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Abstract. Historically, ecosystem models have treated rain-
fall as the primary moisture source driving litter decomposi-
tion. In many arid and semi-arid lands, however, non-rainfall
moisture (fog, dew, and water vapor) plays a more impor-
tant role in supporting microbial activity and carbon turnover.
To date though, we lack a robust approach for modeling the
role of non-rainfall moisture in litter decomposition. We de-
veloped a series of simple litter decay models with differ-
ent moisture sensitivity and temperature sensitivity functions
to explicitly represent the role of non-rainfall moisture in
the litter decay process. To evaluate model performance, we
conducted a 30-month litter decomposition study at 6 sites
along a fog and dew gradient in the Namib desert, spanning
almost an eightfold difference in non-rainfall moisture fre-
quency. Litter decay rates in the field correlated with fog
and dew frequencies but not with rainfall. Including either
temperature or non-rainfall moisture sensitivity functions im-
proved model performance, but the combination of temper-
ature and moisture sensitivity together provided more real-
istic estimates of litter decomposition than relying on either
alone. Model performance was similar regardless of whether
we used continuous moisture sensitivity functions based on
relative humidity or a simple binary function based on the
presence of moisture, although a Gaussian temperature sen-
sitivity outperformed a monotonically increasing Q10 tem-
perature function. We demonstrate that explicitly modeling
non-rainfall moisture and temperature together is necessary
to accurately capture litter decay dynamics in a fog-affected

dryland system and provide suggestions for how to incorpo-
rate non-rainfall moisture into existing Earth system models.

1 Introduction

Drylands play an important part in the global carbon cycle,
but we still lack a strong understanding of carbon cycling in
these systems. Historically, ecosystem models have under-
estimated dryland litter decomposition rates (Parton et al.,
2007; Adair et al., 2008). This is partly because the mod-
els are driven by rainfall, assuming little to no decay be-
tween precipitation events. While rainfall pulses play a large
role in dryland systems (Noy-Meir, 1973; Seely and Louw,
1980), considering rain alone does not fully capture litter
decomposition in these systems. This may be partially be-
cause much decomposition occurs at and above the soil sur-
face, and aboveground litter decomposition is less sensitive
to large rain pulses than belowground decay (Austin, 2011;
Jacobson and Jacobson, 1998). Abiotic processes includ-
ing photodegradation, aeolian erosion, and thermal degrada-
tion that drive aboveground litter decomposition can degrade
litter regardless of moisture conditions (Austin, 2011) and
rain events as little as 1 mm can facilitate microbial activity
(Collins et al., 2008). Finally, non-rainfall moisture (NRM:
fog, dew, and water vapor) can support substantial biotic de-
composition of plant litter, even in the absence of rain (Jacob-
son et al., 2015; Dirks et al., 2010; Wang et al., 2017; Logan
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et al., 2021). These findings demonstrate that carbon and nu-
trient cycling in drylands are not restricted to precipitation
pulses and that NRM is a crucial driver of dryland biogeo-
chemical cycles. As our understanding of the importance of
NRM in arid and semi-arid ecosystems evolves, we need to
update our conceptual and predictive models to incorporate
these important drivers of ecosystem processes.

Despite growing recognition of NRM’s importance, cur-
rent litter decay models do not explicitly account for its abil-
ity to support decomposition. This is partly because field-
based studies of NRM-driven decomposition are scarce and
so far, have mostly focused on documenting single cases and
understanding mechanisms. Recent studies have shown that
the rate of NRM-driven decomposition depends on many fac-
tors including the frequency of humid conditions (Evans et
al., 2020), the composition of decomposer communities (Lo-
gan et al., 2021; Wenndt et al., 2021), and interactions with
other processes, such as photodegradation (Wang et al., 2015;
Gliksman et al., 2017; Logan et al., 2022). These insights
have been very helpful in demonstrating that NRM-driven
decomposition occurs and identifying its various mecha-
nisms. However, before we can incorporate NRM into mech-
anistic Earth system models, we need multiyear studies that
quantify the relationship between NRM and mass loss across
a range of environmental conditions (Bonan et al., 2013),
something that has not been done to date.

One recent attempt to model NRM-driven decomposition
has shed light on this challenge. Evans et al. (2020) devel-
oped a model that treated decomposition as a pulse process
that could be triggered by either rain or NRM when condi-
tions met a given criterion (i.e., when relative humidity was
above a given threshold or when dew was present as deter-
mined by a leaf wetness sensor). They found that accounting
for NRM produced mass loss estimates that were consider-
ably higher than those from a rain-only model and that these
new estimates were within the range observed in the field.
This approach showed that NRM can improve mass loss es-
timates, but it included several simplifying assumptions that
need to be tested before NRM can be incorporated into mod-
els more generally. First, the authors modeled annual mass
loss by measuring instantaneous respiration rates and scaling
them up to annual time scales. This showed that the NRM-
driven biotic activity on the scale of individual events can
be used to estimate long-term mass loss rates over several
months, albeit with wide error estimates. A better approach
would be to validate model predictions by formally integrat-
ing rates of mass loss at multiple sites and in multiyear field
studies (Bonan et al., 2013). Studies where NRM meteorol-
ogy and decomposition are both measured and quantifiably
linked to one another are currently lacking.

Second, their model treated decomposition as essentially
a pulse process that could be triggered by either rainfall or
NRM, but responded similarly to both (in other words, as
long as the threshold condition was met, decomposition was
considered to be “on”). While rainfall and NRM may in-

duce similar decomposition rates for a similar moisture level,
this approach does not allow the possibility of continuous
responses. For example, CO2 fluxes are strongly correlated
with litter moisture content (Jacobson et al., 2015), which
varies with relative humidity (Tschinkel, 1973; Dirks et al.,
2010), so a sensitivity function that allows instantaneous de-
cay rates to vary depending on the magnitude of the NRM
event may be more appropriate than a simple threshold trig-
ger.

Finally, their model did not include temperature depen-
dence, despite decomposition being highly sensitive to tem-
perature in almost all terrestrial systems (Sierra, 2012; Sierra
et al., 2015). Relative humidity is closely linked to air tem-
perature, and average temperature during NRM events is
often considerably lower than during rain events (Logan
et al., 2021). Developing more powerful NRM-driven litter
decay models may therefore require incorporating continu-
ous moisture responses and temperature sensitivities to ac-
curately capture decomposition dynamics, although to date
these remain untested.

