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Abstract. Grasslands cover around two-thirds of the agri-
cultural land area of Great Britain (GB) and are important
reservoirs of organic carbon (C). Direct assessments of the
C balance of grasslands require continuous monitoring of C
pools and fluxes, which is only possible at a small number
of experimental sites. By relying on our quantitative under-
standing of ecosystem C biogeochemistry we develop mod-
els of grassland C dynamics and use them to estimate grass-
land C balance at various scales. Model-based estimation
of the C budget of individual fields and across large do-
mains is made complex by the spatial and temporal vari-
ability in climate and soil conditions, as well as in live-
stock grazing, grass cutting and other management activities.
In this context, earth observations (EOs) provide subfield-
resolution proxy data on the state of grassland canopies,
allowing us to infer information about vegetation manage-
ment, to apply observational constraints to the simulated
ecosystems and, thus, to mitigate the effects of model in-
put data uncertainty. Here, we show the potential of model—
data fusion (MDF) methods to provide robust analyses of C
dynamics in managed grasslands across GB. We combine
EO data and biogeochemical modelling by implementing a
probabilistic MDF algorithm to (1) assimilate leaf area in-
dex (LAI) times series (Sentinel-2); (2) infer defoliation in-
stances (grazing, cutting); and (3) simulate livestock graz-
ing, grass cutting, and C allocation and C exchanges with
the atmosphere. The algorithm uses the inferred information
on grazing and cutting to drive the model’s C removals-and-
returns module, according to which ~ 1/3 of C in grazed
biomass returns to the soil as manure (other inputs of ma-
nure not considered) and C in cut grass is removed from the
system (downstream C emissions not considered). Spatial in-
formation on soil C stocks is obtained from the SoilGrids

dataset. The MDF algorithm was applied for 2017-2018 to
generate probabilistic estimates of C pools and fluxes at 1855
fields sampled from across GB. The algorithm was able to
effectively assimilate the Sentinel-2-based LAI time series
(overlap =80 %, RMSE = 1.1 m?> m~2, bias =0.35m? m~2)
and predict livestock densities per area that correspond
with independent agricultural census-based data (r =0.68,
RMSE=0.45LUha"!, bias=—0.06LUha™!). The mean
total removed biomass across all simulated fields was
6(£1.8)tDMha~!yr~!. The simulated grassland ecosys-
tems were on average C sinks in 2017 and 2018; the net
biome exchange (NBE) was —191 £ 81 (2017) and —49 &+
69 gCm~2yr~! (2018). Our results show that the 2018 Eu-
ropean summer drought reduced the strength of C sinks in
GB grasslands and led to a 9-fold increase in the number
fields that were annual C sources (NBE > 0) in 2018 (18 % of
fields) compared to 2017 (2 % of fields). The field-scale anal-
ysis showed that management in the form of timing, intensity
and type of defoliation were key determinants of the C bal-
ance of managed grasslands, with cut fields acting as weaker
C sinks compared to grazed fields. Nevertheless, extreme
weather, such as prolonged droughts, can convert grassland
C sinks to sources.

1 Introduction

Grasslands, natural and managed, are important biomes glob-
ally, with large soil carbon (C) pools and a key role in the
cycling of water and nutrients (Ostle et al., 2009). In Great
Britain (GB), approximately two-thirds of the agricultural
land is grassland, managed at varying intensities as part of
livestock farming systems (DEFRA, 2020). According to
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their biomass productivity and management intensity, GB
grasslands are grouped into rough grazing (low productiv-
ity), permanent (medium productivity) and temporary (high
productivity) grasslands (Qi et al., 2017). The environmen-
tal impacts of grassland management increase with its in-
tensity. Impacts range from local-scale air and water pollu-
tion, due to manure production and nutrient loss, to emissions
of all three major global-warming-causing greenhouse gases
(GHGs), i.e. CO,, CH4 and N> O (Herrero et al., 2016; Vertes
et al., 2018). Quantifying how C travels through the coupled
system of the atmosphere, grass, livestock and soil is chal-
lenging, due to their dynamic management (grazing, cutting,
reseeding, fertiliser and manure application) (Felber et al.,
2016; Fetzel et al., 2017; Conant et al., 2017; Blanke et al.,
2018; Abdalla et al., 2018). However, quantifying C cycling
in grasslands is a prerequisite for shaping, implementing and
monitoring policies for reducing the climate impact of man-
aged grasslands in GB and across the world (Committee on
Climate Change, 2019; Sollenberger et al., 2019).

Grasses fix C through photosynthesis (gross primary pro-
duction, GPP) and allocate a fraction of this C to grow
stems, leaves and roots. Plant senescence results in transfers
of biomass C to litter and dead organic matter in the soil
which undergo decomposition. Defoliation, through graz-
ing and cutting, is a major disturbance to C cycling (Gastal
and Lemaire, 2015; Skinner and Goslee, 2016). Grass cut-
ting abruptly removes most of the aboveground C from the
ecosystem, forcing the grass to rebuild the leaf area nec-
essary for photosynthesis and growth. In contrast, livestock
grazing causes frequent but less intense removals of above-
ground biomass C. A fraction of the grazed C accumulates
in livestock biomass, but most of it exits the animal’s body
as manure, respiration CO; and digestion CH4. The amount
of grazing-based manure C that is added to the soil’s dead
organic matter pool varies significantly depending on farm-
level manure management decisions (Dangal et al., 2020).

The potential of managed grasslands in GB, and beyond,
to act as C sinks (McSherry and Ritchie, 2013; Ward et al.,
2016; Chang et al., 2017; Abdalla et al., 2018; Pawlok et al.,
2018) is premised on achieving a negative C balance at the
ecosystem scale. Net ecosystem exchange (NEE) quantifies
the C balance at the ecosystem scale based purely on gas
fluxes and is equal to the difference between ecosystem res-
piration (Reco= Ry + R,) and GPP. Net biome exchange
(NBE) quantifies the C balance including lateral flows con-
nected to cutting and animal management. NBE is equal to
NEE after accounting for removals (grazing, cutting) and in-
flows (manure deposition) of C to the ecosystem. Animal-
based C fluxes to the atmosphere (respiration CO;, diges-
tion CHy) and other ecosystem-scale C losses (leached C,
manure-induced CHy) are sometimes included in the calcu-
lation of NBE (Soussana et al., 2007). NEE makes up the
bulk of NBE and is measured at the field scale using closed
chambers and eddy covariance towers, with both techniques
having contrasting strengths and weaknesses and requiring
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expert knowledge to deploy (Riederer et al., 2014, 2015).
NBE calculation requires measurements of the lateral flows
on which human management plays a major role (Chang
etal., 2021).

Quantitative understanding of the dynamics of C pools and
fluxes in grasslands is gained through field and lab-based ex-
periments. This understanding is incorporated into models of
ecosystem C biogeochemistry, which are conceptually coher-
ent structures of mathematical equations that track the fluxes
of C in the atmosphere—plant—soil-livestock system (Snow
etal., 2014; Chang et al., 2013; Ma et al., 2015; Sandor et al.,
2018; Puche et al., 2019). Biogeochemical models can up-
scale knowledge on ecosystem C dynamics across large ar-
eas and over time. Model-based upscaling represents a robust
way for diagnosing the role of climate and management on
C exchanges, as well as for exploring C sensitivity of future
climate and alternate management scenarios. Models require
information on environmental conditions as inputs. Provid-
ing these inputs across space introduces uncertainty (input
uncertainty) to model predictions because the relevant data
come from spatial extrapolations of point measurements (i.e.
soil surveys, weather stations). Another key source of input
uncertainty is the lack of accurate spatial data on grassland
management, i.e. harvest and grazing patterns and manure
and fertiliser use, which must therefore be inferred by some
means (Vuichard et al., 2007; Chang et al., 2015a; Fetzel
et al., 2017; Rolinski et al., 2018; Blanke et al., 2018; Ab-
dalla et al., 2018; Chang et al., 2021). Model credibility can
be supported by effective calibration with ground data and
validating predictions using independent data. Providing un-
certainty estimates on model outputs provides robust con-
texts for model interpretation (Kennedy and O’Hagan, 2001;
Dietze, 2017).

Advances in satellite-based remote sensing methods, i.e.
earth observation (EO), over the past decade have increased
the volume and resolution of spatial data on grassland states
(e.g. sward biomass, chlorophyll content) and soil factors
(e.g. soil moisture and temperature) (Reinermann et al.,
2020; Ustin and Middleton, 2021; Zeng et al., 2022). There
is an opportunity to use EO data in model-based studies to
perform upscaling with reduced input and parametric uncer-
tainty and with constrained predictive uncertainty and model
bias. In this context, high-resolution (< 100 m), frequently
retrieved (~ weekly) EO data on the state of grassland vege-
tation can be assimilated and used to validate relevant model
predictions and to calibrate model parameters at the scale
of individual grassland fields (Patenaude et al., 2008; Oi-
jen et al., 2011; Maselli et al., 2013; Pique et al., 2020a, b).
In addition, time series of EO-based vegetation indices can
be used to monitor vegetation volume change and identify
the timing of the relevant management, i.e. grass harvesting
and livestock grazing (Dusseux et al., 2014; Giménez et al.,
2017; Yuet al., 2018; Reichstein et al., 2019). Leaf area index
(LAI) conveys information on vegetation structure and vol-
ume and can be estimated from multispectral optical EO data
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(Munier et al., 2018). The volume of EO-derived LAI data is,
however, dependant on the frequency of satellite overpasses
and the level of cloudiness.

