run during sum-
mer months (June–August) over several years (Kulmala et
al., 2019). The parameters of Eq. (3) were estimated from
GPP partitioned with the nighttime method in Eq. (1). The
modelled NEE from Eqs. (3) and (2) was compared with the
measured NEE in Fig. B1a.

2.3.2 GPP from artificial neural networks

GPPANN from the data-driven model was estimated by ap-
plying the NNC-part algorithm (Tramontana et al., 2020).
NNC-part is a customized neural network that emulates the
bio-physical processes driving both GPP and R at ecosystem
scale and has been applied to several vegetation types dis-
tributed globally. The network consists of two subnetworks,
which simulate GPP and R. The two subnetworks are con-
nected in the last node of the overall structure, in which
the GPP and R signals are combined to calculate NEE. The
GPP subnetwork consists of three layers and estimates the
ecosystem-level gross photosynthesis using a light-use effi-
ciency (LUE) approach; in particular, instantaneous LUE is
estimated by the first two layers, while GPP is calculated as
the product between LUE and incoming shortwave radiation
in the third layer. NNC-part has a hybrid nature, and gross
photosynthesis is partially constrained by emulating the LUE
concept.

Each subnetwork relies on specific predictors. Distin-
guishing features of this model are that (a) GPP and R de-
rived by other models are not used, (b) functional relation-
ships are derived directly from the data, and (c) the net-
work’s weights are tuned by training the machine learning
only on NEE measurements. In this experiment we used the
same predictors (VPD, incoming shortwave radiation, po-
tential incoming radiation, Ta, Tsoil, SWC, wind speed, and
wind direction) and network structure as applied by Tramon-
tana et al. (2020). However, to ensure the viability of this
method, which is limited by the availability of both predic-
tors and NEE measurements, we set lower requirements for
the minimum percentage of measured data for both predic-
tors and half hourly NEE. Moreover, data from all available
years were pooled for use in a unique multi-year training
process. In particular, we applied the following setting: for
each year, less than 55 % of predictors were gap-filled, and
at least 365 half-hourly NEEs should be measured for both
nighttime and daytime. Despite the high percentage of miss-

ing data in observations, gaps had generally short duration
with limited effects on the uncertainty of predicted outputs.
The final GPPANN products were derived by applying trained
networks on meteorological inputs and thus do not include
NEE data after network training. The modelled NEE from
NNC-part was compared with the measured NEE in Fig. B1b.

2.3.3 GPP from COS flux measurements and an
empirical LRU radiation relation

Based on previous soil chamber measurements at
Hyytiälä forest it is known that the soil COS flux was
−2.7 pmolm−2 s−1 on average with a variation of only
1 pmolm−2 s−1 during the growing season and a negligible
diurnal variation (Kooijmans et al., 2017; Sun et al., 2018a).
The average soil flux was thus first subtracted from the
quality-filtered and gap-filled COS EC fluxes in order to
derive the vegetation contribution to the ecosystem COS
exchange. GPP was then calculated from the canopy COS
fluxes (FCOS) using the formula (Sandoval-Soto et al.,
2005; Blonquist et al., 2011)

GPPCOS =
−FCOS

LRU
[CO2]a

[COS]a
, (5)

where [CO2]a and [COS]a denote the atmospheric concen-
trations of CO2 and COS (in molm−3), respectively, at the
EC measurement height, measured by the QCL.

LRU was calculated as a function of PAR (LRUPAR) as de-
scribed by the empirical equation of Kooijmans et al. (2019):

LRUPAR =
607.26
PAR

+ 0.57. (6)

This LRU equation was derived from field chamber measure-
ments (LRUch) of pine branch CO2 and COS fluxes with two
chambers placed at the top of the canopy in 2017 at the same
site and thus being independent from the EC flux measure-
ments (Kooijmans et al., 2019).

2.3.4 GPP from COS flux measurements and LRU
from stomatal optimization model

Finally, we estimated GPP from Eq. (5) using a new theoreti-
cal expression for LRU (LRUCAP) derived from the stomatal
optimization model CAP (Dewar et al., 2018). Full details of
the derivation are given in Appendix A. The LRUCAP for-
mulation was based on the following general expression for
LRU given by Eqs. (10)–(11) of Wohlfahrt et al. (2012):

LRU=
1

1− ci
ca

1
1.21 +

1
1.14

gCOS
s
gCOS

b

1+ gCOS
s
gCOS

b
+
gCOS

s
gCOS

m

, (7)

where gCOS
x (x = b,s,m) are, respectively, the boundary

layer, stomatal, and mesophyll conductances for COS, ca is
the atmospheric CO2 molar mixing ratio (molmol−1), ci is

Biogeosciences, 19, 4067–4088, 2022 https://doi.org/10.5194/bg-19-4067-2022



K.-M. Kohonen et al.: Intercomparison of methods to estimate GPP 4071

the leaf intercellular CO2 molar mixing ratio (molmol−1),
and the numerical factors 1.21 and 1.14 are the ratios of the
conductances of CO2 to COS for stomata and the boundary
layer (Wohlfahrt et al., 2012). If it is assumed that the bound-
ary layer and mesophyll conductances are infinite (as done by
Dewar et al., 2018), Eq. (7) reduces to

LRU=
1

1.21

(
1−

ci

ca

)−1

. (8)

An analytical expression for ci was derived from the stomatal
optimization model CAP by Dewar et al. (2018), according
to which stomatal conductance maximize leaf photosynthe-
sis, reflecting a trade-off between stomatal limitations to CO2
diffusion and non-stomatal limitations (NSLs) to carboxyla-
tion capacity. The CAP model predicts the value of ci as an
analytical function of various environmental and physiologi-
cal factors. Inserting this function into Eq. (8), LRUCAP can
then be expressed as

