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Abstract. The Southern Ocean is a complex system yet is
sparsely sampled in both space and time. These factors raise
questions about the confidence in present sampling strate-
gies and associated machine learning (ML) reconstructions.
Previous studies have not yielded a clear understanding of
the origin of uncertainties and biases for the reconstructions
of the partial pressure of carbon dioxide (pCO2) at the sur-
face ocean (pCOocean

2 ). We examine these questions through
a series of semi-idealized observing system simulation ex-
periments (OSSEs) using a high-resolution (± 10 km) cou-
pled physical and biogeochemical model (NEMO-PISCES,
Nucleus for European Modelling of the Ocean, Pelagic In-
teractions Scheme for Carbon and Ecosystem Studies). Here
we choose 1 year of the model sub-domain of 10◦ of lat-
itude (40–50◦ S) by 20◦ of longitude (10◦W–10◦ E). This
domain is crossed by the sub-Antarctic front and thus in-
cludes both the sub-Antarctic zone and the polar frontal zone
in the south-east Atlantic Ocean, which are the two most
sampled sub-regions of the Southern Ocean. We show that
while this sub-domain is small relative to the Southern Ocean
scales, it is representative of the scales of variability we aim
to examine. The OSSEs simulated the observational scales
of pCOocean

2 in ways that are comparable to existing ocean
CO2 observing platforms (ships, Wave Gliders, carbon floats,
Saildrones) in terms of their temporal sampling scales and
not necessarily their spatial ones. The pCO2 reconstructions
were carried out using a two-member ensemble approach that
consisted of two machine learning (ML) methods, (1) the
feed-forward neural network and (2) the gradient boosting

machines. The baseline data were from the ship-based simu-
lations mimicking ship-based observations from the Surface
Ocean CO2 Atlas (SOCAT). For each of the sampling-scale
scenarios, we applied the two-member ensemble method to
reconstruct the full sub-domain pCOocean

2 . The reconstruc-
tion skill was then assessed through a statistical comparison
of reconstructed pCOocean

2 and the model domain mean. The
analysis shows that uncertainties and biases for pCOocean

2
reconstructions are very sensitive to both the spatial and
the temporal scales of pCO2 sampling in the model do-
main. The four key findings from our investigation are as
follows: (1) improving ML-based pCO2 reconstructions in
the Southern Ocean requires simultaneous high-resolution
observations (<3 d) of the seasonal cycle of the meridional
gradients of pCOocean

2 ; (2) Saildrones stand out as the opti-
mal platforms to simultaneously address these requirements;
(3) Wave Gliders with hourly/daily resolution in pseudo-
mooring mode improve on carbon floats (10 d period), which
suggests that sampling aliases from the 10 d sampling period
might have a greater negative impact on their uncertainties,
biases, and reconstruction means; and (4) the present sea-
sonal sampling biases (towards summer) in SOCAT data in
the Southern Ocean may be behind a significant winter bias
in the reconstructed seasonal cycle of pCOocean

2 .
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1 Introduction

The Southern Ocean (SO) remains the world’s largest mod-
ulator for the ocean uptake of anthropogenic CO2 (Sabine et
al., 2004; Frölicher et al., 2015; Friedlingstein et al., 2020).
Therefore, reducing uncertainties and biases in CO2 bud-
get estimates in the region is important to better assess and
understand the Southern Ocean’s influence on regional and
global climate (Majkut et al., 2014; Gruber et al., 2019;
Hauck et al., 2020). For instance, since the early 2000s,
the SO carbon sink has undergone a reinvigoration charac-
terized by a substantial strengthening as reported by Land-
schützer et al. (2015), following a decade (the 1990s) of
weakening trends (Canadell et al., 2021; Le Quéré et al.,
2007). Based on these findings, many studies have been con-
ducted recently to investigate what drives these inter-annual
and decadal changes in the SO carbon sink and assess the
uncertainties in the estimates (Bushinsky et al., 2019; De-
Vries et al., 2017; Fay et al., 2018; Gregor et al., 2018, 2019;
Landschützer et al., 2016; McKinley et al., 2020). However,
there have not been many studies looking into the role of
intra-seasonal and seasonal modes of variability in the un-
certainties and biases reported in empirical CO2 mapping ap-
proaches (Landschützer et al., 2016; Gregor et al., 2019). In
this region, surface ocean CO2 observations underlying CO2
reconstructions are very sparse, especially during the stormy
autumn and winter seasons, requiring a substantial number
of extrapolations to map and subsequently fill the gaps due
to data sparseness (Gregor et al., 2017, 2019; Landschützer
et al., 2014).

Many empirical approaches such as statistical interpola-
tions and regression methods (Iida et al., 2015; Jones et
al., 2015; Rödenbeck et al., 2014) had been gaining atten-
tion as alternative methods to ocean biogeochemical models
(Lenton et al., 2013) until recently when machine learning
(ML) approaches have been used increasingly as an alterna-
tive (Denvil-Sommer et al., 2019; Gregor et al., 2017, 2019;
Landschützer et al., 2013, 2014, 2016). These novel mapping
methods all seek to fill the spatial and temporal sampling
gaps from existing ship-based surface ocean CO2 observa-
tions by extrapolating the CO2 partial pressure (pCO2) at
the surface ocean (pCOocean

2 ) using prognostic proxy vari-
ables (such as satellite-observed and re-analysis-based sea
surface temperature, sea surface salinity, mixed-layer depth,
chlorophyll a). The feasibility of these extrapolations is justi-
fied through the non-linear relationships between the surface
ocean pCO2 and the above-mentioned prognostic variables
that may drive changes in the surface ocean pCO2 (Taka-
hashi et al., 1993).

Historically, surface ocean CO2 observations were primar-
ily from voluntary observing ships including research and
commercial vessels (Bakker et al., 2012; Pfeil et al., 2013).
These pCO2 observations are thus intrinsically biased by the
sampling limitations in space and time for the past several
decades covering only ∼ 2 % of all the monthly 1◦ observa-

tional grid points (Bakker et al., 2016; Sabine et al., 2013).
Mainly due to its remoteness and harsh weather especially
during stormy autumn and winter, it has been increasingly
shown that the SO is the ocean region that contributes the
most to these uncertainties in the contemporary estimates of
the mean annual CO2 uptake (Bushinsky et al., 2019; Gloege
et al., 2021; Gregor et al., 2019; Ritter et al., 2017). For
instance, sparse observations in largely inaccessible SO ar-
eas, particularly during the stormy wintertime, have been the
biggest barrier to constraining the seasonal cycle of regional
and global contemporary ocean–atmosphere CO2 exchange
(Bakker et al., 2016; Monteiro et al., 2015; Ritter et al., 2017;
Rödenbeck et al., 2015).

Complementary to the increasing effort in the shipboard
CO2 observations through the Surface Ocean CO2 Atlas (SO-
CAT) initiative, the ongoing development of autonomous
ocean observing systems, such as biogeochemical floats and
Wave Gliders, has started to significantly improve the spatial
and temporal coverage of CO2 samples in the SO in recent
years (Bakker et al., 2016; Bushinsky et al., 2019; Gray et al.,
2018; Monteiro et al., 2015). Over the last decade, the advent
of a range of new autonomous ocean observing platforms has
opened doors towards closing the seasonal and intra-seasonal
sampling biases created by the high cost of ship operations in
the Southern Ocean outside the summer window (Bushinsky
et al., 2019; Gray et al., 2018; Majkut et al., 2014; Monteiro
et al., 2015; Sutton et al., 2021; Williams et al., 2017).

Thus resolving the mean seasonal cycle and intra-seasonal
mode of variability through in situ observations not only
is a challenging exercise but also has followed several av-
enues from extrapolating findings from the Drake Passage
Time-series (DPT) like in Fay et al. (2018) to utilizing mea-
surements from extended deployments of autonomous ocean
observing platforms such as Wave Gliders (Monteiro et al.,
2015; Nicholson et al., 2022), biogeochemical Argo floats
(Bushinsky et al., 2019; Gray et al., 2018; Williams et al.,
2017), and more recently Saildrones (Sutton et al., 2021).
These advances have allowed the density of the Southern
Ocean surface CO2 observing networks to increase, particu-
larly in the sub-Antarctic zone (SAZ) and polar frontal zone
(PFZ), which to date are the most observed sub-regions of the
SO. Consequently, the problem of general sparseness in ob-
servations and particularly of the sampling biases (Gloege et
al., 2021; Monteiro et al., 2015) has been partially addressed
but not resolved by the ocean CO2 in situ observations com-
munity (Bushinsky et al., 2019; Sutton et al., 2021). For ex-
ample, under-sampling in winter by ships has been addressed
by the 10 d resolution SOCCOM (Southern Ocean Carbon
and Climate Observations and Modeling) profiling floats
and/or pseudo-Lagrangian platforms that are carried zonally
by water currents (Bushinsky et al., 2019; Gray et al., 2018;
Majkut et al., 2014; Monteiro et al., 2015; Sutton et al., 2021;
Williams et al., 2017). Williams et al. (2017) and then Gray
et al. (2018) reported on persistent differences found with
previous pCO2 estimates when the ship-based sampling is
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sparse, especially during winter, though a recent study seems
to disagree on the persistence of these differences (Bushin-
sky et al., 2019). Therefore, an increase in winter sampling
would yield a reduction in the uncertainty levels of surface
ocean pCO2 estimates (Bushinsky et al., 2019; Gregor et
al., 2019). Notwithstanding these new platforms, sparse and
scale-sensitive observations in the Southern Ocean continue
to be a barrier to constraining the seasonal cycle and inter-
annual variability in surface ocean pCO2 (Monteiro et al.,
2015; Rödenbeck et al., 2015; Sutton et al., 2021).

However, we appear to have reached a limit in terms of
improving the uncertainties and biases underlying pCO2 re-
constructions as reported by Gregor et al. (2019). According
to the authors, the performance measures in existing empiri-
cal methods converge, which led the authors to the rhetorical
question, “have we hit the wall?” In practice, high-quality
in situ CO2 observations like those annually collected and
compiled within the SOCAT database (primarily from ships)
are fundamental to novel machine learning (ML) methods
(Bakker et al., 2016; Sabine et al., 2013), despite the re-
constructions being limited by spatial and temporal obser-
vational gaps and biased sampling (Gregor et al., 2019). As a
result, our understanding of the derived impacts of the South-
ern Ocean dynamics, particularly seasonal and intra-seasonal
modes of variability, has remained comparatively poor (Gru-
ber et al., 2019), which may have also contributed to errors in
the pCO2 estimates. At a global scale, Gloege et al. (2021)
coupled an observing system simulation experiment (OSSE)
with Earth system models to quantify errors in observation-
based reconstructions of air–sea CO2 exchange by using one
of the current gap-filling techniques, the self-organizing map
feed-forward neural network (SOM-FFN) by Landschützer
et al. (2016). The authors found that errors were regionally
high in the Southern Hemisphere, particularly in the SO, for
which insufficient sampling led to a 31 % (15 %–58 %) over-
estimation of decadal variability, but they did not discuss
the perspective of uncertainties and biases due to the intra-
seasonal mode of variability.

