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Supplementary Materials 

 

 

Acronym Description 

 

FNN Feed-forward Neural Network 

GBM Gradient Boosting Machines 

SAZ Sub-Antarctic Zone 

PFZ Polar Frontal Zone 

NEMO Nucleus for European Modelling Ocean 

PISCES Pelagic Interactions Scheme for Carbon and Ecosystem Studies 

CSIR Council of Scientific and Industrial Research 

SOCCO Southern Ocean Carbon and Climate Observatory 

SOCCOM Southern Ocean Carbon and Climate Observation Modelling 

SOCAT Surface Ocean CO2 Atlas 

SOSCEx Southern Ocean Seasonal Cycle Experiment 

WG Waveglider 

nUSV new unmanned surface vehicle 

ML Machine Learning 
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This supporting information document provides ancillary methodological details and results pertaining to (1) descriptions of 

the study domain and mode data variables including the motive of the selection of the experimental domain, the characteristics 

of the NEMO-PISCES model (BIOPERIANT12) data variables of interest and processing, the experimental setting and steps 

used in the 𝑝CO! reconstruction; (2) descriptions of the ML regression methods; and (3) additional components on the results 

and discussion including the model training errors or in-sample uncertainties and biases, and the overall results of the SHIP 10 

experiment. Accompanying this supporting information text are four supplementary figures and four supplementary tables. 
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S1 Descriptions of the study domain and mode data variables 

S1.1 Selection of the study domain 

According to many studies, the seasonal cycle is the strongest mode of natural variability of carbon dioxide (CO2) and also the 15 

one that most strongly links climate and ocean ecosystems. The seasonal cycle characteristics are largely shaped by higher 

frequency intra-seasonal modes defining the response modes in physical and biogeochemical components of CO2 (Mongwe et 

al., 2016, 2018). For this reason, the Southern Ocean Seasonal Cycle Experiment (SOSCEx) was launched in 2013 - an 

initiative of the Southern Ocean Carbon-Climate Observatory (SOCCO) which is a research program led by the Council of 

Scientific and Industrial Research (CSIR). The SOSCEx aimed to explore the nature and links in dynamics and scale 20 

sensitivities of atmospheric forcing, CO2 fluxes, and primary production, with a particular focus on the seasonal cycle as a test 

for the climate sensitivity of earth systems models in respect of the evolution of both atmospheric CO2 and ocean ecosystems 

in the 21st century (Swart et al., 2012; Monteiro et al., 2010, 2015). The novel aspect of the third phase (SOSCEx III, 2015-

2018) of the project was the integration of a multi-platform approach. This consisted of combining gliders, ships, floats, 

satellites, and prognostic models in order to explore new questions about the climate sensitivity of CO2 and ocean ecosystem 25 

dynamics. Further, it also investigated how these processes are parameterized in forced ocean models such as the high-

resolution (±10km) forced NEMO-PISCES ocean model BIOPERIANT12 (BP12). 

 

 
Figure S1: Schematic view of the observing strategy for the beginning of the third phase of the SOSCEx project illustrating the use 30 
of multiple SO observing platforms, ships, gliders, floats, and numerical models. The hexagonal patterns (blue-yellow) depict the 
twined glider deployments; the orange curve shows the Lagrangian float sampling trajectories, while the high-resolution modeling 
domain is represented with the white dashed line. Magenta lines are the average locations of the oceanic fronts shown as derived 
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from satellite altimetry data, whereas the underlying shading depicts the mean summer chlorophyll-a concentration in the region 
with lighter shading=high Chl-a areas. (Source: https://socco.org.za/news/plans-underway-for-soscex-iii/). 35 

 

S1.2 Data variable characteristics and processing 

Here we summarize in Table 1 the data variables of the forced high-resolution (±10km) NEMO-PISCES coupled ocean model 

BIOPERIANT12, and the processing techniques these variables have to undergo. 

 40 
Table S1: Summary of the BIOPERIANT12 model variables of interest, and data processing steps applied on feature and target 
variables. 

Variables Abbreviations Processing 
Date 

range 

Resolutions 

Space Time 

Air-sea 𝑝CO! gradient Δ𝑝CO! Model simulations 

1 year 
1/12º daily 

Atmospheric (atm) 𝑝CO! 𝑝CO!"#$ In-situ 

Surface ocean 𝑝CO! 𝑝CO! or 𝑝CO!%&'"( 𝑝CO!"#$ − Δ𝑝CO! 