LRUCAP =
1

1.21
ca

ca−0∗

(
1+

√
Ksl|ψc|

1.6gcVPD

√
1+

20∗gc

αPAR

)
, (9)

where 0∗ is the CO2 photorespiratory compensation point
(molmol−1), Ksl the soil-to-leaf hydraulic conductance
(molm−2 s−1 MPa−1), ψc is the assumed critical leaf wa-
ter potential (MPa) at which NSLs reduce photosynthesis
to zero, gc is the carboxylation conductance in the absence
of NSLs (molm−2 s−1) and α is the photosynthetic quan-
tum yield (molmol−1) in the absence of NSLs (Duursma et
al., 2008; Dewar et al., 2018). While 0∗, and α vary sea-
sonally with temperature, for simplicity we used fixed values
representing the growing season averages of 50× 10−6 and
0.05 molmol−1, respectively (Bernacchi et al., 2001; Lev-
erenz and Öquist, 1987; Mäkelä et al., 2008). In addition
to PAR (molm−2 s−1) and VPD measurements (molmol−1),
LRUCAP requires soil moisture measurements through its de-
pendence on the soil component of Ksl. All parameter defi-
nitions and values are listed in Table 1.

LRUCAP is based on a generic physiological model of
stomatal function whose predictions have been successfully
tested previously (e.g. Lintunen et al., 2020; Salmon et al.,
2020; Dewar et al., 2021; Gimeno et al., 2019). The model
parameters are all physiologically meaningful and can be
measured independently or obtained from the literature. This
formulation therefore represents a clear advance on previous
COS-based methods based on empirical fitting (LRUPAR) be-
cause it provides a physiological explanation for variations
in LRU that may be more robust when extrapolating to other
sites.

In addition, LRUCAP was calculated using a combina-
tion of literature values and fitted parameters by fitting the
parameter combinationsX = |ψc|/(1.6gc) (MPam2 smol−1)
and Y = 20∗gc/α (molm−2 s−1) to Eq. (9). This analysis
was aimed at assessing the parameter sensitivity of LRUCAP.

While the literature-based parameter values gave X = 2.5
and Y = 0.001, the fitting values were X = 2.64 and Y =
0.0033 and gave a slightly better agreement of LRUCAP with
LRUch (RMSE= 1.89, while without fitting RMSE= 2.01,
Fig. B2). However, we emphasize that this fitting procedure
was conducted purely in order to assess the model perfor-
mance and is not a requirement for applying LRUCAP in
practice when literature-based parameter values are avail-
able. Moreover, the results presented in this article are not
based on fitted parameter values but on literature values only.

3 Results and discussion

3.1 Environmental conditions

March 2013 was colder than other years (average −7.0 ◦C)
and also had the highest average PAR (207.3 µmolm−2 s−1)
and lowest soil moisture (0.23 m3 m−3) (Fig. 1). A clear
increase in VPD and decrease in soil moisture were seen
in August 2013, with soil moisture decreasing from 0.24
in July to 0.19 m3 m−3 in August and afternoon median
VPD increasing to 1.00 kPa. July 2014 was warmer (19.0 ◦C)
and dryer (VPD 0.88 kPa) than other years, but soil mois-
ture remained high at 0.25 m3 m−3. In 2015, VPD increased
from 0.44 in July to 0.62 kPa in August, and soil mois-
ture decreased from 0.31 in July to 0.24 m3 m−3 in August.
May 2017 had high amounts of radiation (monthly average
PAR of 478.4 µmolm−2 s−1), and soil temperature was low
(3.4 ◦C), while soil moisture and VPD were at a normal level
at 0.28 m3 m−3 and 0.47 kPa, respectively. Soil moisture in
September–December in 2017 was 10 % higher than other
years, while no significant differences between years were
found in other environmental variables in late autumn.

3.2 GPP comparison from sub-daily to seasonal scales

Midday GPPANN was on average 12 % higher than midday
GPPNLR during the summer months (May–July) in 2014 and
2017 (Figs. 2, 3, and 4a), opposite to the result found by
Tramontana et al. (2020) in a comparison of GPPANN with
standard FLUXNET partitioning during summer months at
multiple sites. The difference between GPPNLR and GPPANN
during other months was negligible. We compared the more
common use of air temperature as the respiration driver,
GPPairT (instead of the average of soil and air tempera-
tures), against GPPNLR and found that the two methods
agreed very well with each other at all timescales (Fig. B3).
The small differences in the diurnal variations of GPPNLR
and GPPANN are thus not due to the choice of tempera-
ture measurement as respiration driver. During the measure-
ment period 2013–2017, 30 min, daily, and monthly GPPANN
did not differ statistically from GPPNLR (tested with the
ANOVA test; Figs. B4–B6). However, on 30 min timescale
the GPPANN was on average 15 % lower than GPPNLR.
The lower agreement of 30 min GPPANN and GPPNLR than
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Table 1. Explanations, literature values, and sources of the parameters used in the LRUCAP formulation for Hyytiälä forest. ca was derived
from the measurements in Kooijmans et al. (2019), and SWC, PAR, and VPD from measurements done in this study. Soil-related values
(Ksoil,sat, rcyl, SWCsat, and b) are for soil horizon B (which was considered to be representative of the rooting zone), where the SWC
measurements were also made.