This study aims to investigate the sensitivity of the pCO2
reconstructions to the spatio-temporal sampling scales of sur-
face ocean CO2 observing systems under the assumption that
intra-seasonal modes of variability are critical to addressing
reconstruction uncertainties and biases. To do that, we used a
1-year high-resolution (± 10 km) coupled physical and bio-
geochemical forced ocean model for a Southern Ocean sub-
region that represents the scales of variability that we aim
to resolve. Then, we conducted a series of semi-idealized
OSSEs based on existing CO2 observing platforms (ships,
Wave Gliders, carbon floats, Saildrones) and coupled these
with an ensemble of two state-of-the-art machine learning
techniques (ML2). A rigorous assessment of the experiment
scenarios is conducted through testing and understanding of
the ML2 capabilities. We explore the question set by Gre-
gor et al. (2019) about the prediction uncertainties and bi-
ases in contemporary pCO2 reconstructions being now con-

strained by the sampling scales achievable by the existing
ocean observing platforms. We make proposals towards sig-
nificantly advancing machine learning reconstructions “be-
yond the wall”. The goal is to find out how the ocean carbon
cycle community can better supplement ship-based observa-
tions, essential to pCO2 reconstructions, with autonomous
platform samples in order to reduce the uncertainties and bi-
ases in machine-learning-based mapping approaches.

2 Materials and methods

2.1 Data source

The data used in this study are from a year-long period
of high-resolution (± 10 km) ocean model simulations. This
ocean model is a regional configuration (BIOPERIANT12-
CNCRUN05A-S) of the state-of-the-art ocean modelling
framework NEMO (Nucleus for European Modelling of the
Ocean) coupled with the biogeochemical model PISCES
(Pelagic Interactions Scheme for Carbon and Ecosystem
Studies), which simulates the lower trophic level of the ma-
rine ecosystem and the biogeochemical cycles of carbon and
nutrients (Aumont et al., 2015). More specifically, we used
(1/12)◦ by (1/12)◦ daily simulations of a forced NEMO-
PISCES regional Southern Ocean model called BIOPERI-
ANT12 (BP12). There are many prognostic variables includ-
ing two phytoplankton compartments (diatoms and nanophy-
toplankton) and a description of the carbonate chemistry in
the model. However, we focused only on the variables of par-
ticular interest for our study; these variables are the coor-
dinates (time, latitude, longitude) and the CO2 partial pres-
sure (pCO2) at the surface ocean (pCOocean

2 ) and its well-
known drivers (Takahashi et al., 1993): sea surface temper-
ature (SST), sea surface salinity (SSS), mixed-layer depth
(MLD), chlorophyll a (Chl a). Their characterization is pre-
sented with more details in Table S1 in the Supplement.

2.2 Data processing and derived variables

In preparation for the training and validation phases of the
machine learning (ML) algorithms, some of the input data are
transformed for better interpretation. At first, this includes
the mixed-layer depth (MLD) and chlorophyll a (Chl a) data,
which undergo a log10 transformation to return a distribution
closer to a normal distribution (Holte et al., 2017; Maritorena
et al., 2010). In practice, existing reconstruction methods
have been using MLD climatology as a proxy variable (Gre-
gor et al., 2019; Gloege et al., 2021). This enables a smooth-
ing of the data and thus reduces the uncertainty from MLD
information. Therefore, here, using MLD from the model
rather than a climatology is likely an advantage compared
to the existing methods that use MLD climatology. The ad-
vantage of including proxy variables such as MLD and Chl a
is that the model is providing constraints which might not be
available from real-world observations. Secondly, it is sub-
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stantially beneficial to include only the temporal coordinate
(time) as a proxy for pCOocean

2 . This is because of the charac-
teristics of our study area (Fig. 1a) as being a single domain
with no regional or clustering subsets; otherwise, clustering
subsets would be used to overcome the spatial limitations
that observations present (Gregor et al., 2019). Thus, spa-
tial coordinates (latitude, longitude) are not included in the
pCO2 predictors like in Gregor et al. (2017, 2018) and the
many other studies used in Rödenbeck et al. (2015). How-
ever, it is important to note that coordinate variables do not
drive mechanistic changes in pCOocean

2 according to Gregor
et al. (2017).

The inclusion of the time coordinate as a proxy for pCO2
was done through a variable transformation that aims to pre-
serve the seasonality of the data. More precisely, the preser-
vation of this seasonality is done by transforming the day of
the year (j ) as in Gregor et al. (2017); that is,

J =

(
cos

(
j ·

2π
365

)
, sin

(
j ·

2π
365

))
. (1)

2.3 Experimental configurations

2.3.1 Study region and selection of the experimental
domain

The seasonal cycle is known not only as being the strongest
mode of natural variability in CO2 but also as the one
that most strongly links climate and ocean ecosystems
(Mongwe et al., 2018). Given its characteristics that are
largely shaped by higher frequencies such as the intra-
seasonal mode of variability defining the response modes
in physics and biogeochemistry components, the Southern
Ocean Seasonal Cycle Experiment (SOSCEx) project was
created (see Sect. S1.1 for more details). As schematically
depicted in Fig. S1, the novel aspect of the third phase of
SOSCEx was the integration of a multi-platform approach
that consisted of combining gliders, ships, floats, satellites,
and prognostic models to explore new questions about the
climate sensitivity of CO2 and ocean ecosystem dynamics
and how these processes are parameterized in forced ocean
models such as the NEMO-PISCES regional configuration,
BIOPERIANT12.

This study was designed as a semi-idealized observing
system simulation experiment (OSSE) to minimize some of
the potential confounding factors in the final estimation of
the root mean square error (RMSE), mean absolute error
(MAE), and temporal and spatial biases while evaluating the
performance of regression models used to extrapolate sur-
face ocean pCO2 values. A key part of this design was to
remove the normal step of clustering that is necessary to
overcome the spatial and temporal limitations of observa-
tions on a large-scale mapping domain (Fay and McKinley,
2013, 2014; Gregor et al., 2019; Landschützer et al., 2014).
Thus, to avoid the clustering step, we chose a domain in the
high-resolution (± 10 km) BP12 forced ocean biogeochemi-

cal model that was not only spatially and temporally coher-
ent but also big enough to reflect the spatial and temporal
scales necessary to provide sufficient sensitivity to the differ-
ent sampling strategies. The selected domain, 10◦ of latitude
(40–50◦ S) and 20◦ of longitude (10◦W–10◦ E) as depicted
in Fig. 1a, is in the Atlantic sector of the Antarctic Circum-
polar Current (ACC) between the subtropical front (STF) and
the polar front (PF) and spans across the sub-Antarctic front
(SAF) (Fig. 1a). Furthermore, the domain lies within the sub-
polar seasonally stratified (SPSS) biome (Fay and McKin-
ley, 2014). The Good Hope repeat hydrography sampling line
passes through the domain (Fig. S1), for which sustained an-
nual to bi-annual ship-based observations have been carried
out for over a decade, as well as high-resolution carbon glider
observations (Monteiro et al., 2015). More specifically, as
shown in Fig. 1, our selected domain is crossed by the SAF
and, therefore, includes the SAZ and the PFZ, inspired by
Gray et al. (2018) and Chapman et al. (2020). The SAZ and
PFZ, separated by the SAF (red line Fig. 1a and dashed red
curve in Fig. 1b–c), are referred to as the north and south,
respectively, of the experimental domain.

The oceanographic context of this domain is shown in
Fig. 1a, depicting the selected 10◦-by-20◦ domain (black
box) in the context of the Southern Ocean major fronts and
the eddy kinetic energy (EKE) derived from the BP12 model.
This confirms that the domain spans the sub-Antarctic front
(SAF) and is in a region of relatively high or medium EKE.

2.3.2 Model vs. data products: the mean seasonal cycle
of pCO2

The mean seasonal cycles of pCO2 reconstructions from two
well-known machine-learning-based products (Landschützer
et al., 2016; Gregor et al., 2019) are explored here within
the study sub-domain in comparison with the BP12 model
pCO2 (Fig. 2). In the Southern Ocean, the observed max-
imum positive anomaly in surface ocean pCO2 in winter
(July–September) is linked to mixed-layer deepening and as-
sociated entrainment, while the maximum negative anomaly
in summer is linked to the spring–summer net primary pro-
duction (Gregor et al., 2018; Takahashi et al., 2009).

The BP12 model sub-domain (black box, Fig. 1a) is de-
picted as a winter-maximum and summer-minimum pCO2
area by both data products (Gray et al., 2018; Keppler
and Landschützer, 2019) as shown in Fig. 2a–b. Thus, the
domain-mean seasonal cycles of pCO2 from these two prod-
ucts are quite consistent with the broader Southern Ocean
(Gregor and Gruber, 2021). This is in sharp contrast with the
seasonal cycle climatology from the high-resolution forced
ocean model used in this study (Fig. 2c). The basis for this
difference is that the high-resolution forced ocean model has
a seasonal cycle that is largely influenced by the annual cy-
cle of SST (Fig. 2c). This kind of temperature-driven model
bias for surface ocean pCO2 is now well recognized in both
forced and coupled models in the Southern Ocean (Mongwe
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Figure 1. Panel (a) is the regional view of the BIOPERIANT12 model simulations with the selected experimental domain (black box) within
the annual mean of the Southern Ocean major fronts and the changing conception of the Antarctic Circumpolar Current (ACC), showing
the mean annual of eddy kinetic energy (EKE) derived from the model. From the north to south are the mean locations of the named fronts:
the subtropical front (STF), the sub-Antarctic front (SAF), the polar front (PF), and the southern boundary (SBdy) front (based on Orsi et
al., 1995). Colours show the EKE, illustrating the strong steering of the fronts. Panel (b) shows the map of the SST in the experimental
domain (black box in Fig. 1a), on which are also shown the idealized sampling tracks/locations of the synthetic ocean observing platforms,
SHIP, FLOAT, and WG as described in the figure legend. Panel (c) shows the sampling tracks of the idealized new unmanned surface
vehicle (nUSV) Saildrone within the experimental domain. These locations, marked and coloured according to each corresponding sampling
platform, are where we sample the BP12 model data in a way that is comparable to the real world. The SAF is characterized by the red line
(Fig. 1a) and dashed red line (Fig. 1b–c), and it separates the experimental domain into the sub-Antarctic zone (SAZ) and polar frontal zone
(PFZ).

et al., 2016, 2018), but this study is more concerned with the
modes of variability than it is with the mechanisms within the
model. The forced coupled ocean model (NEMO-PISCES)
represents the processes that regulate CO2. However, for the
purpose of this study, the “correctness” of the pCO2 response
to the driver variables does not really matter because here we
examine the sensitivity of the reconstruction to how the sam-
pling scales match the modes of variability.

2.3.3 Synthetic ocean observing platforms

In designing the sampling scales and strategies we opted to
constrain the experiment to realistic and existing observing
platforms that can make direct pCOocean

2 or derived (from

pH) surface ocean CO2 observations. More specifically, the
existing ocean observing platforms involved in these ex-
periments are the ships (serving as the baseline) and the
autonomous unmanned surface vehicles (USVs) – carbon
floats, Wave Gliders, and Saildrones (the new USV) – whose
simulations are dubbed SHIP, FLOAT, WG, and nUSV, re-
spectively (Fig. 1b–c). The first autonomous platform, the
carbon float, characterizes the autonomous profiling biogeo-
chemical float operating in the Southern Ocean (Majkut et
al., 2014; Williams et al., 2017; Gray et al., 2018). Manu-
factured by Teledyne Webb Research or Sea-Bird Electron-
ics, these floats are designed to provided year-round mea-
surements at 10 d periods (Johnson et al., 2017). The second
autonomous platform, Wave Glider, is an autonomous USV

https://doi.org/10.5194/bg-19-4171-2022 Biogeosciences, 19, 4171–4195, 2022
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Figure 2. The mean seasonal cycle (SC) for surface ocean pCO2 from two observation-based products and a high-resolution (± 10 km)
forced NEMO-PISCES ocean model (BIOPERIANT12) within the selected experimental domain (Fig. 1a). The figure contrasts the respective
seasonal cycles of the two observation-based products and the ocean model. Panels (a) and (b) show the mean SCs of the pCO2 estimates
from the two data products, CSIR-ML6-v2021 (Gregor et al., 2019) and MPI-SOM-FNN-v2020 (Landschützer et al., 2016), respectively, in
the whole domain, the SAZ, and the PFZ; and similarly, panel (c) shows the mean SCs of the pCO2 from the BIOPERIANT12 model.

developed by Liquid Robotics Inc (Sunnyvale, California,
USA), which is unique in its ability to harness ocean wave
and solar energy for platform propulsion (Hine et al., 2009).
At sea it operates individually or in fleets, delivering real-
time data for several months without servicing (Grare et al.,
2021; Sabine et al., 2020). Equipped with physical and bio-
geochemical instruments/sensors, the Wave Glider gathers
ocean data in ways or locations that were previously either
too costly or challenging to operate in. Made by Saildrone
Inc (Alameda, California, USA), the nUSV Saildrone is an
autonomous ocean-going data collection platform navigable
via satellite communications and designed for long-range,
long-duration missions of up to 12 months (Gentemann et
al., 2020; Meinig et al., 2016, 2019). It is predominantly
powered by wind and solar energy and equipped with me-
teorological, ocean physical, and biogeochemical sensors for
long-range ocean data collection missions (Gentemann et al.,
2020) through remote surveying in the toughest of ocean en-
vironments such as the Southern Ocean (Meinig et al., 2019;
Sutton et al., 2021).