Sea surface temperature SST Model simulations 

Sea surface salinity SSS Model simulations 

Mixed layer depth MLD 
Model simulations 

log)* transformation 

Nano chlorophyll concentration NChl Model simulations 

Diatom chlorophyl concentration DChl Model simulations 

Chlorophyll-a Chl-a NChl + DChl 

Day of the year J )cos )𝑗 ×
2𝜋
3653 , sin )𝑗 ×

2𝜋
36533 - 

 

 

S1.3 Summary of the experiment 45 

 
Table S2: Summary of all the 8 semi-idealized ocean system simulation experiments (OSSE-8) that we conducted in this study. The 
simulated ocean observing platforms (SHIP, FLOAT, WG, and nUSV Saildrone) correspond to their real-world counterparts (ship, 
carbon-float, Waveglider, and Saildrone) used in the SOCAT project, SOCCOM initiative, and SOCCO program and by Saildrone 
Inc., respectively. The sampling regimes represent the periods in which the data sampling phase of different experiments occurred 50 
according to the temporal scales of the underlying platforms. Note that the observing platforms Waveglider and float have two 
scenarios each based on the fact that they are deployed either in the north (SAZ) or south (PFZ) of the 10º x 20º experimental domain. 
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Experiment abbreviations together with their subsequent scenarios (defined by the sampling regimes/strategies) are used in figures 
and throughout the text. 

 55 

Ocean Observing 

Platforms 
Sets Sampling Regimes Experiments 

Ships 

(SOCAT-like) 
SHIP 

Summer 

(smr) 
SHIP(smr) 

Summer + Winter 

(smr+wtr) 
SHIP(smr+wtr) 

Autumn + Spring 

(aut+spr) 
SHIP(aut+spr) 

Floats 

(SOCCOM-like) 
SHIP + FLOAT 

Summer (smr) 

+ 

One year round 

SHIP(smr) + FLOAT(SAZ) 

SHIP(smr) + FLOAT(PFZ) 

SHIP(smr) + FLOAT(SAZ+PFZ) 

Wavegliders 

(SOCCO-like) 
SHIP + WG 

SHIP(smr) + WG(SAZ) 

SHIP(smr) + WG(PFZ) 

Saildrones SHIP + nUSV SHIP(smr) + nUSV 

 

S2 Descriptions of the supervised ML regression methods 

S2.1 Feed-forward Neural Network 

The Feed-forward Neural Network (FNN) is a class of the neuronal network algorithms that is the most commonly used as a 

non-linear approach in the surface ocean 𝑝CO! reconstruction community (Bushinsky et al., 2019; Denvil-Sommer et al., 2019; 60 

Gloege et al., 2021; Gregor et al., 2019; Gregor and Gruber, 2021; Landschützer et al., 2016; Rödenbeck et al., 2015). Solving 

the 𝑝CO! reconstruction problem is within the capability of a single hidden layer of the neural network (Gregor and Gruber, 

2021; Landschützer et al., 2013). Thus, we use the Multi-layer Perceptron regressor whose implementation is in the Scikit-

learn Python package. The basic principle of this algorithm is summarized in Fig. 2 where a network with random weights is 

generated similarly to coefficients in the linear regression. Data are passed forward through the network in order to estimate 65 

the target values (𝑝CO!). The difference between estimates and true values is backpropagated through the weights until the 

targets are met with sufficient accuracy. In our study, we tuned a number of primary hyper-parameters such as the number of 

hidden layers and weights per layer (see the architecture of the network, e.g., Fig. 2), and the learning rate (𝛼). This tuning 
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process was achieved with a Bayes-search cross-validation (BayesSearchCV) approach by making use of the Scikit-optimize 

Python package. 70 

 

 
Figure S2: Depiction of a typical example of the architecture or graph of a single hidden layer Multi-layer Perceptron network. X is 
the array of feature data [SST, SSS, MLD, Chl-a, J] whereas Y is the array of the target variable [𝒑𝐂𝐎𝟐𝐨𝐜𝐞𝐚𝐧] as described in Table 
1. 75 

 

S2.2 Gradient Boosting Machines 

Gradient Boosting Machines (GBM) is a widely used machine learning (ML) algorithm due to its efficiency, accuracy, and 

interpretability (Chen and Guestrin, 2016; Gregor et al., 2019; Gregor and Gruber, 2021; Ke et al., 2017). It is a variant of the 

Gradient Boosting Decision Tree (GBDT) learning frameworks. GBM produces a prediction model in the form of an ensemble 80 

of weak prediction models typically called decision tree learners that increase the efficiency of the model and reduce memory 

usage during the training. It builds these multiple weak learners in a stage-wise or sequential fashion and generalizes them by 

allowing optimization of an arbitrary differentiable loss function (Friedman, 2001; Ke et al., 2017). This can be known as 

aggregative learning, where in each stage algorithm improves what is learned. Although GBM has been proven to deal well 

with imbalanced or sparse datasets (Ke et al., 2017)), it is more likely to overfit the training data because of the model’s 85 

potential for high complexity (Frery et al., 2017). Thus, tuning GBM hyper-parameters to prevent overfitting is very important. 