We set out to determine whether incorporating NRM into
a simple litter decay model improved model performance in
an NRM-dominated system. We tested multiple potential re-
lationships between meteorological variables and litter decay
rates in an attempt to parameterize a model of NRM-driven
decomposition. We had two main objectives:

1. Use a novel dataset to evaluate multiple methods of
modeling litter decomposition as a function of NRM.

2. Determine how important temperature sensitivity is in
NRM-driven litter decomposition models.

Since existing studies examining decomposition under dif-
ferent moisture regimes are limiting (Jacobson et al., 2015;
Evans et al., 2020), we draw upon literature on soil organic
matter decomposition and rainfall-driven litter decomposi-
tion to identify potential moisture and temperature sensitivity
functions (Sierra et al., 2015). To evaluate models, we con-
ducted a 30-month, multisite litter decomposition study that
spanned an eightfold magnitude of NRM frequency. By plac-
ing litter across this gradient and making continuous meteo-
rological measurements alongside mass loss, we were able
to quantify the relationship between NRM and litter decay
on a multiyear time scale for the first time. Finally, we used a
Bayesian-Monte Carlo approach to parameterize mass loss
models using several temperature and moisture sensitivity
functions and used model selection criteria to identify the
best models.

2 Methods

2.1 Empirical measurements

We conducted our study in the central Namib desert in west-
ern Namibia. The Namib desert is a coastal fog desert, with
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a steep NRM gradient across a narrow geographic range
(Eckardt et al., 2013). Rain is scarce in the Namib desert
and NRM is expected to be responsible for the vast major-
ity of litter decomposition (Evans et al., 2020). We lever-
aged the FogNet weather array, a network of meteorologi-
cal stations throughout the central Namib desert that is part
of the Southern African Science Service Centre for Cli-
mate Change and Adaptive Land Management (SASSCAL;
http://www.sasscalweathernet.org/, last access: 1 July 2022)
and maintained by the Gobabeb Namib Research Institute
(https://www.gobabeb.org/, last access: 1 July 2022) (Fig. A1
in the Appendix). Each station measures air temperature, rel-
ative humidity, wind speed and direction, soil temperature,
leaf wetness state, rainfall, and fog precipitation on a Juvik
fog screen. The sites are all located within 70 km of one an-
other but span an order of magnitude in NRM frequency: wet
conditions (fog or dew) occur for 3.1 % of the period (quanti-
fied by hours wet) at the driest site and 25.3 % at the wettest;
a characterization of meteorology across these sites was part
of this study. Weather data were recorded once per minute
and converted to hourly averages for analysis.

At six sites, we deployed senesced tillers of Stipagrostis
sabulicola to monitor mass loss. S. sabulicola is the dom-
inant grass in the Namib Sand Sea with widely distributed
congenerics across Africa and Asia (Roth-Nebelsick et al.,
2012; GrassBase – The Online World Grass Flora, 2021).
Since litter-associated fungal communities can respond dif-
ferently to NRM based on their history of exposure to dif-
ferent moisture regimes (Logan et al., 2021), we collected
all tillers from the same site (Gobabeb) so the initial fungal
community would be the same. To avoid potential microcli-
mate effects of traditional litter bags (Xie, 2020), we mea-
sured mass loss by placing tillers in litter racks, custom-made
wooden frames designed to hold grass tillers while keep-
ing them completely exposed to ambient solar radiation and
moisture conditions (Fig. A2) (Evans et al., 2020; Logan et
al., 2021). Every 6 months for 30 months (19 January 2018 to
12 August 2020; 936 days in total), we collected a subset of
10 tillers at each site and weighed them. Tillers were destruc-
tively harvested at each time point; so in our final dataset,
each tiller was weighed prior to deployment and once again
when it was collected.

Precolonization is a very important step in standing-litter
decomposition since it can “prime” litter to be more ready
to degrade once it reaches the soil surface; this contributes to
changes in litter decay rates over time. To assess the effects of
NRM on litter decomposition throughout the decay process,
we deployed litter at two stages of decay. Categories were
based on previous observations of S. sabulicola decay in situ
in the Namib desert (Logan et al., 2021). Early-stage tillers
were tillers that had senesced in the preceding 2 months,
had no visible fungal growth, and had visibly intact cuti-
cles (Fig. A2). Late-stage tillers were harvested from upright
plants that had likely been standing for at least 1 year post-
senescence and were characterized by coverings of light and

dark pigmented fungi and a cracked cuticle that was consid-
erably more permeable to water. Previous work found sim-
ilar measures of gross litter quality (including C :N ratios,
total lignin, and lignin :N content) between litter at these
two stages, and found that the primary difference between
the two is the level of fungal colonization and state of cuti-
cle degradation, with late-stage tillers harboring much larger
fungal communities (Logan et al., 2021). Since we only col-
lected standing grass litter that had not yet fallen over, our
terminology of “early” and “late” does not reflect the entire
decomposition process but is meant to highlight relative suc-
cessional differences between the litter stages based on time
since senescence and saprophytic community size.

2.2 Model description

To model the effect of NRM on litter decomposition, we
began by modeling decay rates using a simple exponential
model of the form:

M(t)=M0 e−keff t , (1)

where M(t) is mass at time t , M0 is initial mass, and keff
is the effective litter decay constant. This approach captures
typical litter decay dynamics, with a rapid initial decay phase
followed by slower mass loss over time, but does not differ-
entiate between slow and rapid litter pools. We determined
an effective decay rate for each site and litter stage, plotting
this as a function of the total NRM time and accumulated
rainfall at that site.