Each of these simulated ocean observing platforms had a
sampling routing through the domain that closely approxi-
mated reality. Ship-based sampling is along a single merid-
ional repeat line (longitude), where repeats could be sea-
sonal and annual (Fig. 1b). Floats followed a zonal sam-
pling distribution that is consistent with the flow of the ACC
and a 10 d sampling scale with a limited random meridional
mesoscale variability which reflects the eddy kinetic energy
(EKE) characteristics of the domain but is constrained by the
SAF (Fig. 1a–b). Wave Gliders were constrained to repeat the
pseudo-mooring sampling (± 20 km range) on the ship line
(Fig. 1b), which captures the sub-mesoscale gradients but
with a high temporal sampling frequency of 1 h. Moreover,

from a logistic perspective, WGs were given a mooring-like
sampling programme to ease their deployment and retrieval,
for example, from the research vessel SA Agulhas II, which
crossed the domain at the Good Hope line, whereas nUSVs
were able to sail to the next port.

2.3.4 Idealized experiment setup

In this paragraph, we briefly describe the experimental sce-
narios shown in Table S2. We stress again the fact that these
experiments are intentionally made to reproduce the sam-
pling resolutions of their real-world counterparts, not nec-
essarily the spatial resolution in practice but at least the tem-
poral one. We considered the NEMO-PISCES model simu-
lations, BP12, a realistic representation of the real ocean cli-
mate systems within which the pCOocean

2 is known across the
entire experimental domain. Based on this, we ask the fol-
lowing question: given measurements of pCOocean

2 as sam-
pled in a real-world scenario by these ocean observing plat-
forms, how sensitive are the sampling distribution and res-
olution to observation-based estimates of pCOocean

2 at every
point across the entire experimental domain?

In these experiments, we simulate the sampling
tracks/patterns of the synthetic ocean observing plat-
forms SHIP, FLOAT, WG, and nUSV Saildrone (Fig. 1b–c).
We leverage these synthetic sampling systems to sample the
BP12 model data inside our selected experimental domain
by constraining the experiment to their realistic and existing
counterparts. The BP12 model sampled data from each of
the sampling scenarios are then used for training and testing
of the ML algorithms. The trained ML models are used to
reconstruct the pCOocean

2 values of the full experimental
domain and compared with original BP12 model field
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pCOocean
2 to assess the anomalies in reconstructed mean

annual and seasonal cycles.
The idealized ship operates according to the sampling

scales and strategies of ships involved in the SOCAT col-
laborative effort. However, here we considered the three fol-
lowing seasonal sampling regimes for the ship platform:
(1) summer only, (2) winter and summer, and (3) autumn
and spring. Like the real-world scenario, the ship simulation
served as our baseline. The idealized carbon float simulates
the SOCCOM biogeochemical float with a 10 d sampling cy-
cle. Talley et al. (2019) reported the importance of the wa-
ter masses and frontal structures in the deployment strategy
of autonomous sampling platforms, such as floats, that will
likely follow the fronts with an eastward trajectory but will
seldom cross the front. Therefore, we consider the situation
where the idealized floats do not cross the SAF as illustrated
in Fig. 1b, even though in reality this might happen due to the
occurrence of events such as storms or eddies. We thus con-
sidered two deployment and sampling scenarios to not dis-
advantage the floats and to value their large spatial structure:
(1) in the SAZ and (2) in the PFZ (Fig. 1b). Given the pseudo-
Lagrangian sampling patterns of an Argo float whose motion
is driven by the water current, we assume that our idealized
float moves eastwards and on a trajectory that is a Brown-
ian motion or, more specifically, a random walk (Fig. 1b).
The idealized Wave Glider operates according to the sam-
pling strategies of the Wave Gliders used in the SOSCEx
project (see Sect. S1.1 for additional details). Like the ide-
alized float, we considered two deployment stations, the first
in the SAZ (see Fig. 1b, hexagonal patterns in dark green)
and the second in the PFZ (see Fig. 1b, hexagonal patterns in
light green). This idealizes the two deployment scenarios of
SOSCEx III gliders (cf. Fig. S1, hexagonal patterns in blue-
yellow) that sampled on an hourly basis. However, given that
the model temporal resolution is daily, our idealized Wave
Glider samples daily. Lastly, we add an idealized Saildrone
that simulates the sampling strategies of its real-world coun-
terpart that can sample ocean data collection missions for up
to 12 months (Gentemann et al., 2020; Meinig et al., 2019).
As with the idealized Wave Glider, the Saildrone also sam-
ples daily. Further, we assume that by leveraging its speed the
Saildrone sampling can be done across an ocean front, such
as the SAF as depicted in Fig. 1c – a realistic assumption be-
cause in reality nUSV Saildrones sample at a much higher
frequency (hourly) and can be piloted remotely (Gentemann
et al., 2020; Sutton et al., 2021). We assumed that all three
autonomous sampling platforms sampled year round in our
experimental domain.

The observing system simulation experiment (OSSE) with
nUSV Saildrone is inspired by the study of Sutton et
al. (2021), which used nUSV to sample at a very high reso-
lution and completed in about 6 months the first autonomous
circumnavigation of Antarctica, providing hourly observa-
tions. At this frequency, the nUSV sampling density in this
study domain (Fig. 1c) is realistic due to the size of the

sampling domain. We extracted a subset of the Sutton et
al. (2021) USV dataset within the sub-domain to obtain
the USV tracks (cf. Fig. S6) and found that the Sutton et
al. (2021) USV would take ∼ 16 d to cover our 20◦W–E do-
main, which corresponds to 16× 24 h= 384 hourly samples.
However, our nUSV sampling pattern (Fig. 1c) is idealized,
with the goal of sampling across the sub-domains on both
sides of the front (SAF), that is, in the SAZ and PFZ. By us-
ing a back-of-the-envelope approach, we find that the Sail-
drone would be able to cover our domain in 45 d using a
zigzag pattern – assuming 42–46◦ S with each pass cover-
ing 2.5◦W–E for each pass (∼ 500 km) with eight passes in
our domain (4000 km) at a speed of ∼ 2 kn (∼ 3.7 km h−1).

In summary, we sample the pCOocean
2 and drivers us-

ing these above-mentioned synthetic sampling platforms,
i.e. SHIP, FLOAT, WG, and nUSV Saildrone (Fig. 1b–c). We
emphasize that these experiments are intentionally made to
reproduce the sampling resolution of their real-world coun-
terparts, not necessarily their spatial resolution in practice
but at least the temporal one. Then we use ML regression
techniques to reconstruct the full experimental domain and
compare it with the BP12 model truth pCOocean

2 in the full
domain to assess the reconstructions as anomalies of mean
annual and seasonal cycles, which is a key objective of this
work.

2.4 Machine learning implementation

We use a two-member ensemble method (we call ML2) that
consists of two state-of-the-art ML approaches: the feed-
forward neural network (FNN) and a variant of gradient
boosting decision tree (GBDT) learning frameworks called
gradient boosting machines (GBMs). Our choice of FNN
method is motivated by its recent success in approximating
the surface ocean pCO2 (Denvil-Sommer et al., 2019; Gre-
gor et al., 2019; Landschützer et al., 2013, 2016). The choice
of the GBDT approach is motivated by its achievement of
state-of-the-art performances in many ML tasks (Ke et al.,
2017) and also the success of previous GBDT approaches
(Gloege et al., 2021; Gregor et al., 2019; Gregor and Gru-
ber, 2021). We use the scikit-learn and LightGBM Python
packages for our implementation of FNN and GBM, respec-
tively. We thus focus here only on the ensemble average
ML2, whose stacking process is illustrated in Fig. 3a. Un-
like the two main techniques of reference (Landschützer et
al., 2016; Gregor et al., 2019), both of which include a clus-
tering step, in this study we avoided it because of the size of
the study domain (10◦ of latitude, 40–50◦ S, by 20◦ of longi-
tude, 10◦W–10◦ E). More details of our motive for skipping
this step are provided in Sect. S2.3.

Given that the observation size is relatively small, espe-
cially for the baseline experiment (SHIP summer only), im-
mediately splitting the simulated data into training and test-
ing sets may not capture some key features of the origi-
nal platform observations. We thus use the entire sampled
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Figure 3. Schematic flow diagram of the two-member ensemble method ML2. Panel (a) shows the schematic representation of the stacking
process of the two machine learning (ML) algorithms, FNN and GBM, that make up ML2; panel (b) shows the schematic flow diagram
of the K-fold cross-validation (CV) procedure used in hyper-parameter optimization (HOP) of the two members (FNN, GBM) of ML2. To
extrapolate from surface ocean pCO2 samples, ML2 uses full domain coverage model data of the predictor variables SST, SSS, MLD, and
Chl a. These variables serve as proxies for known processes that affect surface ocean pCO2 (Takahashi et al., 1993).

data for model building instead of splitting the data into
two sets. As shown in Fig. 3b, however, to control the over-
fitting, we incorporate a K-fold cross-validation (CV, with
K = 4) during the model training in order to find the set of
hyper-parameters that enable a better generalization of ML2.
Like in Gregor et al. (2019), the CV is applied identically
to each of the two-member algorithms (FNN and GBM) ex-
cept that here, the tuning of hyper-parameters was achieved
using a Bayesian-search CV (BayesSearchCV) instead of a
grid-search CV. We make use of the scikit-optimize Python
package for our BayesSearchCV implementation. The opti-
mal values of ML2 hyper-parameters used were reported at
the end of the training and are included in the Supplement
(Tables S4 and S5) for reproducibility. Further, the testing
of generalization is done through quantitative comparison of
the estimates with model data (known truth) that were not
involved in the simulations of synthetic platforms.

2.5 Machine learning regression metrics

Although the choice of the performance measure may seem
straightforward and objective, it is often difficult to choose a
metric that corresponds well to the desired behaviour of the
ML algorithm (Goodfellow et al., 2016). The reconstruction
power of the surface ocean pCO2 of the full experimental do-
main is thus estimated using a series of four statistical metrics
that include the mean bias error (MBE), mean absolute error

(MAE), root mean square error (RMSE), and Pearson’s cor-
relation coefficient (r) to measure the tendency or strength
of estimates and observations to vary together (Stow et al.,
2009) or, more technically, to quantify the level at which re-
construction captures the phasing observed in the model truth
(Gloege et al., 2021).