In previous analyses at two grassland eddy flux sites in
GB, we have shown that calibrating biogeochemical model
parameters with ground-based LAI observations allowed ro-
bust diagnoses of the effects of grazing and cutting on in-
dependently measured net C exchanges (Myrgiotis et al.,
2020). In a follow-up study at another grassland research
farm in GB, we demonstrated that model calibration with
satellite-based LAI observations was effective for monitor-
ing biomass removals and quantifying management impacts
on field-scale C balance (Myrgiotis et al., 2021). Here, we
build on this earlier work to demonstrate how EO data and
biogeochemical modelling can be combined (1) to detect
defoliation instances (i.e. grass cutting and grazing inten-
sity) and (2) to estimate the variation in C dynamics over a
large domain (GB) and at fine resolution (subfield scale). We
use a parsimonious process-based biogeochemical model of
grassland C dynamics (DALEC-Grass) that is integrated into
a probabilistic model-data fusion (MDF) algorithm (CAR-
DAMOM). DALEC-Grass is driven by weather data and
field-specific EO-based data on weekly change in vegetation
volume. CARDAMOM performs field-specific calibrations
of DALEC-Grass parameters by assimilating local EO LAI
time series. The MDF algorithm is implemented for 2017-
2018 on a large sample of 1855 managed grassland fields in
GB (England, Wales and Scotland). We obtain a sample rep-
resentative of the different grassland ecosystems and man-
agement types by randomly selecting one field per 25 km?
across GB from the land cover map (vector land parcels) of
the United Kingdom (UK). Grazing intensity, cutting timing
and yields, and C pools and fluxes are predicted by DALEC-
Grass for every simulated field. In order to evaluate our
MDF analysis, we compare predictions of annual grass yields
(grazed and cut biomass) to biomass utilisation data from the
relevant literature and to livestock density data from the most
recent GB agricultural census data. In addition, in 2018 GB
was affected by a summer heat and drought wave (summer
2018 was ~ 1 °C warmer than summer 2017), allowing us to
examine the impact of climate anomalies on grassland C bal-
ance (Kendon et al., 2018, 2019). The aim of this study is to
answer four key questions:

1. Can we detect realistic variations in grassland vegeta-
tion management over national domains at field scale
by assimilating EO information on LAI?

2. What is the C balance of managed grasslands and how
does it vary across GB?

3. Which factors control the predicted C balance and
biomass removals?

4. How large is the analytical uncertainty on C cycling and
which factors affect it?
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The novelty of this research is to combine EO data and
modelling to infer management of grasslands at the field
scale across a nation and then to simulate the role of man-
agement on grassland C exchanges. The advent of highly
resolved satellite data from Sentinel 2 makes this possible,
allowing tracking of ~ weekly changes in LAI at subfield
scales for a national sample of grassland fields. The inter-
mediate complexity model employed means that Bayesian
approaches to model calibration can explore the uncertainty
of parameters and estimates of C cycling. The key innovation
is to combine observations of changes in grassland LAI from
space with expected changes in LAI (i.e. grass growth rates)
derived from process modelling. The difference between ob-
served and expected change in LAI is used to infer consump-
tion by grazing livestock or removals by grass cutting. The C
cycle estimate is then updated based on this estimation.

2 Materials and methods
2.1 Materials
2.1.1 Location of managed grasslands

For the identification of the location and limits of representa-
tive grassland fields, we used the 2018 UKCEH Land Cover
plus map (LCM), which is updated annually by the Centre for
Ecology and Hydrology (CEH) of the UK (https://www.ceh.
ac.uk/crops2015, last access: 1 October 2021). The LCM in-
cludes geo-referenced polygons of improved grassland fields
in GB that are identified as such by using a combination of
reflectance data. The LCM data are validated against ground
observations of land use type.

2.1.2 DALEC-Grass model

DALEC-Grass (Fig. 1) is a process-orientated model of
intermediate complexity representing C cycling in grass-
land ecosystems. DALEC-Grass uses meteorological infor-
mation to calculate GPP, autotrophic and heterotrophic res-
piration, changes in LAI, the C turnover of different plant
and soil pools, and the removal of C via grazing and grass
cutting. Photosynthesis is calculated using the aggregated
canopy model (ACM), and phenology is calculated using
the growing season index (GSI) approach (Williams et al.,
1997; Smallman et al., 2017). DALEC-Grass uses a dynamic
scheme to allocate C to above and belowground plant tis-
sues, which is based on the assumption that C allocation to
roots increases after sufficient leaf area has been developed
such that there are diminishing returns on further canopy ex-
pansion (Myrgiotis et al., 2020). The model uses a simple
scheme to describe C allocation to soil with two pools con-
sidered: a more labile litter pool to which dead plant ma-
terial and manure C are added and a more recalcitrant soil
organic carbon pool (SOC), which receives C from the litter
pool only. At each time step the model uses EO-based in-
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put data on change in vegetation volume. This information is
translated into grazing or cutting instances (see Sect. 2.2.2).
The simulated grazed biomass C is converted to animal respi-
ration CO, C, digestion CH4 C and manure C using generic
conversion factors (see Fig. 1) extracted from the relevant
literature (Parsons et al., 2009; Zeeman et al., 2010; Worrall
and Clay, 2012; Bell et al., 2016; Lee et al., 2017). These
generic conversion factors are used because the type, weight
and age of animals grazing on individual fields can neither be
inferred from EO data nor be reliably estimated from avail-
able datasets of livestock spatial distribution (e.g. agricultural
census). All the manure that the simulated livestock produce
is added to the litter pool. The conversion factors used in
DALEC-Grass reflect an averaging of relevant data for beef
and dairy cattle and sheep, which are the main types of live-
stock in the GB. When harvest is simulated, the harvested
biomass C is removed from the ecosystem. The model’s 31
parameters are presented in Table Al in Appendix A. In this
study, DALEC-Grass is implemented at a weekly time step.

2.1.3 Carbon Data Model Framework (CARDAMOM)

The Carbon Data Model Framework (CARDAMOM) is a
Bayesian MDF framework that is tailored for use in ecosys-
tem biogeochemistry studies (Bloom et al., 2016). By assim-
ilating observational data, CARDAMOM updates the distri-
bution of model parameters following the rules of Bayesian
inference. A key aspect of CARDAMOM is the use of eco-
logical and dynamic constraints (EDCs), which are condi-
tions applied to the parameter sampling process in order to
ensure the mathematical, ecological and biogeochemical sen-
sibility (or common sense) of the simulated system (Bloom
and Williams, 2015). In simple terms, CARDAMOM exam-
ines whether the simulated pools and fluxes that result from
implementing the model with a sampled parameter vector be-
have in realistic ways, i.e. do not exceed certain user-defined,
widely accepted and literature-based limits. The EDCs used
in CARDAMOM are presented in Table A2. A schematic de-
scription of how CARDAMOM and DALEC-Grass are con-
nected is provided in Fig. Al in Appendix A.

Bayesian inference is performed in CARDAMOM us-
ing the root mean square error (RMSE) between the sim-
ulated and the EO-based LAI time series to calculate and
attribute likelihoods to every sampled parameter vector. In
this study, the simulated annealing (SA) algorithm is used
to implement the probabilistic parameter sampling process
(Kan et al., 2016). After testing the SA algorithm to iden-
tify the optimal number of repetitions for achieving accept-
able chain convergence, the number of parameter proposals
was set to 5000 000. The uncertainty around the assimilated
LAI data was set to 15 % (relative standard deviation) in
this study. However, it should be noted that the uncertainty
around remote-sensing-based LAI data is poorly determined
but largely underestimated (Zhao et al., 2020).
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A uniform distribution was used for each of the 31
DALEC-Grass parameter priors, and the range for each
parameter prior is presented in Table Al. In Myrgiotis
et al. (2020) DALEC-Grass parameter priors were refined
through implementing the model using known vegetation
management (cutting dates, livestock density time series)
and by assimilating field-measured LAI and CO, flux data
(chamber-based and eddy covariance). In Myrgiotis et al.
(2021) these model priors have been tested and refined fur-
ther using EO-based vegetation reduction time series (as
vegetation-management-related model drivers) and by as-
similating Sentinel-2 (S2)-based LAI time series. The lim-
its of the uniform parameter distributions used in the present
study are based on the results of Myrgiotis et al. (2021), but
four parameters were allowed to vary more than these results
suggested in order to better consider the variability in man-
agement factor across GB grasslands (indicated with * in Ta-
ble A1l). These parameters are the plant photosynthetic N use
efficiency (PNUE), the leaf mass C per area (LCA), and the
pre-grazing and pre-cutting biomass.