This approach, whereby we fit a separate effective decay
rate for sites with different climates, is a common approach
to describe how litter decomposition varies under different
climatic conditions (Zhang et al., 2008). However, because
it treats mass loss as solely dependent on the decay rate and
time, this approach does not explicitly include temperature
or moisture. To determine how moisture and temperature in-
fluenced litter decay, we incorporated NRM and temperature
dependence by allowing them to modify an intrinsic litter de-
cay (kint) term, which represents the rate of litter decay under
ideal, non-limiting conditions according to

M(t)=M0 e−kint t h(t) g(t), (2)

where h(t) and g(t) are sensitivity functions for NRM and
temperature, respectively. Unlike the simple model described
by Eq. (1), in this model, the litter decay rate (kint) is the
maximum rate under ideal temperature and moisture condi-
tions, which is then modified downward by the sensitivity
functions (with the exception of Q10 temperature sensitivity
function that allows increasing decomposition above a refer-
ence temperature); see next section for sensitivity functions.
This allowed us to test specific hypothesized relationships
between moisture and litter decay rates, both within and be-
tween sites depending on how we choose to fit the parameters
(i.e., separate fits for each site or global parameter estimates).
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Using a one-pool model allowed us to simplify the intrinsic
decay component of the model and focus on the effect of dif-
ferent temperature and moisture sensitivities. We discretized
the model using hourly meteorological data, calculating the
rate of mass loss for each hour as:

Mn+1

Mn

= 1− 1tn kint g (tn) h(tn). (3)

2.3 Sensitivity functions

Since litter decomposition can occur in response to dew and
fog (Jacobson et al., 2015) or water vapor under humid con-
ditions even in the absence of liquid water (Dirks et al.,
2010), we tested separate sensitivity functions based on ei-
ther relative humidity levels, or based on a measurement of
the presence of liquid water. Sensitivity functions are pre-
sented in Table 1 and shown in Fig. 1. The threshold model
is binary, allowing decomposition to happen at the intrinsic
litter decay rate if and only if relative humidity is above a
specified threshold (RT). This simple approach has yielded
mass loss estimates similar to those previously measured in
the field (Evans et al., 2020). To account for possible satura-
tion at high relative humidities, we also evaluated a logistic
sensitivity model that allows the rate of decomposition po-
tential to slow as relative humidity approaches 100 %. The
exponential moisture model allows decomposition rates to
increase exponentially with relative humidity, reflecting the
relationship between litter moisture content and relative hu-
midity that is often seen in both controlled (Tschinkel, 1973)
and field conditions (Dirks et al., 2010). Each moisture sen-
sitivity function was normalized to 1 when relative humidity
was 100 %. Finally, we tested a fourth function based on the
presence or absence of moisture as measured by a leaf wet-
ness sensor, in which decomposition occurred at the intrinsic
decay rate when the wetness sensors were wet and not at all
when conditions were dry. Previous work showed that rela-
tive humidity can accurately predict leaf wetness state (Sen-
telhas et al., 2008; Evans et al., 2020), so we expected this
model to perform similarly to the threshold model.

To model temperature dependence, we tested two com-
mon temperature sensitivity functions: a Q10 model and a
Gaussian distribution. Q10 sensitivity is a monotonically in-
creasing function that is used to model many biological pro-
cess including litter decomposition (Sierra et al., 2015). Each
increase of 10 ◦C above a reference temperature (Tref, often
the site’s mean temperature), results in an acceleration of the
process in question by a given amount, called the Q10 coef-
ficient. To account for possible negative temperature depen-
dence above an optimum temperature (Topt), we also tested a
Gaussian temperature sensitivity function. A Gaussian func-
tion is often particularly well suited for describing aggre-
gated responses of entire communities (Low-Décarie et al.,
2017), as is the case for the fungal communities on our tillers
(Logan et al., 2021). Temperature sensitivity was normal-
ized to 1 at Topt in the Gaussian model and Tref in the Q10

model. We tested each combination of moisture and temper-
ature functions (as well as moisture-only and temperature-
only versions) for a total of 15 different model structures and
895 230 model-parameter combinations.

To understand the nature of the different models and com-
pare them across a range of conditions, we performed two
model runs. First, we explored a large parameter space to de-
termine how parameters interact with one another across a
wide range of hypothetical conditions. This included param-
eter values outside of realistic ranges (for example, relative
humidity thresholds from 5 % to 99 % and an intrinsic lit-
ter turnover time from 0.1 to 100 years). This allowed us to
see how parameters interacted with each other within the dif-
ferent models and explore general properties of each model.
Next, to assess which models performed best under realistic
conditions, we constrained the parameter space to more ac-
curately reflect real world parameter values. For this model
run, we determined optimal values for each parameter based
on laboratory and field incubations and then randomly varied
parameter combinations around these values; see next sec-
tion for details. Parameter definitions as well as constrained
values used in the second model run are reported in Table 2.
Figure 1 shows the range of temperature and moisture sensi-
tivities we used in the constrained model run.

We used the Akaike information criterion (AIC) to com-
pare the constrained models to one another to determine
which was the best fit to the data. AIC is a model selection
criterion that rewards goodness of fit based on a log likeli-
hood function while penalizing models with greater param-
eters to reduce overfitting biases (Aho et al., 2014). We re-
port AIC values for all combinations of models from the con-
strained parameter run to compare model performance under
realistic scenarios.

2.4 Constraining parameter space

We parameterized the models using a brute force approach
where we randomized parameter inputs to represent condi-
tions seen in the field (Table 2) and then selected the model-
parameter combinations with the lowest AIC scores. To con-
strain temperature parameters, we performed a laboratory in-
cubation of S. sabulicola tillers. We varied the temperature
from 10 to 35 ◦C in 5 ◦C steps, allowing litter to equilibrate
for 60 min before measuring respiration. We sprayed eight
tillers with sterile deionized water until they were saturated
to stimulate fungal activity and placed them in 55 mL acrylic
tubes connected to a LI-8100A gas analyzer (LI-COR Bio-
sciences, Lincoln, NE, USA), measuring mean flux during
3 min incubations. To measure the response of the specific
fungal communities associated with litter used in the field
study, all tillers used in the laboratory incubation were col-
lected at Gobabeb, the same site where litter in the mass loss
experiment was collected.

To calculate Q10, we excluded the measurements at 35 ◦C
(when response becomes negative) and then used the Q10
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Figure 1. Temperature and NRM sensitivity functions included in the models. Each curve shows one parameter combination chosen by
random sampling using a normal distribution around a specified set of priors as identified in Table 2 (n= 895 230 total combinations). The
wetness moisture function has no parameter and is simply the proportion of time during each hour that the leaf wetness sensor detected the
presence of moisture.