The MBE, commonly called bias, is the mean difference
between the estimates and the target variable samples. It cap-
tures the average bias/error in the predictions and is calcu-
lated as follows:

MBE =
1
n

∑n

i=1

(
ŷi − yi

)
, (2)

where n is the number of samples, ŷ is the model prediction,
and y is the target variable (in this case, pCOocean

2 ).
The MAE denotes the ratio of the L1 norm of the error vec-

tor to the number of samples (n). More specifically, the MAE
derives from the unaltered magnitude (or absolute value) and
provides an estimate of the average magnitude of the error. It
is calculated as follows:

MAE =
1
n

∑n

i=1

∣∣ŷi − yi∣∣ . (3)

The RMSE, one of the most popularly used metrics in the
climatic and environmental sciences community when deal-
ing with regression modelling problems, is also a measure of
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the difference between the estimates ŷi and the target vari-
able samples yi . It provides an estimate of the variability in
the predictions in terms of the fitness with the observed data
and is defined as follows:

RMSE =

√
1
n

∑n

i=1

(
ŷi − yi

)2
=
√

MSE, (4)

where MSE is simply the mean square error. For squaring in-
dividual errors ei = ŷi−yi (i = 1, . . .,n), the stated rationale
is usually to “disconnect the sign” of ei so that the magni-
tudes of errors influence the average error, MSE.

In order to quantify the strength of the linear association
between the pCOocean

2 estimates (i.e. ŷi for in) and observa-
tions/known truth (i.e. yi for i = 1, . . .,n), Pearson’s corre-
lation coefficient (r) is used. Its computing is formulated as
follows:

r =
1

(n− 1)σyσŷ

∑n

i=1
(yi − y)

(
ŷi − ŷ

)
, (5)

where σy and σŷ are the standard deviations of y and ŷ, re-
spectively, and y and ŷ the means of y and ŷ, respectively.
The correlation coefficient always takes values between −1
and 1, with lower (near −1) and higher (near 1) values of r
indicative of how much reconstruction and model are in or
out of phase, respectively. Values of r that are close to 0 are
indicative of no association between the two signals. There-
fore, the ideal value for r will be close to 1.

2.6 Uncertainty decomposition/breakdown

A firm understanding of the uncertainties is required for the
purpose of our analysis given that in our study we are deal-
ing with the uncertainties that we cannot fully quantify now
as this is on unseen or out-of-sample data like in Gloege et
al. (2021). Therefore, it is necessary to distinguish the differ-
ent types of uncertainties. We assume that our sampled ob-
servations are unbiased, and hence the training datasets for
surface ocean pCO2 are considered as such known data; and
this can be justified by the fact that we have access to all
the data. The terms error and uncertainty are interchangeably
used although here the latter is used as an estimate quantifi-
able against a known value, whereas the former characterizes
a range of values within which the true value is asserted to
lie with some level of confidence (Gregor and Gruber, 2021).

The pCO2 total uncertainty (E) is dealt with as in Gre-
gor and Gruber (2021). The authors identified three main
sources of errors that contribute to E within the surface
ocean carbonate system. These include the (1) measurement
(M), (2) representation (R), and (3) prediction (P ) errors.
Under the assumption that these components are indepen-
dent of each other in the pCO2 total uncertainty space, E
can thus equivalently be expressed as the norm of the vec-
tor whose coordinates are P , M , and R, that is, the square
root of the sum of the squares of these components: E =

√
P 2+M2+R2. We can remove the contribution of the

measurement uncertainty from this equation since we are
sampling from a synthetic dataset. Further, we address the
representation uncertainty by sampling at a higher resolution
(Gregor and Gruber, 2021). Given that we are predicting at
high resolution (1/12◦ daily), the sampling distribution bias
due to capturing of large-scale gradients is assumed to be
small since we are within the 2 d threshold set by Monteiro
et al. (2015). Lastly, we assume that the ML models are the
best possible predictors for the given training datasets, since
each ML model was trained using best practices (i.e. low in-
sample errors calculated from all the training points as shown
in the Supplement). Therefore, reported RMSEs will be the
uncertainties due to sampling bias.

3 Results

In the next sections, the results for the following four sets
of semi-idealized model experiment combinations – SHIP,
SHIP+FLOAT, SHIP+WG, and SHIP+ nUSV – are pre-
sented in terms of spatial and seasonal cycle anomalies of the
annual mean pCO2 estimates.

3.1 Annual mean seasonal cycle for the domain

The annual mean map for pCO2 (mean 368.15 µatm; stan-
dard deviation 50.5 µatm) shows that the domain is char-
acterized by both meridional and mesoscale variability
expected from the mesoscale-resolving BIOPERIANT12
model (Fig. 4a). The meridionally distinct SAZ (north of
the domain) (<368.15 µatm) and PFZ (south of the domain)
(>368 µatm) are separated by the sub-Antarctic front (SAF)
(Figs. 1 and 4a). This mean map also highlights the impor-
tance of mesoscale gradients in both the SAZ and the PFZ
domains (Fig. 4a). The mean seasonal cycles of pCO2 for the
whole domain as well as for the SAZ (lower – blue) and PFZ
(higher – red) are depicted in Fig. 4b. It shows that the sea-
sonal cycle of pCOocean

2 is dominated by the influence of the
annual cycle of the sea surface temperature (SST) on CO2
solubility (Mongwe et al., 2016; Munro et al., 2015) with
warm late summers (February–April) and cool late winters
(July–September) (Fig. 4b). The three seasonal cycles (whole
domain, SAZ, and PFZ) show coherence in the seasonal am-
plitude and phasing except that the warming transition from
winter to spring occurs 2 months earlier (July) in the SAZ
relative to the PFZ (Fig. 4b).

Notwithstanding the phasing differences, we still find a
comparable winter reconstruction bias in this study (Figs. 2c
and 4b) and observation-based products (Fig. 2a–b). Thus,
the question is whether the magnitude of the reconstructed
winter pCO2 maximum is realistic or a result of the way
the machine learning methods process the summer sampling
bias in a system characterized by strong seasonal and intra-
seasonal modes of variability.
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Figure 4. Characterization of the spatial and temporal surface ocean pCO2 annual mean state within the selected 10◦-by-20◦ experimental
domain located in the northern ACC that corresponds to the SPSS biome (Fay and McKinley, 2014) as shown in Fig. 1a. Panel (a) shows
the map of mean annual pCO2 from the BIOPERIANT12 (BP12) model. It shows that the domain is characterized by a regional meridional
gradient including the sub-Antarctic front (SAF) (dashed black line) as well as mesoscale gradients in both the SAZ and the PFZ; panel
(b) shows the mean seasonal cycles for surface ocean pCO2 in the BP12 model domains (SAZ, SAF, and PFZ) where the dashed lines
indicate the magnitude of the annual mean – for each domain – 368.16 µatm (domain), 362.85 µatm (SAZ), and 371.78 µatm (PFZ).

3.2 Reconstructed mean annual spatial and seasonal
cycle anomalies

In order to investigate the anomalies in the reconstruction of
the mean annual and seasonal cycles, which comprise a key
objective of this study, we first characterized the anomaly
by the mean bias error (MBE) and calculated the MBE at
each grid point of the spatial domain. Secondly, we also cal-
culated the anomaly of the seasonal cycle reconstruction in
each of the sub-domains. More specifically, we used the sea-
sonal cycle residuals to explore how a systematic anomaly
could influence the reconstruction of pCO2 values at the sur-
face ocean. We performed this calculation for each experi-
ment and their respective reconstructions and also examined
their spatial variability.

3.2.1 Semi-idealized SHIP-only observation
experiment results

The semi-idealized SHIP-only sampling experiments mimic
the largely ship-based SOCAT gridded product to evaluate
the sensitivity of the reconstruction uncertainties (RMSE,
MAE, MBE/bias) to seasonal meridional sampling scenar-
ios. In each of these scenarios the ship makes two merid-
ional crossings in opposite directions 1 month apart (Fig. 1b).
This SHIP-only set of seasonal sampling experiments gives
our baseline as it is also used in all platform combinations.
Three seasonal sampling scenarios (summer (smr), sum-
mer+winter (smr+wtr), and autumn+ spring (aut+ spr))
were considered. While the first two scenarios are addressed

in detail in this study (Fig. 5a–b and Table 1), the third one
can be found in the Supplement (Fig. S5 and Table S6) in
support of the main points already made in Fig. 5a–b.

The spatial and seasonal cycle anomalies from the re-
constructions for the summer (smr) and summer and win-
ter (smr+wtr) sampling lines are depicted in Fig. 5a–b. The
results for the autumn and spring (aut+ spr) sampling lines
are summarized in the Supplement (Fig. S6). The uncer-
tainties and regression errors for all three experiments are
shown in Table 1. These results showed that the highest pos-
itive anomalies in the reconstruction of the mean and the
seasonal cycle occur when a ship samples (i.e. makes two
passes in consecutive months) the sub-domain only in sum-
mer (Fig. 5a, c). This sampling strategy resulted in a strong
positive anomaly (± 20 µatm) that peaks in winter and weak-
ens in mid-summer (Fig. 5c). In sharp contrast, when win-
ter sampling crossings are added to the summer scenario
(smr+wtr) the spatial and seasonal anomalies are signifi-
cantly reduced from 20 to <5 µatm, respectively (Fig. 5b,
c). The weaker but persistent positive anomaly in the SAF
accounts for most of the reduced positive seasonal cycle
anomaly (Fig. 5a, c).

All scenarios depict a mesoscale modulated positive an-
nual pCO2 anomaly (MBE) climatology in the vicinity of
the SAF (Fig. 5a–b). However, this is slightly offset by
equally strong positive anomalies in the SAZ and PFZ for
the smr scenario (Fig. 5a), while the meridional gradients of
the anomalies are much weaker for the smr+wtr scenario
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Figure 5. Reconstruction anomalies for the idealized SHIP experiment where the idealized ship sampled the domain based on the sampling
regimes/scenarios SHIP(smr) for summer and SHIP(smr+wtr) for summer and winter. Panels (a) and (b) show the maps of the reconstruction
anomalies according to the two sampling regimes SHIP(smr) and SHIP(smr+wtr), respectively; panel (c) shows the anomalies of the mean
seasonal cycle (SC) reconstruction based on these two sampling regimes, that is, SHIP(smr) and SHIP(smr+wtr). The meridional dotted grey
line in panels (a) and (b) illustrates the sampling line (summer and winter) and serves as a reminder of how SHIP sampling was performed.

(Fig. 5b). These differences are very well reflected in the
anomalies of their corresponding seasonal cycles (Fig. 5c).

These SHIP-only experiment results (Tables 1 and S3)
also show that the summer-only sampling of the sub-domain
both produces the largest sampling bias (10.52 µatm, with an
RMSE of 13.79 µatm) and yields the weakest correlation be-
tween the underlying pCO2 estimates and the model ground
truth (with r = 0.36). On the other hand, they also show that
if the ship undertakes just one more meridional voyage in
winter, this halves the RMSE to 6.8 µatm and the bias (MBE)
to 3.18 µatm compared to the summer-only sampling exper-
iment, SHIP(smr). Moreover, they also strengthen the lin-
ear association between the reconstruction and BP12 model
ground truth for pCO2 (r = 0.73).