2.1.4 Earth observation data

Two independent EO datasets on leaf area index (LAI)
were used in this study. The first dataset is the Coperni-
cus Global Land Service (CGLS, https://land.copernicus.eu/
global/products/lai, last access: 1 February 2019, contains
modified Copernicus Service information, 2019) LAI data
product. CGLS LAI data comprise top-of-atmosphere re-
flectance products from the Proba-V satellite processed into
LAI The CGLS LAI data have a spatial resolution of 300 m
and a temporal resolution of 10d. Gaps in the CGLS LAI
time series due to cloud coverage are filled using a ma-
chine learning model built with time series for past years and
neighbouring pixels (Smets et al., 2018). For each simulated
field the corresponding time series has been converted from
their original 10 d time step to a weekly time step using linear
interpolation. Thereafter, the reduction between subsequent
dates in the time series was calculated. When the change be-
tween week n and n + 1 is positive, the reduction value for
week n is 0. Hereafter, we refer to this time series as the
“vegetation reduction” time series. We note that the vegeta-
tion reduction time series are input drivers of DALEC-Grass
that inform its C removals-and-returns module (described in
Sect. 2.1.2).

The EO-based LAI data that are assimilated in CAR-
DAMOM were calculated from Sentinel-2 (S2) images.
Sentinel-2 is an EO mission of the European Space Agency
(ESA) that consists of two optical-imaging polar-orbiting
satellites that were launched in 2015 (S2A) and 2017 (S2B).
Atmospherically corrected images at 10, 20 and 60 m reso-
lutions (L2A product) were downloaded from the Amazon
Web Services (AWS) S2 data pool (https://registry.opendata.
aws/sentinel-2, last access: 1 November 2019). All the avail-
able cloud-free images that cover GB for 2017-2018 were
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Figure 1. Schematic description of the DALEC-Grass model. DALEC-Grass simulates the dynamics of five C pools (C): leaf, stem, roots,
litter and SOC. C is allocated to the five C pools via NPP allocation (A) and litter production (L). Vegetation removals (VRs) can occur due
to grazing or cutting. DALEC-Grass determines whether a vegetation removal is caused by grazing, cutting or neither (see Sect. 2.2.2). When
cutting is simulated (VR¢ > 0), cut biomass (Bc) is removed from the ecosystem. When grazing is simulated (VRg > 0), 32 % of grazed
biomass (Bg) is converted to manure, 54 % of grazed biomass (Bg) is converted to animal respiration (2CO») and 4 % of grazed biomass
(Bg) is converted to methane (*CHy). Dotted lines (- - -) show outward fluxes of C. Solid lines (—) show internal and inward fluxes of C.

processed to remove pixels with cloud and haze and, then,
used to calculate LAI (at 20 m) using the Sen2Cor algorithm
(Weiss and Baret, 2016). When available, the field-average
S2-based LAI value that corresponds to the day closest to the
first day of every simulated week is added to the weekly ob-
servational LAI time series that are assimilated through the
CARDAMOM MDF framework.

2.1.5 Environmental and management data

Six meteorological drivers are used in DALEC-Grass to drive
variations in the biogeochemical process: (1) minimum and
maximum temperature (°C), (2) total short-wave radiation
MJIm~2d~1, 3) atmospheric CO; concentration (ppm),
(4) 21 d average photoperiod (s), (5) 21 d average minimum
T and (6) 21d average vapour pressure deficit (Pa). Data
were obtained from the ERAS global atmospheric reanalysis
database of the European Centre for Medium-Range Weather
Forecasts (ECMWE, Hersbach et al., 2018). Values of soil C
(gCm~2 at 60 cm depth) at 300 m resolution were obtained
from the SoilGrids database (Hengl et al., 2017). For every
simulated field the mean and standard deviation (SD) of the
corresponding SoilGrids pixels are used to define the range
of the model’s initial SOC pool size parameter. In absence
of robust spatial data on manure application in grasslands,
we do not consider human-controlled application of manure
(i.e. manure spreading). All the manure C that the simulated
livestock produce after grazing is directly added to the soil’s
litter pool. This is the only C input to the ecosystem apart
from the atmospheric CO, C assimilated in biomass.
Agricultural census-based data on the number of sheep and
cattle (beef and dairy) were obtained from the EDINA Ag-
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Census database (EDINA, 2019). They are used in this study
to independently evaluate the estimates from the MDF imple-
mentation. The AgCensus data are produced by spatially dis-
aggregating the numbers of cattle and sheep recorded at the
level of local administrative units into a 5 km grid. The most
recently available livestock data for each constituent country
of GB refer to different years: 2010 for England, 2015 for
Wales and 2017 for Scotland.

2.2 Methodology

2.2.1 Sampling of grassland fields from the national
land cover map

Implementing the MDF algorithm for the thousands of fields
that are classified as improved grassland in the LCM database
is computationally demanding and time consuming. In ad-
dition, the spatial resolution of the CGLS (Proba-V-based)
vegetation reduction data is 300 m (9 ha). Taking into account
that the average managed grassland field is 5-9 ha in area, we
set a minimum limit of 6 ha (and a maximum of 13 ha) when
filtering the LCM dataset to obtain the location of fields.
Moreover, the number of EO data points available for each
field depends on the time of image capturing and the amount
of cloud cover at overpass. As a consequence, the number
of dates of available EO data can vary considerably between
fields. We set a limit of having at least 30 S2 data points
(for 2017-2018) for a field to be selected for simulation. The
fields that met the conditions were allocated to 25 km? cells
of a S5km grid of GB. One field was randomly selected from
each cell, which resulted in a set of 2108 fields (Fig. 2). The
CARDAMOM MDF algorithm was implemented for each of
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Figure 2. Topographic map of Great Britain (GB) with red symbols

showing the locations of sampled fields. Built-up areas are shown
in black. Digital elevation model from Pope (2017).

the selected fields for 2017 and 2018 by running DALEC-
Grass at a weekly time step while assimilating the corre-
sponding available EO-based LAI data. We refer to the out-
puts of this implementation as “MDF predictions”.

2.2.2 Identifying and calibrating grazing and cutting
from EO data

We used the two independent EO datasets on LAI to in-
form the analysis. The first dataset (CGLS) was used to esti-
mate weekly absolute LAI change (vegetation reduction time
series) and, based on the magnitude of change, to derive
whether cutting or grazing had occurred. CGLS data there-
fore provided an independent estimate of management oper-
ations and act as a driver of LAI loss in the model, week to
week. The value of CGLS is the availability of continuous
weekly data, with no gaps in coverage. Their weakness is
the large uncertainty on LAI change, particularly for smaller
fields (< 9ha) where edge effects can introduce substantial
biases. The second LAI dataset (S2) was used directly in the
assimilation scheme to adjust DALEC-Grass parameters and
minimise the mismatch between observed S2-based and sim-
ulated LAI This assimilation adjusts the processes driving
LAI dynamics and hence the LAI losses initially estimated
with CGLS data. The outcome is a more robust description
of LAI dynamics and management impacts. The strength of
S2 data is in the high resolution, which ensures within-field
accuracy. Their weakness is the frequent gaps in the S2 time
series, which leads to some weeks lacking S2 LAI informa-
tion. It should be noted that gap-filling the S2 LAI time series
using simple interpolation methods is not appropriate in the
case of managed grasslands. This is because grazing and cut-
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ting can take place at any time during the growing season.
Therefore, assuming that, for instance, grass grew freely (no
defoliation) when two S2 LAI data points weeks apart sug-
gest so would not be correct.

In more detail, DALEC-Grass simulates weekly biomass
growth driven by weather. LAI loss is then imposed by CGLS
estimates. Broad uncertainty on the CGLS estimates recog-
nise the potential bias in this driving dataset (Myrgiotis et al.,
2021). At each weekly time step the LAI loss from CGLS is
used to decide whether a field has undergone a grass cutting
event or a livestock grazing event or neither. For a vegeta-
tion reduction data point to be simulated as a cutting: (1) the
event should occur between April and October, when cut-
ting tends to occur; (2) the simulated aboveground biomass
at the time of cutting should be greater than the pre-cutting
biomass parameter (P28; see Table A1), indicating that there
is enough grass for a cut to be worthwhile; and (3) the re-
sulting yield should be > 80 gCm™2, another economic test
for cutting. If any of these three conditions is not met, then
a grazing event is indicated and simulated if the simulated
aboveground biomass exceeds the pre-grazing biomass pa-
rameter (P27; see Table Al). Otherwise, if neither a cut nor
a grazing event can be simulated, no LAI removal is simu-
lated. The processes of inference and simulation of grazing/-
cutting are performed inside the model and depend directly
on certain relevant parameters and indirectly on most param-
eters, which control the simulation of photosynthesis and al-
location in general. Therefore, during the process of assim-
ilating observational S2 LAI, the vegetation-management-
related decisions made by DALEC-Grass are conditioned
on observations. This approach links the noisy CGLS veg-
etation reduction drivers with the constraint on parameters
from the more accurate high-resolution S2-based observa-
tional LAI data (Fig. 3). Assimilation is performed by im-
plementing DALEC-Grass while sampling from the model’s
parameter space and minimising the error (RMSE) between
observational S2-based and simulated LAI time series (see
Sect. 2.1.3).