Table 1. Moisture and temperature sensitivity functions. The first three moisture functions are based on relative humidity and the fourth
is based on leaf wetness state. Moisture functions are normalized to 1 at 100 % relative humidity and temperature sensitivity functions are
normalized to 1 at Tref and Topt. “RH” is relative humidity.

Class Name Model Parameters

Moisture Threshold h(RH)= if (RH > RT) RT= relative humidity threshold

Moisture Exponential h(RH)= 2
100−RH

R0.5−100 R0.5=RH value at half saturation point

Moisture Logistic h(RH)= 1+er (R0.5−100)
1+er (R0.5−RH)

r = logistic growth rate
R0.5=RH value at half saturation point

Moisture Wetness h(LWS)= leaf wetness state None

Temp. Q10 model g(T )=Q
(T−Tref)/10
10 Q10 =Q10 coefficient

Tref= reference temperature

Temp. Gaussian g(T )= e
−0.5

(
T−Topt

SD

)2

SD= standard deviation
Topt= optimal temperature

function in the respirometry package in R to calculate a sep-
arate Q10 value for each tiller (Birk, 2021; R Core Team,
2020). For the reference temperature, we used the mean tem-
perature when leaf wetness sensors were “wet” across all
sites (12.3 ◦C). This value was fairly constant among sites,
varying by less than 0.9 ◦C (Fig. A3). For the Gaussian tem-
perature sensitivity parameters, we used the “optim” function
in R to find the optimum temperature (Topt) and standard de-
viation (SD) around the optimum after normalizing flux rates
to the maximum rate measured for each tiller (R Core Team,
2020).

The turnover time represents the litter’s intrinsic decay
rate under ideal temperature and moisture conditions and is
equivalent to the inverse of kint, the exponential parameter in
the decay function. To place a lower boundary on this value,
we examined previous studies that measured respiration from
S. sabulicola under wet conditions and extrapolated to esti-
mate a minimum turnover time (in years) under ideal, non-
limiting conditions. Jacobson et al. (2015) reported respira-
tion rates from wet S. sabulicola tillers as high as 1.5 µg CO2-
C g−1 L h−1, corresponding to an intrinsic turnover time of
∼ 0.63 years, assuming 50 % of plant litter mass is carbon.
This is within the range of intrinsic turnover rates reported
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Table 2. Parameter definitions and values used to constrain the second model run to realistic conditions. Values were randomly varied
around means and standard deviations shown, with “n” denoting the number of iterations used for each parameter (n= 895 230 total model-
parameter combinations). For Q10, Topt, and SD, models were run with two standard deviations (i.e., twice the value shown below).

Parameter Definition Model (type) Value Justification

Log10 turnover
time (1/k)

Intrinsic turnover time (i.e.,
turnover time under ideal tem-
perature and moisture condi-
tions)

All 1± 1 year
(n= 20)

Estimated from maximum
respiration rate from previous
studies

Tref Reference temperature for
Q10 function

Q10 (temp) 12.3 ◦C Mean temperature when wet

Q10 Q10 sensitivity Q10 (temp) 2.38± 0.292 ◦C
(n= 8)

Temperature incubations (Fig. 2)

Topt Optimum temperature for
Gaussian distribution

Gaussian (temp) 29.7± 2.37 ◦C
(n= 8)

Temperature incubations (Fig. 2)

SD SD around Topt for
Gaussian distribution

Gaussian (temp) 6.59± 3.02 ◦C
(n= 4)

Temperature incubations (Fig. 2)

R0.5 RH value where moisture
sensitivity is 50 % of maximum

Exponential,
logistic (NRM)

90± 10 %
(n= 20)

Range of humidity conditions
during which NRM typically
occurs (Evans et al., 2020)

RT RH value above which
decomposition is “on”

Simple threshold
(NRM)

90± 10 %
(n= 20)

Range of humidity conditions
during which NRM typically
occurs (Evans et al., 2020)

r Rate of logistic growth Logistic (NRM) 1± 1
(n= 8)

Smaller values approximated a
straight line; higher values resem-
bled the simple threshold model

for other grasses (Zhang et al., 2008). We therefore used a
turnover time with a mean of 1 year around a log-normal dis-
tribution. We varied the logistic growth parameter (r) of the
logistic moisture sensitivity function around a value of 1, be-
cause at much lower values it began to resemble a straight
line (i.e., no longer logistic sensitivity) and at higher values
it converged on the simple threshold model.

3 Results

3.1 Meteorological conditions and temperature
incubations

Moisture conditions varied substantially among the sites. Du-
ration of wetness during the study period (as determined
by leaf wetness sensors) ranged from 672 h (3.1 % of total
hours) at the driest site (Garnet Koppie) to 5672 h (25.3 %
of total hours) at the wettest site (Kleinberg). Drier sites
tended to be warmer; mean temperature when dry was 2.3 ◦C
warmer at the warmest site (Garnet Koppie) than at the
coolest site (Kleinberg) (Table 3). Temperatures during NRM
events were lower and less variable than temperatures during
dry periods (Table 3). Wet conditions almost never occurred
when temperatures were above 20 ◦C at any site (Fig. A3).

Average relative humidity differed among the sites and was
correlated with hours of wetness. Rainfall occurred at all sites
during the study period, ranging from 26.4–64.2 mm, but did
not correlate with NRM frequency. The optimum tempera-
ture for respiration in the incubations was 30 ◦C, with flux
rate dropping at 35 ◦C (Fig. 2).

3.2 Litter mass loss

In general, mass loss was greater at sites with more NRM
and lower at sites with less NRM (Figs. 3, A7). There was
a significant three-way interaction between litter stage, site,
and time (Table A1 in Appendix). Within each site, early-
stage and late-stage litter decomposed at comparable rates
for the first 18 months, but diverged after that depending on
the site (Fig. 3). After 24 months at the 2 driest sites, early-
stage litter lost more mass than late-stage litter. At the four
wettest sites however, late-stage litter experienced the greater
mass loss (Fig. 3).