Symbol Definition Default value or formula and unit Source

ca Atmospheric CO2 molar mixing ratio 415× 10−6 molmol−1 Measured

0∗ Photorespiratory compensation point 50× 10−6 molmol−1 Bernacchi et al. (2001)
of CO2

gc Carboxylation conductance in the absence 0.5 molm−2 s−1 Dewar et al. (2018)
of non-stomatal limitations

ψc Critical leaf water potential −2 MPa Dewar et al. (2018)

α Photosynthetic quantum yield 0.05 molmol−1 Leverenz and Öquist (1987)

Ksl Leaf-specific soil-to-leaf KsoilKx
Ksoil+Kx

; molm−2 s−1 MPa−1

hydraulic conductance

Kx Leaf-specific root-to-leaf 0.78× 10−3 molm−2 s−1 MPa−1 Duursma et al. (2008)
xylem hydraulic conductance

Ksoil Leaf-specific soil hydraulic conductance R1
LAI

2πksoil

log
(
rcyl
rroot

) ; molm−2 s−1 MPa−1

ksoil Soil hydraulic conductivity ksoil,sat

(
SWC

SWCsat

)2b+3
; molm−1 s−1 MPa−1

ksoil,sat Saturated soil hydraulic conductivity 5.7 molm−1 s−1 MPa−1 Duursma et al. (2008)

R1 Root length index 5300 m−1 Nikinmaa et al. (2013)

LAI Leaf area index, all-sided 8 m2 m−2 Measured

rcyl Radius of the cylinder of soil 0.00458 m Duursma et al. (2008)
accessible to a root

rroot Fine root radius 0.3× 10−3 m Nikinmaa et al. (2013)

SWCsat Saturation soil water content 0.52 m3 m−3 Duursma et al. (2008)

SWC Soil water content m3 m−3 Measured

b Parameter of the soil water 4.46 Duursma et al. (2008)
retention curve

VPD Vapour pressure deficit molmol−1 Measured

PAR Photosynthetically active radiation molm−2 s−1 Measured

on longer timescales may have resulted from the NNC-part
method restricting GPPANN to only positive values, while
GPPNLR may take on negative values due to random noise
in the NEE measurements. The relative and absolute differ-
ences of GPPANN to GPPNLR are, however, very small when
averaging over longer time periods (relative difference 2 %
on average during summer months, Fig. 5).

GPPCOS,PAR was very similar to GPPNLR especially dur-
ing morning and early evening (Figs. 2 and 3) but showed
higher midday values than GPPNLR, especially during sum-
mer months (May–August) in all years. At the daily scale,
GPPCOS,PAR was on average 23 % higher than GPPNLR

(Figs. 4e and 5) and also differed from GPPNLR and GPPANN
statistically (p < 0.01) on 30 min and daily scales (ANOVA
test). At monthly scale, there was no statistical difference to
any of the other GPP methods.

Based on the CAP stomatal optimization model, LRUCAP
requires PAR, SWC, and VPD, as well as ecosystem-specific
literature values, for some parameters as input variables. In
contrast, LRUPAR by Kooijmans et al. (2019) only uses PAR.
LRUCAP therefore takes into account additional effects of
drought and air humidity on LRU. In spring, the diurnal vari-
ation of GPPCOS,CAP closely follows that of GPPNLR and
GPPANN until June (Figs. 2 and 3). Especially in June and
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Figure 1. Median diurnal variation of Ta, Tsoil, PAR, SWC, and VPD in different months during the measurement period 2013–2017.

July GPPCOS,CAP is lower than the other GPP estimates. At
30 min timescale GPPCOS,CAP is on average 12 % lower than
GPPNLR, but there is large scatter due to noisy FCOS mea-
surements, like for GPPCOS,PAR. However, there is less scat-
ter in GPPCOS,CAP than GPPCOS,PAR (Fig. 4d and g), indi-
cating that some of the scatter is due to LRU estimation.
At daily scales GPPCOS,CAP is 7 % higher than GPPNLR,
and at monthly scales the difference decreases to 3 %. How-
ever, there is no statistically significant difference between
the 30 min and monthly values of GPPNLR and GPPCOS,CAP
(ANOVA test). The relative and absolute difference be-
tween GPPCOS,CAP and GPPNLR is also generally smaller
than between GPPCOS,PAR and GPPNLR throughout the year
(Fig. 5). In addition, GPPCOS,CAP reproduces the same two
distinctive probability density function peaks as GPPNLR and
GPPANN at 1.7 and 6.6 µmolm−2 s−1, while GPPCOS,PAR
finds weaker peaks at 2.4 and 7.4 µmolm−2 s−1 (Fig. 6).
In summary, GPPCOS,CAP gives better agreement with tra-
ditional GPPNLR partitioning than GPPCOS,PAR. However,
LRUCAP was higher than LRUch and LRUPAR at high ra-
diation (PAR> 1000 µmolm−2 s−1, Fig. B7a). This may re-
flect intrinsic differences in the dependence of LRUPAR and
LRUCAP on environmental drivers (PAR, VPD, SWC) as

both estimates of LRU are based on conditions at the top of
the canopy.

LRUCAP was also calculated based on a combination
of literature values and the fitted parameters X and Y

(Sects. 2.3.4 and A1) in order to assess the sensitiv-
ity to parameter values. While literature values gave X =
2.5 MPam2 smol−1 and Y = 0.001 molm−2 s−1, fitting gave
X = 2.64 MPam2 smol−1 and Y = 0.0033 molm−2 s−1 and
a slightly better agreement of LRUCAP with measured LRU
(RMSE= 1.89, while without fitting RMSE= 2.01). Thus,
while X was close to its literature value, Y was estimated
to be 3 times higher. This mismatch suggests there may be
scope for further model improvement, such as the inclu-
sion of dark respiration and/or finite mesophyll and bound-
ary layer conductances in the LRUCAP model. However, as
the difference between fitted LRUCAP and literature-based
LRUCAP (statistical significance tested with Student’s t test,
p < 0.01) was not large, with a median difference of 4 %, and
the applicability of the model without fitting is better, we de-
cided to use the literature-based parameterization of LRUCAP
in this study, without fitting to LRUch.