3.2.2 Idealized SHIP and autonomous observations
platform experiments

In this section, we present the results of three sets
of combined ship and autonomous platform experi-
ments (SHIP(smr)+FLOAT, SHIP(smr)+WG, and
SHIP(smr)+ nUSV) that allowed us to test the hypothesis
that complementing summer biased ship-based sampling

Table 1. ML regression modelling scores of the ensemble aver-
age (ML2) for two sampling scenarios of the SHIP experiment:
SHIP(smr) for summer sampling and SHIP(smr+wtr) for summer
and winter sampling. The configuration of this set of experiments
is presented in Table S2 and clearly described in Sect. 2.3.4. The
first column of the table is the experimental set, and the second one
corresponds to the considered experiments. The statistical metrics
used to assess ML2 for this set of experiments are abbreviated as
follows: RMSE is the root mean square error calculated following
Eq. (4); MAE is the mean absolute error (Eq. 3); MBE or bias is the
mean average error (Eq. 2); and r is Pearson’s correlation coefficient
(Eq. 5) between the reconstructed and BP12 model truth pCO2. Val-
ues in the table are significantly different from the mean for the cor-
responding column (with a 95 % confidence level or p value< 0.05
for the two-tailed Z test).

Set Experiments RMSE MAE MBE r

(µatm) (µatm) (µatm)

SHIP SHIP(smr) 13.79 11.51 10.52 0.36
SHIP(smr+wtr) 6.8 5.29 3.18 0.73
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with year-long high-resolution sampling in space and time
reduces the reconstruction uncertainties and positive annual
mean and seasonal cycle biases relative to the ship sampling
alone (Figs. 5a and c and 6a–b) (Bushinsky et al., 2019;
Gregor et al., 2019; Sutton et al., 2021). We simulated and
analysed the reconstruction of the mean annual pCO2 and
seasonal cycles from carbon floats (FLOAT) and carbon
Wave Gliders (WG) deployed independently for a year
in the sub-Antarctic zone (SAZ) and polar frontal zone
(PFZ) (Fig. 6b, c, d, e, f). These were complemented by
simultaneous year-round FLOAT deployments in the SAZ
and PFZ (Fig. 6b, g) and a deployment of the new unmanned
surface vehicle (nUSV) Saildrone that spanned across all
three domains (Fig. 6b, h).

These results show that both the reconstructed mean an-
nual anomaly and the seasonal cycle of pCO2 are very sen-
sitive to the spatial and temporal characteristics of the ad-
ditional autonomous sampling platform (Fig. 6). Statistics
(Table 2) show that all the autonomous platform deploy-
ment experiments improved the significant winter-positive-
biased seasonal cycle anomaly from the summer ship sam-
pling reconstruction (± 20 µatm). However there remained
a small but variable (2–10 µatm) winter–spring seasonal
bias in all deployment combinations (Fig. 6b). The ex-
ception was the experiment with a FLOAT deployment
in the SAZ, which resulted in a negative seasonal bias
that also peaked in winter (± 10 µatm) and started earlier
in the autumn (Fig. 6b). The two experiments with the
smallest seasonal biases were the SHIP(smr)+WG(SAZ)
and SHIP(smr)+ nUSV. The first, SHIP(smr)+WG(SAZ),
showed a small negative bias in the summer (<− 5 µatm)
and a small positive bias in the winter (<5 µatm). The lat-
ter, SHIP(smr)+ nUSV, showed a small positive bias in sum-
mer (0–5 µatm) and in winter (4–5 atm) (Fig. 6b). In contrast,
the experiment SHIP(smr)+FLOAT(SAZ+PFZ) that com-
bined the 2-year-round FLOAT deployments (SAZ and PFZ)
shows a minimal bias in summer but among the highest for
all the experiments in winter (± 10 µatm) (Fig. 6b).

The spatial annual mean pCO2 experimental scenario
anomalies are consistent with the characteristics of the sea-
sonal cycle of pCO2 (Fig. 6a, c–h). In all cases the sub-
Antarctic front (SAF) emerged as a feature with a variable
positive pCO2 anomaly relative to the SAZ and PFZ sec-
tors to the north and south, respectively (Fig. 6a, c–h). All
the scenarios highlight significant mesoscale anomaly gra-
dients across all the domains (Fig. 6a, c–h). The year-long
deployment of FLOATs and WGs in the SAZ leads to neg-
ative anomalies in both the SAZ and the PFZ, but those for
the WG experiments are significantly weaker (Fig. 6c, e).

However, the reverse was found for the SAF zone, which
shows a stronger positive anomaly for the WG(SAZ) than
for the FLOAT(SAZ) (Fig. 6c, e). The stronger mean annual
negative pCO2 anomaly for the SHIP(smr)+FLOAT(SAZ)
deployment is consistent with the negative seasonal cycle
anomaly, which points to the mean annual anomaly being

mainly influenced by the winter-negative anomaly (Fig. 6b–
c). Similarly, the much weaker negative anomalies in the
SAZ and PFZ for the WG deployment are consistent with the
weaker seasonal cycle (<± 5 µatm) of pCO2 for the whole
domain.

SHIP(smr)+FLOAT(PFZ) and SHIP(smr)+WG(PFZ)
deployments result in weak to moderate positive anomalies
in the northern half of the PFZ, the SAZ, and the SAF
and weak to zero anomalies in the southern PFZ, all of
which are characterized by mesoscale gradients (Fig. 6d, f).
Both scenarios show a comparable positive seasonal cycle
anomaly although the phasing of the winter maximum is
earlier, June vs. September, for SHIP(smr)+FLOAT(PFZ)
(Fig. 6b). The mean annual pCO2, from the com-
bined SHIP(smr)+FLOAT(SAZ+PFZ) deployments,
showed spatial characteristics similar to those of
SHIP(smr)+FLOAT(PFZ) but with intensified nega-
tive and positive anomalies in the PFZ and SAZ, respectively
(Fig. 6g). The moderately strong positive winter anomalies
(± 10 µatm) in the seasonal cycle for this experiment indicate
that the mean annual positive anomalies are also dominated
by the winter anomalies (Fig. 6b). The mean annual pCO2
anomaly for the SHIP(smr)+ nUSV deployments is weakly
negative (<− 5 µatm) in the north SAZ and weakly positive
(<5 µatm) in the SAF and the PFZ (Fig. 6h). The overall
weak mean annual pCO2 anomaly is consistent with the
weakest (0–5 µatm) seasonal cycle anomaly (Fig. 6b).

Table 2 shows that SHIP(smr), the baseline-biased ship
summer sampling experiment (the status quo in the South-
ern Ocean), yielded an RMSE of 13.79 µatm and a mean
biased error of 10.52 µatm, which is comparable with the
Southern Ocean results for CSIR-ML6 (Gregor et al., 2019).
Table 2 also shows that although all the additional high-
resolution platform experiments reduced the RMSE and
MBE, the magnitude of the impact was very sensitive to the
platform and its location. All three scenarios of the year-
long SHIP(smr)+FLOAT experiments reduced the RMSE
of the SHIP(smr) experiment by 32.6 %–41.9 %; however,
only the scenario SHIP(smr)+FLOAT(PFZ) provided the
lowest RMSE and MAE as well as statistically significant
correlation (r = 0.73) between the estimates and known
truth. Both WG experiments (SAZ and PFZ deployments)
also reduced the RMSE by 31.7 %–50.1 % through a statis-
tically significant correlation with r = 0.64 (SAZ) and r =
0.57 (PFZ), respectively (Table 2). The SHIP(smr)+ nUSV
experiment yielded the lowest RMSE (6.4 µatm) (53.5 %),
MAE, and MBE with a significant correlation with r = 0.74.
These results are consistent with the comparative seasonal
cycle anomalies that showed SHIP(smr)+FLOAT(PFZ) and
SHIP(smr)+ nUSV to have the smallest seasonal cycle bi-
ases (Fig. 6b) and higher correlations with the known truth
(with r = 0.73 and r = 0.74, respectively).
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Figure 6. Reconstruction anomalies for the four sets of experiments, SHIP, SHIP+FLOAT, SHIP+WG, and SHIP+ nUSV with a partic-
ular focus on the summer-only baseline scenario: SHIP(smr). Panel (a) shows the spatial anomalies or biases (MBEs) of the mean annual
pCO2 reconstruction for the SHIP summer-only sampling scenario, that is, SHIP(smr); panel (b) shows the anomalies of mean seasonal
cycle (SC) reconstructions of the summer-only sampling scenario of the above-mentioned sets of experiments; panels (c) and (d) show
the spatial reconstruction anomalies for the SHIP+FLOAT experiments, where two independent FLOATs were deployed in the SAZ and
PFZ (respectively), and is used to supplement SHIP(smr); panels (e) and (f) show the spatial reconstruction anomalies for the SHIP+WG
experiments, where two independent WGs were deployed along the SHIP line in the SAZ and PFZ (respectively), and is used to sup-
plement SHIP(smr); panel (g) shows the spatial anomalies of the mean annual pCO2 reconstruction for the SHIP+FLOAT experiment
scenario where the two FLOAT deployments (SAZ and PFZ) were used to supplement the SHIP summer-only sampling scenario, hence
SHIP(smr)+FLOAT(SAZ+PFZ); and panel (h) shows the spatial anomalies of the mean annual pCO2 reconstruction for the SHIP+ nUSV
experiments where SHIP(smr) were supplemented by a year-round sampling of the nUSV Saildrone, hence SHIP(smr)+ nUSV.
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Table 2. ML regression modelling scores of the ensemble average (ML2) for the summer-only sampling scenario (smr) of all the four sets
of experiments: SHIP, SHIP+WG, SHIP+FLOAT, and SHIP+ nUSV. The configuration of these experiments is presented in Table S2 and
described in Sect. 2.3.4. Similarly to Table 1, the first column of the table is the experimental set and the second one corresponds to the
considered experiments. The statistical metrics used to assess ML2 for this set of experiments are abbreviated as follows: RMSE is the root
mean square error calculated following Eq. (4); MAE is the mean absolute error (Eq. 3); MBE or bias is the mean average error (Eq. 2); r
is Pearson’s correlation coefficient (Eq. 5) between the reconstructed and the BP12 model truth pCO2. Values in the table are significantly
different from the mean for the corresponding column (with a 95 % confidence level or p value< 0.05 for the two-tailed Z test).

Sets Experiments RMSE MAE MBE r

(µatm) (µatm) (µatm)

SHIP SHIP(smr) 13.79 11.51 10.52 0.36

SHIP+FLOAT SHIP(smr)+FLOAT(SAZ) 9.29 7.46 −4.81 0.60
SHIP(smr)+FLOAT(PFZ) 8 6.51 5.32 0.73
SHIP(smr)+FLOAT(SAZ+PFZ) 9.12 7.57 4.14 0.63

SHIP+WG SHIP(smr) WG(SAZ) 6.88 5.4 0.82 0.64
SHIP(smr) WG(PFZ) 9.41 7.59 5.88 0.57

SHIP+ nUSV SHIP(smr)+ nUSV 6.4 5.1 2.38 0.74

4 Discussion

Resolving the variability and trends of the seasonal cycle of
pCO2 in the Southern Ocean has been a long-term objec-
tive for the ocean carbon community to reduce the uncer-
tainties and biases in the seasonal and mean annual fluxes
(Bushinsky et al., 2019; Gregor et al., 2018; Lenton et al.,
2006, 2013; Mongwe et al., 2018; Monteiro et al., 2015; Sut-
ton et al., 2021; Takahashi et al., 2009). This started with
largely observation-based approaches which constrained the
seasonal cycle climatology (Takahashi et al., 2009, 2012)
and set requirements to resolve the variability (Lenton et al.,
2006; Monteiro et al., 2015). The advent of globally coordi-
nated surface ocean CO2 data, SOCAT (Bakker et al., 2016),
together with machine learning methods (Landschützer et al.,
2014, 2016; Rödenbeck et al., 2015) provided a basis for spa-
tial and temporal gap filling that has resulted in an internally
consistent set of reconstructions for the ocean and Southern
Ocean CO2 fluxes that contribute to the global carbon budget
(Canadell et al., 2021; Fay et al., 2021; Friedlingstein et al.,
2021).