When we used a simple exponential decay model without
temperature and moisture sensitivity (Eq. 1), the effective de-
cay rate at each site was correlated with NRM duration but
not with accumulated rainfall (Fig. 4). Late-stage litter (i.e.,
tillers with more well-established fungal communities) re-
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Table 3. Summary of meteorological conditions at each site during the study showing mean temperature when dry, mean temperature when
wet, wet hours during the entire study period (as determined by leaf wetness sensors), the proportion of total time when conditions were wet,
accumulated rainfall during the study period, and mean relative humidity throughout the study period. Temperature ranges in parentheses
report the middle 95 % of data. Mean temperatures apply to the time period used in this study but should not be used to infer mean annual
temperatures for each site since the study lasted 2.5 years and therefore data from January–August are represented more than September–
December. Full names for sites are included in Fig. A1.

Site Tempdry Tempwet Wet hours Proportion of time wet Rain Mean relative humidity
(◦C) (◦C) (h) (%) (mm) (%)

GK 22.4 (12.67–32.34) 12.2 (6.88–19.17) 674 3.0 % 61.8 37.5
GB 22.2 (11.35–33.42) 12.4 (6.24–17.91) 1645 7.3 % 64.2 44.8
S8 21.4 (10.92–32.49) 11.7 (5.66–17.4) 1930 8.6 % 26.4 46.9
VF 21.7 (11.75–32.37) 12 (6.34–16.38) 2214 9.9 % 33.7 50.2
MK 22 (12.73–32.09) 12.6 (8.00–16.59) 2810 12.5 % 44.5 53.6
KB 20.1 (11.01–30.91) 12.4 (6.69–17.07) 5672 25.3 % 56.6 67.7

Figure 2. Temperature sensitivity of respiration from S. sabulicola
tillers in a laboratory incubation, used to constrain temperature pa-
rameters (mean± 1 S.E.M., n= 8). Flux rate is normalized to the
rate at 30 ◦C. Tillers were sprayed with deionized water until satu-
rated and respiration was measured at 5 ◦C intervals.

sponded more strongly to NRM than did early-stage litter;
for every additional 1000 h of wetness at a site, the effective
decay rate increased by 0.0043 yr−1 for early-stage litter and
0.014 yr−1 for late-stage litter (Fig. 4).

3.3 Model parameter space exploration

For the three NRM sensitivity functions based on relative hu-
midity, parameter values showed a tradeoff between turnover
time and RH thresholds (Fig. 5): parameter combinations
with the lowest AIC scores featured either slow turnover
times and a low RH threshold (bottom right of plots) or
faster turnover times and high RH thresholds (upper mid-
dle of plots). When we fit parameters separately for each
site instead of globally, AIC values improved, but the actual
values of the best parameter combinations did not change

(Fig. A4). Similarly, fitting parameters separately to early-
stage and late-stage tillers did not produce different optimal
parameter values (Fig. A5).

Models that included Q10 temperature sensitivity con-
verged on slower intrinsic decay rates (i.e., longer turnover
times) than those using a Gaussian temperature sensitivity or
temperature-independent model (Fig. 5). The wetness sensi-
tivity functions yielded an optimal litter turnover time of 2.5
years under a moisture-only and Q10 temperature sensitiv-
ity model (Fig. 5). Using a Gaussian temperature sensitivity
yielded a faster intrinsic decay with an optimal turnover time
of 0.5–1.5 years.

3.4 Model performance comparison

Models that included NRM sensitivity had better fits than the
simple litter decay model, but the best models included both
NRM and temperature sensitivity (Fig. 6). While model fit
improved (AIC scores were lower) whenever NRM sensitiv-
ity was included, the degree to which NRM sensitivity im-
proved the model fit depended on the temperature sensitiv-
ity function. In particular, models with Gaussian temperature
sensitivity performed better than those with Q10 sensitivity
or no temperature sensitivity, a finding consistent with the
fall off in decay seen in the incubations (Fig. 2). Surpris-
ingly, after controlling for temperature response, each of the
four moisture functions had similar AIC scores, with no sin-
gle moisture model performing appreciably better than the
others (Fig. 6).

Including temperature sensitivity alone (without NRM)
did not improve model fit as well as modeling only NRM
sensitivity (without temperature). All of the NRM-only mod-
els (Fig. 6, bottom row) had better fits than temperature-only
models (Fig. 6, right column), although each showed a wide
range depending on the specific parameter combinations. In
fact, an unconstrained model with Q10 temperature sensitiv-
ity but no moisture sensitivity converged on an optimal Q10
value < 1, indicating a negative temperature dependence of
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Figure 3. Mass loss for early-stage (yellow) and late-stage (gray) tillers at each site (mean± 1 S.E.M.). Percentage values in the bottom of
each panel show the average proportion of time throughout the study period that the site has liquid water, as determined by a leaf wetness
sensor. Note: tillers did not actually increase in mass; the apparent increase at some time points in some panels is merely a result of variation
among tillers, since we destructively harvested tillers at each time point and could therefore not take repeated measurements of each tiller.

litter decomposition (Fig. A6), the opposite of what we ob-
served in the temperature incubations.

When we compared one of the best models that included
temperature and NRM sensitivity (specifically, a Gaussian
temperature function and an exponential moisture function)
to a simple decay model that had no temperature or NRM
sensitivity but varied effective decay rate among sites (Eq. 1),
we found that the temperature and NRM model performed
better (Fig. 7). The Gaussian exponential model had lower
AIC scores and the slope of the observed vs. predicted values
was closer to 1, yielding more realistic mass loss predictions
(0.85 for Gaussian exponential model, 0.71 for simple decay
model).

4 Discussion

4.1 Model performance

Decomposition is a crucial component of Earth system mod-
els and NRM is an important moisture source in arid and
mesic grasslands worldwide. In a first attempt at modeling
NRM-driven decomposition, Evans et al. (2020) compared
litter decay rates in a hyperarid and a mesic grassland, show-
ing that decay rates are faster when NRM is more frequent.
We build on this work by demonstrating a scalable quan-
tification of the relationship between NRM, temperature,
and litter decay rates. Doing so is an important step to im-

proving Earth system models, which must be validated with
field measurements made under realistic conditions (Bonan
et al., 2013). Using a 30-month, multisite field experiment,
we show that explicitly accounting for both temperature and
NRM sensitivity improved a litter decay model in an NRM-
affected system.