2.2.3 Calculation of presented variables and sign
convention

The micrometeorological sign convention is used when pre-
senting C balance variables, whereby a positive (+) sign be-
fore a NEE and NBE value signifies an addition of C to the
atmosphere and a negative sign (—) signifies a removal of C
from the atmosphere. The net change (gCm™2) in the size
of the soil organic C (SOC) pool is presented and referred
to as Agoc. Positive Agoc values signify an increase in the
SOC pool size, and negative values signify a decrease in the
SOC pool size. We use the difference between total annually
grazed and cut biomass (GCD) to quantify the relative impact
of these two vegetation removals methods. A negative (—)
GCD value signifies that more biomass was removed from
the simulated field via cutting than it was via livestock graz-
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Figure 3. Description of how S2 LAI observations, (CGLS) vegetation reduction time series, and DALEC-Grass are used to infer and calcu-
late managed vegetation removals (grazing, cutting). The DALEC-Grass biophysical module simulates weekly leaf growth and senescence
driven by weather data. The DALEC-Grass management module simulates weekly vegetation removals driven by the vegetation reduction
data. The CARDAMOM MDF algorithm calibrates the parameters of DALEC-Grass in order to achieve the smallest possible error (RMSE)
between S2 LAI and simulated LAI time series. LAl = Cjear/P15 (see Table Al for details on parameter P15). The DALEC-Grass manage-

ment module determines whether LAI reduction is due to grazing

(Lg) or cutting (L¢) or neither. When a grazing reduction is identified

(VRg > 0 thus VR =0) the livestock C-turnover process (described in Sect. 2.1.2) is implemented. When a reduction is identified as pro-
duced by cutting (VR¢ > 0 thus VRg = 0), most leaf biomass is removed; parameters P27, P28, P29 and P31 (Table A1) play a direct role in
cut yield estimation. When neither grazing nor cutting is identified, then VR¢ =0 and VRg = 0. Boxes in black show EO-based information.
Cleaf: leaves C pool; A: C allocation; L: litter production; VRg: vegetation removal due to grazing; VR¢: vegetation removal due to cutting;

t: time.

ing. A positive (4+) GCD value signifies that more biomass
was removed via livestock grazing than it was via grass cut-
ting.

NEE = Reco — GPP, (1)
Reco = R, + Ry, 2)
NBE = NEE + B. + By — M, A3)
Asoc = C flux to SOC — C losses from SOC, “4)
GCD = B, — B., &)

where NEE is net ecosystem exchange, NBE is net biome ex-
change, Reco is ecosystem respiration, R, is autotrophic res-
piration, Ry, is heterotrophic respiration, B is cut biomass,
By is grazed biomass, M is manure, GCD is grazed and cut
biomass, B, is grazed biomass, and B, is cut biomass. Note
that C flows into the SOC pool from the litter pool only, and
C is lost from the SOC pool via heterotrophic respiration
(Fig. 1). All variables are presented in gCm~2¢~!, where
t is the time period over which the results are summed (e.g.
3 months, year).

2.2.4 Assessment and analysis of MDF predictions

The effectiveness of the LAI assimilation process is assessed
by quantifying the level of fit between MDF-predicted and
EO-based LAI time series using (1) the percent of overlap
between the EO-based data points (field mean) and the corre-
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sponding MDF-predicted ranges (95 % confidence interval),
(2) the RMSE, and (3) the bias between the simulated and
observed time series. To account for the possibility that some
of the simulated fields may not be managed grasslands due
to changes in management but classified as such in the LCM
data, we remove from the results any fields for which the es-
timated overlap is < 50 % (see results for size of post-MDF
dataset).

To answer our first science question, the MDF-predicted
weekly grazed biomass is converted into livestock units (LU)
per hectare following the assumptions that (1) one cattle is
1LU and one sheep is 0.11LU, (2) 1LU weighs 650kg,
(3) an animal demands = 2.5 % of its weight in the form
grass dry matter (DM) when grazing, and (4) 47.5% of
DM consists of C (Vertes et al., 2018). The MDF-predicted
and independent census-based LUha~! values are com-
pared using the correlation coefficient (r) and the RMSE as
the assessment metrics. The MDF-based estimates of grass
biomass utilisation across GB are assessed against data from
the Qi et al. (2017) study.

To answer our second science question, we present and
examine the annual and seasonal C balance and the cumu-
lative annual fluxes of the simulated fields. To assess what
controls the predicted C balance of the simulated grasslands
(our third science question), we quantify the correlation coef-
ficient between meteorological model drivers, management-
related model parameters and MDF predictions of C cycling.

Biogeosciences, 19, 4147-4170, 2022
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In order to provide a more quantitative assessment of the
factors that control grassland C dynamics, we quantify the
relative impact of management and climate on the MDF-
predicted NBE. We use the model meteorological drivers and
the posterior model parameters related to management and
climatic controls for every simulated field to train a random
forest (RF) model that estimates NBE. A total of 75 % of the
data are used to train the RF model and 25 % to assess its
predictive ability (coefficient of determination). Thereafter,
we use the Shapley additive explanations (SHAP) method
to quantify how much each RF predictor affects the RF-
predicted NBE (Rodriguez-Pérez and Bajorath, 2020). The
SHAP method examines the structure of the RF model and
provides the weight (SHAP value) that the model gave to
each predictor. SHAP values can be seen as the machine
learning equivalent of the coefficient of determination (r2).
The estimated SHAP values are normalised (0-1) to be com-
parable to r2. We note that RF is used in this study solely to
support MDF data analysis and not for predictive purposes.

For each simulated field and model output, the MDF al-
gorithm produces a mean and 95 % confidence interval. To
answer our fourth science question, we quantify the predic-
tive uncertainty around an output by calculating its relative
confidence range (RCR). RCR is equal to the size of the
MDF-predicted 95 % confidence interval divided by the cor-
responding mean and expressed as %. We present and exam-
ine the estimated RCRs to identify the key factors that affect
uncertainty.

3 Results
3.1 Assimilation of EO-based LAI data

For 12 % of the initial dataset (2108 fields) our analysis failed
to generate a simulated-vs.-observed LAI overlap > 50 %.
These fields were removed from the analysis, and the final re-
ported dataset includes 1855 fields. Based on the 1855 fields,
three performance metrics indicated that CARDAMOM ef-
fectively assimilated the provided EO-based LAI time se-
ries (Fig. A2). Thus, CARDAMOM could identify param-
eter values for DALEC-Grass for each field so that the
model could effectively reproduce the phenological devel-
opment of the canopy, consistent with meteorological forc-
ing and a realistic removal of grass by grazing and/or cut-
ting. The overlap between EO-based and simulated LAI was
80 (£11) %, the RMSE was 1.1 (0.22) m*> m~2 and the bias
was 0.35 (0.40)m?> m~2. There were no clear spatial pat-
terns (Fig. A2) in the error statistics across GB and no obvi-
ous geographical biases.

3.2 MDF-predicted livestock density and removed
biomass

A comparison of MDF predictions of livestock density
against census-based data (Fig. A3) shows that the MDF
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Figure 4. Cartograms of census-based and MDF-predicted live-
stock density (livestock units, LU ha_l). The size of cells is ad-
justed according to the number of simulated fields within it.

predictions mirrored the census-based livestock density data
well (r = 0.68, RMSE = 0.45 LU ha—!). Both datasets show
the highest LU concentrated in SW England with lower val-
ues in the eastern part of England (Fig. 4). Scotland has
consistent areas of high LU in both datasets, in the SW
and NE. The GB-average census-based livestock density
was 0.76 +47LUha~!, and the respective MDF-predicted
livestock density was 0.70 456 LUha™!. The census-based
data (cattle and sheep) for each GB country refer to differ-
ent years. Livestock census numbers for England, in par-
ticular, were recorded in 2010, since when numbers have
declined (DEFRA, 2020). This time mismatch with our
2018-2018 estimate could explain the small negative bias
(—0.06 LU ha™!) between MDF-predicted and census-based
LUha™!.

The analysis suggests that the 1855 simulated fields were
managed with varying intensity. The majority of simu-
lated fields were grazed-only (75 %) and no cut-only fields
were simulated. Grazed biomass exceeded cut biomass
in 85 % of the fields (GCD > 0), and cut biomass ex-
ceeded grazed biomass in the remaining 15 % (GCD < 0).
The mean MDF-predicted annual yield (grazed and cut
biomass) was 6=+ 1.8tDMha~!yr~! (5th|25th|75th|95th
percentiles: 2.8/4.6/7.3|8.5tDMha~!yr~!). These results
reflect biomass utilisation per grassland management inten-
sity in the GB. Rough grazing grasslands (40 % of GB grass-
land area) have an annual yield (total removed biomass)
of 3.094 1.56tDMha~! yr~!, permanent grasslands (50 %
of GB grassland area) have an annual yield of 7.41+
2.02tDMha~! yr~! and temporary grasslands (10 % of GB
grassland area) have a yield of 9.76 +2.03tDMha~! yr~!
(Qietal., 2017, 2018).