However, Gregor et al. (2019) argued that the uncertain-
ties and biases in CO2 flux reconstructions are now lim-
ited by both data gaps and variability-scale sensitivity of
surface ocean CO2 observations – a boundary that the au-
thors dubbed “the wall”. Our results make the key point that
the seasonal and mean annual biases and uncertainties (RM-
SEs) in the reconstructions depend critically on simultane-
ously resolving the spatial, meridional gradients and tempo-
ral, seasonal, and intra-seasonal variability. We now discuss
three sampling-scale sensitivities emerging from our analy-
sis and what we suggest is required to get “over the wall”:
(1) the sensitivity of the reconstructions to the seasonal cy-
cle, (2) the sensitivity of the reconstructions to the seasonal
cycle of the meridional gradients, (3) the sensitivity of the

reconstructions to the intra-seasonal variability, (4) the need
to simultaneously sample the meridional gradients and their
intra-seasonal variability to get over the wall, and (5) the lim-
itations of this study.

4.1 Seasonal sampling-scale sensitivity

The SHIP-only sampling experiments, which most closely
simulate the historical ship-based and seasonally biased SO-
CAT gridded database in the Southern Ocean, point towards
an unexpectedly high sensitivity of the reconstruction uncer-
tainties and biases to the seasonal sampling scales (Figs. 1b
and 5a–b, and Table 1). Simulation of the existing Southern
Ocean ship summer sampling, SHIP(smr), resulted in a sea-
sonal cycle reconstruction with a strong positive winter out-
gassing seasonal anomaly bias of ± 20 µatm that was strong
enough to reverse the ingassing flux from the model domain
(Fig. 5c) and also biased (positively) the spatial mean an-
nual flux for the domain (Fig. 5a). The impact of the biased
summer sampling is also expressed in the comparatively el-
evated RMSE, 13.79 µatm (Table 1), which is of a magni-
tude close to the RMSEs of the ML methods for the South-
ern Ocean – particularly in the polar frontal zone (PFZ). For
example, Gregor et al. (2018) reported in the PFZ an aver-
age RMSE value of 14.33 µatm and also RMSE= 13.09 µatm
for the SOM-FNN method (Landschützer et al., 2016) within
the same region (PFZ). Furthermore, a comparative analysis
of the SHIP summer-only experiment, SHIP(smr), and the
SHIP summer and winter one, SHIP(smr+wtr), shows that
SHIP(smr+wtr) outperformed SHIP(smr) across all the per-
formance metrics (Table 1) by halving them; for instance,
RMSE= 6.88 µatm. The sensitivity of the reconstruction to
the seasonal sampling bias is again further emphasized by the
impact of the addition of a single SHIP meridional two-leg
winter (July–August) sampling line, SHIP(smr+wtr), which
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reduced the mean monthly winter anomaly of pCO2 for the
whole domain from ± 20 µatm in winter to less than 5 µatm
over the whole seasonal cycle (Fig. 5a–c). The impact of the
additional winter line is also expressed in the reduction in the
bias error from Table 1.

When splitting the anomalies across the two sub-domains
(SAZ and PFZ) for the SHIP(smr) scenario, a comparable
seasonal sampling bias sensitivity was found for the SAZ and
PFZ domains (Fig. 7a). The winter reconstruction bias dom-
inates any internal variability in the sub-domains. However,
the introduction of the SHIP winter line not only impacted
on the overall mean seasonal bias but also shows that the
mean seasonal cycle comprises out-of-phase seasonal modes
of variability in both the SAZ and the PFZ domains (Fig. 7b).

It suggests that an important outcome of the reduction
in seasonal and mean biases is the emergence of important
modes of variability that can provide a useful window into
key processes as well as into identifying key modes of vari-
ability that can influence sampling strategies (Fig. 7a–b). Our
findings on the sampling bias sensitivity are consistent with
the early estimates of the minimum number of ship transects
required to observationally resolve the seasonal cycle in the
Southern Ocean being quarterly, across the four seasons, and
zonally 30◦ apart (Lenton et al., 2006; Monteiro et al., 2010).
Together with these early results, our analysis confirms that
additional ship pCO2 observation lines in summer will not
be a useful contribution towards reducing the uncertainties
and biases in the reconstructions. Rather, as proposed earlier,
additional seasonal sampling lines in winter will make a deci-
sive impact (Figs. 5a–c and 7a–b and Table 1). However, real-
istically this is not achievable because access to the Southern
Ocean outside the summer period is logistically challenging
outside the Drake Passage (Gray et al., 2018; Monteiro et al.,
2015).

The well-recognized seasonal sampling bias problem, out-
side the Drake Passage (Munro et al., 2015), is being ad-
dressed globally and in the Southern Ocean using a variety
of autonomous sampling platforms such as Wave Gliders,
pH floats, and Saildrones (Bushinsky et al., 2019; Gray et
al., 2018; Monteiro et al., 2015; Sutton et al., 2021; Williams
et al., 2017). We now discuss the effectiveness of each one
through experiments to simulate their sampling characteris-
tics inside the model domain. All these experiments include
the SOCAT-like SHIP summer observations. These experi-
ments focus primarily on the impact of the autonomous sam-
pling platforms WG and pH floats as both have been de-
ployed in the Southern Ocean with sampling strategies that
seek to address the seasonal sampling bias (Gray et al., 2018;
Gregor et al., 2019; Monteiro et al., 2015). We return to the
potential of Saildrones later in the discussion in the context
of how to get over the wall.

4.2 The seasonal cycle of the meridional gradients

One of the unexpected results from our analysis was that
the ship-based reconstruction with both summer and winter
crossings of the domain, SHIP(smr+wtr), performed as well
as the best reconstructions in which the SHIP summer-only
sampling, SHIP(smr), is supplemented with an autonomous
WG vehicle or FLOAT sampling continuously through-
out the year (Tables 1 and 2). Thus, SHIP(smr+wtr)
performed better (e.g. RMSE= 6.8 µatm) than the
SHIP(smr)+FLOAT(PFZ) and SHIP(smr)+WG(SAZ)
experiments that produced RMSEs of 8.0 and 6.88 µatm,
respectively. These results suggest that while resolving the
local seasonal cycle of the surface ocean pCO2 with the WG
and FLOAT sampling had a decisive impact on the RMSEs
and mean biases (MBEs), an additional scale is resolved
by the SHIP experiment in winter, which is not addressed
by the sampling scales of the two autonomous sampling
platforms WG (1 d period) and FLOAT (10 d period). Here,
we propose that the critical missing scale is the variability
in the meridional gradient of surface ocean pCO2 (Fig. 8a)
or, more critically, the seasonal cycle of the meridional
gradient of pCO2 (Fig. 8b). Together these figure panels
highlight that although the mean increasing southward
gradient in pCO2 is sustained throughout the annual cycle
(Fig. 8a), there are sharp seasonal spatial and temporal
contrasts in the meridional variability in the magnitudes
(Fig. 8b). This includes significant seasonal differences in
the influence of mesoscale on the spatial variability (Fig. 8a).
The climatological meridional gradients of the dissolved
inorganic carbon (DIC) and the surface ocean pCO2 in
the Southern Ocean are well characterized through in situ
observations (Wu et al., 2019), data products (Gregor et al.,
2018, 2019), and models (Hauck et al., 2015, 2020). These
results highlight that characterizing the meridional gradient
is not sufficient in itself because shipboard observations
in the SOCAT database already include the meridional
gradients, but these observations in the Southern Ocean
are strongly biased towards summer (Gregor et al., 2019;
Gregor and Gruber, 2021). As our study indicates, the
seasonal-scale variability in that meridional gradient matters
the most, which is why SHIP(smr+wtr) makes such a
difference (Tables 1 and 2) compared to SHIP(smr)+WG
and SHIP(smr)+FLOAT.

Significant differences exist between the meridional gradi-
ents along the SHIP line in summer (e.g. January) and win-
ter (e.g. July) (Fig. 8a–b). For example, these differences are
more significant farthest south (>47◦ S) and farthest north
(<43◦ S) compared to the middle (43–47◦ S) of the sub-
domain (light grey shading, Fig. 8a). Similarly, the seasonal
cycle difference is not as big in the middle of the sub-domain
as it is at the extreme lines of the SAZ and PFZ (Fig. 8b).
That is why we need a sampling platform that is able to cap-
ture critical scales of variability. Another key point we raised
concerning the sampling-scale sensitivity of the pCO2 recon-
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Figure 7. Anomalies of the mean surface ocean pCO2 seasonal cycle (SC) reconstructions from two SHIP-only experiments. Panel (a) shows
the pCO2 SC anomalies from the SHIP (summer-only) reconstruction in the whole domain, the SAZ, and the PFZ; and in contrast, panel (b)
shows the pCO2 SC anomalies from the SHIP (summer+winter)-based reconstruction for the whole domain, the SAZ, and the PFZ.

Figure 8. Seasonal contrasts for the meridional gradient (MG) of surface ocean pCO2 in the experimental sub-domain. Panel (a) shows
the mean annual MG (black) and the mean MG along the SHIP line in summer (January) (light blue) and in winter (July) (dark blue); and
panel (b) shows the seasonal cycle of the meridional gradient of pCO2 with the months when the SHIP sampled (blue triangle markers) with
the light blue for January (smr) and the dark blue for July (wtr). The light grey shading in panel (a) shows the sub-domain areas (north and
south) where there were large differences in pCO2 meridional gradients along the SHIP line in summer and winter.

structions is that resulting uncertainties and biases depend on
the seasonal scale of the meridional gradients of the surface
ocean pCO2 (Fig. 8b). Shedding light on this point results in
resolving the seasonal cycle of the meridional gradients.

The similarity of the anomalies between the
SHIP(smr)+WG(SAZ) and SHIP(smr)+ nUSV exper-
iments is supported by the impact that these sampling
strategies have on the seasonal cycle of the bias (Fig. 6b).
This shows that, relative to other sampling experiments,
there was a reduction in the biases across the whole sea-
sonal cycle but more so in summer–autumn and less so
in winter–spring (Fig. 6b). The significantly smaller MBE
for SHIP(smr)+WG(SAZ) can be ascribed to the bias
being slightly negative in summer–autumn and positive in

winter–spring, which leads to a small mean annual MBE,
whereas in the case of the SHIP(smr)+WG(PFZ) experi-
ment, the MBE is small but positive throughout (Fig. 6b,
and Table 2). The mean annual anomaly map of pCO2 for
the SHIP(smr)+ nUSV experiment still shows a positive
anomaly, though weaker, at the frontal zone because al-
though the nUSV Saildrone has a daily sampling resolution,
it only crosses the highly synoptic SAF zone periodically
(Fig. 1c). This is consistent with all the instances when not
resolving the temporal variability results in a positive bias of
varying magnitudes (Fig. 6b).

On designing an observation-based strategy for quantify-
ing the Southern Ocean uptake of CO2, Lenton et al. (2006)
argued that constraining the net seasonal air–sea CO2 fluxes
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within the natural variability in the carbonate system requires
doubling the current Southern Ocean meridional sampling.
In a semi-idealized experimental setting, our study takes this
further by showing that resolving the seasonal cycle of the
meridional gradients is very critical. WG and FLOAT pro-
vide high temporal sampling resolution, but they do not re-
solve the existing meridional gradients. Therefore, increasing
data density through zonal autonomous sampling vehicles
(e.g. floats) is not sufficient to minimize reconstruction er-
rors. The quarterly meridional sampling strategies proposed
by Lenton et al. (2006) and Monteiro et al. (2010) could help
to resolve the seasonal cycle of the meridional gradients, but
they are not operationally feasible.