LRUCAP was also calculated assuming finite mesophyll
conductance as a further comparison (Sect. A2). The agree-
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Figure 2. Median diurnal variation of GPP partitioned using a combined nighttime–daytime method (GPPNLR, purple line), GPP from
artificial neural networks (GPPANN, pink line), GPP from COS flux measurements with LRU determined according to Kooijmans et al.
(2019) (GPPCOS,PAR, dark blue line), and GPP from COS flux measurements using a new approach for LRU (Sect. 2.3.4, GPPCOS,CAP,
light blue line) in different months during the measurement period 2013–2017. Averaging was done to the same data points, and only months
with more than 55 % of data coverage were included.

ment of this method was better than assuming infinite mes-
ophyll conductance at high PAR but worse at low PAR
(Fig. B7d), very similar to the results from Maignan et
al. (2021), who modelled LRU at Hyytiälä using the OR-
CHIDEE model. This version of LRUCAP was also fitted to
measured LRU in terms of parameters X and Y (Sect. A2)
to make the low PAR LRUCAP better, which resulted in
X = 3.45 and Y = 0.0057, both higher than their expected
literature values. We thus concluded that the assumption of
infinite gm gives an estimate that is closest to LRUch, al-
though the assumption in itself is physiologically unrealis-
tic. Kooijmans et al. (2019) found that internal conductance
(a combination of mesophyll conductance and biochemical
reactions) might limit leaf-scale FCOS during daytime. We
find a better agreement of LRUCAP with LRUch if gm is as-
sumed to be infinite, but there is a mismatch at high PAR,
supporting the possibility that gm might indeed be a limiting
factor under high radiation. In CAP, infinite or finite gm rep-

resents two contrasting hypotheses, in which NSLs act either
entirely on photosynthetic capacity or entirely on gm, respec-
tively. In reality, NSLs may act on both photosynthetic capac-
ity and gm, with one or the other effect being dominant de-
pending on environmental conditions. The contrasting abili-
ties of each hypothesis to explain LRUch at low vs. high light
might be explained by a shift in the action of NSLs from the
photosynthetic capacity to gm as light increases. However,
verifying this possibility lies beyond the scope of the present
study.

We calculated the cumulative GPP estimates over May–
July, 13 weeks around the peak growing season for each
year (Table 2). Cumulative GPPCOS,PAR was on average 25 %
higher than cumulative GPPNLR in all studied years. This
is higher than the 4.3 % difference reported in Spielmann
et al. (2019) and 3.5 % agreement reported in Commane et
al. (2015). In contrast, cumulative GPPCOS,CAP varied from
17 % higher in 2014 to 15 % lower in 2015, and on aver-
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Figure 3. Diurnal variation of the difference of GPPANN (pink), GPPCOS,PAR (dark blue) and GPPCOS,CAP (light blue) to the reference
GPPNLR in different months during the measurement period 2013–2017. Averaging was done to the same data points and only months with
more than 55 % of data coverage were included.

age it was only 3 % higher than cumulative GPPNLR. Cu-
mulative GPPANN varied from 10 % higher in 2014 to 9 %
lower in 2016 than GPPNLR, and on average it was 0.1 %
lower than GPPNLR. As stated above, overall GPPANN was
closest to GPPNLR out of the three other GPP estimates.
GPPCOS,CAP was closer to both of the CO2-based GPP esti-
mates than GPPCOS,PAR. However, at high PAR, LRUCOS,CAP
was higher than chamber-based measurements, leading to a
lower GPP. Nevertheless, no firm conclusions can be drawn
here as the LRU observations only cover measurements at the
top of the canopy and may not reflect LRU over the whole
canopy.

It has been suggested that, due to the Kok effect, leaf res-
piration is inhibited under radiation (Kok, 1949). This inhi-
bition has been estimated to be approximately 13 % in the
evergreen needle–leaf forests during summer (Keenan et al.,
2019). Measurements of CO2 isotope fluxes support the con-
clusion that, due to the Kok effect, GPP from traditional CO2
flux partitioning using the nighttime method is overestimated
(Wehr et al., 2016). However, ecosystem respiration at the
Hyytiälä forest site is dominated by soil respiration (Ilves-
niemi et al., 2009) so that the Kok effect may be of limited
importance in this ecosystem (Keenan et al., 2019; Yin et

al., 2020). Reduced leaf respiration under radiation would be
visible as a break point around the compensation point with
a change in the slope of NEE against radiation. However,
such a break point was not detected in our observations, as
is demonstrated in Fig. B8. While it is possible that less ra-
diated needles experience less inhibition than well radiated
ones that cancel out at the ecosystem scale (Wohlfahrt et al.,
2005), this test provides some insight into the problem. It is
thus not expected that independent GPP estimates in Hyytiälä
would necessarily result in lower GPP than the traditional
methods. Moreover, Tramontana et al. (2020) showed that
uncertainties and biases in NEE (and COS flux) measure-
ments exceed those resulting from the possible Kok effect.