Most of the MDF-predicted first grass cuts (85 %) oc-
curred between the first half of May and the second half of
July. For the fields where more than one cut was identified,
the period between the first and last cut was &~ 2 months. The
MDF-predicted day of year of first cut increased northwards,
with the mean date of first cut in northern England and Scot-
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land being 3—-6 weeks later than in the southern half of GB.
This spatial pattern is likely the combined effect of differ-
ences in the onset and duration of the grass growing season
and in related management decisions. Due to the small share
of cut-and-grazed fields in the simulated dataset and in or-
der to make the spatial pattern more visible, we present the
average month of first cut on a regional basis (Fig. A4).

3.3 Predicted C balance and dynamics

MDF-based C cycle estimates show that management af-
fected the C balance of the simulated grassland ecosys-
tems significantly. The difference between grazed and cut
biomass volume (GCD) is used to present the impact that
these two biomass removal methods have on C balance.
The mean annual GPP across GB fields was 30 % higher
(19924400 gC m~2 yr~!) for fields where most biomass was
removed via grazing (GCD > 0) compared to those where
cut biomass exceeded grazed biomass (GCD < 0) (1518 +
426 gCm~2yr~1) (Fig. 5). Reco was higher for fields dom-
inated by grazing also. The mean NEE across GB was
—232494gCm~2yr~!, the relative role of grazing com-
pared to cutting did not affect NEE significantly and 95 %
of the simulated fields were net C sinks at the ecosystem
scale. When considering the role of cutting and grazing C
removals and returns to the ecosystem, the impact of cut-
ting as a biomass removal method becomes important. The
NBE of fields dominated by cutting removals (GCD < 0) was
38+70gCm~2yr~!, while fields dominated by grazing re-
movals (GCD > 0) had a NBE of —1264+95gCm~2yr .
On average, 60 % more C was removed (grazed and cut)
in mostly cut (GCD > 0) grasslands than in mostly grazed
(GCD < 0) grasslands. The flux of C into the SOC pool was,
on average, 66 % larger in mostly grazed (GCD < 0) than
mostly cut (GCD > 0) fields. The annual change in the size of
the SOC pool (Asoc) for mostly cut (GCD < 0) grasslands
was 11652 and 36£40 gCm~2 yr~! for grazing-dominated
(GCD > 0) fields. The spatial distribution of MDF-predicted
GPP, Reco, NEE, NBE, removed biomass and C flux into
SOC is presented in the cartograms of Fig. AS.

Seasonal NEE varied across GB, with strongest sinks in
spring and summer, strongest sources in autumn, and close
to neutral net exchanges during winter (Fig. A8). However,
there were clear inter-annual differences between 2017 and
2018 in the analysis. Across the southern third of GB (the
Midlands and Southern England) many grasslands became
C sources during the summer of 2018 while remaining ar-
eas were weaker sinks than in 2017 (Fig. 7). This pattern
was driven by the 2018 European drought and heat wave,
which affected GB as a whole and was particularly acute
in the southern half of England (Sibley, 2019). The 3-week
rolling average vapour pressure deficit (VPD) in summer
2018 across GB was 50 % higher than in summer 2017
(Fig. A7). The GB-average GPP, R,, R}, and the C flux from
the litter to the SOC pool decreased between 2017 and 2018
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(Fig. 6). The GB-average flux of C due to litter decompo-
sition in 2018 was less than in 2017, but litter C turnover
in 2018 when was nearly 2 times that of 2017. The GB-
average NEE and NBE increased between 2017 and 2018,
indicating a reduction in sink strengths (Fig. 5). While only
2 % of the simulated grasslands had a NBE > 0 in 2017, this
share increased 9-fold to 18 % in 2018 (Fig. A6). The GB-
average total removed biomass in the drought-affected 2018
was 27 % higher than in 2017. Reductions in cut yields and
increases in grazed biomass underlie this increase in GB-
average removed biomass (Fig. 5). In this context, the area-
mean grazed biomass during the 3 months of spring 2018, in
the southern half of GB, and the 3 months of summer 2018,
in the northern half, was higher than the respective seasons
in 2017 (results not presented).

3.4 Controls on C cycling in GB grasslands

Correlation coefficients (Fig. 8) generated across the 1855
fields show the links between meteorological drivers, key
processes (model parameters) and model outputs (C ex-
changes). There are strong positive correlations between
GPP, Reco, Asoc, and root: shoot ratio, and these factors
are strongly negatively correlated with NBE and NEE. The
most productive fields (higher GPP) are associated with high
inputs of C to soils and are the strongest C sinks (more nega-
tive NEE and NBE). Among modelled processes, the ratio of
C allocation to roots relative to stems and leaves (root : shoot
ratio) is the most strongly correlated with the net C balance
of the simulated fields (Fig. 8). More-frequent and higher-
yielding grass cuts reduce root: shoot ratio and, therefore,
reduce the flux of C to litter and, subsequently, to the recalci-
trant soil C pool (SOC). The predicted flux of C to the SOC
pool has a significant but low positive correlation (r = 0.38)
with the size of SOC pool. Despite that, MDF results show
that the volume of C transferred to the SOC pool during the
simulated period is, on average, equal to 1(£0.25) % of the
size of the SOC pool. NBE and NEE are positively correlated
to livestock units (LU) and biomass removals; i.e. increases
in LU and removals reduce C sinks. Temperature and radia-
tion have relatively weak correlations with NEE and NBE. In
contrast, VPD was more strongly related to C fluxes. Higher
VPD values correlate with lower GPP and higher NEE and
NBE. This positive r for VPD reflects the strong, negative
role of the 2018 summer drought.

We expanded on the correlations-based analysis of the
MDF results by using (1) the MDF-predicted data on NBE,
as well as (2) the corresponding meteorological drivers and
(3) model parameters describing climatic and management
controls on grass growth, to train a RF model that estimates
NBE. The resulting RF model was able to explain 93 % of the
variance in MDF-predicted NBE (2 = 0.93) using five pre-
dictors: VPD, mean T, solar radiation, all posterior DALEC-
Grass parameters related to climatic effects on grass growth
and all posterior parameters related to grassland manage-
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Figure 5. Violin plots of GPP, Reco, removed biomass and C flux from litter to SOC based on MDF predictions (2017-2018) for all simulated
fields. Violin plots are split according to whether grazing or cutting removed most grass biomass. The blue side of each violin plot shows
results for fields in which most biomass was removed via grazing (GCD > 0). The orange side shows results for fields in which most biomass
was removed via cutting (GCD < 0).

Respiration CO;
2018: 84 (+36)
2017:72 (+36)

Harvest
2018: 200 (+61)
2017:211(x100)

| 2018:-174(279) |
| 2017:-289 (+75) | !

R, Ra

2018: 895 (+187)
2017: 1126 (177)

Digestion CHy
2018: 6 (£3)
2017:5(%3)

NBE

2018: -49 (+69)
2017: -191(=81)

2018: 202 (+81)
2017: 153 (+80)

LIVESTOCK

2018: 140 (+55)
2017: 100 (+54)

2018: 327 (+53)
2017: 392 (+53)

AGB

2018: 145 (+53)

H 2017: 185 (+54)
- Manure
GPP NPP g 2018: 856 (+20) 2018: 50 (x21)
T s 2017: 1068 (+198) 2017: 42 (£21)
2018: 1900 (x402) 1 2018: 1005 (£212) p
2017: 2390 (+382) : 2017: 1265 (x202) % ROOTS Litter d i
. —_— Itter decomposition|

2018: 743 (+148)
2017: 886 (x137)

LITTER

2018: 150 (+70)
2017: 330 (£140)

2018: 33 (+53)

2018: 678 (£160)
2017: 43 (+54)

2017: 872 (x150)

2018: 186 (£55)
2017: 218 (£50)

SOC decomposition

2018: 90 (+20)
2017: 90 (x19)

soc

2018: 20390 (+4057)
2017: 20290 (+4047)
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Figure 7. Cartograms of cumulative NEE for summer 2017, summer 2018 and change in summer NEE between 2017 and 2018 (cumulative
NEE 2018 — cumulative summer NEE 2017). The mean MDF-predicted seasonal NEE of all fields in each cell is presented. The size of cells

is adjusted according to the number of simulated fields within it.
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Figure 8. Heatmap of correlation coefficients (r) between annual
mean meteorological model drivers (D), selected model parameters
(P) and annual mean MDF predictions (O).

ment. The weight (normalised SHAP) attributed by the RF
model to these five predictors suggests that management pa-
rameters (aggregated weight for all parameters in the group)
were the most important factor for grassland NBE over the
simulated period (Table 1). The normalised SHAP for man-
agement parameters was the highest among the five NBE pre-
dictors in 2017 (contributed by 34 % to NBE) and the sec-
ond highest (contributed by 38 %) in 2018. The 2018 sum-
mer heat wave caused the contribution of VPD to NBE to
increase from 3 % in 2017 to 40 % in 2018. Overall, these re-
sults reaffirm the conclusions of correlations-based analysis
and clarify the importance of grassland management relative
to climate and climatic anomalies.
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Table 1. Normalised SHAP values for RF-based estimation of an-
nual NBE in 2017 and 2018.