In our study, the following hyper-parameters were tuned: number of trees or leaves, depth of the trees, learning rate, number 
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of estimators, and boosting type. We use the LightGBM and Scikit-optimize Python packages for our implementation of GBM 

and optimization/tuning of hyper-parameters through the BayesSearchCV module, respectively. 

 90 

S2.3 Surface ocean 𝒑𝐂𝐎𝟐 reconstruction steps 

Two commonly used reconstruction techniques (Landschutzer et al, 2016; Gregor et al., 2019) that also motivated the choice 

of two machine learning methods above (FNN and GBM) both adopt a two-step ML approach in which the first step consists 

of clustering the reconstruction domain whereas the second step applies ML regression mapping in each cluster generated. At 

large-scale reconstructions such as the Southern Ocean as a whole, this clustering step is necessary to overcome the spatial 95 

and temporal limitations of observations. Fig. S3 illustrates the Southern Ocean Fay and McKinley (2014) biomes, one of the 

clustering methods used by Gregor et al. (2019). This helps to understand the motive of skipping the clustering step in this 

study. Fig. S3a shows that the clustering step was not necessary given the size of the study domain, which is very smaller 

compared to the clusters. The study domain (black box, Fig. S3a) is roughly 50% STSS/SPSS (Fig. S3b). 

 100 

 

 

 
Figure S3: Panel (a) is the Southern Ocean regions or biomes (Fay and McKinley, 2014) as extended and used in Gregor et al. (2019) 
on which are added the Sub-Antarctic Front (SAF) (red line) dividing the study domain (black box) into the Sub-Antarctic Zone 105 
(SAZ) and Polar Frontal Zone (PFZ) which are relatively the two most sampled regions of the Southern Ocean; and panel (b) show 
the fraction coverage estimates (%) of the two most sampled regions: STSS and SPSS biomes relatively to the area of our box. EB 
biome stands for Eastern Boundaries (Gregor et al., 2019). For other biome abbreviations (below the colour bar), see Fay and 
McKinley (2014). 

 110 
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Figure S4: Schematic flow diagram showing the key steps required to reconstruct the surface ocean 𝒑𝐂𝐎𝟐 in the full experimental 
domain. 

 

S3 Results and Discussion 115 

S3.1 ML regression in-sample scores for individual methods 

In-sample scores correspond to ML regression scores calculated from all the training data points. This allowed for controlling 

the overfitting of the methods during the training. For instance, by focusing on the root mean square errors (RMSEs) and the 

mean bias errors (MBEs) or simply biases reported in Table 3, the nuanced differences between the two ML regression methods 

FNN and GBM show that the GBM method was likely susceptible to overfitting on training data compared to FNN method.  120 

 
Table S3: Various in-sample errors (i.e., errors calculated from all the training points) for empirical estimates of the surface ocean 
pCO2 for different experiments we run. The configuration of these experiments is presented in Table 1 and clearly described in 
Section 2.3.2. The machine learning regression metrics we used to report this in-sample error are abbreviated as follows: RMSE is 
the root mean square error; MAE is the mean absolute error; MBE or Bias is the mean average error. 125 

Sets Sampling 
Regimes Experiments Algorithms 

RMSE 

(µatm) 

MAE 

(µatm) 

MBE 

(µatm) 
SHIP SHIP(smr) FNN 4.07 3.39 0.14 
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Summer 

(smr) 

GBM 0.84 0.65 0.01 

Summer + Winter 

(smr+wtr) 
SHIP(smr+wtr) 

FNN 5.19 4.09 -0.51 
GBM 1.41 1.07 0.02 

Autumn + Spring 

(aut+spr) 
SHIP(aut+spr) 

FNN 3.78 3.05 0.19 
GBM 2.25 1.75 0.08 

SHIP + FLOAT 

Summer (smr) 