3.3 GPP responses to environmental conditions

All four GPP estimates responded similarly to environmen-
tal forcing (PAR, Ta, VPD) both in spring and summer
(Fig. 7). In spring, all GPP estimates increased with in-
creasing radiation levels, while in summer a saturation point
was found at PAR> 500 µmolm−2 s−1 that could be linked
to VPD limitation on stomatal conductance in the after-
noon (Kooijmans et al., 2019). GPPCOS,PAR was higher than
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Figure 4. Scatter plots of GPPANN, GPPCOS,PAR, and GPPCOS,CAP against GPPNLR in 30 min, daily, and monthly timescales. The colour
of data points in 30 min and daily scatter plots indicates the data density, lighter colours indicating higher point density than dark ones.

Table 2. Cumulative GPP (gCm−2) over May–July with different
GPP estimates. All sums are calculated from the same data cover-
age, and the fraction of gap-filled flux data (CO2 flux for GPPNLR,
COS flux for GPPCOS,PAR and GPPCOS,CAP) is presented in paren-
theses. GPPANN does not include gap-filled NEE data since it is
based on meteorological variables. ∗ In 2015, the cumulative sum
covers only July.

Year GPPNLR GPPANN GPPCOS,PAR GPPCOS,CAP

2013 481 (0.16) 473 597 (0.28) 510 (0.28)
2014 294 (0.20) 324 414 (0.24) 343 (0.24)
2015 193 (0.23)∗ 188∗ 212 (0.31)∗ 165 (0.31)∗

2016 623 (0.40) 565 722 (0.43) 599 (0.43)
2017 387 (0.35) 399 522 (0.34) 428 (0.34)

GPPCOS,CAP at PAR> 400 µmolm−2 s−1, while at low PAR
values they agreed well with each other both in spring and
summer, as well as with GPPNLR and GPPANN. GPPCOS,PAR
thus has a stronger radiation response than the other GPP es-
timates due to a lower empirical LRU estimate than LRUCAP

at high PAR (Fig. B7). A similar PAR response was found in
Spielmann et al. (2019), who studied GPPCOS,PAR with a tra-
ditional GPP partitioning method at four different sites in Eu-
rope. Although GPPCOS,CAP agrees well with both GPPNLR
and GPPANN at high PAR, it is likely underestimated due to
high LRUCAP at high PAR (Fig. B7).

In spring, increasing air temperature increased all GPP
estimates similarly until Ta reached 17 ◦C. However, again
GPPCOS,PAR was higher than other GPP estimates. In sum-
mer, air temperature did not have a notable effect on any
GPP estimate. Responses to VPD were similar for each GPP
estimates both in spring and summer. In spring, decreasing
air humidity (increasing VPD) was associated with increased
GPP until VPD> 0.7 kPa, after which VPD had little or no
effect. The apparent increase in GPP with VPD in spring may
be caused by the correlation of Ta with VPD, coinciding with
the start of the growing season as the trees are not water-
limited after snowmelt. In summer, dryness started to limit
GPP at VPD> 1 kPa. We found that similar to PAR and Ta
responses, GPPCOS,PAR was higher than other GPP estimates
at low VPD values but decreased to similar levels at high
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Figure 5. Relative (a) and absolute (b) difference of daily GPPANN (pink), GPPCOS,PAR (dark blue), and GPPCOS,CAP (light blue) to
GPPNLR in different months, averaged over the whole measurement period 2013–2017. Bars represent the median difference, and whiskers
show the 25th and 75th percentiles. Numbers on top of the bars indicate how many daily flux data points have been used for calculating the
medians. Median differences have been calculated using the same number of data points for each method in each month.

VPD (1 kPa) both in spring and summer. GPPCOS,PAR gives
higher GPP at low VPD than the CO2-based methods, as does
GPPCOS,CAP in spring (Fig. 7). This may indicate that some
factor is limiting the photosynthesis reaction (e.g. biochemi-
cal limitations in CO2 assimilation) even though the diffusion
into the leaf is not limited.

3.4 Uncertainties and limitations of the GPP methods

Because ANN fitting is purely based on the provided ex-
amples, GPPANN could be more sensitive to the uncertainty
of (training) data with respect to the parametric partitioning
methods. Moreover, it is sensitive to missing data especially
in the case of long data gaps (Tramontana et al., 2020). The
method also requires large data sets for training NNC-part,
which may not be available at all measurement sites. How-
ever, GPPANN does not require prescribed relationships of
GPP to environmental data, making it an attractive method
for sites with good data availability.

GPPCOS,PAR uses an empirical PAR relation that is based
on measurements at Hyytiälä forest. This PAR relation is
site-specific and different compared to the one found by Yang
et al. (2018). For this reason it is not known if and how it can
be used at other sites, where it is suggested to retrieve it di-

rectly from observations. The choice of the empirical LRU–
PAR relation at any given site is to some extent arbitrary.
While the LRUPAR function is simple and thereby attrac-
tive, it does not take into account the different light condi-
tions inside the canopy, stomatal regulation during drought,
or the effects of non-stomatal limitations on photosynthesis.
Moreover, being an empirical model, it does not provide a
process-based understanding for LRU. While the results of
GPPCOS,PAR are promising, we found a 25 % difference in
midday GPP during summer, similar to that found by Kooi-
jmans et al. (2019). We did not find as good an agreement
with CO2-based GPP estimates as Asaf et al. (2013), who
found an agreement within 15 % using a constant LRU of 1.6
in Mediterranean pine forests and crop fields. However, they
also reported higher GPPCOS assumed to be related to soil
COS uptake, which was not measured or taken into account
in their GPP calculations. In our study, we subtracted an aver-
age measured soil flux (Sun et al., 2018a) from the ecosystem
COS uptake. As the diurnal variation in soil COS exchange
was small (less than 1 pmolm−2 s−1) throughout the season,
averaging did not make a large difference, and thus soil does
not explain the differences found here. However, as soil COS
flux measurements are not necessarily available at all sites,
this may be one source of uncertainty in wider applications.
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Figure 6. Distribution (bars) and probability density func-
tions (lines) of daily average (a) GPPNLR, (b) GPPANN, (c)
GPPCOS,PAR, and (d) GPPCOS,CAP. All probability density func-
tions are combined in (e) for better comparison.