Predictor 2017 2018
Climatic effects (parameters) 030 0.19
Management effects (parameters)  0.34  0.38
Mean air temperature 0.02 0.02
Vapour pressure deficit 0.03 040
Solar radiation 031  0.01

3.5 Predictive uncertainty

The size of the uncertainty around MDF estimates is quanti-
fied using the RCR (relative confidence range) of MDF out-
puts. The mean RCR is 4249 % for LAI 21+ 10 % for GPP,
1846 % for Reco and 26+ 16 % for grazed biomass (Fig. 9).
MDF predictive uncertainty is therefore a small faction of
the mean estimate of these scalar variables. The GB-average
RCR for LAI, GPP and grazed biomass prediction increased
from 44 %, 26 % and 27 % in fields where cut biomass did
not exceed grazed biomass (GCD > 0) to 54 %, 40 % and
52 % in fields where cut biomass exceeded grazed biomass
(GCD < 0). The higher RCR (mean and SD) for LAI and
grazed biomass is caused by the spatio-temporal uncertainty
in the vegetation reduction time series. This input-related un-
certainty leads to the MDF algorithm being less effective in
identifying cutting instances in some simulated fields; i.e.
sampled parameter vectors produce varying predictions on
the timing and intensity of grass cuts. The impact of input
data uncertainty on RCR is also reflected on the shape of
RCR distributions for GPP and grazed biomass (violin plots
in Fig. 9). The assimilated EO LAI time series condition the
simulated LAI, which combined with the simulated removals
(grazing/cutting) determine the weekly GPP at each simu-
lated field. Reducing the uncertainty (spatial and temporal)
around the vegetation reduction data is expected to lead to
less variable predictions of cutting timing and intensity and,
thus, to lower predictive uncertainty, in general.
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Figure 9. Cartograms of relative confidence range (RCR,
100 x CI/mean) of MDF-predicted LAI, GPP, Reco and grazed
biomass. The mean across all fields in each cell is presented. The
size of cells is adjusted according to the number of simulated fields
within it. The violin-plot insets present the distribution of MDF esti-
mates grouped according to the relative contribution of grazing and
cutting to the total annual biomass removal (GCD). The green side
of each violin plot shows results for fields in which most biomass
was removed via grazing (GCD > 0). The orange side shows re-
sults for fields in which most biomass was removed via cutting
(GCD <0).

4 Discussion
4.1 Grassland vegetation management across GB

Process modelling combined with earth observation
can identify grassland vegetation management effec-
tively over large spatial domains. The distribution of
MDF-based livestock densities across GB mirrors the
independent determined census-based numbers of cattle
and sheep per area; MDF estimated livestock density is
0.7 (£0.56) LUha~! and census based livestock density is
0.76 (£0.46) LU ha~!. Considering that grasslands with a
corresponding LUha~! <~ 0.5 are thought as supporting
a low livestock density and those with LUha™! >~ 1 as
supporting a high livestock density, the average managed
grassland in GB supported an intermediate livestock density
in 2017-2018 (Chang et al., 2015b).

The MDF-predicted GB-average pasture dry matter yield
(6+1.8tDMha~! yr~!) is within the range for GB perma-
nent pastures (7.4142.02t DM ha~! yr~!) as estimated by Qi
et al. (2017) using statistical extrapolation of field-measured
data. Due to the field-size limits (6—13ha) used in sam-

Biogeosciences, 19, 4147-4170, 2022

V. Myrgiotis et al.: The carbon budget of the managed grasslands of Great Britain

pling for fields across GB, the share of less intensively man-
aged grasslands is likely biased high in the simulated fields’
dataset (Qi et al., 2018). Cut-only grasslands were under-
represented in our analysis, as we expected =~ 10 % of field
to be in temporary management for cutting. We believe this
is an artefact of the noise in the vegetation reduction time se-
ries, which led to cut-only grasslands failing to pass the 50 %
overlap limit and being excluded from the final dataset. The
inclusion of fields that are 6-13 ha in size could have led to
an under-representation of cut-only fields, but we note that
no data exist on the percentage of managed grasslands that
are grazed-only, cut-and-grazed and cut-only.

4.2 The C balance of managed grasslands

The presented results are probabilistic model-based esti-
mates produced by carefully upscaling our quantitative un-
derstanding of grassland C cycling under GB conditions.
DALEC-Grass is a process-based C biogeochemical model
that has been calibrated and validated against in situ data
on C pools and fluxes collected over 11 years and at two
variably managed grassland sites in GB (Myrgiotis et al.,
2020). This measured dataset is to our knowledge the most
detailed and extensive available for managed grasslands in
GB. It includes measured data on NEE, soil C, soil sur-
face respiration, aboveground and belowground biomass C,
harvest yields, LAI, and human-management-related factors
(i.e. livestock details, manure and fertiliser use). The credi-
bility of DALEC-Grass estimates of C fluxes is established
on previously published work on model validation and test-
ing of the grazing and cutting inference algorithm (Myrgiotis
etal., 2021).

The results of this study show that the majority of man-
aged grasslands in GB were net C sinks during 2017
(NEE =—2894+76gCm2yr~!)and 2018 (NEE=—174 +
74gCm~2yr~!) at the ecosystem level, i.e. based on CO;
gas exchanges. Numerous flux-tower-based studies have
concluded that managed temperate grasslands are, on av-
erage, C sinks, but NEE estimates vary greatly between
~ —700 gCm~2 yr~! to almost C neutrality (Soussana et al.,
2007; Gilmanov et al., 2007; Skinner, 2008). The scale of
NEE increase between 2017 and 2018 is comparable to past
field-based estimates under normal and heat-wave conditions
(Klumpp et al., 2011). When considering C fluxes that also
included grazing/cutting removals and manure return to the
soil (i.e. NBE), the simulated grasslands were net C sinks
during 2017 (NBE=—1914+82gCm~2yr!) and close to
C neutral in 2018 (NBE=—49+70gCm~2yr~!). These
NBE estimates are comparable to those in the literature, but
the inconsistency in the variables included in NBE calcu-
lations makes comparisons less than straightforward (Sous-
sana et al., 2007; Skinner, 2008). Based on RF-based anal-
yses of climate drivers and model parameters, we argue that
the increase in mean annual NEE and NBE between 2017
and 2018 was caused by the 2018 summer heat wave. The
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negative effect of elevated annual temperatures on grass-
land biomass productivity and NEE has been examined in
measurements and model-based studies on European grass-
lands before (Jansen-Willems et al., 2016; Ciais et al., 2005;
Thompson et al., 2020). The mechanistic understanding, as
well as the model representation, of how plants respond to in-
creased VPD is improving, but key aspects are still disputed
(Grossiord et al., 2020; Massmann et al., 2019).

Our study shows that biomass removals were key deter-
minants of the C balance of managed grasslands. The role
of cutting relative to grazing as a biomass removal method
was found to be particularly important. Grasslands in which
most biomass was removed via cutting had a lower GPP and
Reco as opposed to grasslands in which grazing was the main
biomass removal method (Fig. 5). However, when GPP and
Reco are summed, the resulting NEE did not vary signif-
icantly between mostly grazed and mostly cut grasslands.
All of the simulated grasslands were grazed and underwent
more or less frequent defoliation during the simulated period.
When cutting occurs the leaf area of a grassland is reduced
close to zero, which represents a diminution of the grass-
land’s photosynthetic capacity. According to DALEC-Grass,
in the post-cutting period the simulated grassland allocates
almost all of its C to aboveground tissues (stems, leaves) in
order to build up the leaf area necessary to increase photo-
synthetic activity and sustain growth. This causes a smaller
root-to-shoot ratio in grazed and cut grasslands compared to
grazed-only ones as well as a reduction of root-based C in-
puts to the litter pool (lower Ry). Grazing that occurs during
the post-cut period maintains the volume of leaves at rela-
tively low levels. This leads to a reduced annual GPP for
grasslands that are both grazed and cut and also means lower
manure C returns to the soil, which explains the weaker C
sinks (higher NBE) of most grazed-and-cut grasslands com-
pared to grazed-only fields. Taking into account the fact that
most GB grasslands undergo alternations between cutting
and grazing and that defoliation patterns vary from year to
year highlights the importance of detecting these patterns
(Fetzel et al., 2017).

4.3 Factors that control managed grassland C
dynamics

Management and climate have a combined effect on C dy-
namics, and disentangling their individual impacts is a chal-
lenge (Ammann et al., 2020). Here, we used a correlation
matrix of model drivers, parameters and outputs to under-
stand how climate and management affect the predicted C
fluxes and balance of the simulated grasslands. The corre-
lation matrix revealed a negative effect (r < 0) of VPD on
GPP and Reco, and a positive effect (» > 0) on NEE and
NBE. Biomass removals had a similar effect, with higher
removals corresponding to lower GPP and Reco and more
positive NEE and NBE. Moreover, we used the model’s cli-
mate drivers and all of its management- and climate-related
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parameters to train a RF model that estimates NBE. The anal-
ysis of the RF model structure showed that the contribution
of VPD as a RF predictor of NBE increased from 3 % in 2017
to 40 % in 2018, with VPD being the most important deter-
minant of NBE in 2018. This increase is linked to the heat
wave and drought conditions during that year. Management-
related parameters were the most important determinant of
NBE in 2017 and the second most important in 2018.