4.3 Intra-seasonal variability in the seasonal cycle

Recent high-resolution observations using different types of
carbon-enabled autonomous platforms have highlighted a
potential sensitivity of Southern Ocean CO2 flux reconstruc-
tion uncertainties and mean bias to aliases in sampling the
intra-seasonal to seasonal temporal scales (Bushinsky et al.,
2019; Gray et al., 2018; Monteiro et al., 2015; Sutton et al.,
2021; Williams et al., 2017). Here we discuss the sensitiv-
ity of the model domain reconstruction statistical metrics to
a range of semi-idealized scenarios of SHIP summer supple-
mented with FLOAT and WG observations (Table 2; Fig. 6).
In each case of FLOAT and WG sampling, they were made
to sample each sub-domain (SAZ and PFZ) for a year at
their characteristic sampling periods of 10 and 1 d, respec-
tively. The assumption was that the floats would remain in the
domain throughout the year. Thus, to not disadvantage the
floats in these experiments, one float was deployed in each
sub-domain (SAZ and PFZ) as shown in Fig. 1b, under the
assumption that floats would not cross the sub-Antarctic front
(SAF). The nUSV Saildrone analogue sampling scenario is
brought in later to test the predicted sampling requirements to
achieve the lowest RMSEs and mean bias error. There was no
real benefit in reproducing the zonal sampling approach for
the Saildrone (Sutton et al., 2021) because it would be com-
parable to the zonal travel of FLOAT but with higher daily
sampling more akin to the WG. Its metrics would therefore
have been comparable to both and would have contributed
little to learning.

One of the standout aspects of this part of the analysis,
investigating the impact of the sampling period, was the
significant difference in the uncertainty and biases between
the best-performing SHIP(smr)+WG(SAZ) (RMSE= 6.88;
MBE= 0.82 µatm) and SHIP(smr)+FLOAT(PFZ)
(RMSE= 8; MBE= 5.32 µatm) scenarios (Table 2).
These comparative statistics point to the reconstructions also
being very sensitive, particularly to the temporal sampling
scales. This finding can be explained and understood from
the characteristics of the variability from time series from
single model grid cells in the SAZ, on the SAF, and in the
PFZ (Fig. 9). Local-scale single-grid-cell observations are

Figure 9. Time series (1 year) plots of the variability in surface
ocean pCO2 at single model grid cells on the SHIP line (2.5◦ E,
Fig. 1b). We used the following single model grid cells: 42◦ S,
2.5◦ E in the sub-Antarctic zone (SAZ); 44◦ S, 2.5◦ E on the sub-
Antarctic front (SAF); and 47◦ S, 2.5◦ E in the polar frontal zone
(PFZ). The figure shows that while the SAZ and SAF are domi-
nated by synoptic modes of variability, the PFZ is characterized by
longer-period sub-seasonal to seasonal scales of variability.

appropriate instead of spatial means because they simulate
the local nature of the variability and how it is observed.
The variability characteristics of these time series help
explain the statistics of the pCO2 reconstructions (Fig. 9;
Table 2). The SAZ and SAF are characterized by stronger
intra-seasonal variability, whereas the PFZ is characterized
by lower-frequency (sub-seasonal)–seasonal modes of vari-
ability (Fig. 9). Thus, while the SAZ and SAF sub-domains
and their stronger intra-seasonal variability are best resolved
by the daily sampling of the WG, the PFZ domain, which is
dominated by the lower-frequency sub-seasonal to seasonal
cycle, is resolved equally well by the WG daily and FLOAT
10 d sampling periods (Fig. 9; Table 2).

Therefore, given that WG and FLOAT sampling scenar-
ios are comparable in that neither has a strong meridional
gradient-resolving sampling strategy, the main difference be-
tween them is the daily sampling rate of the WGs and the
10 d sampling rate for FLOAT. Figure 9 then helps explain
why even though the domain reconstructions based on the
FLOAT(PFZ) sampling scenario perform best out of the two
FLOAT scenarios, SHIP(smr)+FLOAT(SAZ+PFZ), ulti-
mately this scenario underperformed relative to the WGs
because it was aliasing the synoptic intra-seasonal vari-
ability in the SAZ and SAF. This surprising performance
of SHIP(smr)+FLOAT(SAZ+PFZ) after running the ex-
periment several times likely resulted from the difference
in modes of variability in the SAZ and PFZ (Fig. 9).
The float did well when deployed in the PFZ domi-
nated by seasonal variability, which can be resolved by
the 10 d sampling period, but performed poorly when it
was deployed in the SAZ characterized by intra-seasonal
modes, which cannot be resolved by the 10 d sampling
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period. Thus, when sampling the two sub-domains simul-
taneously, SHIP(smr)+FLOAT(SAZ+PFZ) resulted in a
poorer performance than for the PFZ alone (Fig. 6b; Ta-
ble 2). The finding that the high temporal resolution of the
SHIP(smr)+WG(SAZ) was the only sampling combination
to match the performance of the SHIP(smr+wtr) experi-
ment, whose strength was in resolving the seasonal contrasts
of the spatial meridional gradient, suggests that these two
scales of variability, intra-seasonal and meridional, are close
to equally important in achieving a low bias and RMSE re-
construction. Resolving the former and the latter simultane-
ously may therefore be a presently missing critical step.

More broadly and relative to the SHIP summer-only sce-
nario, all the annual cycle experiments yielded a reduction in
the reconstructed seasonal cycle anomalies (Fig. 6b) and in
the uncertainties (32 %–50 %) and biases (± 50 %) as well as
a statistically significant improvement for Pearson’s correla-
tion coefficient (r) (Fig. 6a–b, and Table 2). When comparing
SHIP(smr)+WG with SHIP(smr)+FLOAT, reconstructed
annual mean pCO2 maps for the whole domain were consis-
tent with reduced anomalies, for instance, with small positive
anomalies for SHIP(smr)+FLOAT(PFZ) and small negative
anomalies for SHIP(smr)+WG(SAZ) (Fig. 6d and e, respec-
tively). However, while comparing SHIP(smr)+WG(SAZ)
with SHIP(smr)+FLOAT(SAZ) where WGs and floats are
both deployed in the SAZ, there is a significant difference in
the RMSEs and MBEs with 6.88 and 0.82 µatm, respectively,
for the former, and 9.29 and−4.81 µatm, respectively, for the
latter (Table 2).

This analysis provides additional understanding of the
strengths and limitations of the way that the three main au-
tonomous platforms (Wave Gliders, carbon floats, and Sail-
drones) deployed in the Southern Ocean contribute to in-
creasing or decreasing the seasonal cycle and mean annual
biases as well as the RMSEs (Monteiro et al., 2015; Bushin-
sky et al., 2019; Sutton et al., 2021). Based on hourly obser-
vations of the surface ocean pCO2, Monteiro et al. (2015)
showed that a temporal sampling resolution of less than 2 d
would be necessary in 30 %–40 % of the Southern Ocean,
corresponding to the SAZ, to reduce the uncertainty to less
than 10 % of the annual mean (Sect. S3.5). Our study con-
firms the sensitivity of the RMSE of the intra-seasonal vari-
ability sampling alias and also shows its impacts on the bias
of the annual mean. SOCCOM-float-calculated pCO2 data
have made a decisive impact on resolving the seasonal cy-
cle in the Southern Ocean and suggest that winter CO2 out-
gassing may be underestimated in SOCAT-based reconstruc-
tions (Bushinsky et al., 2019; Gray et al., 2018). Our study
suggests that these observed and reconstructed elevated out-
gassing fluxes may be the result of both aliasing of the intra-
seasonal variability and not resolving the seasonal cycle of
the meridional gradient. Our analysis also raises a question
about the assumption that not resolving the intra-seasonal
variability in pCO2 does not contribute significantly to the
RMSE and the bias (Bushinsky et al., 2019). It shows that

the intra-seasonal modes of the wind are not sufficient to im-
part a low mean annual and seasonal cycle bias.

To provide a more quantitative characterization of our
findings, an additional analysis was conducted on the sub-
10 d mode of variability. A 10 d rolling mean was used
to eliminate or weaken the sub-10 d mode of variability
(Fig. S8a). The difference between this 10 d rolling mean and
the daily model output gives the high-frequency variability,
and the root mean square error (RMSE) gives us a statistical
understanding of what the uncertainty might be if we sam-
pled at a 10 d rate (shown in Fig. S8b as a map). The result-
ing mean RMSEs for the SAZ and PFZ, after implement-
ing the 10 d rolling mean, are 2.53 and 1.71 µatm, respec-
tively, a significant reduction relative to the RMSEs for the
FLOAT experiment using the daily model output (Table 2).
This provides further quantitative support for our findings
and the work of Monteiro et al. (2015) that more dynamic re-
gions require higher sampling rates. We finally propose that
the impact of SOCCOM floats on the reconstructions can be
strengthened by reducing the sampling period to <2 d, espe-
cially in high-EKE areas and through a coordinated merid-
ional deployment strategy that helps to resolve the merid-
ional gradient across the annual cycle. Our study also sug-
gests that notwithstanding the high temporal frequency of the
USV Saildrone, the present emphasis on a zonal sampling
pattern (Sutton et al., 2021) also underestimates the poten-
tial contribution that this platform could make in observing
the seasonal cycle of the meridional gradient at high tempo-
ral resolution simultaneously. We now examine this aspect in
more detail.

4.4 Getting over the wall in the Southern Ocean by
simultaneously resolving the intra-seasonal and
seasonal variability in the meridional gradient –
proposed optimal sampling strategy

This analysis has highlighted that in order to minimize the
uncertainties and biases sufficiently to get over the wall, ob-
servational strategies in the Southern Ocean need to simul-
taneously resolve the seasonal cycle of the meridional gra-
dient at temporal scales that also resolve, where necessary,
the intra-seasonal variability. To test this hypothesis, we de-
signed an additional year-round observing system simulation
experiment (OSSE) that simulated the spatial and temporal
sampling capabilities of the new unmanned surface vehicle
(nUSV) Saildrone (Sutton et al., 2021) to supplement the
SHIP summer-only sampling SHIP(smr) (Figs. 1c and 6 and
h), that is, SHIP(smr)+ nUSV. This experiment combined
the speed of the nUSV Saildrone (Gentemann et al., 2020;
Meinig et al., 2019) required to cover the regional meridional
spatial gradient length scales (Fig. 1c) with high-frequency
daily sampling to supplement SHIP(smr). Together these ful-
fil the requirements that emerged from the earlier analysis.

Comparative statistics show that the SHIP(smr)+ nUSV
experiment yielded a very significant improvement
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in the reconstruction skills relative to all other plat-
form combinations (Table 2). Its performance metrics
(RMSE= 6.4 µatm) outperformed the next best combi-
nation SHIP(smr)+WG(SAZ) (RMSE= 6.88 µatm) and
SHIP(smr)+FLOAT(PFZ) (RMSE= 8.0 µatm). This sup-
ports the hypothesis that resolving the intra-seasonal and
seasonal variabilities in the meridional gradients is decisive
in minimizing uncertainties and bias in pCO2 reconstruc-
tions. Based on this analysis, we propose that the optimal
sampling scheme is SHIP+ nUSV because it not only
provides a high temporal resolution (daily) of the large-scale
meridional gradients but also combines speed to cover the
required meridional spatial extent.