Yang et al. (2018) studied COS flux components and GPPCOS
in a Mediterranean citrus orchard and found GPPCOS to be on
average 7 % lower than traditionally partitioned GPP. They
also presented a light-dependent and seasonally varying LRU
which, however, could not be applied to Hyytiälä COS fluxes
due to the very different ecosystem types studied, indicating
that the PAR responses may differ between ecosystems.

GPPCOS,CAP may be more applicable at other sites than
GPPCOS,PAR because it is based on a generic physiological
model of stomatal behaviour, which requires only literature-
based parameter values and simple meteorological variables
as inputs. However, as for LRUPAR, LRUCAP should also
be tested at other sites against measured LRU to verify its
applicability to other ecosystems. The version of LRUCAP
assuming infinite mesophyll conductance, while giving rea-
sonable results in comparison with LRUch, is clearly phys-
iologically unrealistic. The formulation of LRUCAP with fi-
nite gm did not compare as well with LRUch at Hyytiälä for-
est (RMSE= 2.58, median difference to LRUch 22 %), espe-
cially during low light conditions, but may compare better at
other measurement sites.

One source of uncertainty in GPP estimates based on
LRUCAP and LRUPAR is that both LRU predictions are calcu-
lated from radiation measurements at the top of the canopy,

where there is no shading by foliage, although the theo-
retical dependence of LRUCAP on radiation is more gener-
ally applicable throughout the canopy. The branch chamber
measurements (on which the empirical LRUPAR function is
based) were also made at the top of the canopy. The mea-
sured needles were thus well-adjusted to high radiation con-
ditions. Therefore, we did not take into account light penetra-
tion and scattering through the canopy. However, the needles
and leaves within the canopy are also well adjusted to low
light conditions and may be more efficient with their stomatal
control in varying light conditions than needles on top of the
canopy. Thus, this may not be a large source of uncertainty.
However, it is also possible that LRU varies throughout the
canopy due to different light conditions.

4 Conclusions

Daily GPPANN and GPPNLR did not differ significantly,
and differences were also small at sub-daily and seasonal
timescales. GPPCOS,PAR was higher than GPPNLR at all
timescales studied, including the estimate of 3-month cu-
mulative GPP during the peak growing season. In contrast,
GPPCOS,CAP, a new method based on stomatal optimization
theory, gave better agreement with GPPNLR at all timescales
and was also less scattered than GPPCOS,PAR at a 30 min
timescale.

The LRUCAP function provides a new theoretical under-
pinning for COS-based GPP estimates that can be used at
other measurement sites, potentially without requiring addi-
tional branch chamber measurements. LRUCAP represents a
significant improvement on previous LRU functions based on
site-specific empirical regressions. However, LRUCAP over-
estimated LRU at high radiation when compared to LRU ob-
servations at the top of the canopy, leading to a lower midday
GPPCOS,CAP, especially in summer. This discrepancy may re-
sult from the assumption of infinite mesophyll conductance,
or the absence of dark respiration, in the underlying stom-
atal optimization model. LRUCAP would benefit from fur-
ther testing at other measurement sites with COS and CO2
branch flux measurements, including measurements inside
the canopy for better canopy-integrated LRU estimates.

Although COS flux measurements are noisier, more ex-
pensive, and more difficult than those of CO2, they pro-
vide an opportunity for better process-based understanding
of photosynthesis in comparison to more traditional CO2-
based estimates of GPP. In addition to COS, other proxies
such as solar-induced fluorescence and isotopic flux mea-
surements should be tested simultaneously to properly inves-
tigate their deficiencies and advantages in estimating GPP
and processes underlying photosynthesis.

The establishment of large long-term ecosystem research
infrastructures (e.g. ICOS, NEON, TERN; see Papale, 2020)
– involving sites equipped with eddy covariance systems that
could potentially also host COS, SIF (solar-induced fluo-
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Figure 7. Responses of the different GPP estimates (GPPNLR (purple), GPPANN (pink), GPPCOS,PAR (dark blue), and GPPCOS,CAP, light
blue) to environmental parameters – photosynthetically active radiation (a, d), air temperature (b, e), and vapour pressure deficit (c, f) – in
spring (a–c) and summer (d–f). Data are binned to 12 equally sized bins (same number of data points in each bin), and all GPPs have the same
data coverage. Only measured (non-gap-filled) 30 min flux data were used, and GPP was filtered to include only PAR> 700 µmolm2 s−1 in
responses to Ta and VPD to avoid simultaneous correlation with PAR.

rescence), and isotope sensors – together with the planned
launch of the FLEX satellite in 2025 (https://earth.esa.int/
eogateway/missions/flex, last access: 28 June 2022) that will
provide global vegetation fluorescence measurements, opens
up a new phase in monitoring and understanding plant pho-
tosynthesis. Our results also underline the important role of
small-scale ecophysiological measurements and models in
underpinning these larger-scale initiatives.