The conclusions that we draw in regards to which factors
have more influence on grassland C dynamics are based on
two assumptions. Firstly, we assume that the simulated grass-
lands are well optimised for the intended use, i.e. to sus-
tain different types of livestock (e.g. dairy and/or beef cat-
tle and/or sheep). This means that each sward is maintained
in good condition and that farmers manage their fields opti-
mally based on their long-term experience. Secondly, the fact
that a large share of the simulated fields (especially in the
southern half of England) experienced continuous weeks of
unusually hot and dry weather conditions during one (2018)
of the two simulated years is treated as a climate anomaly;
i.e. climate in 2018 is not representative of normal climatic
controls on C balance. Based on these assumptions, we argue
that the simulated vegetation management, as inferred from
the observational data, was adapted to the seasonal weather
anomaly. Therefore, significant changes in ecosystem C cy-
cling were beyond the control of human management and can
be mostly attributed to the seasonal weather anomaly.

Our findings on the role of management are in agreement
with findings in a number of relevant studies, notwithstand-
ing differences in methodologies and ecoclimatic conditions.
Skinner (2008) found that higher biomass removals increase
NBE based on C flux measurements in cut-and-grazed tem-
perate grasslands in the USA. Koncz et al. (2017) used eddy
covariance measurements of C fluxes at a cut-only and a
grazed-only field in Hungary and found that the cut field
had a more positive NBE (smaller sink) than the grazed field.
Senapati et al. (2014) reached the same conclusion as Koncz
et al. (2017) using eddy covariance measurements from a
cut-only versus grazed-only experiment in France. Soussana
et al. (2010) reviewed studies on European managed grass-
land C balance and found that grazed-only grasslands had the
lowest NBE, followed by cut-only grasslands, with cut-and-
grazed grasslands having the highest NBE (NBE in this study
included animal methane C and C-leaching fluxes). Based on
eddy covariance measurements over 2 years at three grass-
land sites with varying management intensity in Switzerland,
Zeeman et al. (2010) concluded that management (including
biomass removals and manure application) has a strong in-
fluence on C fluxes and balance.

In summary, we conclude that management is a key de-
terminant of the C balance of managed grasslands in GB.
We note that climatic anomalies, such as heat waves and
droughts, can reduce the relative importance of management
as a determinant of grassland C balance. In simple terms, hu-
man decisions can adjust grassland sink or source strength,
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and this depends mostly on the soil’s existing C stock, the
sward’s composition and condition, and the timing and in-
tensity of livestock grazing and grass cutting. Climate change
can change this fine C balance substantially, and prolonged
heat and drought is one way in which this can occur in re-
gions with temperate maritime climate.

4.4 Predictive uncertainty

We use the RCR to quantify the uncertainty around the MDF-
predicted variables. RCR shows how wide the 95 % confi-
dence intervals (i.e. 2x SD, assuming normality) are relative
to the mean value. The assimilated LAI data come from pro-
cessing S2 images and have an uncertainty attached to them.
This observational uncertainty is not always examined in rel-
evant studies, but a relative SD of 15 % is considered as rep-
resentative (Zhao et al., 2020). This means that the average
RCR of the assimilated observational LAI data is ~ 30 %.
Considering that MDF predictions incorporate model para-
metric uncertainty as well, the mean analysis LAI RCR of
45 % is, as expected, larger than, but of similar magnitude to,
the observational uncertainty of 30 % (Fig. 9).

The estimated predictive uncertainty for LAI, GPP and
grazed biomass was noticeably higher for fields that were
mostly cut (GCD < 0) (Fig. 9). The MDF algorithm does not
infer cutting simply by translating large reductions in veg-
etation as cuts. The MDF algorithm examines each weekly
vegetation reduction input to decide whether to simulate it
as cutting, simulate it as grazing or ignore it depending on
the simulated amount of foliar biomass at the time. The sim-
ulated amount of foliar biomass is constrained through the
assimilation of field-specific EO-based LAI time series. A
weekly vegetation reduction will be simulated as a cut when
it is reasonable both biophysically and agronomically based
on the EDCs (see Sect. 2.1.2). This higher predictive uncer-
tainty when cutting occurs suggests that the best way to ob-
tain more accurate predictions is to improve the spatial and
temporal resolution of the vegetation reduction time series
and/or estimates of LAI. Using radar (e.g. Sentinel-1) to de-
rive LAl in spite of cloud cover would be a valuable advance.

4.5 Limitations

This study uses a MDF algorithm that depends on EO data
and process modelling of C dynamics in grasslands. The
Proba-V-based vegetation reduction time series that are used
to drive DALEC-Grass have a resolution (9 ha) that is coarse
when compared to the average size of grassland fields in GB.
These noisy data on vegetation reduction cause increased un-
certainty in MDF predictions especially in regards to the tim-
ing of cutting events. Moreover, most areas of GB are af-
fected by frequent cloudiness, which means that the number
of Sentinel 2-based LAI data points per year and simulated
field is limited compared to other parts of the world. How-
ever, we ensured 30 images per field over 2 years in our se-
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lection process, and this richness of information at field res-
olution and for national domains is unprecedented in such an
analysis.

DALEC-Grass was developed and tested under GB condi-
tions, showing high skill in predicting C allocation and CO»
fluxes under variable management and different soil condi-
tions (Myrgiotis et al., 2020). However, DALEC-Grass can
only infer effects on grass growth through the processes it
simulates and so can misattribute effects arising from miss-
ing processes. For instance, the MDF algorithm can adjust
a specific plant growth rate parameter (DALEC parameter
P10, photosynthetic N use efficiency) between fields based
on observed LAI dynamics and weather. Inferred P10 varia-
tion among fields might be linked to spatial patterns in soil
fertility. But because there is no direct soil moisture con-
straint on LAI in DALEC-Grass to be adjusted, a real spatial
soil moisture limitation on LAI might be misinterpreted as a
restriction on P10. So we should be cautious in interpreting
process variation and assigning with certainty to a particular
forcing. Also, a single P10 estimate is made for each field
covering both 2017 and 2018, so the current analysis does
not allow field nutrient supply (and therefore P10) to change
between years. The strong differences in sink strengths ob-
served in the 2017 and 2018 analyses are informative. The
flux differences cannot arise from parameter differences be-
tween years, as these parameters are constant. Instead differ-
ences must arise from process changes (e.g. GPP) resulting
from changes to the forcing (VPD, Fig. 1) and changes to the
assimilated data (LAI) between years. The larger LAI uncer-
tainty in southern GB (Fig. 9) may be related to soil mois-
ture impacts on grass growth that we fail to identify with the
current model structure. Finally, DALEC-Grass has been val-
idated against data from grasslands dominated (> 90 %) by
perennial ryegrass (Lolium perenne), and its ability to simu-
late swards with larger shares of herbs and forbs has not been
tested.

In general, the ability to use field-specific observed in-
formation on key aspects of grassland vegetation and to
infer vegetation grazing and cutting are the key advances
presented in this study. The majority of grassland-focused
model-based estimates for large domains typically rely on
uncertain information on grazing and cutting. Also, with few
recent exceptions, most relevant studies do not include field-
specific validation of model predictions, which results in
highly uncertain estimates. On the other hand, the calcula-
tion of some lateral flows of C (manure input) remains an out-
standing challenge as this depends on information that cannot
be inferred from EO-based time series. The size, type and age
of livestock significantly affect aboveground biomass and the
turnover of grazed biomass C (Bahn et al., 2008). While we
cannot infer such detailed livestock information our proba-
bilistic MDF framework allows us to attribute uncertainty to
livestock C turnover and, thus, to quantify their impact on
predictions. This attribution can be done by treating grazed
biomass-C conversion factors (Fig. 1) as model parameters.
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Our approach cannot detect human-managed manure ap-
plication from EO data and so does not consider this method
of manure-C addition to the soil. Grazed biomass-to-manure-
C conversion factors are used in DALEC-Grass to estimate
the amount of manure C produced and added to the simulated
soil litter pool at each time step. This way of applying manure
is a simplification of what happens in reality where grazing
livestock will deposit some manure to the soil while some
of their manure will be collected during periods of housing
and stored to be applied across a farm’s fields and/or traded to
other grassland or arable farms. Typically, most manure is ap-
plied in GB grasslands during spring and autumn. Despite all
this, GB livestock is primarily grass fed, and the volume of
manure produced in a farm is directly related to the biomass
productivity and the livestock density maintained at the dif-
ferent farm fields, which MDF can detect and deduce respec-
tively (Smith and Williams, 2016). We almost certainly mis-
estimate the volume of manure C returned to soils annually
(2017 and 2018) at the 1855 fields that were simulated due
to lateral transfers. However, the predicted spatial distribu-
tion of manure production and application intensity is likely
to be representative of reality since this should be following
the spatial distribution of livestock density and biomass pro-
ductivity — factors that MDF predicted well (see Sect. 3.2).