+ 

One year round 

SHIP(smr) + FLOAT(SAZ) 
FNN 6.21 5.06 0.21 
GBM 1.49 1.12 0.06 

SHIP(smr) + FLOAT(PFZ) 
FNN 5.11 4.17 0.08 
GBM 0.85 0.64 0.02 

SHIP(smr) + FLOAT(SAZ+PFZ) 
FNN 8.76 7.52 -2.01 
GBM 1.49 1.12 0.06 

SHIP + WG 
SHIP(smr) + WG(SAZ) 

FNN 4.12 2.92 0.38 
GBM 0.54 0.35 0.01 

SHIP(smr) + WG(PFZ) 
FNN 2.27 1.65 -0.12 
GBM 0.08 0.05 0.02 

SHIP + nUSV SHIP(smr) + nUSV 
FNN 5.39 4.29 -0.11 
GBM 2.55 1.98 -0.03 

 

S3.2 Hyper-parameter report after tuning 

Both machine learning algorithms (FNN and GBM) involved in the two-member ensemble method used in this study come 

with many hyper-parameters that are simply parameters whose values are determined by the training but need to be provided 

for the training or fitting of an algorithm. We made use of K-fold cross-validation technique combined with Bayesian 130 

optimization to achieve this process. For the reproducibility purpose, the optimal values of hyper-parameters reported at the 

end of the training are present in Table S4. 

 

 
Table S4: Final values used after tuning the hyper-parameters in the following experiments: SHIP(smr), SHIP(smr+wtr), 135 
SHIP(aut+spr), SHIP(smr) + WG(SAZ), and SHIP(smr) + WG(PFZ). 

Algorithms Hyper-parameters 

Final value used per experiment 

SHIP 

(smr) 

SHIP 

(smr+wtr) 

SHIP 

(aut+spr) 

SHIP(smr) + 

WG(SAZ) 

SHIP(smr)+ 

WG(PFZ) 

GBM 
Boosting type gbdt gbdt gbdt gbdt goss 

No. of estimators 128 256 260 185 150 
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Learning rate 0.005 0.1 0.0408 0.0366 0.0409 

Max depth 8 32 16 16 8 

No. leaves 32 64 64 128 160 

Min data leaf 50 

FNN 

No. of hidden layers 1 

Hidden layer size 32 115 128 128 64 

Learning rate Adaptive (0.001) 

Alpha  0.0001 0.0143 0.1 0.0001 0.0145 

Activation function relu 

Optimizer/Solver adam 

Batch size auto 

 

 
Table S5: Final values used after tuning the hyper-parameters in the following experiments: SHIP(smr) + FLOAT(SAZ), SHIP(smr) 
+ FLOAT(PFZ), SHIP(smr) + FLOAT(SAZ+PFZ) , and SHIP(smr) + nUSV. 140 

Algorithms Hyper-parameters 

Final value used per experiment 

SHIP(smr) + 

FLOAT(SAZ) 

SHIP(smr) + 

FLOAT(PFZ) 

SHIP(smr) + 

FLOAT(SAZ+PFZ) 

SHIP(smr) + 

nUSV 

GBM 

Boosting type goss gbdt goss goss 

No. of estimators 230 220 250 260 

Learning rate 0.0503 0.0145 0.0455 0.0258 

Max depth 32 32 16 32 

No. leaves 128 160 128 256 

Min data leaf 50 

FNN 

No. of hidden layers 1 

Hidden layer size 128 64 128 128 

Learning rate Adaptive (0.001) 

Alpha  0.0001 0.0065 0.0002 0.0059 

Activation function relu 

Optimizer/Solver adam 

Batch size  auto 
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S3.3 Overall results from the SHIP experiment 

S3.3.1 The spatial and seasonal cycle anomalies 

 145 

 
Figure S5: Reconstruction anomalies for the idealized SHIP experiment where the idealized ship sampled the domain according to 
the three sampling regimes/scenarios, summer (smr), summer + winter (smr+wtr), and autumn + spring (aut+spr). Panels (a), (b) 
and (c) show the maps of the reconstruction anomalies based these three sampling regimes, hence the three experiments SHIP(smr), 
SHIP(smr+wtr), and SHIP(aut+spr) respectively; panel (d) shows the anomalies of the mean seasonal cycle (SC) reconstruction 150 
based on these three sampling regimes; that is, SHIP(smr), SHIP(smr+wtr) , and SHIP(aut+spr). 