Appendix A: LRU predicted by the CAP stomatal
optimization model

A1 LRUCAP assuming infinite mesophyll conductance

The general expression for the leaf relative uptake ratio
(LRU) derived from the diffusion laws for COS and CO2
(Wohlfahrt et al., 2012) is

LRU=
1

1− ci
ca

1
1.21 +

1
1.14

gCOS
s
gCOS

b

1+ gCOS
s
gCOS

b
+
gCOS

s
gCOS

m

, (A1)

where gCOS
x (x = b,s,m) are the boundary layer, stomatal

and mesophyll conductances for COS, respectively, ca and

https://doi.org/10.5194/bg-19-4067-2022 Biogeosciences, 19, 4067–4088, 2022

https://earth.esa.int/eogateway/missions/flex
https://earth.esa.int/eogateway/missions/flex


4080 K.-M. Kohonen et al.: Intercomparison of methods to estimate GPP

ci are the atmospheric and leaf intercellular CO2 molar mix-
ing ratios (molmol−1), respectively, and the numerical fac-
tors 1.21 and 1.14 are the ratios of the conductances of CO2
to COS for stomata and the boundary layer, respectively.

If it is assumed that boundary layer and mesophyll con-
ductances are infinite, Eq. (A1) reduces to

LRU=
1

1.21

(
1−

ci

ca

)−1

. (A2)

We derived ci from the CAP stomatal optimization model
(Dewar et al., 2018), according to which stomatal conduc-
tance adjusts to maximize the rate of leaf photosynthesis (A)
through a trade-off between stomatal and non-stomatal limi-
tations. Our photosynthesis model is based on that of Thorn-
ley and Johnson (1990) (their Eq. 9.12i), modified to include
non-stomatal limitations (NSLs):

A=

(
1−

ψleaf

ψc

)
αQgc(ci−0

∗)

αQ+ gc(ci+0∗)
, (A3)

where α is the photosynthetic quantum yield (molmol−1)
in the absence of NSLs, Q (molm−2 s−1) is photosyntheti-
cally active radiation (PAR), gc (molm−2 s−1) is the initial
slope of the A–ci response curve in the absence of NSLs,
0∗ (molmol−1) is the photorespiratory CO2 compensation
point, ψleaf (MPa) is the leaf water potential, and ψc (MPa)
is the critical leaf water potential at which NSLs reduce pho-
tosynthesis to zero. In Eq. (A3), NSLs are represented as an
apparent downregulation of the A− ci response curve by a
factor that decreases with decreasing leaf water potential, as
has been observed in numerous experiments (e.g. Lintunen
et al., 2020; Salmon et al., 2020). Consequently, as stomatal
conductance increases there is a trade-off between increased
CO2 supply and increased NSLs such that A has a maximum
at some optimal value of stomatal conductance.

We used Eq. (A3) rather than the Farquhar photosynthe-
sis model (Farquhar et al., 1980) because, in the latter, the
abrupt switch from RuBisCo to electron transport limitation
introduces artificial discontinuities in the CAP solution for
optimal stomatal conductance (Dewar et al., 2018), whereas
in Eq. (A3) there is a smooth transition from CO2 limitation
to light limitation, and no such discontinuities occur. The pa-
rameter gc is equivalent to Vcmax/(km+0

∗) in the Farquhar
model.

The CAP solution for optimal stomatal conductance (De-
war et al., 2018) predicts that

ci−0
∗

ca−0∗
=

1
1+β

, (A4)

where

β =

√
1.6D
Ksl|ψc|

(
1
gc
+

20∗

αQ

)−1

, (A5)

in which D is vapour pressure deficit (VPD; molmol−1),
andKsl is the leaf-specific soil-to-leaf hydraulic conductance

(molm−2 s−1 MPa−1). Writing Eq. (A2) in the equivalent
form

LRU=
1

1.21
ca

ca−0∗

(
1−

ci−0
∗

ca−0∗

)−1

(A6)

and substituting the CAP prediction from Eqs. (A4) and (A5)
then give

LRUCAP =

1
1.21

ca

ca−0∗

1+

√
Ksl|ψc|

1.6Dgc

√
1+

20∗gc

αQ

 . (A7)

In Eq. (A7) all the parameters are physiologically meaningful
and can be measured independently or obtained from the lit-
erature because the underlying CAP model is based entirely
on such parameters. This contrasts with the use of the stom-
atal optimization model of Medlyn et al. (2011), for example,
which contains an undetermined parameter (λ, interpreted as
the marginal water cost of carbon gain) that must be empiri-
cally fitted.

Nevertheless, to assess the performance of LRUCAP ob-
tained from literature-based parameter values, we compared
it with LRUCAP obtained by fitting the two key parameter
combinations X = |ψc|/(1.6gc) and Y = 20∗gc/α , in terms
of which Eq. (A7) may be written as

LRUCAP =
1

1.21
ca

ca−0∗

(
1+

√
KslX

D

√
1+

Y

Q

)
. (A8)

Parameters X and Y were optimized to minimize the RMSE
of log(LRUCAP) to measured log(LRU), due to the loga-
rithmic nature of LRU, with MATLAB’s fminsearch func-
tion. However, we emphasize that this fitting procedure was
conducted purely in order to assess the model performance
and is not a requirement for applying LRUCAP in practice
when literature-based parameter values are available. More-
over, the results presented in this study are not based on the
optimized values but on literature values only.