While incorporating either NRM sensitivity or tempera-
ture dependence improved model performance, it was the
inclusion of both that led to the largest improvement. De-
composition temperature sensitivity often depends on mois-
ture conditions (Petraglia et al., 2019). For example, in soils,
temperature typically increases decay rates when moisture is
abundant, but higher temperatures can dry out soils, slow-
ing decomposition (Bear et al., 2014). Similarly, in our sys-
tem, NRM increases litter moisture content (Jacobson et al.,
2015), but fog and dew only form at cooler temperatures,
when decomposition is slower; once temperatures get high
enough (in this case, above 20 ◦C; Fig. A3), wet conditions
soon cease, making the positive effects of temperature moot.
We find that this nuance about NRM gives rise to unrealistic
predictions when models include only one type of sensitivity
but not the other. For example, in our unconstrained model
run, a model with only temperature dependence, but no NRM
sensitivity, converged on a Q10 temperature sensitivity < 1,
indicating negative temperature dependence (Fig. A6), even
though incubation data clearly show a positive relationship
across the range of conditions tillers experience in the field
(Fig. 2). This shows that both temperature and NRM sensitiv-

Biogeosciences, 19, 4129–4146, 2022 https://doi.org/10.5194/bg-19-4129-2022



J. R. Logan et al.: Non-rainfall moisture improves litter decay models 4137

Figure 4. Effective decay rate calculated without explicit temper-
ature or NRM sensitivity (Eq. 1) relative to NRM frequency and
accumulated rainfall during the study period. Among sites, de-
cay rate constant was strongly correlated with the proportion of
time that a site experienced NRM conditions (early-stage: R2

=

0.87, P = 0.007, slope= 4.311×10−6; late-stage: R2
= 0.80, P =

0.02, slope= 1.421× 10−5) but was uncorrelated with total rain-
fall (early-stage: R2

= 0.01, P = 0.87; late-stage: R2
= 0.14, P =

0.46).

ity were needed to realistically capture litter decay dynamics
under NRM conditions, lest one mask the effects of the other,
yielding unrealistic results.

The choice of temperature sensitivity function is often
very important in modeling biological processes and can lead
to quite different predictions (Low-Décarie et al., 2017). We
found that model performance was better using a Gaussian
rather than a Q10 temperature sensitivity function. Surpris-
ingly, we found that the different NRM sensitivity functions,
including both continuous and threshold functions, described
litter decay dynamics similarly well. While the threshold,
logistic, and wetness moisture sensitivity functions share a
general form in which decomposition rates increase substan-
tially above a specific relative humidity value, the exponen-
tial function simulates gradually increasing decay rates at
different relative humidity values. In this sense, the exponen-
tial function more accurately mimics the moisture absorption
curves seen in field and laboratory studies (Dirks et al., 2010;
Evans et al., 2020; Tschinkel, 1973). Despite these differ-
ences, however, each of these functions led to similar model
performance. This suggests that while explicitly including
sensitivity to NRM is important, the specific manner in which
moisture is represented in the model may be less important.
NRM-explicit litter decay models in the future may be able
to represent NRM with fewer parameters by adopting a sim-
ple threshold approach, eliminating the need to parameterize

multiple moisture components. Since relative humidity is a
standard meteorological measure (unlike leaf wetness), fu-
ture models should be able to use existing data sources to
incorporate NRM, eliminating the need to collect additional
data with specialized instrumentation (Evans et al., 2020).

4.2 Litter properties

By deploying both recently senesced and precolonized litter,
we were able to study the effect of NRM on litter decompo-
sition at early and late stages in the decay process. The fact
that early-stage litter decomposed faster than late-stage litter
at the two driest sites is likely because early in the decay pro-
cess decomposer communities are small and photodegrada-
tion of the cuticle is a more important contributor to mass loss
than microbial decomposition (Logan et al., 2022). As a re-
sult, decomposition becomes more sensitive to moisture later
in the decay process. Once fungal communities were well es-
tablished (as on later-stage tillers), litter decomposition was
more sensitive to moisture availability, which is why late-
stage tillers decomposed faster at the wetter sites (Fig. 3).
By deploying litter at different stages of decay across a wide
moisture gradient, we showed that sensitivity of litter decom-
position to NRM appears to increase over time.

Surprisingly, early-stage and late-stage litter had similar
relative humidity thresholds for decomposition even though
older litter tends to absorb more water during fog and dew
events (Logan et al., 2022). In the absence of rain, litter
moisture content rarely reaches biologically significant lev-
els until relative humidity reaches at least 70 %–80 % (Dirks
et al., 2010; Evans et al., 2020; Tschinkel, 1973), but this
depends on several factors including the permeability of the
litter to water, the amount of time it spends in humid condi-
tions, and the decomposer community’s sensitivity to mois-
ture (Tschinkel, 1973; Logan et al., 2021, 2022). While the
simple threshold-based moisture function performed very
well in this study, future studies will likely need to param-
eterize the moisture threshold to fit the dominant litter type
in their locales.

Despite converging on the same parameter values, model
fits were much better for late-stage litter than for early-stage
litter (Fig. A5). This could reflect the fact that the larger fun-
gal communities on late-stage tillers enable them to respond
to moisture more strongly than early-stage tillers, which do
not yet have a large enough decomposer community to have
a strong biological response to NRM. This is consistent with
the results from our simple decay model (without explicit
temperature and moisture sensitivity), which showed that ef-
fective litter decay rates for late-stage tillers were 3.3 times
more sensitive to changes in NRM frequency than early-stage
tillers (Fig. 4). Since the major differences between the early-
stage and late-stage tillers used in this study are their de-
gree of prior fungal colonization and their ability to absorb
water, this reinforces the importance of fungal communities
as mediators of decomposition response to NRM (Logan et
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Figure 5. Parameter fits for the first model run showing parameter combinations across a wide range of hypothetical conditions. (a) The
three humidity-based NRM functions showing the relationship between turnover time (1/kint) and relative humidity threshold (RT or R0.5).
Colors represent log10 AIC scores; models with better fit to the data have lower scores. (b) Parameter estimation for the leaf wetness-based
moisture function showing log10 AIC as a function of turnover time (1/kint). Plots have different numbers of points because of different
numbers of temperature parameters that were tested (the Gaussian temperature function has two, the Q10 function has one, and the bottom
plot has no temperature parameters, only early-stage and late-stage tiller combinations).

al., 2021) and suggests that plant litter properties related to
moisture absorption may influence NRM sensitivity (Logan
et al., 2022). Examining whether these properties have the
same influence on NRM-driven decay of other plant species
may increase the generalizability of the response functions
we present here.