 

 

S3.3.2 Reconstruction skills for the SHIP experiment 

 155 
Table S6: ML regression modelling scores of the ensemble average (ML2) for the SHIP set of experiments: SHIP(smr) for summer 
sampling, SHIP(smr+wtr) for summer and winter sampling, and SHIP(aut+spr) for autumn and spring sampling. The configuration 
of this set of experiments is presented in Table S2. The first column of the table is the experimental set and the second one corresponds 
to the considered experiments. The statistical metrics used to assess ML2 for this set of experiments are abbreviated as follows: 
RMSE is the root mean square error; MAE is the mean absolute error; MBE or Bias is the mean average error, and 𝒓 is the Pearson’s 160 
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correlation coefficient between the reconstructed and BP12 model truth 𝒑𝐂𝐎𝟐. Values in the table are significantly different from 
the mean for the corresponding column (with a 95% confidence level or p-value < 0.05 for the two-tailed Z-test). 

Sets Experiments 
RMSE 

(µatm) 

MAE 

(µatm) 

MBE 

(µatm) 
𝑟 

SHIP 

SHIP(smr) 13.79 11.51 10.52 0.36 

SHIP(smr+wtr) 6.8 5.29 3.18 0.73 

SHIP(aut+spr) 7.07 5.5 3.57 0.72 

 

 

S3.4 Approximation of the monetary cost of nUSV to the full Southern Ocean 165 

To estimate the sampling density of nUSV in the Southern Ocean, a subset of Sutton et al. (2021)-USV dataset was created 

within the study sub-domain in order to get its original sampling tracks (Fig. S6). We found that the Sutton et al. (2021)-USV 

would take ~16 days to cover our 20ºW-E domain, which corresponds to 16days * 24hrs = 384 hourly samples. Longitudinally, 

on the other hand, the Southern Ocean is equal to 360º/20º = 18 times our 20ºW-E domain. This means that it would take about 

18 nUSV Saildrones to sample the full Southern Ocean. Further, based on a Science Magazine News by Paul Voosen (March 170 

8, 2018), Saildrone Inc charges about $2500 a day per nUSV to collect ocean data, whereas ship time can cost about $30,000 

or more per day. According to our estimation above, nUSV would sample hourly the sub-domain in about 16 days. Therefore, 

using the nUSV, sampling one circumpolar frontal region of the Southern Ocean with a density similar to that of our experiment 

would cost about 18*16 * $2 500 = $720 000. This is the upper end of the estimate. 

 175 

 
Figure S6: Sampling tracks of Sutton et al. (2021) USV inside the study domain. 
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S3.5 Additional details on the importance of synoptic scales in sampling 

More coordinated deployments of floats are necessary to resolve, for example, the intra-seasonal variability that nUSV and 180 

WGs were able to resolve. The resolving of this synoptic scale by WG and nUSV systems is likely due to their high sampling 

frequency, which would mean that sampling surface ocean CO2 at the correct interval remains critical. In addition, based on 

the sampling period sensitivity analysis (Fig. S7), Monteiro et al. (2015) showed that to achieve the 10% uncertainty threshold 

in the Southern Ocean as discussed in Lenton et al. (2006), a sampling period of 1-3 days is necessary for areas of high EKE 

and elevated sub-seasonal dynamics like that of the study domain. Thus, having a perfect knowledge of how we need to sample, 185 

one can get an estimate of the sensitivity of pCO2 to various sampling frequencies. 

 

 
Figure S7: A map from Monteiro et al. (2015) showing a mean for the adaptive sampling interval (in days) required to achieve the 
10% uncertainty threshold in the Southern Ocean as discussed in Lenton et al. (2006). 190 
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Figure S8: Panel (a) shows one-year time series plots (dashed lines) of the variability of pCO2 at single-model grid cells on the SHIP 
line (2.5ºE) and in solid lines the 10-day rolling mean (i.e., low-pass filtered pCO2 where the duration is set to 10 days). We used the 
following single model grid cells: 42ºS, 2.5ºE in the Sub-Antarctic Zone (SAZ); 44ºS, 2.5ºE on the Sub-Antarctic Front (SAF); and 195 
47ºS, 2.5ºE in the Polar Frontal Zone (PFZ). Panel (b) shows the RMSE map of the difference of the 10-day rolling mean from the 
daily model pCO2 in the study domain divided by the SAF (black dashed line, Fig. S8b) into two sub-domains: the SAZ and the PFZ. 
This RMSE gives us a statistical understanding of what the uncertainty might be if we sampled at a 10-day rate. 
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