A2 LRUCAP assuming finite mesophyll conductance

In the case that mesophyll conductance is not assumed to be
infinite (but boundary layer conductance is infinite), Eq. (A1)
becomes

LRU=
1

1.21
1

1+ gCOS
s
gCOS

m

(
1−

ci

ca

)−1

. (A9)

If we further assume that the ratios of stomatal to mes-
ophyll conductances are the same for CO2 and COS, then
from g

CO2
s (ca− ci)= g

CO2
m (ci− cc), where cc is the chloro-

plast CO2 molar mixing ratio (molmol−1), we can make the
substitution

gCOS
s

gCOS
m
=
g

CO2
s

g
CO2
m
=
ci− cc

ca− ci
(A10)
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in Eq. (A9) to obtain

LRU=
1

1.21

(
1−

cc

ca

)−1

, (A11)

which reduces to Eq. (A2) when mesophyll conductance is
infinite (since then cc = ci). As noted above, CAP represents
NSLs in terms of an apparent downregulation of the A− ci
response curve (Eq. A3). This empirical observation may be
interpreted in various ways: as a downregulation of photo-
synthetic efficiencies (α and gc) in the chloroplast, a down-
regulation of mesophyll conductance (gCO2

m ), or some combi-
nation of the two. In the case when NSLs act entirely on gCOS

m
with no effect on the biochemical efficiencies, A is given as a
function of the chloroplast CO2 concentration by (cf. Eq. A3)

A=
αQgc(cc−0

∗)

αQ+ gc(cc+0∗)
. (A12)

In this case, since Eq. (A3) still holds, we obtain the
same optimal CAP solution for stomatal conductance and ci
(Eq. A4) as before but now with an additional prediction for
the finite (but variable) mesophyll conductance as implied
by Eq. (A12), which links the chloroplast CO2 concentration
(cc) to the CAP solution of A. From Eq. (A12),

cc−0
∗
=

(
αQ
gc
+ 20∗

)
A

αQ−A
. (A13)

The CAP solution for stomatal conductance is given by (De-
war et al., 2018)

gs =
αQ

αQ
gc
+ 20∗

xθ

xβ2+ (1− x)(xw+ 1)
, (A14)

where

θ = 1−
ψsoil

ψc
, (A15)

w =
ca−0

∗

αQ
gc
+ 20∗

, (A16)

x =
ci−0

∗

ca−0∗
=

1
1+β

, (A17)

in which ψsoil (MPa) is the soil water potential. Substituting
x as a function of β into Eq. (A14) and simplifying give

gs =
αQ

αQ
gc
+ 20∗

θ

β
(
1+β + w

1+β

) . (A18)

We then find the CAP solution for A as follows:

A= gs(ca− ci)

= gs(ca−0
∗)(1− x)

= gs(ca−0
∗)

β

1+β

=
αQ(ca−0

∗)

αQ
gc
+ 20∗

θ

(1+β)2+w
. (A19)

Substituting this into Eq. (A13) and simplifying then give

cc−0
∗

ca−0∗
=

θ

(1+β)2+ (1− θ)w

=
θ

(1+β)2+ (1− θ) gc(ca−0∗)
αQ+20∗gc

, (A20)

which can be combined with Eq. (A11) to give the solution
of LRUCAP with finite mesophyll conductance.

As for LRUCAP with infinite mesophyll conductance, we
also fitted this version with respect to parameters X and Y
in order to compare it with the performance of the model
using literature-based values. For this procedure, β and w
were expressed in terms of X and Y ,

β =
1√

KslX
D

(
1+ Y

Q

) (A21)

and

w =
ca−0

∗

20∗
1

Q
Y
+ 1

, (A22)

and then substituted into Eq. (A20). However, as for the infi-
nite gm solution, this fitting procedure was conducted purely
in order to assess the model performance and is not a require-
ment for applying LRUCAP in practice when literature-based
parameter values are available.
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Appendix B: Additional figures

Figure B1. Modelled against measured NEE using (a) NLR and (b) ANN models for modelling NEE.

Figure B2. Scatter plots of LRUCAP using the literature values against LRUCAP using the optimized parameter values when assuming (a)
infinite or (b) finite mesophyll conductance.
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Figure B3. Scatter plots of GPPairT that uses only air temperature as the driver for respiration against GPPNLR that uses an average of air
and soil temperatures as the respiration driver at 30 min, daily, and monthly timescales. The solid black line is the least-squares linear fit to
the data.

Figure B4. ANOVA test results for 30 min GPP data. Gray bars indicate no difference to the reference (blue), and red bars indicate statistical
difference to the reference. The results show that only GPPCOS,PAR differs statistically from GPPNLR at 30 min timescale.

Figure B5. ANOVA test results for daily GPP data. Gray bars indicate no difference to the reference (blue), and red bars indicate statistical
difference to the reference. The results show that both GPPCOS,PAR and GPPCOS,CAP differ statistically from both GPPNLR and GPPANN
at daily scale. GPPCOS,PAR and GPPCOS,CAP do not differ from each other.
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Figure B6. ANOVA test results for monthly GPP data. Gray bars indicate no difference to the reference (blue), and red bars indicate statistical
difference to the reference. The results show that all GPPs are statistically the same at monthly scale.

Figure B7. LRU derived from chamber measurements (gray) and modelled LRUPAR (blue) and LRUCAP (red) assuming infinite (a–c) or
finite (d–f) mesophyll conductance (gm) in LRUCAP against PAR and VPD. Subplots (c) and (d) compare the chamber-measured LRU
against modelled LRUPAR and LRUCAP.
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Figure B8. Net ecosystem exchange (NEE) against photosynthetically active radiation (PAR) close to the compensation point during May,
June, July, and August. Data are binned to different air temperature classes: 5◦C< Ta < 10 ◦C (blue), 10◦C< Ta < 15 ◦C (orange), and
Ta > 15 ◦C (yellow).
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