4.6 Future work

Our overarching aim is to produce a computational ecosys-
tem modelling framework that is (1) able to utilise the
swathes of EO data that are increasingly becoming available
while (2) being easy to adapt and incorporate new knowl-
edge gained from field/lab experiments and observations.
This study showed that the MDF algorithm will benefit most
from improving the temporal resolution and quality of EO
LAI data used. We believe that by advancing on this front the
algorithm will be able to produce more accurate estimates
across grasslands in Europe and other regions with similar
agroclimatic conditions. Introducing soil moisture and N-
cycling-related processes to DALEC-Grass will pave the way
for more detailed consideration of the effects of fertiliser use
and different grass mixtures, as well as for its application at
climatically critical rangelands and pastures across the world
(e.g. tropical and dry regions). DALEC-Grass has a structure
that facilitates the incorporation of modelling advances made
with other DALEC-based models such as those presented in
Revill et al. (2021) for foliar N and Smallman and Williams
(2019) for soil moisture. We note that the quality of soil C-
related data is critical for better constraining belowground C
pools and fluxes (e.g. heterotrophic respiration) and so is the
availability of ground measured data on field-scale C fluxes
(e.g. NEE). Improvements in the quality, volume and avail-
ability of relevant spatial data in the future will improve the
credibility for MDF estimates.
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5 Conclusions

This study presented how, by fusing EO data and biogeo-
chemical modelling of managed grassland C dynamics at
field resolution across a national domain, a MDF framework
can detect biomass removals and use this information to pre-
dict grassland C fluxes and balance probabilistically. In addi-
tion, the study showed how field-specific model predictions
of grassland vegetation can be validated against field-specific
EO-based LAI time series. We argue that both of these uses
of EO data in model-based studies represent key advance-
ments that increase the credibility of field-scale estimates of
C dynamics in managed grasslands. Our results show that
MDF-predicted annual yields and livestock density mirror
ground-based information well. In agreement with a range of
studies on temperate grasslands in Europe and beyond, our
study reaffirms the C sink potential of managed grasslands in
GB. In contrast to previous measurements and model-based
studies, however, we showed how MDF can quantify and in-
terpret C dynamics across a large domain (GB) while also re-
solving subfield-scale variability in vegetation management.
This granularity is vital as our results show how management
differences between fields have strong effects on net C bal-
ance. It is widely accepted that climate change is manifesting
itself, among other ways, as more frequent droughts in north-
ern Europe (Peters et al., 2020). Our study showed how the
most prolonged drought (2018) that has been recorded in GB
since 2000 affected the C balance of managed grasslands. It
highlights that the ability of temperate maritime grasslands
to sequester C could be significantly affected by prolonged
heat waves and drought. Various climatic and management-
related factors affect both the annual C balance and the sea-
sonal grassland biomass utilisation in livestock farming in
GB and northwest Europe in general.

National targets for C neutrality in the agricultural sector
and the unfolding of climate change create a challenging fu-
ture for GB grassland farming. The estimation of grassland
C balance using MDF has a number of limitations, including
the lack of field-scale data on soil C and fertiliser and ma-
nure application across large domains. Yet, these limitations
can be addressed if MDF is used as part of a land C man-
agement monitoring system, in which farmers report field-
scale activity data (i.e. fertiliser and manure use) and measure
soil C for validation purposes. Overall, the strength of proba-
bilistic MDF is its potential to utilise disparate observational
data and provide estimates with well-defined uncertainties.
In this respect, the volume and resolution of observational
data on plant and soil conditions of grasslands continue to
grow driven by advances in EO science and infrastructure
and by an increasing interest and investment in environmen-
tal monitoring technologies (e.g. low-cost proximal sensing,
integrated network of sensors and stations). We argue that in
the near future farmers and governments alike will be able to
benefit from MDF approaches that provide key monitoring
tools for C balance, as well as guidance on adaptation and
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mitigation of climate change effects on agriculture towards
meeting net-zero goals.

Appendix A

Table A1l. DALEC-Grass parameters (number, description, units and prior min/max values).

Code  Description Unit Min Max
P1 Decomposition rate fractiond ! 0.0011 0.0136
P2 Fraction of GPP that is respired - 0.46 0.48
P3 Growing season index (GSI) sensitivity for leaf growth — 0.75 0.90
P4 NPP belowground allocation parameter - 0.55 0.70
P5 Maximum GSI for leaf turnover - 1.34 1.99
P6 Turnover rate of roots fractiond ! 0.052 0.071
P7 Turnover rate of litter fractiond—! 0.022 0.049
P8 Turnover rate of soil organic matter fractiond ! 4%x1077  126x107
P9 Temperature Q¢ factor - 0.047 0.067
*P10  Photosynthetic N use efficiency (PNUE) gCgN 1 21 25
leaf m2d~!
P11 Maximum GSI for labile/stem turnover - 0.40 0.67
P12 Minimum GSI temperature threshold K 230 243
P13 Maximum GSI temperature threshold K 279 296
P14 Minimum GSI photoperiod threshold s 9580 15590
*P15  Leaf mass C area gC m~2 leaf 45 52
P16  Initial C in stem/labile pool gCm™2 20 35
P17 Initial C in foliar pool gC m~2 85 100
P18 Initial C in roots pool gC m~2 40 355
P19  Initial C in litter pool gCm~2 250 790
P20 Maximum GSI photoperiod threshold s 33200 40000
P21 Minimum GSI vapour pressure deficit threshold Pa 100 350
P22 Maximum GSI vapour pressure deficit threshold Pa 1000 1500
P23 Critical GPP for LAI increase gCm~2¢~! 0.035 0.153
P24 GSI sensitivity for leaf senescence - 0.993 0.996
P25 GSI growing stage indicator - 0.72 1.01
P26 Initial GSI value - 1.56 1.73
*P27  Pre-grazing AGB threshold gC m~2 50 100
*P28  Pre-cutting AGB threshold gCm~2 120 160
P29 Leaf to stem allocation parameter - 0.6 0.7
P30 Post-grazing labile/stem loss - 0.01 0.03
P31 Post-cutting labile/stem loss - 0.50 0.53
* Parameters for which the prior was wider than suggested by Myrgiotis et al. (2021).
Table A2. Ecological and dynamic constraints (EDCs).
No Explanation Reference

NN R W=

The turnover rate of the soil organic matter pool cannot be faster than that of the litter pool
Initial SOC pool cannot be less than the sum of all other pools (litter, roots, aboveground)
The soil organic matter pool cannot lose or gain > 5 % of its C in a simulated year
Annual GPP and ecosystem respiration cannot be < 800 or > 2800 gC m~2
Weekly mean GPP cannot be > 25 gC m—2

Cutting yield cannot be < 80 or > 385 gCm ™2

No more than four cuts can occur each simulated year

Xia et al. (2015), Gilmanov et al. (2007)
Xia et al. (2015), Gilmanov et al. (2007)
Qietal. (2017)
Qietal. (2017)
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Sentinel-2 LAl
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SoilGrids
(500m / none)

ECMWF ERAS5
(5km / daily)

CGLS LAI
(300m /10 days)

* (Spatial/temporal resolution
of original data)

EO DATA ASSIMILATION
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and fluxes with EDCs
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€
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Figure Al. Schematic description of data sources and data flow in the model—data fusion process. The DALEC-Grass model is driven by
weekly weather and vegetation reduction data (see Sect. 2.1.5 and 2.1.4). The initial size of the soil organic C (SOC) pool for each simulated
field is obtained from the SoilGrids database (Hengl et al., 2017) and used as a DALEC-Grass parameter (with uncertainty attributed to it).
DALEC-Grass produces outputs on weekly C pools, fluxes and removals (see Fig. 1). It also produces weekly time series of LAI. Observa-
tional time series on LAI are assimilated by reducing the RMSE between observational and simulated LAI time series (see Sect. 2.1.4). The
assimilation is performed in CARDAMOM by using the simulated annealing (SA) method/algorithm (see Sect. 2.1.3).
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Figure A2. Cartograms of overlap (%), root mean square error (RMSE) (m2 m_z), and bias (m2 m_z) between MDF-predicted and assim-
ilated LAI (EO-based). The size of cells is adjusted according to the number of simulated fields within it. The violin-plot insets present the
distribution of each evaluation metric across all simulated fields.
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Figure A4. Mean month of year of first simulated grass cutting per GB region.
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Figure A6. Cartograms of MDF-predicted NBE for 2017 and 2018. The mean across all fields in each cell is presented. The size of cells is
adjusted according to the number of simulated fields within it. Unit: gC m~2 yr_1 .
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Figure A7. Map of inter-annual (2017-2018) difference in 3-week average VPD (Pa) per season. The map is a 25 km grid of GB. Only grid
cells that contain at least one simulated field are presented.
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presented. The size of cells is adjusted according to the number of simulated fields within it.

Appendix B: Abbreviations

GPP  Gross primary productivity

R, Autotrophic respiration

Ry Heterotrophic respiration

Bg Grazed biomass

B. Cut biomass

GCD By, — B

M Manure produced by grazing livestock

Reco  Ecosystem respiration (Reco = R, + Ry,)

NEE  Net ecosystem exchange (NEE = Reco — GPP)
NBE  Net biome exchange (NBE = NEE + B. + By — M)
NPP  Net primary production (NPP =GPP — R;)
LAI Leaf area index

CI Confidence interval

RCR  Relative confidence range (100 x CI/mean)
SD Standard deviation

SOC  Soil organic carbon

Asoc  Change in SOC pool size

AGB  Aboveground biomass

LU Livestock units

VPD  Vapour pressure deficit (Pa)
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