4.3 Incorporating into existing Earth system models

Developing models that realistically predict carbon turnover
is a multistep process that requires determining a model
structure, parameterizing, and accounting for external forc-
ings (Luo et al., 2015). Our goal was to compare several
potential structures for modeling NRM-driven litter decom-
position, but fully incorporating NRM sensitivity into exist-
ing Earth system models will require additional work. This
includes identifying the appropriate temporal resolution at
which to model NRM events. The time steps used by Earth
system models have shortened considerably over the last two
decades, to the point where processes that were once rep-
resented monthly are now modeled on hourly time scales
or less (Sokolov et al., 2018; Bolker et al., 1998; Bonan et
al., 2013). We used hourly averages of minute data to de-
scribe decomposition rates, but do not yet know what tem-
poral resolution is necessary to fully capture NRM events.
Future studies can compare estimates using minute data (that

have the benefit of capturing the wetting and drying dynam-
ics of litter at the start and end of NRM events) to daily time
scales, that can estimate NRM-driven decomposition from
daily mean relative humidity. In the case of longer (daily)
time scales, temperature dependence may be best determined
using the minimum daily temperature instead of mean tem-
perature, since minimum temperatures are likely to occur at
night when NRM is most common. Of course, these methods
will require additional testing, but since our models were rel-
atively insensitive to the specific nuances of how NRM was
modeled, any of several approaches may be appropriate de-
pending on the structure of the decomposition model in use.

We used relative humidity and leaf wetness sensor data
to parameterize our moisture sensitivity functions but other
methods of modeling moisture may work as well. Many
ecosystem models treat soil water content (which regulates
soil organic matter decomposition) as related to the ratio
of rain to evapotranspiration (Necpálová et al., 2015). If
NRM-driven decomposition can be captured by proxies con-
structed from evaporation, minimum temperature, and other
values already included in carbon submodels, it may be eas-
ier to incorporate this novel process into existing model-
ing approaches. Fortunately, relative humidity is measured
at meteorological stations worldwide and extensive data are
available. Even in regions with data gaps, methods exist to
estimate relative humidity from temperature datasets (Gu-
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Figure 6. Frequency distribution of model performance (log10 AIC
scores) for each model combination of temperature and moisture
sensitivities. Each observation represents one parameter combina-
tion after constraining as described in Table 2. Lower log10 AIC
scores denote better model fit to the data. This figure only shows
models constrained using realistic parameter estimates described in
Table 2 (n= 895 230).

nawardhana et al., 2017) and these can be incorporated into
Earth system models to include NRM sensitivity without the
need to collect additional data.

While our study focused exclusively on aboveground lit-
ter decay, NRM may have other effects on decomposition
later in the decay process as well. NRM-driven decomposi-
tion removes carbon from the system before it reaches the
soil surface, decreasing inputs to belowground pools. Addi-
tionally, NRM may accelerate belowground decomposition
rates once litter is incorporated into the soil by promoting
the development of larger (and specialized) microbial com-
munities early in the decay process (Logan et al., 2021; Ja-
cobson et al., 2015). Such soil-litter mixing often increases
litter decomposition in dryland systems (Barnes et al., 2015,
2012; Hewins et al., 2013). Even more broadly, there are
other processes for which models ignore the role of NRM
that affect carbon cycling, like stimulating plant growth, and
suppressing wildfires (Weathers, 1999; Emery et al., 2018).
To improve our understanding of NRM-driven decomposi-
tion, studies can test the role of NRM-driven decomposition
on both aboveground and belowground litter to identify how
NRM affects linkages between these two pools.

NRM’s role in litter decay has been observed in a wide
range of ecosystems including Mediterranean shrublands
(Gliksman et al., 2018; Dirks et al., 2010), salt-marshes
(Newell et al., 1985), hyperarid deserts (Logan et al., 2021),

and temperate steppes (Wang et al., 2017). One study found
that NRM played a substantial role even a mesic prairie with
mean annual precipitation of 897 mm (Evans et al., 2020),
suggesting that NRM is important even when rainfall is rel-
atively frequent. Our contribution does not therefore demon-
strate the importance of NRM to litter decomposition in gen-
eral, but shows that the frequency of NRM events strongly
predicts litter mass loss across a wide range of moisture con-
ditions and that this can be easily modeled using readily
available moisture data. Although this study was conducted
at the dry end of an aridity gradient, it still represented an
eightfold magnitude of NRM frequency, showing that NRM
can be easily incorporated into litter decay models. Explic-
itly incorporating NRM into models in mesic systems, where
rainfall plays a greater role, will likely require including both
rainfall and NRM sensitivity functions to identify the relative
role of each as rainfall increases.

4.4 Limitations

Since our goal was to present a first attempt at incorporating
NRM into litter decay models in an NRM-dominated ecosys-
tem, we had to make several simplifications that likely under-
estimated litter decay rates. First, we only looked at standing
dead litter not litter at the soil surface. Standing litter often
decomposes faster than litter lying at the soil surface (Liu et
al., 2015; Gliksman et al., 2018) and represents an important
and, until recently, overlooked source of carbon turnover in
drylands (Wang et al., 2017). While we did not look at litter
at the soil surface, surface litter absorbs atmospheric mois-
ture (Tschinkel, 1973) and may respond similarly to NRM,
although to date no models we know of have looked at this
across a range of NRM conditions, suggesting important av-
enues for future work.