The nUSV Saildrones are still relatively new autonomous
sampling platforms, and their ability to withstand the strin-
gent weather and sea conditions in the Southern Ocean is still
being assessed (Sutton et al., 2021). Recent deployments of
Saildrones have been focused on zonal circumpolar tracks,
which have been successful in proving the Saildrones as a
robust sampling platform and in observing the seasonal cy-
cle of CO2 fluxes in the sub-polar domain (Sutton et al.,
2021). This approach is comparable to the zonal sampling
of FLOAT (Fig. 1b) but with a higher temporal sampling fre-
quency (daily vs. 10 d). Notwithstanding the higher temporal
sampling frequency from the Saildrone, the lack of a merid-
ional spatial component to the zonal sampling strategy lim-
its its value in reducing the uncertainties and biases in any
reconstructions that use them. Its inclusion in CO2 flux re-
constructions would improve the RMSE and mean bias error
(MBE) relative to SOCAT-based reconstructions, which, as
discussed earlier, are not where autonomous sampling vehi-
cles can add the best value (Tables 1 and 2).

Our work here shows that a zonal sampling strategy, while
good for operational navigational reasons, is not the most ef-
ficient way to maximize the value of USV Saildrone sam-
pling to resolve critical scales of variability necessary for
high confidence in the pCO2 and inferred CO2 flux recon-
structions in the Southern Ocean. Furthermore, our study
shows how, by mixing the meridional sampling strategy
(Lenton et al., 2006; Monteiro et al., 2010) with the current
zonal sampling, we can leverage the USV Saildrones to make
sure we are not missing the meridional gradients.

4.5 Applicability of the sub-domain to the wider
Southern Ocean

The focus of this study was on investigating the mismatch be-
tween sampling periods and the modes of variability in pCO2
in the domain rather than the mechanisms. This selected do-
main in the south-east (SE) Atlantic Ocean encapsulates the
contrasts in the scales of variability of interest, namely the
seasonal and intra-seasonal modes that are characteristic of
the Southern Ocean (Fig. 10). It shows how findings in the
study domain can be extended to the Southern Ocean. Us-
ing a 10-year period of pCO2 output from NEMO-PISCES

Figure 10. Map showing the study domain and the Southern Ocean
sub-regions resulting from the seasonal cycle reproducibility (SCR)
of pCO2 calculated based on 10 years of NEMO-PISCES simula-
tions at the 5 d temporal resolution, where the sub-Antarctic front
(SAF) (light red) and the study domain (black box) are depicted.
The table below the map shows the fraction coverage estimates (%)
for these SCR-based regions both in the domain and in the South-
ern Ocean as a whole. LSCR corresponds to low-SCR areas, while
MSCR and HSCR represent medium- and high-SCR areas, respec-
tively.

model simulations at a 5 d temporal mean, the seasonal cycle
reproducibility (SCR) of pCO2 was calculated as the correla-
tion of the detrended pCO2 with its own 10-year climatology
– the larger the correlation, the stronger the SCR (Thoma-
lla et al., 2011). This resulted in the SCR-based clustering
of the Southern Ocean into three regions (Fig. 10) corre-
sponding to the low-SCR (LSCR), medium-SCR (MSCR),
and high-SCR (HSCR) areas, respectively. The criteria of the
choice of these three ranges are as follows. In high-SCR ar-
eas, there is no intra-seasonal variability and there are no
annual signals. In medium-SCR areas, intra-seasonal vari-
ability emerges but is smaller in magnitude compared to the
seasonal cycle, while in low-SCR areas, there is no seasonal
signal and the intra-seasonal variability is larger than the sea-
sonal cycle.

Although this study domain was chosen within a high-
EKE area (black box; Figs. 1a, 10) because of its contrast-
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ing seasonal and intra-seasonal variability in the surface
ocean pCO2, the SCR metric shows how the study area in
the SE Atlantic Ocean contrasts the Southern Ocean as a
whole (Fig. 10). As argued in the previous paragraph, sea-
sonal and intra-seasonal variability is relatively associated
with LSCR (0–0.65) and MSCR (0.65–0.85) regions, which
together represent ∼ 75 % of the study domain and ∼ 64 %
of the whole Southern Ocean (cf. Table shown in Fig. 10).
This demonstrates that the sub-domain modes of variability
(which are dominantly intra-seasonal) may be applied to the
wider Southern Ocean.

Longitudinally, the Southern Ocean is equal to
360◦/20◦= 18 times our 20◦W–E domain. However,
while in theory, our domain is 1/18th of the zonal extent of
the Southern Ocean, it represents different modes of vari-
ability as argued above. Thus, we should be able to capture
the variability with fewer than 18 USV Saildrones. Based on
this, we have a speculative estimate of the monetary cost; see
the Supplement (Sect. S3.4). A study on the full Southern
Ocean will be performed to assess this more thoroughly.

4.6 Limitations of the study

In this study, our limitations were tied to four main points:
the model used, the selected sub-domain, the existing shift in
the seasonal cycle phasing of the model and data products,
and the overfitting tendency of ML models. Here we discuss
these limitations separately.

We only had 1 year of daily outputs of the high-resolution
coupled (NEMO-PISCES) ocean model, BIOPERIANT12
(BP12). These BP12 model spatial (1/12◦ by 1/12◦) and
temporal (daily) resolutions influenced the designing of the
OSSEs, therefore impacting the sampling approach of the
synthetic platforms compared to their real-world counter-
parts. For example, unlike other sampling platforms that can
be driven remotely, floats are harder to simulate due to the
way they operate. Thus, we could only mimic the 10 d sam-
pling period and the deployment location and assume that
they are randomly transported eastwards by the water cur-
rent. Since the Antarctic Circumpolar Current (ACC) moves
eastwards, the random walk we implemented is an adequate
approximation and adds an element of stochasticity that is
likely close to reality (Fig. 1b).

The selected sub-domain combines regional and
mesoscale gradients and features (such as eddies and
fronts) which could challenge the reconstruction methods to
better capture some variability scales such as the seasonal
cycle of the meridional gradients (Fig. 8). However, the
meridional gradients could also be associated with the
meandering of the ACC fronts such as the SAF, which
crosses the domain. On the other hand, the assumption of
the domain representativeness of the variability scales of
the region could be a cause for concern as this would be
applicable in regions where latitudinal gradients are strong.
For example, the BP12 model output might not achieve this

assumption based on a standard deviation of 9.1 µatm for
the synthetic SHIP data compared to 20.96 µatm for SOCAT
data in the sub-domain.

Existing differences in the mean pCO2 seasonal cycles of
the model and data products (Fig. 2) could also result from
processes that deterministic models such as the BP12 ocean
model (NEMO-PISCES) cannot yet constrain due to a lack
of understanding of the complete Southern Ocean carbonate
system or mixed-layer physics (Lenton et al., 2013; Mongwe
et al., 2016; Monteiro et al., 2015). However, our knowledge
of which one is right between model and data products re-
mains limited.

Lastly, overfitting is a common challenge in supervised
machine learning (ML) problems. Although each of the two
ML algorithm (FNN and GBM; see Sect. 2.4) best practices
were used in training, the GBM algorithm encountered more
challenges with the overfitting compared to the FNN (cf. Ta-
ble S3). While GBM has been proven to deal well with im-
balanced or sparse datasets (Ke et al., 2017), it is more likely
to overfit the training data because of the model’s potential
for high complexity (Frery et al., 2017).

Finally, while studies such as Gregor et al. (2019), Devil-
Sommer et al. (2019), and Gloege et al. (2021) found that
mixed-layer depth (MLD) climatology is an important pre-
dictor of surface ocean pCO2, our use of dynamic model-
generated MLD may impart some advantage that might not
be available to the real-world observation-based reconstruc-
tions. Moreover, we also recognize that model-generated
Chl a may not be, in absolute terms, directly analogous to
satellite Chl a. However, these advantages from using model
output are uniform across all the sampling experiments in
this study.

5 Conclusions

From this study, we propose that one can advance the uncer-
tainties and biases from machine learning pCO2 reconstruc-
tions beyond the wall, at least in the Southern Ocean. Within
a chosen experimental domain of the Southern Ocean, we
demonstrate that this would require resolving the seasonal
and intra-seasonal modes of variability in the meridional gra-
dients of pCO2 through a combination of high-frequency (at
least daily) observations spanning the meridional axis. We
showed that the reconstructed seasonal cycle anomaly and
mean annual pCO2 are highly sensitive to seasonal sampling
biases. The seasonal sampling bias comprises both the tem-
poral and the meridional spatial scales of variability. This
may explain the significant winter-positive bias in the recon-
struction of the seasonal cycle of pCO2 in the domain, which
likely may also contribute to the apparent winter-maximum
outgassing or weakening of the ingassing of CO2 observed in
recent Southern Ocean data products. This points to an urgent
need to address the existing seasonal bias (towards summer)
in the Southern Ocean SOCAT dataset through improving
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the sampling strategy of the present autonomous platforms
so that they are better aligned to the integrated spatial and
temporal sampling-scale needs.

Inside the chosen domain, the study confirmed that not re-
solving the high-frequency (synoptic–sub-seasonal) variabil-
ity results in insufficient decreases in mean biases and RMSE
scores for the reconstructed mean annual flux. Present 10 d
sampling periods of floats have a limited impact on reducing
uncertainties and biases in pCO2 mappings because they do
not resolve the intra-seasonal variability. In addition, the pre-
dominantly zonal and quasi-Lagrangian sampling does not
contribute sufficiently to resolving the seasonal variability in
the meridional gradients of pCO2. Our study proposes that
a more meridionally coordinated deployment of floats could
contribute further to resolving synoptic variability and the
meridional gradients. For example, increasing sampling fre-
quency to <2 d, particularly in high-EKE areas, as well as
a meridionally coherent sampling strategy would support re-
solving the synoptic-scale variability and the variability in
the basin-scale gradients. Although they still lack the merid-
ional gradient reach, Wave Gliders in pseudo-mooring modes
improve on floats (RMSEs, MBEs), and the main explanation
for this improvement is because of their higher sampling fre-
quency (daily). This study recommends that the use of Wave
Gliders in the reconstruction of CO2 fluxes in the pseudo-
mooring mode should be discontinued and a meridional di-
mension to the high temporal resolution (1–2 d) should be
adopted. We showed that while the USV Saildrones in the
present zonal sampling mode improve the RMSEs and bi-
ases, this might not be the most efficient way to maximize
their strengths stemming from their high sampling frequency
(hourly) and large spatial scale (by leveraging their speed).
We thus propose that USV Saildrones are probably the opti-
mal platforms to address the necessary integrated large-scale
spatial and high-resolution temporal sampling.

In summary, ship-based observations (SOCAT-like) re-
main vital to the reconstruction of CO2 fluxes in the Southern
Ocean as a whole and should be continued. These observa-
tions are the baseline data involved in the training of any ma-
chine learning algorithms behind the main observation-based
products of reference. However, these ship-based observa-
tions are seasonally biased (towards summer) due to under-
sampling during stormy autumn and winter seasons, which
is likely the root of persistently elevated uncertainties and a
winter-positive bias in the reconstructions. This bias should
be addressed with urgency. Finally, this study proposes that
a meridional sampling strategy may be an efficient way of
sampling using autonomous observing systems. In this case,
we recommend that existing ship-based observations of the
surface ocean pCO2 in the Southern Ocean should be supple-
mented by year-round autonomous high-resolution observa-
tions that resolve the seasonal cycle of the meridional gradi-
ents of the surface ocean pCO2. However, a follow-up study
is also recommended to test, for example, the USV Saildrone
effectiveness and impact on reducing uncertainties and bi-

ases in the seasonal and mean annual reconstruction of CO2
fluxes in the Southern Ocean as a whole.
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for data analysis are contained in the following GitHub
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