Secondly, we focused only on coarse tillers not leafy ma-
terial. In laboratory incubations, Jacobson et al. (2015) found
that at high humidity the water content of S. sabulicola tillers
(like those we used) increased slowly, reaching only 10.5 %
after 2 h, with no detectable CO2 flux. In contrast, fine leaves
reached a moisture content of 30.3 % and exhibited a flux
rate of 0.99 µg CO2-C g L−1 min−1 after 2 h. In a field study,
Evans et al. (2020) showed that gravimetric moisture content
of S. sabulicola tillers could reach 0.35 g H2O g L−1 while
leafy material could absorb as much as 1.45 g H2O g L−1 dur-
ing NRM events, resulting in considerably higher respiration
rates for leaves. Similarly, windblown detritus (litter that has
become physically disconnected from the plant) makes up
a considerable proportion of total litter mass in the Namib
desert (Seely and Louw, 1980) and can absorb substantial
water under humid conditions (Tschinkel, 1973). As a result,
actual rates of NRM-driven decomposition across the whole
landscape are likely higher than what we report here.

Finally, we focused only on the meteorological drivers of
litter decomposition, although others factors play important
roles as well. Photodegradation (Austin and Vivanco, 2006;
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Figure 7. (a) Fit of the model using Gaussian temperature sensitivity and exponential moisture sensitivity vs. a simple exponential decay
model (without temperature or NRM sensitivity) in which Keff is allowed to vary independently for each site (lower log10 AIC scores denote
better model fits). The simple decay model depicted here differs from the one in Fig. 6 because this one uses Keff and is not constrained to
the same set of parameters. (b, c) Model predictions for the best version of the Gaussian exponential model versus the simple decay model
with site-specific Keff values. Solid lines are the best fit lines and dotted lines are the ideal 1 : 1 line.

King et al., 2012), macrodetritivore activity (Louw and Seely,
1982), and soil-litter mixing (Hewins et al., 2013; Lee et
al., 2014) are all important drivers of litter decomposition
in drylands. Since our goal was to quantify the relation-
ship between NRM and litter turnover, we focused solely on
NRM, but future studies can build on this work by combin-
ing our approach with other existing models. For instance,
photodegradation can interact with NRM to accelerate car-
bon turnover, especially of standing litter (Wang et al., 2017;
Logan et al., 2022), and accounting for photodegradation im-
proves litter decay models (Chen et al., 2016; Adair et al.,
2017). Combining these other mechanisms with the relative
humidity-based litter decay model we present here may re-
veal additional interactions that can be validated by field
studies. The fact that we were able to describe a large degree
of litter decomposition by using a simple relative humidity-
based and temperature-based model, however, demonstrates
that NRM plays an important role in the litter decay process
across a wide range of environmental conditions.

5 Conclusions

We show that the frequency of NRM is a major predictor of
litter decomposition, and for the first time used data from a
multisite field study to develop temperature and NRM sen-
sitivity functions for a litter decay model. Temperature and
moisture regimes are changing as a result of anthropogenic
climate change (Byrne and O’Gorman, 2016) and our abil-
ity to predict how ecosystems respond depends, in part, on
how well we can link biogeochemical cycles to their envi-
ronmental drivers. NRM and rainfall are often controlled by
different climatic drivers and may therefore respond differ-
ently under future climate change (Haensler et al., 2011; Dai,

2013; Forthun et al., 2006). By modeling the contribution of
NRM to decomposition, in addition to that of rainfall, we can
better predict how drylands will respond to changing mois-
ture regimes, increasing our ability to manage these globally
important systems.

Appendix A

Figure A1. Location of the six FogNet sites used in this study. All
samples were collected from dunes of the Namib Sand Sea at Gob-
abeb. Background image © Google Earth.
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Figure A2. (a) Example of a litter rack used instead of litter bag. The “rungs” of the “ladders” are Stipagrostis sabulicola stems ∼ 0.5 cm in
diameter and 9 cm long. (b) Living S. sabulicola hummock growing in the dunes. (c) Dead S. sabulicola tillers like those used in this study.
(d) Close up image of a recently senesced (early-stage) tiller with intact cuticles and little fungal growth. (e) Close up image of a late-stage
tiller with cracked cuticle surface and substantial colonization by dark pigmented fungi.

Figure A3. Frequency distributions of temperature when wet (turquoise) and dry (red) at the six sites during the study.
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Figure A4. Parameter fits for the humidity-based moisture models using (a) global parameters that were fitted across sites, and (b) site-
specific parameters. Colors represent AIC scores with purple denoting lower values and yellow denoting higher values. The left panel is
identical to Fig. 3 in the main text.

Figure A5. (a) Parameter fits for the humidity-based models for late-stage litter (left) and early-stage litter (right). Colors represent AIC
scores with purple denoting lower values and yellow denoting higher values. (b) Model fits for the wetness-based models, color-coded by
litter stage (this is identical to the right panel of Fig. 5, but color coded to show differences in litter stage).
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Figure A6. (a) Parameter estimation plot of Q10 coefficient for an Q10-only model run (i.e., with no NRM sensitivity) showing model fit is
best for Q10 values below 1. (b) Estimated Q10 sensitivity curves based on optimal value determined from (a).

Figure A7. Photos of litter racks from each site (from driest on the left to wettest on the right) after 18 months in the field. The dark color
on the racks from the wetter sites is from dark-pigmented fungal growth on both the tillers and the wooden frames after exposure to frequent
NRM events.

Table A1. ANOVA table of general mass loss model showing three-way interaction between time, site, and litter stage.

Source SS Df F P

Days 1.46× 10−2 1 19.3 < 0.001
Site 1.72× 10−3 5 0.454 0.81
Litter Stage 2.51× 10−4 1 0.331 0.57
Days×Site 6.28× 10−4 5 0.166 0.97
Days×Litter Stage 2.66× 10−3 1 3.51 0.06
Site×Litter Stage 2.05× 10−3 5 0.542 0.74
Days×Site×Litter Stage 1.55× 10−2 5 4.09 0.001
Residuals 0.199 263
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Code and data availability. Data and code used in this paper are
available as an R Markdown file at https://github.com/loganja3/
NRM-Gradient-Project (Logan and Brown, 2022).
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